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Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities
and to the solid phase
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The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a
polarizable electron backgroufiG. Chabrier and A. Y. Potekhin, Phys. Rev5E 4941(1998] is improved,
and its applicability range is considerably extended. First, the fit of the electron screening contribution in the
free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we
calculate the screening contribution for the Coulomb s@ict and fcg and derive an analytic fitting expres-
sion. Third, we propose a simple approximation to the internal and free energy of the liquid one-component
plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an
updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma:
I'v=175.0-0.4(10).

PACS numbeps): 52.25.Ub, 52.25.Kn, 05.70.Ce, 97.20.Rp

[. INTRODUCTION problems which require an accurate evaluation ofithpart
even at high densitie@n example is mentioned belpwn

Fully ionized electron-ion plasméd&IP) are encountered this paper, we present a modification of the analytic formula
in laboratory experiments, in stellar and planetary interiors[1] for theie free energy that improves significantly the ac-
in supernova explosions, etc. From the theoretical point oturacy in the domain of relativistic electrons, keeping un-
view, the free energy of fully ionized EIP provides the ref- changed the previous nonrelativistic results.
erence system for models aimed at describing the thermody- Second, we calculate the part of the free energy for a
namic properties of partially ionized plasmas. Thus the stud€oulomb solid, where the ions form either a body-centered-
ies of EIP are of both theoretical and practical interest. cubic (bco or face-centered-cubidcc) lattice. The calcula-

In a previous papefl], we have calculated thermody- tion is performed in a perturbation approximation, which is
namic quantities of Coulomb plasmas consisting of pointlikeaccurate because the screening is weak. We employ an ana-
ions immersed in a compressible, polarizable electron bacKytic expression for the ion structure factgtk) of a Cou-
ground and devised analytic fitting formulas for these quaniomb crystal, obtained in Ref4] in the harmonic approxi-
tities. The calculations were based on a linear-responsmation for large wave numbetksoutside the first Brillouin
theory for the ion-electroni€) interaction, which is valid as zone. For smalk, we supplement it by an exact limiting
long as the typicaile interaction energyZ e)?/2a, (wherea, form of S(k). We evaluate the screening contribution for
is the Bohr radius ande is the ion chargeis smaller than both the classical and quantum harmonic crystals and con-
the kinetic energy of the electrons. This condition is fulfilled struct a fitting formula which accurately reproduces our nu-
either at temperaturesT=10°Z%> K or at densitiesp merical results.
=AZ? gcm 3, whereA is the ion mass number. For the  The above-mentioned improvements of the equation of
nonrelativistic regime, i.e., at densities<10® gcm 3,  state are significant at densitips=10° gcm 3. Such den-
finite-temperature effects were included in the electronic disities cannot be reached in the laboratory, but they are com-
electric function, as well as the local-field correction arisingmonly encountered in the interiors of white dwarfs and en-
from electron correlation effects, following the model devel-velopes of neutron stafg.g., Ref.[5]).
oped in Ref.[2]. In the relativistic regime, similar calcula- In addition, we present simple formulas for the excess
tions were done using the JancoVi8i dielectric function.  internal and free energies of a classical one-component

Since the electron screening is weak at high densities, anglasma(OCP liquid, which take into account the most re-
since the bulk of calculations have been performed using theent Monte CarldMC) results[6,7], and which are accurate
nonrelativistic model, our fit for thée contribution was not  for any values of the Coulomb coupling parameter from the
very accurate ap=10° gcm 3, where the electrons are gaseous phase to the dense liquid regime. Analyzing various
relativistic. Because of the same weakness of the screeningssults for the free energy of the OCP liquid and solid, we
this inaccuracy in theée contribution at highp did not dete-  revise the value of the coupling parameter at the solid-liquid
riorate the overall accuracy for thexcesspart of the free  phase transition.
energy, which sums up the ion-ioni), electron-electron In the next section, we describe the basic parameters of
(e€), andie contributions. There are, however, physical the EIP. In Sec. lll, we consider the OCP liquid and deter-

mine its freezing point. In Sec. IV, we present an improved
fit to the free-energy contribution due to the electron screen-
*Electronic address: palex@astro.ioffe.rssi.ru ing in a Coulomb liquid. In Sec. V, we evaluate an analogous
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contribution for a Coulomb solid and fit it by an analytic 7~0.3428 \/x,Z2~ "PA 112 9)
expression.

Within the aforementioned approximation of weak
Il. THERMODYNAMIC PARAMETERS electron-ion coupling, the total Helmholtz free energy;

We consider EIP consisting of pointlike ions and elec-C&n be written as
trons. The basic dimensionless parameters are the electron

density parameter, and the ion coupling parameter Fo= F@+F@+Feet Fji +Fig, (10
& _(Ze? . @ whereF{® denote the ideal free energy of ions and elec-
rS__i F_ _Fez ’ Fe_—- ( ) ! .
ag kgTa kgTae trons, respectively, and the last three terms represent an ex-

cess free energy arising from interactiorﬁéﬂ,) is the free
Here, kg is the Boltzmann constané.=(5mn.) 3 is the  energy of an ideal Boltzmann gas. For the electrons at arbi-
mean interelectron distance=(%4mn;) ¥3=a,z'% is the trary degeneracy and relativisnk{; can be expressed
mean interion distance, amgd(n;) denotes the electrofion)  through Fermi-Dirac integrals and approximated by analytic

number densityl", denotes the coupling parameter for non-formulas[1]. An analytic parametrization for the nonideal
degenerate electrons. (exchange and correlatiprpart of the free energy of the

Quantization of the ionic motion is important f<T,  nonrelativistic electronsz e, has been given in Ref9]. For
=fw,/kg, wherew,=(4mZ%?n;/m;)"2is the ion plasma the relativistic electrons, the exchange free endf{fy has
frequency,m; being the ion mass. A corresponding dimen-been given, e.g., in Ref10], while the correlation correc-

sionless parameter is tions are negligible because they contain an additional small
factor ~ a¢ In|ey| [11], wherea;~1/137 is the fine-structure
n=T,/T=T3Rg, (2 constant. In practice, we use the following interpolation be-
tween the nonrelativistic and relativistic regimes: Iif,
where =>0.07 andr¢=<0.13, we set
_ am 2_ m; 713 nr rel
Rs=77 (&)= rZ 3 Fee= (1—&)F DLt ¢F I,
11

is the ion density parameter. We neglect ion quantum- é=exf —(I'4/0.07-0.9)"2—(0.13F;—0.9) ~2];
exchange effects, which is justified®s>1" (see, e.g., Ref.

[8]). _ otherwise we seF..=Fq. The interpolation is sufficiently
The electrons are _characterlzed by the degeneracy parags, ooth. because, andF'® closely match each other at the
eter ¢ and the relativity parametes; chosen boundary between the two regimes.
_ _ In the following sections, we consider the last two terms

6=TITe.  X=pel(mee), @ in Eq. (10), whicﬁ represent the excess free energy of an
where T is the Fermi temperature, is the speed of light, OCP of ions and the contribution due to the ion-electron
andpg=%(3m?n,) 2 is the Fermi momentum. The electron interactions, respectively.
screening properties are determined by the Thomas-Fermi

wave number lIl. OCP AND MELTING TRANSITION

kre=(4me?dng/pm)'?, (5 Liquid and solid phases of the OCP have been studied

) ) , extensively by various analytic and numerical methods. All

where is the electron chemical potential. the thermodynamic functions of the classical OCP can be
For these parameters, the following estimates are aCC“raE@(pressed as functions of the only paraméteit I'<1, a

within 0.005%: diagrammatic cluster expansion yields

x,~0.014 005 '~ 1.0088 pZ/A)*?, (6) U 3 3 o 1
2254% 5930 Ui = RikeT \[Erglz_3rg N3N 5 3
P~ o, 0~ = (JTF-1), () e
6 6 —I9%1.6875/3IN'—0.23512+---, (12

where pg=p/(10° gecm 3) and Tg=T/(10° K). In the
nonrelativistic plasmax;<1), 6~0.543./T,. In the ultra- whereCg=0.5772 ... is theEuler constant. Here, the first
relativistic case X,>1), 6~ (263,) . If the electrons are term is the Debye-Htkel energy, the second one is due to
nondegeneratefe1), krrae~ 3T . For strongly degener- Abe [12], and the~I"*? one is due to Cohen and Murphy
ate electrons {<1), [13]. SinceF;; vanishes at higlT, it can be obtained from
U;; by integration:
krrae~0.1851+x, %), (8)

The ion quantum parameteris expressed througk andI’ fo= Fi _ fFu”(F )dF’ (13)
as " NiksgT Jo T
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TABLE |. Parameters of Eq(15). Powers of 10 are given in SRELELELEE BLELELELE B L L B
square brackets. —0.1 = &
Data  —A, A, B, B, -B, B, 02 F 3
Ref.[6] 0.9070 0.62954 4.56-3] 211.6 1.0—4] 4.6 —3] —0.35— —E
Ref.[7] 0.907347 0.62849 4.50-3] 170.0 8.4—5] 3.70 —3] - ]
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The above analytic expansion is not applicable for -09 F \ 1'1CM =
=1. The most accurate up to date numerical results for the E .Al.)e.“..h T
internal energy of the liquid OCP at<lI'<200 have been T
obtained by MC simulations by DeWitt and Slatt¢6f and 0.002 - i -
by Caillol [7]. These authors have also constructed analytic - K CM | .
fits to their data with the standard deviations comparable to + | i o ° o048 B
the numerical MC noise. Unfortunately, these fits cannot be 8 0 | AN v o o e %“&:"t )
extended to small', which hampers obtaining the free en- = v 00
ergy by Eq.(13). On the other hand, the hypernetted-chain 7 —0.002 - o |
(HNC) result forF;; atI'=1 is slightly inaccurate because %= i ° 7
the HNC approximation neglects the so-called bridge func- & —0.004 - 7
tions in the diagrammatic representation of the interactions. = - « o o Caillol (MC) T
To circumvent the difficulty, DeWitt and Slattefyt4] used —0.006 |- -
small differences between HNC and MCIa£ 0.8 and 0.6 to L Lo Lo L L

-2 -1 0 1 2

get the corrected value df,(I'=1)=—0.4368.

We propose a different approach. We consider the param-

etrization

1 + A3
JT+A, '+l

whereA;= —\/3/2— A, /\/A,. The terms in square brackets
have been used in Refl], the term withB; provides an
adjustment of the fit to the MC data at larfje and the last
term adjusts to Eq(12) at smalll’. The best-fit parameters
with respect to the dati6,7] are given in Table I. Then the
free energy can be obtained from Eg3):

fii=A[ VT (Ay+T)— Ay In(NT/A,+ 1+ T/A,)]

B,I'?  Bal?
+ + = ,
I'+B, I?+B,

Uy =132 (15)

r
4—2A3[\/f—arctan\/f]+B1 I'-B,In| 1+ B—”

1
B 14 : 16

The corresponding expression for heat capacity is

Cy; I r-1 ALA, ) r’-B,
= | As 2~ +I4Bs 2 o2
Niks 2 (F'+1)% (r+A,)3% (I'“+By)
B1B;
- (I'+B,)?| (A7)

Comparison of Eq(15) with Eq. (12) atI'<1 and with
the MC data from Refs[6,7] at I'=1, supplemented by

log,, T

FIG. 1. Upper panel: comparison of the ({li5) (solid line) with
the Debye-Huakel (DH), Abe[12], and Cohen-Murphy13] (CM)
approximationgdot-dashed lineswith the MC resultgcircles and
the fit (dotted ling of Ref.[6] (DWS), and with some of our HNC
results(triangles. Lower panel: residual differences between the fit
(15) and(i) the analytic expansiofi2) (dot-dashed ling (ii) results
of HNC calculations(triangles, (iii) MC results of Ref[6] (open
circles, and(iv) numerical results of Ref7] (MC+extrapolation.

panel displays the ratio;; /T'®? (which is constant in the
Debye-Hickel approximation The magnitude of the pos-
sible error is demonstrated by the lower panel. Here, the
dot-dashed line shows the difference between the approxima-
tion (15 with the second set of parameters and expansion
(12), while various symbols show residual differences be-
tween the same approximation and numeridNC and
MC) results. The distribution of the residuals around zero
looks irregular, which indicates that they represent numerical
noise of the MC calculations rather than an error of the fit
(15). In addition, we have checked that the difference be-
tween our fit to the free energy, E@.6), and the one in Ref.
[6] (atI'=1), is of the order of the aforementioned small
uncertainty inf;(I'=1).

More complicated interpolations between the low- and
high-I" limits were proposed previouslyl15,16. By con-
struction, they reproduce exactly EQ.2) at I'—~0 and the
fits to MC results atli’>1. Compared with the present fit,
however, those interpolations have somewhat larger differ-
ences from the HNC results at 6I"'<1.

The freezing of Coulomb OCP liquid into a bcc crystal

some of our HNC calculations, is given in Fig. 1. The upperoccurs when the free energy of the solid becomes lower than
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_I T I T T T T I T .I... T I T T T T I T T T T I T I- Fle Fa ©
0.005 [ L= =— _

. DWS fe=NieT— o fo S(k.I)[e(kx)~1]dk, (18)
F > . Dubin TN

o === E—— where S(k,T") is the static structure factor of ior(ge., the

< - S M " Fourier transform of the ion radial distribution functjon
- SDD ~ o Equation(18) has been derived by Galam and Han§2h

—-0.005 [ ) . . :
T T T e e using a thermodynamic perturbation scheme, which can be
172 173 174 175 176 represented as an expansion in power&ef. We have re-
T peated the calculatiori@ 1] using a more recent and accurate

S(k,I') [22] than in the original work; the change fr, due
FIG. 2. Difference between the free energy of the solid OCPtg this update does not exceed 4%.

giver_l byathree-parameter fit of R¢20] and parametrization; for Note that Eq.(18) differs from the standard first-order
the liquid OCP according to Ref§19] (SDD; short-dashed line  perturbation approximation by a replacemenf bf-1/¢] by
(6] (QOtted ling, Eq.(16) (solld line), and for the.solld according to [e—1]. The resulting differencea(kTFa)?’/G has the same
Dubin [18] (dot-dashed ling The long-dashed lines marked “FH" ¢y 'of magnitude as the second-order perturbation correc-
correspond to the fou_r-parameter fitand to théo uncertainty of [21]. Our HNC calculations with the Jancovici dielectric
the three-parameter fit in Rg120] function atx,<1 andI'=1 coincide within 2% with the
o B . results of Ref[11], whereas the substitution L —1/¢] in
that of the liquid atl’=T",. Nagaraet al. [17] and Dubin g4 " (1g) yields a considerable difference: for example, for
[18], hz_;lvmg improved a previous treatment of anharmonicr—1 gnd z=26 this difference approaches 40% even at
corrections to the free energy of the Coulomb crystal, 0b1arge x,. We conclude that the approximatiga) is very
tained I',= 172+ 1. However, these authors employed angccyrate at high densities.
older fit [19] (SDD) for the liquid. Figure 2 shows theif- The screening contribution to the free energy of the Cou-
ferencesbetweent;; for the solid and liquid OCP given by |omb liquid at O<ri=1, 0<I'=300, and kZ<26 has
various parametrizations. For the solid, we have adopted thgeen fitted by the expressiéf]
three-parameter fit by Farouki and Hamagui@®] to their

molecular-dynamics simulations in the range £10<400. . eI+ ccal’a-h
The horizontal long-dashed lines correspond to the standard fo= Fie _ -T, on\Tet creal’egihy . (19
deviation of that fit. The line between them represents a four- NikgT 1+[b\Te+ag,l'trglh,

parameter fif20] in the samd" interval. The dot-dashed line

shows the difference between the fit of RgX0] and that by ~ where cpy=(Z/\3)[(1+2)%?—1-2%%] ensures exact
Dubin[18]. The value of",, indicated above is given by the transition to the Debye-Hikel limit at I'—0, c¢
intersection of the latter line with the short-dashed one=(18/175)(12#r)%32"3(1—2"13+0.22" %3  reproduces
(SDD). Using updated results for the OCP liqlimither Ref.  the Thomas-Fermi limif23] at Z—«, the parameters
[6] or our Eq.(16), represented by the dotted and solid line, =1.112%4’5, b=0.2+0.078(InZ)?, and v=1.16+0.08InZ
respectively and the OCP solii20], we obtainI',,=175.0  provide a low-order approximation ., for intermediater g

+0.4. andI’, and the functions
— 31-1 1/2
IV. ELECTRON SCREENING IN A COULOMB LIQUID 0:=1+0.7§ 21+ T'o(Z/r5)"] (I'e/2) ™5,
We now consider electron polarization effects in the EIP. 7.1 1 3
In a previous papefl], we have calculatedr;. using the g,=1+ (1+ > S 5
model developed in Refl2] for nonrelativistic EIP. The 9 0.001z°+ 2l 1+6rg

HNC equations have been solved numerically for an effec-

tive screened interion potentisll;, which is the sum of the improve the fit at relatively larges. The results of our non-

bare ionic potential and the induced polarization potential, tg€lativistic finite-temperature HNC calculations are repro-

obtainF;; + F;, and corresponding contributions to the inter- duced by settingn, andh, equal to unity; these factors come

nal energy U;;+U,,) and pressureR;+P,,). The same into play in the relativistic case.

equations solved for the bare Coulomb potential dfiyg, In the latter case, the asymptotic behavior of Exp) at

U;i, andP;;. The difference represents the screeniig) ( I'—<° should change fronfjo<I'r s to fieuFrs\/lexz,. This

part. Inclusion of the finite-temperature effects\igz pro-  is achieved simply by settin@2=(1+x,2)‘1’2. Then the

vides a correct treatment of the thermodynamic quantitiegero-temperature Thomas-Fermi lini23] (rg<1I —x,Z

over a wide range of values df from the Debye-Hokel = — o) is reproduced exactly.

limit I'<1 to the strong-coupling limif'>1 for variousr The factorh, is devised to correct the fit at finit¢in the

andZ. relativistic domain. A form chosen previousfyt] was not
Relativistic calculations have been performed employingvery accurate, as illustrated by the dotted lines in Fig. 3 for

the same HNC technique but with the Jancoj@idielectric  the internal energy

function e(k,X,), which is appropriate at strong degeneracy

(6<1) and arbitraryx, . The results are in good agreement Uie=U;o/(N;kgT) =0fo(rg,I')/aINnT. (20

with those obtained by Yakovlev and Shalybkid\], who

have used an equation A more accurate relativistic correction reads
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log,, p [g cm™3]

FIG. 4. Absolute values of the heat capacity of fully ionized
liquid carbon atT=10° K and 10 K. Dotted curves show the
- contributions of the electrordeavy line, ideal Fermi-gas contribu-
. tion; light line, exchange and correlation correcjiodashed lines,

1 contributions of the ionglong dashes, ideal-gas part; short dashes,
correlation papt and dot-dashed curves, ion-electr@olarization
correction. The latter curves endlaE 175. The dips on theeand

ie curves signify a change of sign. For thieandie contributions,
present approximationgheavy lineg are compared with those in
Refs.[6] (DWS) and[11] (YS) (light lines).The heavy solid line
shows the sum of all terms.
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FIG. 3. Calculatedfilled circles and fitted(solid line9 normal-
ized contribution to the internal energy due to polarizatiop, as
a function ofI" at different values ok, , Z=6 (left pane) and as
function of x, at two values ofZ, I"=150 (right pane). For com-
parison, approximationgl] (dotted line$ and[11] (dashed lines
are also shown. are each equal t§ (apart from small anharmonic correc-

tions). This means that freezing is accompanied by a drop of

Cy, equal to the excess of the potential contribution over the
(21 kinetic one in the ionic liquid just before freezing. We see,

however, that this excesand hence the drops not large.

The values oCy ;; determined by Eq(17) (thick dashep

The resultingu; [Eq. (20)] is plotted by the solid lines in and derived from the fit in Ref6] (thin dashepare close to
Fig. 3. There is now a good agreement with the thermodyeach other near freezing. With decreasing density, however,
namic perturbation expansiddl] at largel’ for any X, , a large difference develops, which is natural because the for-
without deteriorating the accuracy of the old fit in the non-mula in Ref.[6] is not applicable at small'. Of the same
relativistic domain. Quantitatively, for 4I"<100 andx, origin is the striking discrepancy between the approxima-
<0.25, the difference between the fit and the HNC results isions for Cy ;. derived from Eq.(19) (thick dot-dashed
typically 2—3 %, with a maximum 8% foZ=1, I'=100, curve and from the fit in Ref[11] (YS), seen at lowp. In
andr¢=2.074 (the maximumrg value used in the calcula- this domain, our fit describes the change of signGqfie
tions). Note that the model of EIP has only marginal physicalfrom negative in the strong-coupling regime to positive in
relevance at such large values@fandI" because of the the Debye-Huakel domain. However, an appreciable differ-
incipient bound-state formation. On the other hand, at veryence with Ref[11] persists even at large, where both fits
strong coupling ['=100) and relativistic densitiesx(  describef;, equally well(within uncertainties in the structure
>0.1), the results of Ref.11] and of our relativistic HNC  facton. This reflects insufficient accuracy of the present-day
calculations are reproduced by our fit with typical deviationdetermination of the functional form o$(k,I") for the
of 1-3 % (maximum 4.3% aZ =6, I'=100, andx,=10). strongly coupled Coulomb liquid.

The heat capacity per ion in units k§,C, /N;kg, of the
classical EIP liquid is shown in Fig. 4 fo£=6 and T
=10°, and 13 K. These plasma conditions can occur, for
example, in interiors of some giant stars or in accreted enve-
lopes of neutron starf4]. Various contributions, shown in
the figure, correspond to separate terms in &@). At rela-

1+x2/5
1+0.18 ¥4, +0.372 Y22+ x2/5

hy(X,)=

V. ELECTRON SCREENING IN A COULOMB SOLID
A. Perturbation approximation

At high densities and below a certain temperature, the
: = - el ionic Coulomb plasma forms a Wigner crystal. For example,
tively low densities, the main contribution is that of the elec-jnteriors of cool white dwarf§25] are expected to be in the
trons, with the limiting valugZ=9. With increasing, the  ojid state. The cooling is governed essentially by the com-
electron gas becomes degenerate, and its heat capacity qgeassibility and heat capacity of their interiors, whose central
creases. TheQy is determined by the ion liquid. The Cou- (egions are compressed to relativistic densities. In that case,
lomb (ii) contribution slightly exceeds the kinetic ong)(  the main contributions to the internal energthe zero-
near freezing. According to the equipartition theorem, in atemperature electron-gas kinetic energy and the ion electro-
classical ionic crystal the potential and kinetic contributionsstatic part do not depend on temperature, so that the heat
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capacity is entirely determined by small temperature- TABLE II. Parameters of Coulomb crystg83].
dependent corrections. Therefore, evaluation of the polariza=—

tion corrections for the Coulomb solid is important for astro-Lattice type  u_» ) M1 Cwm

physical applications. bee 12.973 279855 05113875 0.895929 255682

Since the maximum ion frequency in the solid is qwtefCC
small compared to the electron plasma frequency, one can
use the adiabati¢i.e., Born-Oppenheimgrapproximation,
which allows us to Qecouple the electron ar_1d ion d_ynamics\.Nhere 3 denotes a summation over all reciprocal-lattice
Even so, a calculation of the thermodynamic functions of a oW Ny
Coulomb solid with allowance for thee interactions is a VECtorsG butG=0, ande™“"=(exp(k-u))7 is the Debye-
complex problem. A rigorous treatment would consist in cal-/Valler factor. In isotropide.g., cubig crystals, one has
culating the dynamical matrix and solving a corresponding
dispersion relation for the phonon spectrum. The first-order
perturbation approximation for the dynamical matrix of a
classical Coulomb solid with the polarization corrections,
based on armffectiveinterion potential, was derived by Pol-
lock and Hanse26]. In a quantum crystal, strictly speak- 2
) ) X a‘y
ing, one would have to consider the electron-phonon interac- r$:_
tions, in order to calculate the perturbed spectrum. r

As mentioned above, the polarization of the electron gas
is weak at the high densities in which we are interested. Thigvherev=(q,s), s=1,2,3 enumerates phonon modass a
suggests a simpler, semiclassical perturbation approach f$honon wave vectore, is the frequencyy- - - )y, denotes
evaluate the polarization corrections. The ionic crystal with-averaging over phonon wave vectors and polarizations, and
outie interactions is a natural reference model. Note that thesn=((w,/w,)")pn. In the classical limit ¢—0), rz
effective interion potential in the adiabatic perturbation ap-=u_,a?I'; and in the quantum limit f—o), r%
proximation[26] is just the electrostatic potential, common ~ u _,a%7/(2I'). Numerical values ofu_; and u_, are
to the liquid and solid phases. The difference of this potentiagjiven in Table Il. At arbitrary», a convenient analytic ap-
from the bare Coulomb potential can be considered as peproximation tor% is provided by a model of the harmonic
turbation. Then we can apply the Galam-Hanf&H pertur-  Coulomb crystal[28], which treats two acoustic modes as
bation theory, which is based on tegactexpression for the  degenerate Debye modes Widh, = aw,q/qgz, Wheregg;
free energy involving an integration over a coupling param-=(62n;)% is the equivalent radius of the Brillouin zone,
eter related to the “strength” of the perturbation. Thus weand the longitudinal mode is an Einstein mode with

12.143 2.71982 0.5131940 0.895873615195

2W(k, T, ) =r%(T', 7)k?3, (25)

wherer2=(U?); is the mean-squared ion displacemécft
[27]). In a harmonic crystal,

,U«71+ wp 1
2 w, exphw,/kgT)—1 oh

. (20

recover Eq(18) in the case of a solid, with(k) replaced by =y« . Accuracy of this model for the thermodynamics of
(4m) "[S(k)d), whered() is a solid angle element in the the bce Coulomb crystal has been demonstrated in[RF,
direction ofk. where the values=0.399 andy=0.899 have been derived

~ The resulting polarization correctiofi8) does not take from the requirement that the model should reproduce the
into account quantum aspects of the (electron-phonon  exact values ofx_, and u,= . For the fcc lattice, we ob-

interactions, but it allows us to study effects arising fromtajn o« =0.413 andy=0.892. Using this model, we can cal-
quantum modifications of the ion-ion correlations. Thesecylate the second term in E€26), which yields
correlations are described by the structure fa@owhich

depends in this case dg I', and #. 5 a| u_17m 7 2 (a7 tdt
T2 T3 e7"—1)+a3nfo 1| @7
B. Structure factor 4
In a crystal, the static structure factor is given by This approximation ensures the correct classical and quan-

L tum limits. Between these limits, the maximum deviation
K (R —R Y/ ik U — ik from accurate numerical result83] reaches 1.6% af~9
sl = IEJ e TR e ), (22 {5 both bee and fec lattices, %3 v
According to Eq.(23), Eqg. (18) can be rewritten as

wherey; is an operator of ion displacement from an equilib- fo—f 28)
rium lattice positionR;, and(- - - )1 denotes the canonical eoe e
average. The structure fact@@2) can be decomposed into

i . . . ! ' o, e(G,x,)—1
elastic(or static-latticé and inelastic parts, flo=— - > Wexq —-2W(G.T, 5],
G
S(k,T,7)=S"(k,T',7)+S"(k,T", 5. (23 (29
. . la (=
The eIaSUC pal’t |$e.g., Ref[27]) fl"e: _ ?j S”(k,l—‘, 77)[(g(l(,)(r)_ 1]d k. (30)
0

SL(k,I',5)= (277)3nie‘2W(k'F"7)2 " 8(k—G), (24 The inelastic part of the structure factor of a harmonic crystal
G reads[4]
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. T T T T I T T T T I T T I..lﬁ I T T T T
S//:e—ZWE elk~R[ev(R)k2_1], (31) —0.8 - ]
R .

3t [ (k-g,)? cogq-R)
2m

v(R=57\ 2 w,,tani‘(ﬁwVIZkBT)>h (32)
p

(wheree, is a phonon polarization vecforA straightforward

use of this expression is impractical because of a slow con-
vergence of the sum. For this reason, we employ the approxi-
mation[4]

uel—st /F

S'(k,T, ) ~Si(k,I", p)=1—exd —2W(k,T", )].
(33

0 10 20 30 40

As argued in Ref[4], this approximation is good for use in
integrals ovek atk>qgz. In papers addressed to the trans- h"’p/kBT
port properties of Coulomb plasmg4,30], integrals overk
were truncated from below &t=qgz. In Eq. (30), however,
it is essential to recover the correct limiting behavior o
S’(k) at k—0, since[e—1]xk ? becomes large in this

limit. Therefore, we use a piecewise approximation: numerical calculationg33] (triangles. Upper curve of each type or
s (k=ky) symbol corresponds td'=200 and lower one td"'=500. Long-
y_ b (34) dashed line displays the Madelung limit.

| SI= K220k o (k<ky),

FIG. 5. Normalized electrostatic energy of a bcc Coulomb crys-
ftal calculated using the approximate structure factor given by Eqg.
(34) (solid lineg compared with analogous calculations with a

model structure factor, Eq33) (dotted line$, and with accurate

where the terms not explicitly written are exponentially

where the parametés; will be determined below. The exact small at largel’. For the inelastic contribution, our model
result for classical Coulomb plasmd81] reads S;(k)  Yields u”=ug+uy, where

=(ka)?/(3I'). In a general cases|(k) can be found from

Eqg. (31). At smallk, the expression in the square brackets in uff:Efm[Sg(k)_ 1]dk=— \ﬁﬁ (38)
Eq. (31) can be replaced by(R)k?, which corresponds to o 7 Jo T2ry’

the one-phonon approximation. Changing the order of aver-

aging and summation, we see that the summation yields delta | I'a [k ,
function §(k=q—G); therefore,g==*k as long ask Ur=—- 0 [S1(k)—Sp(k)]dk
<minG~2ggz. Hence, only the longitudinal phonon mode
contributes in this limit. The frequency of t[his] mode in a (kja)® 7 la V37 ferl
Coulomb crystal tends ta, at smallq (e.g.,[26]), which =187 tmnha2) = | KT e ern——|.
enables us to perform averaging in E®2). Finally, we 8r tanh(y/2) m fr V3
obtain (39
, (ka)? 7 On the other hand, in the harmonic lattice approximation,
Sy(k,I', )= oI —tanr( w2 (39 Ues= —NiCn(Z€)?/a+U,/2, where the first term repre-

sents the energy of a perfect ionic lattice in uniform electron

In order to test our approximatiof84) and to find the background,Cy being the Madelung constariTable 1),
optimum value ok, let us consider the electrostatic energy @nd, from the virial theorem, the second term is one-half of

Ug.st Of @ Coulomb crystal, the vibrational energy of a harmonic crystal,
Uel—st FafC>C w,, n M7
_ ekt __ 9 —11dk=u’+u" U,=3NikgT| { — - . (40
Uetsf= Nt = o |, (SO0~ 1Idk=u'+u", (36 Yl oy emmz) T2 | 4O
where, according to Eq$23) and (24), We determinek,; so as to recover the classical limit,.q
=—Cyl'+3/2 at»=0 andI’—oe. This yields
3r e 2WG.I\7) 1/3
(Rl S (37) ki [m-2—3
2 5 (Ga? A ~0.94. (41)
Ogz \m-»—1

is the static-lattice part. Baiket al. [32] have shown that Figure 5 showsl, calculated from Eqs(37)—(39) for the

, 2 bce crystal affinite » andI' (dot-dashed lines compared
4_ —Cy+ r_T2+ \/§i+ . with a calculation in whichS” is set equal toS; at anyk
r 2a m2ry (dotted line$ and with results of numerical calculatiof33].
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TABLE lll. Parameters of Eq(42).

Lattice type a; a, as ay q
bcc 1.1866 0.684 17.9 41.5 0.205
fcc 1.1857 0.663 17.1 40.0 0.212

ture factor. This effect is taken into account by lettingoe
finite in EQs.(27) and(35). Results of the calculations, where
7 was determined from E@9) assumingA=2Z, are plotted

in Fig. 6 by dot-dashed lines. The curves on the left panel
become flat asy becomes large, which corresponds to an
approximate proportionality;.<I". As a consequence, the
polarization contribution to the specific heély ;o , goes to
zero at largey (but remains one of the leading contributions,
as shown below

L R The numerical results can be fitted by the expression

log,, T log,, %, fie=—T.(X)[{1+AX)[Q(n)/T]%}, (42)

where

log,, (—f,./T)

FIG. 6. Normalized polarization correctidg, to the free energy
of a Coulomb crystal. Left panel: lgg —f;. /") against loggl" at T
Z=06 for several values of, . Right panel: logy —f;./T") against f(x)=areZ?%y 1+ by /X%,
logyox, at I'=10° for several values oZ. Solid lines: a classical
solid; dot-dashed lines: quantum effects included. On the left panel, A(X)=
dotted lines show the results for the classical solid with simplified 1+byx?
structure factors, and dashed lines show the results in a liquid.

bs+agx?

Q(n)=1+(qn)?

We see that our modification of the structure factorkat _ 4 parameters andb,—b, depend orz:

<0.94q; provides a significant improvement over the

model without such modificatiofdenoted as HL1 in Ref. s=[1+0.01(InZ2)%?+0.0972" %] 1,
[32]).
b1=1—a1270'267+ 0.27271,
C. Results
_ 2.251+a,2°+0.222°
Using Egs.(28)—(30) and (33)—(35), we have calculated b,=

+ —_—
A . . 1/3 6
the polarization correctioff,, over a wide range of param- z 1+0.22Z7

eters: 86<I'=3x10%, 10 ?<x,<1(?, and 1=Z<92. Not
all combinations of the considered parameters are physically bs=2,/(1+InZ),
relevant; for instance, at=1 and largex; the ion-exchange

effects neglected in our study become important. The use of

such an extended set of parameters, however, delivers 9, ; ;
o ’ ' ram rel in Eq.(19), is chosen
bustness to the fitting formula presented below. € parametedr, related tacr in Bq. (19), is chosen so as

. R . to reproduce the Thomas-Fermi lini23] at Z—w: ae
s et o ot Calclatons v Shoun 1 0. SOU 1 75)126) 72000352, The numercal para-
) . ) etersa;—a, andq are slightly different for bcc and fcc crys-
structure factor in the classical casg-{¢0). Dashed lines on . . .
the left panel reproduce calculations in the liquid with tals; they are given in Table 1il. .
S(k.T') from Ref.[22]. The upper and lower dotted lines at For a classical crystal, an average error of_the fitis 1% for
eve,ry value ofx .shov.v respectively, the results of calcula- all 2, x, andT', and the maximum error is 3.1% ai
tions with the inzalastic bart of the Stl’iJC'[UI’e factor replaced b .:9.2’ ['=10%, andx,~2. In the quantum casert0), the
S (as in the HL1 model of Ref32]) and by 0(as in Refs ¥it is accurate forz=3 only. In the range &Z=<30, an
A o ' average error is 1%, and a maximum 3% occurgat, I'
[4,30]). Compared to these simplified approximations, the_ 100. andx.~2
present model provides a smaller discontinuityf @f at the ' roT
freezing point(near the ends of the dashed line®n the
other hand, the divergence of the dotted curves towards
smallerl” shows that the result is still model-dependent. This The results presented in Fig. 6 indicate that, although the
model dependence disappeard’a 3000, since the static- polarization in a Coulomb crystal is very weak, it does not
lattice contribution becomes relatively large. vanish even at arbitrarily largé andx, . As in the case of
In reality, at large values of and small values ok, strongly coupled liquid, f;. is roughly proportional to
shown in Fig. 6, the quantization of ionic vibrations becomeskyra)?, which tends to a finite limit at relativistic densities.
important. This quantization considerably modifies the struc-The order of magnitude of the screening correctiég

b,=0.395InZ+0.3472 3",

D. Discussion
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FIG. 7. Upper panel: difference between polarization correc-

tions to the free energy in the solid and liquid phasesl'at .. o L
=175x,=1,3,10. Lower panel: Coulomb coupling parameter at thesmes for two values off. The contributions of free electrons, ionic
oo : OCP, and electron-ion interaction are shown by dotted, thin solid,

melting point when polarization corrections are taken into account, . A .
gp P and dot-dashed lines, respectively. The thick curve shows the total

value. The dashed part of the latter curve corresponds to the region

=Fie/Fiy for a classical Coulomb plasma at arbitrarily high where the thermodynamic perturbation theory used in the calcula-
densities is given by the Thomas-Fermi re$al|, which is  tion of Cy ;. is not reliable.
reproduced by EQ.(42) at I'—oc and Z—ow:
~0.004&2"3 A quantitative difference of the perturbation re- at the same rate as the heat capacity of a strongly degenerate
sult at finiteZ from the Thomas-Fermi limit is quite notice- electron gag11],
able,~z2703,

As mentioned in Sec. V A, our treatment of the screening vae~ZNi(kBT/mecz)7r2\/1+xr2/xr2. (46)
contribution is approximate. Nevertheless, we can use these
results in order to demonstrate the importance of the polarEquation(45), derived from the fi(42), agrees with the lim-
ization corrections. On the upper panel of Fig. 7, the differ-iting expression atp—o, which follows from Egs.(18),
enceAf,, betweerf,, values in the solid and liquid Coulomb (24), (33), and(27):
plasmas at the OCP melting poihit= 175 is plotted against

FIG. 8. Absolute values of heat capacity of carbon at high den-

Z for three values ok, . The largest, =10 represents vir- Cv,ie N m’  €(Gx)—1

tually the ultrarelativistic limit. When compared to Fig. 2, Nks a°7 . 3

this plot shows that\ f is sufficiently large to affect’,.

This effect is shown on the lower panel of Fig. 7, where we 2as (= )

have plotted our estimate df,, at x,=1 andx,>1. Since T o kl[s(k’xr)_l]k dk|. (47)

Af;. remains finite at any,, the classical OCP valuE,,
=175 is never exactly recovered even at arbitrarily lasge

Another important effect of the polarization corrections in
the solid phase is that on the specific h€gt. By differen-
tiation of Eq.(42), we obtain

Thus Cy ;o becomes larger tha@, ; at sufficiently lowT,
which probably signifies that the thermodynamic perturba-
tion theory is violated at thig.

The discussed effect is of anharmonic nature. Indeed, the
U= — fT[1+A(1—s/Q?)(QIT)?], (43) harmonic apprsoximation for the Ha_milton_ian leads to the_ De-

bye lawC,«T*, regardless of the inclusion of the polariza-
tion correction in the force matrix. Therefore, the depen-
L\'5(qn)*-1+s denceCy ;=T in Egs.(45) and(47) is due to the use of the
6 Qd ' (44) full Coulomb potentiaknot only its harmonic partin theie
interaction energy, which has led to E49).

It is also noteworthy that the modification of the OCP
structure factor by the quantum effects rend€xs;, posi-
tive. A plain extrapolation of thée contribution from the
liquid regime into the solid would be completely inappropri-
ate, as it would result in a negative total heat capacity.

The behavior of different contributions to the heat capac-
ity in the solid phase as a function pfandT is illustrated in
Cv.ie~Niksf..sA(Ry3q>) 1" 92(qyn)"1=T, (45  Fig. 8. Here we considet’C at 1¢ K and 16 K. In the

= fwsA<

In a classical crystaiCy, ;o is only a small negative correc-
tion to the totalC,~3N;kg. WhenT decreases much below
T, . the heat capacity of an ionic crysf&9] goes to zero as
Cyv,i~1.6N;kgm* (@n)3=T3, whereas theie contribution
becomes positive and decreases as
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latter casdthe bottom pang] one can see also the disconti- I',,,~ 175, slightly larger than a previously determined value.
nuities at the liquid-solid phase transition ap  An improvement of thae part in the liquid phase yields a
~10° gcm 3, discussed above. As in a liquid, we can better precision at densitigs=10° gcm 2, where the elec-
safely neglect the exchange correction, whickx,at 1 is as  trons are relativistic. Finally, our estimates of tieepart of
small as — (a¢/2m)Cy ¢~ —10‘3C\,,e. At relatively low  the free energy of a Coulomb crystal show that it is impor-
densitiesCy, is determined mainly by the ionic contribution. tant for applications. For example, our results demonstrate
As T, becomes greater thah with increasing density, the that it affects the melting of a classical Coulomb crystal and
phonon contribution tcCy, freezes out rapidly, an@, be-  may contribute appreciably to the heat capacity of a quantum
comes determined by the degenerate electron gas, polarizetystal. Since our calculations for the Coulomb solid are
by the electric field of ions. based on an approximate method and performed using an
This may have important consequences for astrophysicalpproximate structure factor, the latter results can be consid-
applications. In particular, the heat capacity of old whiteered as estimates only. These estimates show, however, that
dwarfs, whose temperature is so low that their interiors aréhe polarization corrections in Coulomb crystals are not as
made of quantum Coulomb crystdl85], may be substan- unimportant as was often believed; they deserve to be stud-

tially influenced by the polarization effecf34]. ied further using more elaborate methods.
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