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Interactions of disparate scales in drift-wave turbulence
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Renormalized statistical theory is used to calculate the interactions between shortwaatesectoik) and
long scalegwave vectog<k) in the Hasegawa-Mima model of drift-wave turbulerigeneralized to include
proper nonadiabatic response fgr=0 fluctuationg. The calculations include the zonal-flow growth rate as a
special case, but also describe long-wavelength fluctuationsquatiiented at an arbitrary angle to the back-
ground gradient. The results are fully renormalized. They are subtly different from those of previous authors,
in both mathematical form and physical interpretation. A term arising in previous treatments that is related to
the propagation of short-scale wave packets is shown to be a higher-order effect that must consistently be
neglected to lowest order in a systematic expansiay kn Rigorous functional methods are used to show that
the long-wavelength growth ratg, is related to second-order functional variations of the short-wavelength
energy and to derive a heuristic algorithm. The principal results are recovered from simple estimates involving
the first-order wave-number distension ratg)=k-VQ,/k?, whereQ, is a nonlinear random advection
frequency. Fokker-Planck analysis involvingf” is used to heuristically recover the evolution equation for the
small scales, and a random-walk flux argument that refg{Esto an effective autocorrelation time is used to
give an independent calculation ¢f. Both the rigorous and heuristic derivations demonstrate that the results
do not depend on, and cannot be derived from, properties of linear normal modes; they are intrinsically
nonlinear. The importance of random-Galilean-invariant renormalization is stressed.

PACS numbds): 52.35.Ra

[. INTRODUCTION one form over the other. Therefore, we present our calcula-
tions in considerable detail and from several different routes.
It is widely believed that random zonal flows play an We also derive from first principles several heuristic algo-
important role in determining the steady state and transporithms for y, whose interpretations differ in fundamental
levels of drift-wave and Rossby-wave turbulence. In a slalphysical ways from earlier suggestions in the literature.
geometry with profile gradients in thedirection and mag- Let q be a characteristic wave vector of the long scales
netic field in thez direction, zonal flows are defined to be the (sych as zonal flowssimilarly, letk be a typical wave vec-
y-directedEXB velocities that result from electrostatic po- tor of the short scale@irequently associated with drift-wave
tentials with wave numbersqf,dy,dz) =(0dx0,0). Such  tyrpylence. In general, the scales of zonal flows may be
flows can be driven by nonlinear mode coupling, e.g., comparable to drift-wave scaleg~k,), and such fluctua-
(000,0) = (Ky Ky k) (— Ky + Gy — Ky —kp). (D) tions have been obsgrved ip computer simulgti@&gl].
However, the assumption of disparate scatpgk) is a use-
In the present paper we calculate the short-wavelengthul device that enables analytical progreéSome workers
driven contribution to the long-wavelength nonlinear growthhave also attempted to argue that the long wavelengths may
ratey, of zonal flows and other long-wavelength fluctuationsbe more effective in regulating the saturation of the short
by proceeding systematically from well-established theoriescales in some situations, but this assertion is controversial
of statistical dynamics applied to a generalization of theand does not motivate the present wprkhen the key or-
Hasegawa-MimgHM) paradigm of nonlinear drift waves. dering parameter is=q/k<<1 (where= denotes definition
(It is well known that the HM system is homologous to It is important to note tha¢ does not depend on the dynami-
simple models of Rossby wavgs|, so our results are appli- cal properties of the fluctuations. Of course, those properties
cable to certain problems in geostrophic physics as well.must enter any calculation, since they are contained in the
When specialized to zonal flows, some of our formulas argrimitive amplitude equations whose statistics are studied,
quite similar in form to ones proposed heuristically in Ref. but it is the smallg assumption that enables one to simplify
[2]. They are not identical, however, and the differences ar¢he general formulas. Therefore, one need not focus on zonal
both conceptually interesting and quantitatively significantflows per se The formulas we obtain are also applicable to
Without an underlying systematic derivation, it would be dif- the generation of random streaméis=(0,q,,0)] as well
ficult on purely heuristic or dimensional grounds to argue foras to other long-wavelength fluctuations with arbitrary

(smal) q.
The interactions of disparate scales have a long history in
*Email address: krommes@princeton.edu statistical turbulence theory. In fundamental work, Kraich-
TPermanent address: Soongsil University, 1-1 Sangdo5-dongan[5] gave an exact definition of eddy viscosity for homo-
Dongjak-gu, Seoul, Korea. Email address: geneous, isotropic Navier-StokéhlS) turbulence, and he
cbkim@plasma.soongsil.ac.kr discussed its properties for two- and three-dimensional tur-
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bulence. His eddy viscosity(q|k.,) describes, in a statistical waves. In fact, however, the proper results have virtually
sense, the effective turbulent damping of resolved modeBothing to do with short-wavelength linear theory; they are
with wave numberq due to interactions with unresolved intrinsic properties of the nonlinear mode coupling. Thus,
modes having wave numbeks=k,,. Given a statistical clo- l0ng-wavelength fluctuations have a nonzero nonlinear
sure such as the test-field mod&FM) [6], an exact formula  9rowth rate even in the complete absence of linear waves; cf.
can be given fow. Kraichnan found an appealing approxi- Kralchnan’s re_sults for 2D NS turbu_lence, th_e I_|nea_1r theory
mate resulfour Eq.(64) below] by expanding in powers of of Wh!Ch consists r_nerely of _Weak viscous d|35|pgt|on. In a
q/k<1. His results for two-dimension&2D) isotropic tur- beayuful and detal_led physlcal explanation of his results,
bulence are particularly relevant in the context of drift <rdichnan emphasized the importance of enstrophy conser-
waves. Indeed, some of the algebra described in the preseYﬁ‘t'on during the nonlinear mt_eractlons. The al_Jthors qf Ref.
paper is essentially merely an extension of Kraichnan’s call2] /S0 fo?used on conservation properfigey did not cite
culations to anisotropic quasi-2D turbulence. However, wd<raichnan’s work. However, whereas they attempted to in-
also give alternative calculational procedures and physica{oke & quasilinear wave-energy theorem, we will show that
interpretations that should be of interest in the contexts ofl'® Proper derivation of, from energetics requires use of a

both NS and plasma turbulence, and we attempt to clarify <17‘1_onI_inearenergy-b;;l_ance theorer_n. That is not atri\(ial modi-
number of confusions in the literature. fication of the quasilinear one to include small nonlinear cor-

For 2D isotropic NS turbulence, Kraichnan showed thatrectipn;; it.is a different vers_ion of the theorem that Qescribes
the eddy viscosity is negative under quite broad circumihe |ntr|n5|ca!ly nonlinear mter{:\ctlons bet\_/vee_n disparate-
stances; we show that this same conclusion holds for anis@c@le fluctuations and has nothing to do with linear theory.
tropic HM dynamics as well. Recently Chechkn al. [7] Indeed, one finds that, arises frorrsecpnd—ord.ewariat.ions .
attempted to calculate eddy viscosity for Rossby- and driftf the short-wavelength energy, consistent with nonlinear in-
wave turbulence, generalizing earlier work of Montgomeryteractions in a random medium, and this observation moti-
and Hatori[8] on 2D NS flows. The results of those authors Vates a heuristic algorithm that makes it clear that one must
disagree with that of Kraichnan; they found a positive edd})/vork with nonlinear fluctuat_lons that are unrelated to linear
viscosity in the 2D NS limit. Our present work confirms Normal modes. When applied to the 2D NS equation, our

Kraichnan’s result. We explain the source of the discrepancyeSults are entirely compatible with Kraichnan’s analysis, but
in the Appendix. are obtained from a somewhat more general point of view.

We shall consider the statistical interactions between long A key quantity that emerges from the analysis is the first-

and short scales for the specific model of HM dynamics, withorder wave-number distension rage’=k- VQ,/k?, where
an appropriately modified Poisson equationkpr O Fourier
components(Herek is the component ok in the direction
of the magnetic field.) By direct expansion ire of well-

known general formulas for Markovian statistical closure, . ~ _ :
we obtain formulas for the nonlinear growth ragg of the modulation,d Ink’/dt=—23), which is responsible for the

long-wavelength modes, the nonlinear noise acting on thos&ansfer of energy between short and long scales. We show
modes, and the corresponding energy-conserving terms féhat yq can be naturally written in terms ofi", and also
the evolution of the short-wavelength fluctuations. Specifi¢hat a heuristic Fokker-Planck analysis recovers the system-
results for zonal flows can be trivially extracted as a speciatically derived spectral evolution equation for the small
case. Our formulas are fully renormalized, apply uniformlyscales. The significance 6{(1) has not been previously rec-
to regimes of both weak and strong turbulence, and reducegnized in the literature on zonal flows to our knowledge.
properly to Kraichnan’'s result for 2D isotropic NS turbu-
lence. We provide two versions of the direct calculations:
one appropriate for isotropic statistics; the other valid for
arbitrary anisotropy. As a nontrivial cross-check, we verify
that the anisotropic results reduce correctly to the isotropic Hasegawa-Mima dynamics are a useful paradigm for the
ones. nonlinear interaction of drift waves. They emerge as a simple
Although the direct reduction of the general Markovian limit of the nonlinear gyrokineti¢GK) equation(9] in which
formulas is relatively concise and the final forms of the re-the ion temperature and parallel motion are taken to vanish;
sults are suggestive, the algebraic details are not particular€ resulting GK continuity equation for ion gyrocenter den-
physically illuminating. Accordingly, we derive from first Sity fluctuationn? (normalized to background density) is
principles several heuristic algorithms and demonstrate that G G
they recover the correat, to lowest order ire. Our work in i+ Ve- VNi+Veg- Vn=0, 2
this direction was strongly influenced by the earlier work of ) ) ) ) ]
Diamondet al. [2], who for the special case of pure zonal Where in appropriately dimensionless uriité Ref.[10]) the
flows made a well-motivated attempt to obtain a simple heuEX B velocity is Ve=zXV ¢, ¢ being the electrostatic po-
ristic algorithm for y, by combining the use of a certain tential. The system is closed by the GK Poisson equ48gn
“quasilinear” Poynting theorem with an action-conservation
principle. That algorithmwhich was not derived from first Vf¢>= —(niG—nS), (3
principles suggests that the results depend upon, and can be
calculated from, the properties of the short-wavelength lineaan expression of the quasineutrality conditiop=n, (the
normal modes, i.e., the conventional electrostatic driftlatter quantities are the particle, not gyrocenter, densities

Q, is an appropriate nonlinear advection frequency. This de-
scribes the evolution of the characteristic wave number of
short-scale wave packets under a long-wavelength random

A. The Hasegawa-Mima model of nonlinear drift-wave
dynamics
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The left-hand side of Eq3) describes the ion polarization One then has the detailed conservation properties

charge density; the electron polarization is negligible, so
nS~n,. Fork;# 0 fluctuations the electrons are assumed to
be adiabatic,n,=¢, and one obtains the conventional

T,—0 limit of the gyrokinetic Poisson equation,

(1-V2)p=n?. (4)

However, fork =0 fluctuations(a special case being zonal
flows) electron parallel response is inhibited and a standard,

justifiable approximatiori11,12 is to drop the 1 from Eg.

o OMy pqtcp=0 (Q=E or 2), (11)

where c.p. denotes the cyclic permutatidns p—q. These
guarantee that the nonlinear term of E6) conserves both

the primitive energ\E and the generalized enstropfiy] Z,
where

(4). The resulting dynamical system, a generalization of the

familiar equation of Hasegawa and Mim&3], can be writ-
ten as

G+ (a—V) W, a0+ (a—V2) Ve - V[(a—V)e]

=0 ©)

(Wherea vanishes fok =0 and is the identity operator oth-

E E,

Z k Zk
Ek U(kE)
— = Sei?. 12b)
(Zk) (U(kz) | <Pk| ( )

Here the tilde denotes a random varialie a property of a
particular realization of the turbulencd-or later discussions
of pure HM dynamics, we shall also define the potential

enstrophyW such that

erwise, and where the diamagnetic velocity is defined by

V,= Ln’1i —dy InN) or, upon Fourier analysis in spatas-
suming constany, ), in the standard form

i 1
3t¢’k+|9tn¢’k:§ % My p.q®p ©q » (6)
where
wy (k)
Q|Ini * , 7
ak+k2 ( a)
(2 pX [ (agta?) —(aptp?)]
M = , 7b
k’p’q 01k+k2 ( )
. 1 (kH¢0) ;
““lo =0, (7o

w, (K)=k,\V, , k=[k, |, andZ =32 (.5 q denotes the sum
over allp andq such thak-+p+qg=0. For the later algebra,
it will be useful to adopt the shorthand notatid®d= a,
+k?; thus

8

This defines what we calieneralized HM dynamicsn the
original HM approximation, alke’s were set to 1, giving rise
to the HM mode-coupling coefficient

My pq= (2 pX Q)(q?— p?)/K2.

MHM . (2 pX q)(qz_ p2)
opa 1+K2 '

9

This defines what we cafpure HM dynamicsFor 2D NS
turbulence, alla’s vanish.

\7Vki a'(kw)| Soyl?, U(kw) = %k2_2= kz(r(kE) . (13

For kj#0 fluctuations, one ha&=E+W; in pure HM dy-
namics,W is conserved. Also note th&f is the ratio be-

tween generalized enstrophy and eneiy:= k2Ey .
Another way of describing the physical content of E5).

is to_decomposez into akj=0 parte and ak;#0 partJo:
¢=¢+¢. Thus,« is a projection operator onto the+0
subspacep=a¢. Then

G+ (a—VH) W, o0+ (a—V?) We- V(=V2p)

+(a—V?) W Vo=0. (14)

For pure HM dynamicse= 1 and the underlined correction
term disappears. The importance of that term has been rec-
ognized in Refs[2] and[15]; it involves the so-calledE

X B nonlinearity as opposed to the so-called polarization-
drift nonlinearity of HM. Its significance is that it destroys
the pure HMW invariant, replacing it by.

We have specifically omitted linear dissipation and/or
growth in Eq.(6) so that one can focus on intrinsically non-
linear effects and avoid being confused by possible linear
phase shifts, which turn out to be largely irrelevatitey
affect only the detailed form of the mode-mode interaction
time 6, Eq. (17)]. Actually we could omit the diamagnetic
term proportional tov, as well. We retain it because it de-
fines the conventional HM model, but it will also disappear
from the final answer. Frequently E(4) is generalized to

include nonadiabatic electron responge.=(1—id)¢],
which introduces a linear growth rate due to inverse Landau
damping, and Eq(6) is supplemented by an artificially in-
serted dissipation term; such models are variants of the so-
called Terry-Horton(TH) equation[16]. In the absence of

For generalized HM dynamics, we define the two weightjinear growth and damping, one does not obtain realistic

factorsol®) and ¥ according to

0'|(<E) 1 1 —
0_(kZ) =512 k<. (10

states of forced, dissipative turbulence with the well-known
dual cascades of energy and enstroghy]; the basic
dissipation-free HM equation will relax to thermal equilib-
rium. However, with one possible exception to be noted in
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the next paragraph, that distinction will not affect the form ofdo the primitive amplitude equations, by virtue of the de-
our final answers either. Thus we study a minimal, intrinsi-tailed conservation properti€sl).

cally nonlinear model. In steady state, one has
Some general background on the physics of the HM and s s, .1
related equations is given in R¢L8]. As is well known, the Okpq= (Mt M+ 1) 17

most important difference between the TH equation and the s . . . _ .

HM equation is that in the latter the mode-coupling coeffi-Where 7 is a modified version ofy,, as discussed in the
cients are real whereas in the former they are complex belext paragraph(S stands for solenoidal; for the closures
cause of the dissipative nonadiabatic response. The conseited so far,¢= 7,.) The general form of Eq17) is intu-

quence is that separaieand W conservation is lost; only a itively plausible in view of the primitive triadic couplings

single hybrid invarian® , [approximately equal to the de stemming from Fourier analysis of the quadratic nonlinear-
s - . ! :
fined by Egs.(12)] survives. This affects certain long-time ity. More formally, ¢ is defined in terms of a mean response

: Sft.41 H H _
properties of the turbulence, and the asymptotic behavior Offunctlon Re(t:) that. describes the "?‘V‘?“.'j‘ge.d dynamical re
) . A . sponse of modé& at timet due to an infinitesimal perturba-
the TH system in the limit of smalb is peculiar. However,

. ) ~» tion at timet’:
we do not believe that our results are affected by ignoring a

small dissipatived. (We retain strongly nonadiabatic re-
sponse for théq =0 modes. In any event, the generalized

HM model enables us to demonstrate the techniques for cal-
culating the interactions of disparate scales with a minimungince
of complications; it is a definite and interesting dynamical
system in its own right. HRI(tt)+ pRe=8(t—t"), (19

ek,p,q(t):ﬁxdt'Rf(t;t')Rﬁ(t;t’)Rg(t;t’). (18)

one is led in steady state directly to EQ.7). It is worth

noting that the Markovian theories build in the fluctuation-
Now consider the statistical description of Ef). (Some  dissipation ansatz, which in steady state r@s27]

background on statistical closures can be found in Réfs-

21], each of which contains many further referenc&nce Cu(n)=R(7)C(0) (7>0). (20

V, is assumed to be a constant independent of space, one

may assume periodic boundary conditions and appropriatgome subtle issues relating to the form of that ansatz for

initial statistics such that there is no mean fidlg)=0. The  transient evolution were discussed in RE20]; however,

statistical description of E¢(6) then reduces to a theory of they will not play a role in the present calculations, which

the fluctuationseo= ¢ — () with spatially homogeneous sta- can be taken to be in steady state.

tistics. (It is necessary to emphasize this point because later In the previous equations, the solenoidal qualification

we will consider particular kinds of perturbations away from arises because of an important physics issue relating to the

the homogeneous stataVith that assumption, the general derivation of Eq.(17). The cited closures are close relatives

form of a Markovian spectral balance equati®0] for a  of Kraichnan’s direct-interaction approximati¢DIA) [28],

single scalar fieldr evolving under quadratic nonlinearity is SO they inherit the problems of that approximation with ran-
dom Galilean invariancg29]. This is not an issue when the

Cy+2 Rekak=2F2', (15 interacting scales are of comparable size; however, it is of
_ great importance when interactions between disparate scales

whereCy=(| 8¢\|?), ﬂkiiw_:ln_F n’k_" is a coherentgenerally are considered, as in the present work. As Kraichnan has
compley damping[ w{"=Q\"+iy" contains the linear fre- emphasized in the derivation of his test-field mof| the
quency and growth rate, the latter being absent from@®g. random advection of small-scale eddies by large-scale ones
andF} is the covariance of an internally produced incoher-is dominated by the mean-squakearin the large scales,
ent noise. Realizable Langevin representations underlyinf§ot the large-scale energy. A consequence is that in the deri-
Eq. (15) were discussed in Refg22], [23], and[20]; see also vations of the effective interaction time for the spectral bal-
the related discussion in RéR4]. In the eddy-damped qua- ance equation they"™s must be calculated with mode-
sinormal Markovian closurg25] and the steady-state limit of coupling coefficients modified at small wave numbers.

the realizable Markovian closuf&0], one obtains Kraichnan accomplished that heuristically by tying the de-
correlation effects to the behavior of the solenoidal part of a

ol . test field advected by the turbulence. Bowman and Krommes
ﬂk:_g Mi,p.aMp.q k. p.aCa: (168 [30] discussed the issue in a context similar to the present
one in the course of deriving a test-field model that remained
1 realizable in the presence of linear waves.
Fil=_ > My b q|2 Re by 5,qCpCqs (16b) In the present paper, we are concerned with the structural
2°% w - forms and physical interpretations ¢f, and related quanti-
ties, not with quantitative calculations. Accordingly, we
where 6y, 4 is the triad interaction timéassumed here to be \yrite all of the results in terms of a givefly , , Whose prop-
a Symmetrical function of its al’gumemtdescribed in the erties are qua"tative]y well understoc{ﬁ]; ’SO we do not
next paragraph. It is readily shown that the for(@6) pre-  need to face the issue of constructing appropriately random-
serve the same quadratic invariafts=(E) andZ=(Z) as  Galilean-invarianty""s. For practical application of the for-

B. Markovian statistical closures
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mulas, however, one must be very careful to use in(Ed.
the appropriateyf, which is obtained from a formula differ- q \(x
ent from Eq.(163a.

C. Overview of results and comparison to previous work B) /’y-

In general, the mean long-wavelength enekgyevolves k
according to

FIG. 1. Geometry for the wave-vector triad such thatp+q
3tEq: 2(72”4_ fygl)Eq-f— Ei;c, (21) A=0 with interior arjglesm B, and vy. :I'he exterior angles are
- a=L(pg=7m—a, p=L(QK=7—6, y=L(kp=7—7.
where Eg°>0. [y§=—Reny; cf. Eq. (15).] 7§ is called
the coherent nonlinear response or the nonlinear growth rate; .
Eq“ is called the incoherent response or noiger general K
discussion of coherent and incoherent responses, see Ref.
i ; ; | —inc ~ -
[19].) In this paper we study the contributions 1} and Eq Qeq=iqQy. (24b)
due to interactions with largi€s; we call those contributions
Y4 andEgoise_ We will show[Eq. (693 below] that correct to In all formylas_des_cribing)/_q and related noplinear quanti-
lowest order ine one has, withV —ig, ties, thex direction is to be interpreted as being parallegito
not to a background profile gradient. Thisg=k cosp and
dQx ky=ksinj, wherep is the angle betweeq andk (see Fig.

K 1), soQ, implicitly depends on the direction @f ) is an
(229 effective EX B advection frequency based on a unit electric
field in the —q direction. Thus, according to Ed5), if
2 (_x 026 . 4 9Q Ve=E Xz were constant and iE=Eq, then the frequency
Kfarge | k) KTHR T ok associated with vorticity advection would H"=—-2zE
(22D K K%/( o+ k?) = —EQ,. [Note that the caret has been used
in four different ways in the above formulas: as an operator
(a); as a unit vector ); as an object from which linear
(W (g#0) dependence op or E has been removed by functional dif-
Q= Z (q=0), @3 ferentiation (),); and as an exterior anglél. Context en-
ables one to distinguish these different usagésom Eq.
and (17) and standard reality conditions, one has

k2
ak+ k2

k2
ky= (?) Ky, (243

1
aq-l— q2

> L

klarge k* (k- VQk?q)* ea,kﬁkVQk;q'

7q:_2

2

q
aq—l— q2

=-2

where 8'=Re¥,

Rewg>+2 Rer = (g +2%)

(Qg"+Im 7"%)%+ [RenfS+2 Ren = vy + 24" P

Hrq’k’ _ k: (25)

(Note thaty™=0 for pure HM dynamics and th&2!"=0  between the interacting modes. First, form(@8) contains
for pure zonal flows.The result obtained in Ref2] has the  the wave-packet propagation teqn'g":’k in the denominator,

same structural form as E22b), but with a;,k,_k replaced whereas the systematically derived re$@8) does not. Sec-

(in our notation by ond, Eq.(26) contains no nonlinear renormalization of the
_ linear growth rate and does not recognize the distinction be-
_ 27/:1” (26) tweenz® and#, whereas our result is fully renormalized and
g™ : — . . . iant. Thi . )
(Im ﬂgl—qvlg"r],k)zﬂzﬂn)z is random Galilean invariant. Third, E(R6) is proportional

to the linear growth ratey," and changes sign with}",

wherev ! =X- 9,/ 9k is the linear group velocity(n Ref. whereas formuld25) is proportional tO-R67§+2 Re (the
[2], thex direction was in the radial direction opposite to the SUM Of the nonlinear damping ratesjnusthe sum of the
profile gradient, andy was aligned with that direction be- linear growth rate)sa_nd is intrinsically posmve[Equ_anon
cause pure zonal flows were considered. That special ca$éd guarantees that in steady stafe>0, because it is then
unfortunately obscures important differences between lineap balance with the positive-definite covariangg', and a
and nonlinear physics, as we will clarify latefhe several —similar result can be obtained fag;.] If one were to merely
differences between Eq&2) and the result of Ref.2] are  drop the#’s in Eq. (25), one would obtain a form similar to
seen to be in the form of the effective autocorrelation timeEq. (26) but with the opposite sign. Of course, formy26)

lin
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vanishes for nondissipative HM dynamics, so it is obviouslyleads to precisely the same answer as the one obtained in

incomplete.

Sec. Ill. We show in Sec. V that the field-theoretic tech-

These differences are mostly a consequence of inadequat@ques introduced in Sec. IV can be exploited in an alterna-
treatment of renormalization in the derivation of formula tive derivation ofy, based on a nonlinear statistical energy-

(26). (In some subsequent referen¢&g,32, y{l” was more

correctly replaced by a nonlinear frequency spréagl for

balance(Poynting theorem. We demonstrate that the proce-
dure again leads to the same results as in Secs. Ill and IV.

which, however, no formula was givenrthe appearance of The general Poynting calculation is not algebraically sim-
the linear group velocity of small-scale wave packets in Eqpler, but it provides a useful formula that clearly shows how

(26) but not in the systematically derived answ@b) is a

more subtle issue that we will discuss in Sec. Ill C, where w

Yq arises from second-order variations of the short-

&vavelength energy. In Sec. VI we show how to use WKB

lin : H
show thatu g is & higher-order effect that must be omitted gypansion in conjunction with enstrophy conservation to ob-
to lowest order in a systematic expansion. Indeed, in the (5 the correct lowest-order answer fgg without the ne-

course of the article we will show that neither the direct
systematic calculations nor our heuristic algorithms explic
itly involve any linear properties of the undamped drift wave .

to lowest order ine.
Upon multiplying Eq.(223 by 3(aqt+a%){|¢q*) =Eq,
one can write it for dimensional purposes as

1 . ~ . 0Qy
_— Z(15(1) LS
')’qEq k;ge < k2(| Vk;ql)( Oa,k,—k|qﬂk;q|q' oK ) > )
27

where y{1) is the large-scale Fourier transfor¥ {+iq) of

Sf(kl)ik-Vf)k;q/kz. The first-order growth ratey(") de-
scribes the rate of evolution of wave numbedue to ray
propagation in the inhomogeneogsnodulation.(For more

detailed discussion, see Sec. V) Bs we will show in Sec.

II, the second parenthesized factor in E87) is the first-

cessity for subsidiary expansionén In Secs. VI A and VI B

we reexamine the theory of wave kinetic equations, correct-
ing a conceptual mistake in the literature. We describe the
physical significance of{" in Sec. VI C, then justify the
heuristic algorithm of Sec. Il in Sec. VID. In Sec. VI E we
show that heuristic Fokker-Planck analysis of the wave-
number evolution recovers the dominant wave-number diffu-
sion and drag terms in the spectral evolution equation for the
short scales. In Sec. VI F we describe an alternative algo-
rithm based on first-order variation of the enstrophy flux that
shows howy( is related to an effective nonlinear autocor-
relation time. Finally, we conclude with some discussion in
Sec. VII. (For further orientation, the reader may find it use-
ful to read the last paragraph of that section, which summa-
rizes the principal results in more detail than we have done
so far, before proceeding to the detailed calculatjofite
Appendix discusses the relation of our work to a recent al-

order Eulerian enstrophy increment that develops during theernative calculation of eddy viscosity. A summary of impor-

effective timed, _ of interaction between modésandg.
The product of the two parenthetic factors in Eg7) de-

scribes how the random first-order distension of the short-
wavelength fluctuations leads at second order to a mean en-
ergy drain[note the minus sign in Eq27)] from the short

wavelengths that shows up as long-wavelength growth.

D. Outline

tant notation is given in Table I.

Il. A HEURISTIC DERIVATION OF THE
LONG-WAVELENGTH GROWTH RATE BASED
ON SECOND-ORDER ENERGETICS

Before turning to formal calculations, we shall give a heu-
ristic derivation of y, that obtains it from the drain of
(second-ordgrenergy from the small scales under the con-

Our goals are several. Given the generalized Hasegawatraint of enstrophy conservation in the face of long-
Mima model and the Markovian statistical closure formulaswavelength modulation. For definiteness, we give the details

described above, we want to systematically ob{aisymp-

for the pure HM dynamics defined by E(®), but we indi-

totically to lowest nontrivial order in the scale-separationcate the ready generalization.

parametere) the statistical equations that describe the inter-

Energy conservation demands that, under the interactions

actions of disparate scales, we want to interpret the resulisetween disparate scales, positive energy incremeBtsn
heuristically, and we want to understand their relationshipsong-wavelength fluctuation®f space scalX and slow time

to prior work. As an introduction, we present in Sec. Il ascaleT) arise from negative energy increments in the short-
heuristic derivation ofy, that emphasizes the role of enstro- scale fluctuations. Thus, wite~ (E”) denoting the long-

phy conservation, the significance 9f), and the intrinsic
nonlinearity of the physics. In Sec. Il we derive the exact

results, including Eqs(22), as a direct expansion ia of

formulas (16) (which contain no assumptions about scale
sizes. Although the intermediate algebra is straightforward,

(shortywavelength energy, one has schematically

JtAES=2y“AE~= — 9;AE”, (28)

it is tedious and without immediate physical interpretation.

Therefore, in Sec. IV we present a generalized renormaliza\A/herey<ayq is the nonlinear growth rate. Because the in-
tion procedure that takes explicit account of the presence deractions are both nonlinear and random, the variation
disparate scales and provides a systematic apparatus for devolves second-order effects. If one notes that the contribu-
scribing the functional variations of short-wavelength statistion to E~ from one Fourier component isEq=%(aq
tics with respect to long-wavelength potentials. As a consis-+ q2)<|5<pq|2> and that Eq.(28) contains a factor of 2, a
tency check, we focus ory, and show that the procedure plausible formuladerived in Sec. Vis



8514

TABLE I. Important notation.

Wave numbers

q: wave vector of long-wavelength fluctuatioris.g., zonal
flows). q=|d. | <0max

k: wave vector of short-wavelength fluctuatios.g., drift
waves. k=K, |=Kmin

Ke Ky g-k, z-gxk

€: ordering parametey/k<<1

?2: ayt k2

Potentials

@ random potential

P: mean field(¢)

k=0 projection ofe

@
@ k;#0 projection ofe
Fluctuation spectra

C..  potential spectrung| S¢y/?)

B energy spectruno(F)C, [P =3 (ay+ k?) = 3K?]

& short-wavelength energyy jarqdEx

Q: eitherW (pure HM) or Z (generalized HM

W,:  potential enstrophy spectrus{"’'C, (o =k?c{"))
Z:  generalized enstrophy spectruf’Cy (o{?=k%c"))
Frequencies

Q[i”: HM linear drift-wave frequency, /(a,+k?)
Q.  advection frequencyhlk;quq. For pure HM,
0= (k?Ik?)k- Vg; for generalized HMOQy=k- V.
flk;q: advection frequency without potentiaqflk
()k; unit advection frequency, eithekz(/?z)ky orky,

Growth rates
in. " linear growth rate
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is the random advection frequency associated with the long-

wavelength potentiaﬁ/gr,ki dQ, 19k is the associated group
velocity (not the linear group velocity For considering the
total short-wavelength enstrophy or energy, the equivalent
equation

WX, T)+ V- (Vg W) — - (VO W) =0 (32)

is more useful, as it is in conservation form. Upon averaging
Eq. (32 over space, one finds that the mean short-scale en-
strophy evolves according to

ITWI(T) = k- (VW) (33
Parseval’'s theorem can be used to replace the barring opera-
tion by a sum over algy's: for arbitrary functionsa(X) and
b(X), one hasa(X)b(X)quaa‘ by. This might appear to
involve largeq's as well as small ones, but since we have
restricted the wave kinetic dynamics to first-order gradients,
g is effectively small. Thus, in subsequent formulas we shall
write X smar— 2q and similarly Xy j5q6— 2. Then enstro-
phy variations due to long-wavelength modulations at wave
vectorsq obey

_ 9 -
W= 22 (10040)* Wi, (34

where
Qq=i10Q@q. (35)

(Here and subsequently we wrﬁérg| instead of the redundant

?;q .) An equation for the short-wavelength enegfollows
by dividing Eq.(34) by k? and summing the result over the

k
Y. first-order wave-number distension rat&- VQ,/k>.
YP=1[Q,] (brackets denote functional dependence
Yo long-wavelength nonlinear growth rate driven by the large|argek’s:

k's

5%0+E

5 5~*)‘ : (29)
$qo0®Pq eq=0

_ [ )
Ya aq—l— q2
where E=E~
[E= 23y argd ax+ K?)(| S¢|%) ] averaged oveX (denoted by
the overbarand the tilde indicates the random nature}qf

(In the formal work of subsequent sections, we will differen-

tiate instead with respect to the mean fi€lg=(¢g).) Now
Smolyakov and Diamonfl5] have shown that for pure HM
dynamics the enstrophy density,=k?E, is conserved un-

der a long-wavelength modulation. Upon concentrating onl

on nonlinear contributions t@V,, one has the wave kinetic
equation(WKE)

WX, T) + Vg - VW= VO, - W, =0, (30)
whereV=9/dX, d,=dldk, and
- k2 e
O (X, T)= k-zxVe (31
ak+k2

is the mean short-wavelength energy

1\ 0o~
(_> ( —1q %(Qk;qwk:q)) (363
(36b)
(360

We emphasize again that all Cartesian directions in these
formulas are relative tg. To arrive at Eq.(36b), we inte-

)grated the last term of Eq368 by parts and ignored the

associated surface terfhich describes interactions with
moderately sizedk’s). Upon performing the two variations
required by formula29), one obtains

2

kel ~
Ek (k—:)ﬂkwk;q.

q

— (37
aq-l- q

Yq— 2

The first-order enstrophy variatid?\/k;qi SW, / 5(~pq follows
from the Fourier transform of Eq30); at ¢,=0,
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Ill. FORMAL STATISTICAL CALCULATIONS OF THE

ITWiiq= =~ (Varka- VW 1xq W) (38) INTERACTIONS BETWEEN DISPARATE SCALES

In this and the next section we show how to obtain Egs.
For spatially homogeneous statistics, unperturbed fluctuatiof?2) and related formulas by using well-known results and
spectra are independent Xf so the underlined term on the techniques of renormalized statistical dynamid9]. The
right-hand side of Eq(38) vanishes. Under the modulation, 9eneral goal is to obtain the contributions to E#5) for
the final enstrophy variation builds up over the mode-mode’:C« from fluctuations withq<k, and the corresponding

time yields

interaction timed,, _,, so integrating Eq(38) over that (energy-conservingerms in the equation fa#,Cq. We will
ax obtain those contributions by successively employing several

different approaches. In the first one, which we call the direct
method and describe in the present section, we simply ex-
~ . ~ pand formulas(16) in the limit e<1. Given the standard
Wieq=— 9°Qi bk k- W (89  assumptions built into second-order statistical closure, the
direct method is exact to the order retained; it invokes no
subsidiary physical or mathematical assumptions. In subse-

Upon inserting this result into Eq437), one finds Eq(22b). gquent sections we consider alternative approaches. We verify
One of the significant results of the formal calculations inthat all procedures lead to consistent results.
Secs. IlI-V is the justification of?[]’k’_k as the relevant in- Note that Eq(15) is written for C,=(| 5¢,/?), whose sum
teraction time. over k is not conserved by the nonlinear interactions. Al-
This calculation can be repeated for the generalized dythough the content of the final results cannot depend on the
namics described by Eq7b). The minor changes are to choice of dependent variable, a particular choice may sim-
write Eq. (30) for Z instead ofW, useﬁk=k~VE instead of plify, intermediate algebra. For pure HM dynamics, Kraich-
- — nan’s results as well as the work of RgL5] motivate con-
Eq. (31), and divide theZ analog of Eq.34) by k*=2Z,/E,

: 2 ; - sideration of the equation fekW, . For generalized HM, the
instead ofk”. One is led again to Eq22b). [Note that o of Ref.[15] suggests that consideration @Z, is use-

ky/k?=Q, /k? with Q, defined by Eq(24a.] ful. Upon eliminating the factor oM, , in Eq. (16b) (our
Formula(29) can be criticized on the grounds that it pur- mode-coupling coefficients are real, so we shall subsequently
ports to calculate the statistical properyy, by examining  drop the complex conjugate on the's) by using one of the
variations of the averaged quantifywith respect taandom  detailed conservation law41), one is led, for any nonlinear
potentials. In fact, the proper formula that we will derive invariantQ, to
later[Eq. (137)] involves variations with respect to tineean
potentialP,. Now the statistical problem defined by E&) (O 1(O) (0)
is assumed to be spatially homogeneous, in which €ase f7tQk=2§ MM = 0y 5 Qo Q= Qp)s (40)
=0. However, we will see that the correct generalization of
formula (29) requires the second-order response to the Press ore
ence of anonzeromean potentiaP,, perhaps introduced by
an external symmetry-breaking perturbation to Egj.or by
averaging in an inhomogeneous statistical subensemble. We
will make these notions mathematically precise in Sec. IV.
However, the distinction between variations with respect to «9(|(,Qp),qi Re by pq/ o(kQ)crf)Q)crgQ). (41b)
4 and P, is moot at lowest order i. Further discussion _ o . _ .
about the subtly different roles af, andPy, is given in Sec. The conservation o is immediate, given the antisymmetry
VI, of the summand of Eq40) in k andp. _ N
This algorithm highlights the importance of wave-number ~ FOr future use, we record that EGO) is explicitly
evolution due to the slightly inhomogeneous advection fre- 1
guency. Note that the physics content of the last term of Eq. _ - - L2 2 TN 2
(38), which figured prominently in the derivation, is the ray K=3 EA: (2 px @ k@ —pY)]lp"(k"=a")]

M{P=aPM . (419

equationdk/dT=—-VQ,. We will discuss the significance (2) _

of this equation more systematically in Sec. VI, where we X Ot d 2k Zp) (423
use WKB and Fokker-Planck techniques to derive various )

WKE's for energy and enstrophy evolution. The present al- 1 2 T =0

gorithm is justified in Sec. VI D, and an alternative algorithm 2 ; psirfa ? (9°=p7)(k"~a7)

based on first-order flux variation is presented in Sec. VI F.
All of the heuristic procedures as well as the formal deriva- X af(Eg Lo Zk=Zp), (42b
tions show that the relevant physics has little to do with v
linear dispersion relations or normal modes; the results deyhere
pend only on the properties of the nonlinear advection except
for trivial linear dissipative effects on the value of the triad 80!
interaction time. We will return to this important point at (B) — kp.g (43)
various places throughout the subsequent discussion. P (e +K?) (apt+ p?) (aq+g?)

P q
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and the triad geometry is shown in Fig. 1. The role of thewhere sk=2x/L. A consequence is thaC,=(|A,/?)
factor (@2/q?) in Eq. (42b) is to changeZ,, to W,,. Note that —L9C(k), whereC(k)=[dpe ' (A(x+p)A(x)). It is
the law of sines enables one to employ alternative angles ifhen a standard result that when the angular integrations are
Eq. (42D if that is convenient; e.gp sina=Kksin . performed in 2D one finds

Equation(42b) has the form

> 5 ! f dpd 2 48
< k+p+q*>N A p q|sma|, ( )
2= 2 SciprqdK(K,p,0) (443 ; _ _ . .
p.q whereN= 6k and the integration domaih is shown in Fig.
2. Upon inserting this result into E¢42b), one obtains
=2, K(k,—(k+0q),0), 44b 1
% k=(kra.9 (44D IW=g f dp ddsine|(9*-p?)p*(k*~?)
whered - is the Kronecker delta function andlis a known Hk g Wa(We—W,), (49

function. The form(44b) can be expanded directly in, as

we will do in Sec. Ill B, leading to results valid for arbitrary With the law of cosines giving

anisotropy. However, it is instructive to first assume isotropy , _

in k, (so thatZ, and ¢(?) , depend only on wave-number |sina|=(2pa) 1[—(p2—q2)2+2(p2+q2)k2—k4]1’2.50

magnitude. The algebra of the isotropic and anisotropic cal- (50)

culations is sufficiently different that reconciling the results

provides a nontrivial check on the calculations, and the iso-

tropic calculations illustrate certain issues about wave- Consider the contributions to formul@9) from fluctua-

number integration domains with a minimum of complica-tions with g<k (region A) or p<k (region B); see Fig. 3.

tion. For region A, write p=k+Aq, where —1<\<1. Then
|S|na| (1-N\)YH1- 3 a/k)+O(€?). Also define Fypq

o) (W,—W,) and expand in smalj to find

A. Isotropic calculations ok, p.d
(?F) 1()\ 2 9°F
a ——|| TN —
ap K 2 (gpz

Then to dominant order one finds

1. Evolution of large k’s (isotropic spectrum)

To avoid some clutter in the notation, we shall present the
isotropic calculations for pure HM dynamics, so we wiite Frpg=A
rather tharZ in this section. We also follow the original HM
assumption and assume that the dynamics are local irso
we do not sum ovek| . The generalization to 3D fluctuations
is obvious, and the fully anisotropic algebra is sketched in 1
Sec. Il B. For isotropic statistics, angle dependence arlsesatW(A)——k“(f dry1—2A2 )\2)
only from the § function in Eq. (448 because the mode- -1
coupling coefficients can be written entirely in terms of

+0(€%. (51
k

wave-number magnitudes with the aid of the law of cosines. - il _F
i ; - q dqg Q2W 9k K, q k
To integrate over angle, we shall pass to the continuum limit. ap?
A consistent set of Fourier transform conventions in a box of
lengthL in spatial dimensionalitg is, for the discrete trans- (52)
form, Further algebra usmg the definition &f and the result
1 L2 (96%5) /9P |k=376{5) 4/ 9k leads one to
A=—]|  dxe ™ AX), AX)=D eF A,
L) - K W(A)—l J AW,
(45) IV =1 2k | KB ) (53
and, for the continuous transform, where
1 1 (dmax
oc . = dk D i—|k6—f 2mq dq W, 65 (54)
A(k)=J dx ek XA(x), A(x)=J P )de'k'XA(k)_ 47" NJo ik
— o0 — 0 s

(46)  with 1=1,,=% and I, ,=(27) 1f3"d@sin"gcod'y. We
have written the diffusion operator in the natural form of a

One passes between the discrete and continuous represerflirergence in(an isotropi¢ k space. It conserved/ except
tions with the replacements for a boundary ternfwhich describes the flow of enstrophy

to the intermediate scales

- dk Region B can be treated symmetrically by writiqgr k

D HJ L ASLTIAK), g SKIS(K), +\p, with |sinag|~(1-\?)Y(1—3\p/k). It is not hard to
k — 5k9 ’ verify that region B contributes at one higher order in
A7) (gmax/®)? The WyW, term is related to incoherent noise
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FIG. 2. Integration domaia for all wave-number magnitudgs 9 Kmin p

andg such thak-+p-+q=0 for fixed k. FIG. 4. Integration domain for the interaction of large wave

) ) ) o vectorsk andp for fixed, smallg. Region C:k=k,,,. Region D:
(note thatq is large in region B, the remaining terms, to- k<K, P=Kuin-

gether with higher-order contributions from region A, merely
provide corrections to the wave-number diffusion effect. Af-

. 1 1/ (=
ter some algebra, one finds atwgc): — 2|q4N< fk | 2mk dk kgeg’EQ’kW,LWq
aW(B)~—}3(kVW) (55 4 9(E)
W= i KV, +2a[ K OE W W= Wyl | (57)

where whereW, = dW/dk and the last term is a surface contribution

arising after an integration by parté-or a more explicit
calculation, see Sec. IlIBR.To treat region D, define
r=p—k, T=3(p+Kk), then writer=\k (0<A<1) andT
=KnintApq (—3<p<3). One has |sin h~(a/knn)(1
The drag operator in Eq55) also conserve®V except for a —\)"2 In evaluating formuld@49), one may replacp andk

1 1 (9max
V= 2'k3<NL 2mp dp g6 i | W (56)

boundary term. by kmin everywhere except in sip and in pz—kzl
~2NgKnin- One then finds that the contribution from region
; e (i - D precisely cancels the surface term in Egj7), giving rise
2. Evolut f I t t .
V_o ution of sma .q s (isotropic spec rl'Jm) _ to the growth ratey, given by Eq.(62) below.
Now consider the evolution of the smajfls with the iso- Finally, to obtain the contribution of incoherent noise to

tropic assumption. One must integrate over regions C and khe smallk’s, symmetrize th&V,W, term in Eq.(49) to find,
in Fig. 4. For region C, writep=k+\q; then [sinyl  after interchangind andq,

=(g/K)(1-A\)YA(1—iNg/k) +O(€?). After tedious but
straightforward algebra, one finds that to lowest order

.

o1 .1
WgolsezquNJ'Ad p dKsiny|(p?—k?)265)  WpW
EX\&/, (583

q .
6 1(~ (E) 2
Kmin
A In summary of the isotropic calculations, we have found

that for pure HM dynamics the small scales evolve under
their interaction with the large ones according to

oW == 2 kD(?—Wk—Ei(kVW) (59)
7O O S T Tkoak | TR gk | kgk T KR
where
qmax
FIG. 3. Integration domain for the effect of small wave vectors D= }”(6 Efqmaxzﬂ_q dq @65 W, (609
[q<k (region A or p<k (region B] on a large wave vectdx. 4 N eatd
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B. Anisotropic calculations

= k3 = (E)

Vi 2Ik (NJO 2mp dp wakvpvk)wk’ (600 We now turn to the general anisotropic case, which we
present for generalized HM dynamics. For short-scale evolu-

and that the corresponding long-wavelength evolution is  tion, one finds the Fokker-Planck equation

_ A/noise J 9z J
3 Wq=2yWq+ W55, (61) KZ=— ( Dy é’_kk — = Vi), (66)
where
where
, i_lqﬁif 27k dk ROE) WL (62) 1
q 47 'NJ. 4% = K
km|n Dk: Zk42q k)zlqzw 0(E) k q(q q) (676)

andW“o'sels defined by Eq(58b). To verify that these equa-
tions approprlately conserve energy, divide Fsg) by k?, L1 ~ a4 ()

then integrate/; kdk Also, divide Eq.(61) by ¢?, then Vis 5 % akykxA" bk g, | 2k (67b
integrate [ qrnaxq dq It is straightforward to verify that the

energy drain from the wave-number diffusion is accounted " the long-wavelength evolution, one finds

for by the y, term, and that the energy drain from thig

drag shows up iWg°'se. 0Zq= 27t 2q" (68)
As a check, one can compare E2) with Kraichnan’s h
eddy viscosity for 2D isotropic Navier-Stokes turbulence. where
With v(q|Kmin)= yq/q and upon recalling the definition 1 97
(43) of 6(®, one can write Eq(62) more explicitly as Vo= — Zq4§k: K2k, 05 - a_kk’ (693
T q2
Vi (Al Kmin) = ) > )2(k2
aqgtq zpoises 2k =205 _\Z¢. (69b)
L= [ K 2 dw
Xﬁfkmind a+ k2 0‘1 kk gk - (63 It is easily verified that these forms reduce properly to the

isotropic HM results summarized in Eq$9)—(62) by drop-

One passes from HM to NS dynamics by setting 0. Kra- ping the overbars ok andq [denominators of (*k?) are

ichnan writesE, = £ 5kdU (k) [see his Eq(2.8)]. Then still retained in theﬂ(E)’§], replacingZ by W, and noting that
for isotropic statisticsq- W, /dk= (k,/k)Wy and thekk
d(k?V) component oD is proportional tokZk . Note that Eq(69a)
(Al Kmin) = f dk q kk™ dk - (64 can be written in the form&22) by recalling the definitions
(43) of 6® and (24a of ). It is also straightforward to
This agrees exactly with Kraichnan's E@..6). verify the energy-conservation theorems

Kraichnan gave a thorough discussion of the physical
mechanism(involving W conservatioh underlying this re- IZy
sult, and his insights carry over to HM dynamics without —E 9k ( Dy W):E =(2y¢Zy), (708
essential change. A key observation is that, to the extent that a9
0.k x is @ functiondy, independent ok, as it will be when the

interactions are dominated by large-scale random straining, 10 V.7 2 anse (70b)
formula (64) involves a perfect derivative and is negative. In k2 kK (Vi) =

this same approximation, formu(é3) is negative as well, as

follows from integration by parts: We emphasize that Eq&6) and (68) are not the complete

spectral balance equations; they describe only the interac-
tions due to disparate scales.
In the following subsections, we describe the derivations
min of these formulas. We shall present the algebra forRhe
term in some detail, since it illustrates some tricky points.
(65) We merely sketch the remaining calculations.

2 1

r

aN

™

VamT Ty

q
aq+q2

( KW, )
(a+k*)? K

«© kZWk
+4ay f dk————
Kmin (ak+k2)3

1. Evolution of large k’s (anisotropic spectrum)

These results do not require thtitv, /dk be uniformly nega- To derive formula66), one must consider interactions of
tive; it is merely necessary thal/, vanish ate. Further triads with shapes shown in Fig. 5. For region & gmal),
discussion of Eq(65) and its relation to the results of Ref. Eg. (42b) is conveniently written with the aid of the law of
[7] is given in the Appendix. sines as
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(A) (B)

FIG. 5. Possible triads with one small leg that contribute to the

evolution of disparate scales. Regiond\small; region B:p small.

qz)Fk,p,qa
(72)

1
&tZ(kA) == kZE 52
2 q

P\ =
24 ?)mz—qzxkz—

where s=sing and Fy, =65 (Z,— Z). Since p=—k
—q, one hasp?=k?+2k-qg+q?. Also, one may expand
Fk pq @aroundp= —k:

JF
Fipa= 0" )|,

where the lowest-order terf _ 4 vanished by definition
of F. (Note thatZ_,=Z,.) Upon retaining terms through
O(g?) and recalling thatq?/q®) Z,=W,, one finds to domi-
nant order

1 °F

+§(QQ)3(

3
ol 0@

(72

1 JF
GZP ==k, sPW,g? ( 2k2k-q Q- —
27 ap
By 2 73
> (QQ)-ap&p. (73

where to avoid clutter we no longer explicitly indicate tipat
is to be replaced by-k. Now

oF a‘kEp)q 9z
(E) _~P
i —2(Z,-Z2)+ 605, i (743
2 2 n(E) (E) 2
PE 9k,p,q(z 22 00002y e PZp
dpdp  dpap P K ap ap  “PAgpop’
(74b)

where the terms iZ,— Z, vanish atp=
forward exercise, usmg the fact thef?),,
that

—k. Itis a straight-
is real, to show

E
1 90 4
2 ok

(E)
( aak,p,q) 79

p

p=-k

Thus twice the parenthesized term in E€B) can be written
in the form

— - 9Z,
2(-+ )= 0, o K*(0): <+ 4Kk k-0q- 3

Jkak Ik
. a6®, .. oz
+k*q- akqu R (768
. 0 . 9Zy
=qﬁ(k49‘E)qu ak) (76b)

SO

INTERACTIONS OF DISPARATE SCALES IN DRIFT. ..

8519
1 o d 9Z,
A) _ 2 2~2 . 4 H(E

Wz =72 s Wq(qq)ﬁ(k 02k (9k)
(773

1 9Z,

:Z% 2 ZW qq) [ <k2k40(kE)kqak>

0Z

— 2Kk 6, .k k} (77b

The final step is to move the leftmdstderivative in the first
term outside the sum. That must be done with care because

s=|kx g depends ork. Now with c=k-q=cosp (B=m
—B) and sincedk/ok= (I—k k)/k ands?=1—c?, one has

ac_l ~ A

KRl ck), (783
as’)  2c .

praimiinal Gl ck). (780

One then readily finds that the contribution frais?)/dk
cancels the second term of Ed.7b), so

azk> 79

]
W_ |p,. %k
L (D" ok )’

whereDy is given by Eq.(673.
Now consider the contributions to the largesvolution
from region B. From Eq(42b), one has

2 2
i e

X 08 (2 Zk—Z,), (80)

where nows=siny. It can be verified that th&,Z, term

merely contributes a higher-order correctiof O(p*)] to
Eq. (679. Expansion of thiqzk term proceeds generally as

before. Noteg?=k2+ 2k- p+ p?, definekaqi 05 Zq. in-
troduce the shorthand notatioé,= akp «,» and expand
aroundg=—k:

1
&tz(kB): - _k2 E

psmall

3kaq
Fipa~Fk ,—k—p'(—' : ) (81a
p.q p aa |,
azk 1 aek
= OZy+ O p- — top r?k
(81b

Upon collecting terms to dominant order, one has

1 _
&tZ(kB)= — EkZZk 2 Szp4( Hka

psmall
0Z, a?
+2kcakp +kcp ) (82

Further straightforward algebra leads to the result
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(B) —

hZy == (ViZy), (83

where(after renamingp—q) Vy is defined by Eq(67b).

2. Evolution of small g's (anisotropic spectrum)

We now apply similar procedures to find the evolution of
the smallg’s, for which, after interchanging andq in Eg.
(42b),

1 2

3 (p?—k*)(gq*—k?)

k
HZq= qzzk: $?°Z, =

X O (Zq=Zy), (84)
wheres=sin 3. One must take some care with the domain of
integration, which as in Fig. 4 consists of all wave vectors
andp such that eithek or p is greater thalk,,,;,. Referring to
Fig. 6, this defines region Ck&Kk,,) and region D k
<Knmins P=Knmin)- In region C, the anglg betweenk andq
runs over the entire domain<93< 2, whereas in region D
B is restricted to a domair (7/2+ A)<pB<m/2+ A, where
A~q/f2k<1.

Consider first region C. Upon expanding aroymd —k
and writing 6,=6{", ,, one finds that through dominant
order the contribution toy,= %atlnzq is

1 _ o 0
W=79°2 Kz 9k+k-<qq>-ﬁ) (853
_1¢0S 2 2 esteay (85b)
4 K K dk K
1 . 9Z,
—__ A4 32 "
4q Zk k’s“cé, q oK
1 1 L
+—q4—( §> dSK~qk3szc¢9ka> , (850
4°N k=k

min

wheredS,- q=kni.c dB. In evaluating formulg84), one can
assume to lowest order that=k,,;, everywhere except in

p2—k2~2kqcosB, and neglech <1:
(D) L 3 2 3 (E)
== 54 pED Se(KZ O ko) lkmkyy  (86)
where
1 (=2 Kemin
> ~—| dg f k dk (873
peD NJ -z Kmin—d cosB
1 (=2
~ Nf, /de Kmind COSpB. (87b

Because the integrand of E(6) is unchanged under the
substitutionp— —p, the B integral can be extended to the
full domain[0,27r) at the price of a factor of. It can then
be seen that to lowest order énthe contribution of region D
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FIG. 6. Integration domains for the evolution of the snwd.
Region C:k=K,. Region D:k<Kyin, P=Kmin- Compare Fig. 4,
the isotropic version of this figure.

cancels the boundary term in E®5¢ and one obtains for-
mula (693 for y,. For more discussion of the significance of
region D, see the Appendix.

Finally, the noise contribution can be obtained by symme-
trizing formula(84) in k andp. (Insertdy ;4 and sum over
p.) TheZ, term merely contributes a higher-order correction
to 4, while in theZ, term one may sgb= —k everywhere
except inp?—k?. One is immediately led to Eq69b).

lin

C. Why quy does not appear in the denominator of theg-k

interaction time

The differences between the triad interaction tifijg _
and the response functiod employed in Ref[2] were enu-
merated in Sec. | C. With the systematic algebra presented in
Secs. Il A and 11l B in hand, we can now discuss Wé?,k
does not, and should not, appear in the denominator of the
interaction time, our Eq(25). The systematic calculations
begin with Eq.(16a), which involves the real part of

Ok p=(n5+ mc+ 15 "1, (88)

where 7, =i Q"+ 7'~ 4i". The smallg expansion expands
formula (88) aroundp= —k according to

gk,

ap

4.
-k

eq,k,p: eq,k,fk_ °k (89

However, one could have alternatively performed the expan-
sion of EQ.(88) in the denominator as

S
p

)

P

-1
net et 12— Q- ( } . (90
-k

O,k,p™

If the largek #’s are approximated by their linear parts and
the linear part ofy, is ignored, then Eq(90) reduces to

aQ:ln -1
ak

eq,k,p%{ibm WqS_Q‘ 2% (9

the real part of which is, to within a minus sign, E@6).
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We now inquire whether it is valid to proceed from Eg. Eulerian-Lagrangian techniqué33] are useful in this con-
(90) to Eq. (89) for g—0. The answer is yes for our fully text, but are beyond the scope of this article.

renormalized form, since aq—0 the quantity 7+ 7>, For notational simplicity, we shall illustrate the procedure
ZZ(RenE"S— Ylin) remains nonzero. Thus t"fﬁig?k effect  for pure HM dynamics. However, the techniques and general

is captured by the second and unwritten terms on the rightorm of the results apply to generalized HM dynamics as
hand side of Eq(89). Now in the spectral balance equations Well.
only the real part o enters, so for the energy balance the
effect enters only aD(qg?). However, the calculations in
Secs. Il A and Ill B show that only the explici©(q) cor-
rection in Eq.(89) is relevant to dominant order, and its real
part does not contaigu . Thus, although théreal part of In seminal work, Martin, Siggia, and Ros¥SR) [34]
the) correction term in Eq(89) is included in all the formu-  showed how to adapt powerful methods of quantum field
las involving either wave-number diffusion, drag, or deriva-theory to the problem of classical statistical dynamics. The
tives with respect tk [cf. Egs.(22) for y,], those formulas pasic idea is to construcF gengrating functionals fpr corre_la-
do not contain any contribution from tlm)g?kterm. Acon- fion and response func_tlons in terms qf a classical action
sequence is that it is inconsistent to write such formulas usbuilt from the given nonlinear dynamics in the presence of a
ing (a renormalized version R, instead 0f¢, _; to do vector of e>_<terna| sources. (Thgre should.be no confusion
so (cf. Refs.[2] and [31]) is to introduce one particular between thisp and the renormalized damping in the Mar-
second-order effect into the lowest-order calculation in arkovian closures. Generalizedn-point correlation functions
uncontrolled way. Note that if there were an actual resonancfllow from n derivatives of the generating functional with
(if the denominator vanished @s—0), then the expansion Fespect to appropriate sources; physical correlations are ob-
(89) would be |nva||d, however, that is not the case. tained in the ||m|t7]—>0 Repeated differentiation with re-
This analysis also explains why, in the heuristic algorithmSPect ton merely generates an unclosed multipoint statistical
of Sec. Il and in various discussions in Sec. VI, we omithierarchy (a multitime generalization of the Bogoliubov-
linear physics from the WKE. It does not imply, however, Born-Green-Kirkwood-Yvon hierarchy of classical kine.tic
that no effects of wave-packet propagation enter the lowestheory. However, by making a Legendre transformation
order theory. Indeed, we will show in Sec. VI E that the drag[35,36 from 7 to the mean field(¢),=(¢)[ 7] (square
term in Egs(59) and(66) arises from just that effect. Further brackets denote functional dependgneme can define ver-

A. Background: The Martin-Siggia-Rose approach to classical
field theory

discussion is given in Sec. VII. tex functions, the(functiona) equations for which can be
usefully truncated to obtain approximate and closed renor-
IV. RENORMALIZED FIELD THEORY FOR DISPARATE malized equations. The DIA emerges by neglecting vertex
INTERACTING SCALES renormalization altogether; the second-order Markovian clo-

sures have a similar interpretatipd7]. The MSR technique

The direct method of calculation leads one via systematiavas reviewed by Krommesl9], who provided many refer-
although possibly obscure algebra to the desired answer. Thences to the original papers; see also the introductory discus-
details are tedious partly because the fundamental formulasion in Chap. 9 of Ref38]. Probably the most useful real-
(16) treat all scales on equal footing. One might expect that é@zation of the formalism employs path-integral techniques, as
renormalization procedure that recognizes the presence discussed by Jens¢B9] and in the references therein.
disparate scales from the outset would lead to simplified cal- Thus, to effect MSR renormalization of the pure HM
culations. Accordingly, we present in this section a generaliequation, one supplements the original dynamical equation
zation of the usual renormalization technique that treats theg) with a scalar, statistically sharp sourge
long- and short-wavelength fluctuations as separate compo-
_nents. Actually, in the general v_ersion _of the calculation one (a—V?)dp(x,t)+V, 5y¢+VE.v(_v2¢): ;;(x,t).
is merely led to the same starting point as before, namely, (92)
Eq. (42b), which still requires expansion ia. Nevertheless,
it proves useful to introduce the extended formalism, as we
will use it in Sec. V to derive an alternative method of cal- (We write V2 instead ofv? , and also writex instead of to
culation that will motivate the heuristic energy algorithm avoid confusion with other uses of the caret in this section.
presented in Sec. Il. Such a source breaks the statistical symmetry and induces a

There is one important caveat to the calculations to fol-ygnzero mean fielde); functionally dependent on. More

low, relating to the issues of random Galilean invariance . LA .
discussed i?] Sec. | B. The variational procedure to be emgenerally, a conjugate field is also introduced that obeys an

ployed is firmly rooted in Eulerian correlation functions, so it adjoint dynamics(not written here, but coupled to those of

is not naturally random-Galilean-invariant. This means that? ) and interacts with an external sourge Averages with

if one were to work out the nonlinear renormalizations ex-respect to the enlarged ensemble that embracesatid ¢
plicitly, one would in all formulas obtaimy,, not 7. This is lead to mean fields and higher-order cumulaisnoted by

not a critical issue, since from the calculations in Sec. 11l one({- - -))) that depend on botty and 7. We write (¢,¢)"
already knows the correct form of the answer and can insert ¢ and (7, 7) "= # (T denotes transposand must consider
7°s by hand if necessaryActually, we merely couch the the mean field(¢)),. It can be shown that cumulants of the
results in terms Oﬁtrq,k,—k') However, it is an important de- physical fielde follow by functional differentiation with re-
ficiency of the general method(Lagrangian or mixed specttozn, and that mixed derivatives with respect to bath
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and;; generate various infinitesimal response functions. For dep+ ich+V-T:0, (98)

example, with = (x;.t;) and C1(1)=((@))(1)=(¢)(1),
one has

0Cy(1)
Ca1,2=((e(1)p(2)))=(S¢(1)d¢(2))= 57(2)
(93
and, in general,
~oCh(1,2,... 1)
Chi1(1,2,...n,n+1)= 37N+ 1) (94)

The fundamental two-point infinitesimal response function

R(1;1") is

R(1;1')=56C4(1)/87(1"). (95)

To avoid clutter, we do not explicitly indicate the depen-

one finds the general formulas

2”'(1'?)— M (993
) - 5P(_) l

Frl(1,1)=— ov.Ii) (99b)
l - 5ﬁ(_) )

whereI'=(T’). These results are well known to workers in
statistical field theory34,19.

B. Wave-number filtering and the long-wavelength
growth rate

If one were merely to proceed in this vein, one would

dence of the cumulants o®, or that physical observables arrive at the DIA by neglecting vertex renormalization. The
obtain their values af=0. However, in generating various content and implications of the DIA are very well understood
statistical equations, a key caveat is that one must not s¢19,21], so need not be discussed here. The further reduction
mean fields to zero until the very end of the calculation,of the DIA to Markovian form was discussed at length in
because they are nonvanishing in the perturbed ensemble ar@f.[37] for the general case of weakly inhomogeneous and
may be differentiated. Also note that the functional deriva-nonstationary statistics; for statistically homogeneous situa-
tives employed here are parametrized by both time andons, one arrives at Eqél6). Additional discussion of Mar-

space, whereas the operator employed in Sd@anidl in Ref.
[2]) is parametrized only by space.
For quadratically nonlinear dynamics of the form

kovian approximations was given in R€20]. We are inter-
ested here in developing a variant of the renormalization
procedure that treats the long- and short-wavelength fluctua-
tions as separate components. Accordingly, we decompose

do+iLe=0(pop), (96) the potential into a short-wavelength componerit and a
long-wavelength componenp=: ¢=¢ +¢~. For ex-
wherelL is a linear operator, these considerations lead to theample, a realization of ¢~ is ®~(X)

general set of coupled Dyson equations

atR(l;l’)+iLR+j d13"(1;1)R(1;1")

=8(1—-1"), (979

aIC(l,l’)+iLC+J d13M(1;1)C(1,1)

=(2m) = dke* (k) and similarly @<= [y - -,
wherek, is some wave number intermediate in the spectrum.
Note that, if one wants to strictly match this formalism to the
expansions ire developed in Sec. lll, one should actually
introduce three filtered fields: o™ =f\ =y -+, @~

min
:fngmax.“' and a field with intermediate wave-number
contente™Y. We shall not introduce ™9 explicitly, rely-
ing instead on subsidiary approximations to obtain the
disparate-scale interactions betwegn and ¢ <.
Such wave-number filtering is a projection operation.

:f d1F"(1,1)R(1';1), (97h  Therefore, upon projecting E¢92) (in the presence of an
external sourcey) onto the> and< subspaces, one obtains

whereS" andF" represent the set of all connected diagrams (1) (2 (3)

that arise from the nonlinearit)Z“' is a generalized nonlin- (a—V?) o0~ +V, ay<p>+[V§-V(—V2<p>)>

ear damping, an&" can be interpreted as the covariance of @ (5)

an internal .“|ncoherent” noise arising f.rom' the nonlinear +VE-V(—V2¢<)+V§-V(—V2¢>)

mode couplind40]. [The semicolon notation is used here to

indicate functions that are one sid(a;chusa) in time; thus ~(a—V37y~, (1003

R(t;t")cH(t—t"), whereH is the unit step function. More

generally, the coordinat® after the semicolon can also be ) s @

interpreted as signifying the poist in space and time at -
whicﬁ a perturba’gonf)i/s gpplied‘? and we \I/Dvill use that notation (a=V2)ae™+V, dye™+Ve - V(= V27)

later in considering responses to perturbings.] In various (4"

closures such as the DIA, explicit forms are obtained38r +[VE-V(=V2p7)~

and F". For present purposes, we just note that, when the R

dynamical equation is written in the conservation form =(a—V?)9p~. (100b



PRE 62 INTERACTIONS OF DISPARATE SCALES IN DRIFT. .. 8523

[In writing Eq. (1009, we used the fact that the self- ) 2" (3"
interactions between™ cannot contribute tg~ exceptnear  (a—V?)d({(¢ <)) +V, d (@) +{(VE))- V(= VZ(¢=)))
the boundary betweet~ and ¢~ in wave-number space.

We ignore that interaction; it could be taken into account by <(4') 5 < - 59 2 >
the introduction ofp(™¥.] The various terms are numbered V- (VE(= VI )N +IHVE)) - V(= V(7))
to help one follow the algebriWe eschew the more mean- 6"
ingful numbering scheme (1) and (1%) as being too cum- +V-((VE(=V2p7)))~
bersomel. .
Our goal is to study statistics in a spatially homogeneous =(a—V?)7~. (101

background. To ensure that, one must ultimately average

h isti f - <A I hall . . .
over the statistics of botip™ and ¢ S usual, we sna According to the MSR procedure, one obtains the equation

denote the full statistical average Ky--). Later we shall ~ P 2
L r the long-wavelength covarian@==({(¢~¢~))=C
discuss a conditional averaging procedure wherein one ave functionally differentiating Eq(lOl) with respect ton

ages only over the short-wavelength statistics. However, he
we shall employ unconditional statistical averaging to derivef one  writes Ve(1)= =V(1,1)¢(1) [where V(1,1)
a general formula for the long-wavelength growth rate. The=zxV §(1— 1) or vk(t t) z><|k6(t—t)] then one ob-
cumulant average of Eq100b is tains

! ) N (3'b)
(a—V?)3,C=(1,1)+V,3,C=(1,1)+V(1,1)C=(1,1)- V(= VZ((e=))) +{(Vg))- V[~ V?C=(1,1)

@) — (5'a (5b)
+8((self~ ) 16m(1) +[V(L,1)C” (1Y) - V(=VX{( )]~ +{{(VE))- V[~ V 2C7=(1,1)]}"

(6")
+8V-T=(1)/69(1")=0, (102

wherel'=((Vg (—V2¢7))) is the flux of vorticity. In the limitp— 0, the underlined terms vanish for homogeneous statistics.
The self-interaction term (4 generates a nonlinear damping rate that renormalizes the linear long-wavelength propagator. We
shall not work out that effect explicitly for two reasons: first, our goals here are merely to show consistency with the
systematic, fully renormalized calculations we have already done in Sec. Il and to identify the key terms that contribute under
long-wavelength modulation to the final answer; second, the resulting Eulerian renormalizations would not be random Galilean
invariant. However, upon Legendre transforming fromto ((¢)),, the derivative in term (§ of Eq. (102 becomes
(6'a) (6'b) (6'¢c) (6'd)
_ 8 _ _ 8 _ S
=C<(1,1")——+R<(1";1) +C7<(1,1") ——+R~7(1";1)

Sn<(1’ SP<(1 SP<(1 5P~ (1 SP~ (1) (103
77(>\ ()j\ ()j (1) (1)

long-wavelength damping long-wavelength noise

In the limit »—0, cross correlations between long- and The damping rat&™ < is closely related to the desired
short-wavelength fluctuations vanish to lowest order, so wey,. To reduce Eq(105 further to a Markovian form, one
ignore the last two terms in E¢103). Upon passing to the must introduce the fluctuation-dissipation ansatz

physical limit 7—0, one then obtains

( VZ)(;’E:<(1 iv.s gg(ll,) Cq(t, ) =Ry(DIC()  (t=1) (106
a— t ’ * Oy '

(4)

+ (renormalized dampi
( Ping (see discussions in Reff37] and[20]) and consider Eq.

(6'a) - (6'b) (104 for equal timest’ =t. With C(t,t)=C(t), one there-
+(a—V?)3"<(1,1)C~(1,1)=(noise ~, (104  fore finds

where
HCq(H) =2y LCqD)= .. ., (107
Enl,<(15i(a_v2)—lm (105
’ SP<(1) where
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b S I'(1)=((Ve(1)- V[~ Vie(1
yqt—Ref dt S5 (4 OR; (1 1)* (1083 (1 <A< E(_) il 2“0(_)]))
o =WV(1,1)- V(= V3)C(1,2)]5-;.
= ! )Reft dt’MRa‘(t;t’). The functional differentiation required in E¢105 intro-
agto? o OP(t") duces the function
(108hH
. . 5C7(1,2)
We have dropped thet superscript o'y, Py, andR, be- C(1,2;1)=——=2, (110
cause theqg subscript already denotes the long-wavelength SP(1")

projection. The factor oR, in Eq. (108D is the formalism’s
way of introducing the long-wavelength autocorrelation timeNote that by homogeneit@(l,z;l’) must be a function of
~ny", which is required because the short-wavelengthust two spatial difference variables. We shall adopt the con-
modesk andp are interacting nonlinearly with modg Ul-  vention(temporarily ignoring the time arguments and denot-
timately, it will be seen that the presenceRfis essential in  jng spatial variables by underline€(1,2;1")=C(1-2;1
order to recover expressions involving the correct triad inter- 17y Upon usingk as a wave vector for the coordinates
action time 6y , 4. (There is no significant distinction be- 1 and 2 and using for the < coordinate 1, one has

tween R, and R§ because smaly modulations cannot be
advected by substantially longer wavelengthidowever,

. ’ . . C 1) = ik- (X1 %9) @l 0" (X1 —X1) & -t/
one can obtain an approximate formula by dropping the time ~ ©(1.2:1) > el tamRelabamaCy (ty ;).

k.q

integral andR,, provided that one then parametrizes the (111
functional derivative only by space, not time, and inserts the
appropriated by hand. The resulting formula Upon inserting this into Eq(108b), one is finally led to the
general Markovian formula
1 o(V-T'y)
Yq=— o Re 5p (109 - A ,
aqTq a Yo= (gt Q) ReEk z-(gxk)k

is essentially the one employed in REZ], except that those .
authors differentiated with respect to the random potential XJ dt’ Ck.q(t,t;t’)Rg(t;t’). (112

Zaq. One can show that formuld408b and (109 hold for
generalized HM dynamics as well. R

To simplify Eq.(108b further, we observe thdt(1) can An equation forC follows by successive differentiations
be obtained from certain differential operations applied toof Eq.(100a with respect top~ andP. Upon differentiating
C(1,2), after which the limit 2+1 may be taken: with respect to~, one obtains

1 ) P 3 (4
0=(a—V?)4,C”(12+V,4,C” (1) + p >(2)(self termg™ (1)+W(1,1)C>(1,2)- V[ - V2P(1)]
" S

(4b) (49 - (53
+{((VENWN(1)-V[-V2C=7 (1,2 + V- ((VE(=VZ0=))+WV(1,1)C~7(1,2)- V[~ V2P~ (1)]

817 (2)

(50
V-((VE(=V?¢7)), (113

(5b)
+((VE))-V[-V2C™ (1,2 +

o517 (2)

where the mean fields have again been underlined. Upon differentiating this result with respétt)toone finds

EON @ 3) o a
0=(a—9?4,C(1,2;1)+V,4,C (1,2;1') +(self termg+V(1,1)C(1,2;1') - V[~ V2P(1)]

DLTC T2V (Ve o ay 5c<><1,2>)
1,1)C7(1,2)-V[-V238(1-1") ]+ ——————-V[-VZC=7 (L, +((Vg))- V| =V —————
+W(L,1C7(1,2)-V] ( )]+ P [ (1,2+((Vg)) T
__ (53 59
' SP(1') : ’ SP(1)
(5b) (5b)

+W(1,1)-V[-V2C~ (1,2 + Vg (1)- V[ - V2C(1,2;1")]+[term (50)]. (114
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Later we shall differentiate this equation yet again, so keep-
ing track of the mean fields is important. However, for

present purposes one can obtain the equation for the physicghe unique solution of this homogeneous linear equation is
C by setting the mean fields and cross correlations to zeroy¢c, nq=0. Therefore the solution of Eq121) is

(0f 5 “ACkpat i ("= QIMAC, 5,q=0. (122

Thus, upon moving terms not involvirfg to the right-hand
side and indicating nonlinear renormalizations by, one
obtains

(a=V 3, C(1,2,1)+V, 0y C(1,2,1) + - - -

=—V(1,1)C7(1,2)-V[-V28(1-1")]

-WV(1,1)-V[-V*C7(1,2]. (119
The spatial Fourier transform of E¢L15) is
ICrq(te tost ) +iQM Cpoo(ty, Lt )+ -
=27 (kX Q) Ayqlts t2) S(ts '), (116

wherep=—k—q,

Akq(ty t) =(ap+p?) " Ha?—K*)Cy (ty,ty), (117)

and Q" is the linear diamagnetic frequency defined by Eq.

(7a. For Eq. (112, one requiresék;q(t,t;t’). Now
#C(1.t,2,5;1") = [4,,C(1,2;1) + <9t2C(2,1;1')]|t1=t2=t,

and from Eq.(111) one hasC(2,1;1').q=Cp(tz.t1;t’).
Thus one obtains

&ték;q(t't;t,)_iQI’;i)nékiq(tyt;t,)_iQﬂnép;q(t,t;t')—f— o
:Sk,p;q(t)5(t—t'), (118)
where

Sk,p;q(t)ii'(kxq)[Ak;q(t1t)_Ap;q(t,t)] (119

is symmetric ink andp. From Eq.(118) follows an equation
for the desired quantitﬂk;q(t;t’)iék;q(t,t;t’)Ra‘(t;t’):

ICia(tit) =1+ Q"+ Qg C (i) + - -
+iﬂﬂn[ck;q(t;t,)_Cp;q(t;t’)]zo (t>t"),
(120

with initial condition Cy.4(t";t") = p4(t). Were it not for

the C.q—Cp.q=AC p,q term, the operator on the left-hand
side of Eq.(120 would be identical to the complex conju-
gate of the one that defines the inverse of the triad interactio
time. However, we will show that the contribution of that
term to the final answer vanishes. To do so, we integrate E

(120 over 7=t—t' and definefifg’dr(j(r). One can
verify thatC(ec) =0. Therefore
( :,p,q)_la;q+iQIlinAgk,p:q:Sk,p;Q' (121

From Eq.(121), form an equation foAC by interchanging

gk;qz :,p,qsk,p;Q' (123

Upon inserting this into Eq112), one finds

Yo~ ~ (gt 0) TIREX (2 AXK) 2K O o Ag~ Apg

(1243
:(aq+q2)_1 E 5k+p+q(2’q><k)2
k,plarge
X(p?=K?) O p g Akiq- (124b
Upon recalling the definition$43) of 6{) ., (117 of Ayq,
and(13) of Wy, one readily finds
1 2 i 2 2 2 2\ g(E)
Ya= 79, 2 Scrpiq SIPA(P?—K?) (07— K?) ) Wic.
k,p large
(125

This result is identical to the formula foy, that follows
from Eq.(84) by dropping the bars and retaining only Wg
term.

This calculation is merely an extensive consistency check.
It shows the equivalence betweéin the direct method of
renormalizing all interactions at once, then extracting the
contributions due to interactions between disparate scales;
and (ii) an initial filtering into short- and long-wavelength
components, followed by renormalization of this extended
multicomponent systen{We did not perform all renormal-
izations in detail here, being content to display the flow of
the logic and to identify the particular terms that contribute
to the final answer.In its raw form, it does not provide
algebraic simplifications over the direct method. However, it
does illustrate the variational procedure for obtaining statis-
tical equations. We shall now use that procedure to give an
alternate derivation of formulél25 based on a nonlinear
statistical Poynting theorem.

V. THE LONG-WAVELENGTH GROWTH RATE
FROM RIGOROUS ENERGETICS

The authors of Ref.2] advocated a method of calculation
based on a quasilinear wave-energy or Poynting-theorem ap-
Rroach. As we discussed in Sec. | C, their results are not in
complete agreement with ours, either in mathematical detail
or, more importantly, in physical interpretation, so it is use-
Yul to examine their procedure in detail. We shall first pro-
ceed systematically, using the techniques of renormalized
field theory introduced in the last section, and show how one
can recover the correct long-wavelength growth rg{¢Eq.
(693] to dominant order ire. (With extra work, one can also
recover the noise terms, but we omit those details as they do
not add additional insight.Subsequent discussion and heu-

andp and subtracting the resulting equations. The right-handistic examples will demonstrate why interpretations and al-

side vanishes becau§ds symmetric, so one obtains

gorithms based on linear physics fail.
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A. A nonlinear statistical Poynting theorem
_ . _ ¢ V-[VE(=V?7")]=E"-Vg(-V?”) (1289

We shall derive a nonlinear energy-conservation theorem.
The use of such theorems is well established in statistical - _E<.T° (128h

plasma theory. Dupree and Tetreddll] discussed deficien- -

cies of standard resonance-broadening theory with respect {ghere the last result was obtained by interchanging a dot and

energy conservation. Simild@2] showed in detail why the cross product. We thus obtain the conditionally averaged

DIA was properly energy conserving and why various sim-Poynting theorem

pler closures such as resonance-broadening theory were not.

Krommes[19] reviewed the general procedure of obtaining at§>: E<-F>+O(;7>). (129

statistical energy-conservation theorems in the context of un-

magnetized Vlasov dynamics. The fundamental operation is

to multiply the continuity equation for fluctuating charge

density by the fluctuating potential, then average over space Equation(129) can be used to obtain a new expression for

and integrate by parts, thereby obtaining an expression fahe mean fluxI'=(I'"), whose first-order response is re-

the time rate of change of the mean fluctuation energy. Nowguired in Eqs(108b or (109 for Yq- Again, we stress that

if such a procedure is applied to the basic HM equation inEq. (129 describesconditionally averagedstatistics. To

the absence of linear growth or dissipation, a trivial result iscomplete the statistical averaging, one must average Eg.

obtained: one merely finds that total energy does not evolve129) over the statistics o ~:

at all under the action of either the linear or nonlinear terms.

Put another way, fluctuation energy evolves because of HE=((EX))-T+{(E=-T)+0O(77). (130

Ohmic heatingd 6j- SE). For perpendicular currents compris-

ing polarization and gyrocenter contributions, the We shall ignore the cumulaf{E~-T)), which contributes

(8j, - E,) term vanishes and only the dissipative parts ofrenormalization effects that can be inserted heuristically.

(8j)6E) (Landau damping or collisionscontribute; how- (From the WO!‘k in Sec. lll, one already kn'ows the correct,

ever, those effects are omitted in the basic HM model. fuIIy renormalized YESUDZ.ThUS, we work with the statisti-
Nevertheless, they arising from the interaction with the cally averaged Poynting theorem

short scales does not vanish evendp+0, as energy can be .

transferred from short to long perpendicular scales. To obtain E~((E™))-T+0(77). (131

that effect, one can develop a statistically averaged energy- R

conservation law or Poynting theorem that applies specifiOne can extract a formula f@’/ SP==TI" by two functional

cally to the short scales. To do so, multiply E4009 by differentiations of Eq.(131). A first functional derivative

¢~, average over the short-scale statistics and integrate ov&ith respect toP=(1’) gives

the short spatial scalémintly indicated by an overbarand

B. Long-wavelength growth from second-order energetics

integrate by parts. Note that the short-scale averagingns a | 6&(1) - S ,
ditional on the long-wavelength field or statistics. The inte- 5| 5p= 1) ~{(E™)(1)-I'(1;1")-V4s(1,1)-I'(1).
gration by parts introduces surface terms, which we shall (132
ignore in the following discussion. The first term arising
from Eq. (1009 gives4,£~, where Another derivative with respect 8=(1") leads in the limit
1 1’—>0 to
o> T >\2 >|2
— ~—[Vd&(1,1)-T'(1;1")
I\ sP=(1")6P=(1")
If one had averaged as well over the long-wavelength statis- +(1'=1")]. (133
tics and ignored additive sources, then formula(126) A
would reduce to the standard result Upon defining &(1;1',1")=8%E(1)/6P=(1')sP=(1")

=E(1-1,1- 1"t 1)=&y (L' ,t"), one finds that
the Fourier transform of Eq133 obeys

=

5=<§>>=E g (ak+k2)ck=2k oBc,; (127 ) )
&tgqr,qu(t;t,,t”)%_[iq,,'rqr(t;t,)é(t_t”)

. . _ +ig - Te(tt)s(t—t)]. (134
however, in the absence of such averaging and in the pres-

ence of external sources, the statistical ensemble is inhomahus a first-order flux increment leads tsecond-ordeen-
geneous and it is preferable to work with the fofh26). The  ergy variation(The physics is no different from the familiar
second, linear diamagnetic term of E&00g does not con-  result that Ohmic heating is a second-order effeliis sug-
tribute because of periodicity in thedirection. The third and gests an alternative method of calculation in which one di-
fourth terms do not contribute because, after integration byectly computes the second-order energy, then infers the
parts, one obtains the constructi@ -Vg =0. The fifth  first-order flux variation that defineg,. This was the proce-
term, however, contributes dure used in the heuristic algorithm of Sec. Il.
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We now demonstrate in detail that the energy methogtrom  5.C.. . L (t.t:t’ 1)V =, Cor o(ts tot’ )] _, _

leads to consistent results. Two procedures can be used to tkdg ( PR )= ka'a (2823t )]y gt

P , ) , +[k——(k+qg'+d")], one obtains
extractig- I'y(t;t") from Eq. (134). One way is to set

=q'=q andt”=t’; then, somewhat informally, 07t6k (LG ") = (et kz)*li(qx K)
’q’—q 1. 1

A 1 2 2_ ~A2\F Lxt

g Ty(tit) =~ Sadqtit )/ st-t'). (139 X[(97=Pp7) Crg(ti1")
= (9= [k=g*)C_q(t;t)]18(t ")
However, this route is not the best: in addition to the formal , R
difficulty of dividing by a Dirac § function, the choicey’ T t)e(=aqt). (140

=(q"=q corresponds toAtwo differentiations with respect to(Note that the linear terms have canceled Joupon multi-
P4 and leads tquoc+&tf€q,q (with a counterintuitive sign  plying by 3 (a,+k?) and summing ovek to form the short-
whereas from the calculations in Sec. Il it appears more natuwvavelength energy, one simplifies this to

ral to differentiate once with respect #, and once with

respect toP; . Therefore, a more intuitive and also more 2 VANV NI 2_p2
mathematicgllyjustifiable procedure is to ordert’ >t" and g -o(Lit'1 )_; z(axk(a™=p7)

to obtain the coefficient of the firgt function in Eq.(135) by

integration. Upon setting’ =q andq’= —q, one finds X[Crq(tst) S(t—t")
+C (Gt 8t—t)].  (14)

o tyt)= [ Uavad, qure) e
— According to Eg. (136), the coefficient of 5(t—t") is

(136 ig-T'y(t;t"). Thus formula(137) becomes
Upon inserting this result into formul@d 08b, one finds 1
Yo= ~|ReX z:(gxk)(p*~g?)
1 t t'—e aqtq k
Vg~ 5 J dt’f dt” .
aq+q - —© )~ G IND* (44!
X | dt! Cpg(tit)RA (t5t). (142

X[ &g —o(tit! A IRE(EL). (137
Now p?—qg2=k?+2k-qg. One can verify that thé- g term
The overall minus sign in this formula is physically sensible,vanishes under th& summation by symmetry and reality;

since & describes the second-order energy variation of thdhe resulting formula fory, is identical to Eq(112), proving

small scales whereag, refers to the long wavelengths.
Let us show that formul#137) reduces to our previous

result(112). An equation for follows by differentiation of
Eqg. (114 with respect toP=<(1"), Fourier transformation,
and summation over the lardes. Upon differentiating Eq.

nition based on first-order flux.

VI. CONDITIONAL AVERAGING AND THE WAVE
KINETIC EQUATION

the equivalence of the energy method with the original defi-

(114 and setting to zero all mean-field and cross-correlation A feature of the calculations in both Secs. IV and V is that

terms, one obtains

0=(a—V?)aC(1,2;1,1)+V, 4,C(1,2;1, 1) + - - -
+V(1,1)C(1,2;1')- V[ - V28(1,1) ]+ (1’ =1")
+W(1,1)-V[-V2E(1,2:1)]+(1'=1"). (139

With C(L,t;,2,t5;1/,t',17,t")=C(1-2,t;,t,;1-1/,t',1
—1”,t”)—>ék;q,1qn(tl,t2;t’,t”), Eqg. (138 becomes

3 G qr(ta tast’ 1)

_ . Alin
- _IQk+q’+q”

{z (k+q")

é -’ //+—
k;q’,qf a+|k+qr+q//|2

Xq'(q"2—k+q'[2) Cq(ty,t25t") S(t—t")
+[(q',t")=(q",t")]}. (139

they all lead, though through somewhat different algebraic
routes, to a general formula for, that includes terms of all
orders ine. On the other hand, the heuristic algorithm pre-
sented in Sec. | C directly produces the lowest-order term in
the e expansion. It is of interest to understand why this hap-
pens and how various heuristic algorithms follow from the
formal theory.

The fundamental distinction is that the formal methods of
Secs. IV and V, involving unconditional averages over both
short- and long-wavelength statistics, deal with a homoge-
neous statistical ensemble from the outset, whereas the heu-
ristic algorithms(and a generalization thereof, a more formal
conditional averaging procedure to be discussed belefer
to the response to a random potential and therefore work
with a necessarily inhomogeneous ensentbtenditional on

the statistics oqu). The methods differ in the way in which
inhomogeneity is exploited to obtain information about the
statistics.

In the homogeneous ensemble, it is necessary to break the
symmetry “by hand,” via the external sourceg in order to
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enable functional derivation to probe successively finer andolution valid for small deviations from homogeneity. To

finer details of the statistics. Legendre transformation fapm illustrate with spatial coordinates only, we introduce

to ({¢)) enables one to close the statistical equations and to

establish nontrivial functional relations between various p=x—x", X=3(x+x") (144

guantities. However, because the functional variations refer

to the exact nonlinear dynami¢which generate a spectrum and writeA(x,x")=A(p|X). One now assumes that eithr

of interactions involving all orders ia), the final formulas and/orB have a short correlation length gn Then expansion

also contain effects through all orders. in small p/X led CM (incorrectly in general, as we will ex-
An alternative procedure is to average conditionally overPlain shortly to

the short scales, temporarily freezing the statistics of the long

wavelengths. This procedure, which also breaks the symme- (Aé)(X,X’)~J dpA(p|X)B(p—p|X)

try, provides a different way of probing the system. One can

examine the response of the short scales by a WKB analysis 1/ oA _|X
that proceeds order by order in The lowest-order non- +Z (p ), —p)B(p—p|X)
& o> T . . 5 < (p=p)B(p=p
trivial description is the WKE correct through first order in d
the long-wavelength gradients. Note that there is no advan- 7B _|X)
. . o . S — pP—P
tage to first averaging conditionally, developing a general —pApIX)  ——— (149

description of inhomogeneous statistics, then finally averag- X

ing over the long-wavelength statistics; one will merely be ) . .

led back to the functional relations in the homogeneous er@'» Upon Fourier transforming with respect o
semble and to the general formula fef. The key to a A 1.

reduced description is to truncate the dynamical content at (AB)(X)=A(X)B(X) + z1{A,B}. (146

the outset by working only to, say, first order in the WKB Here braces denote the Poisson bracket. Upon generalizing

expansion. to include temporal variations, one defines the Poisson
bracket of the two function8 andB (both with argumentk,
A. WKB derivation of wave kinetic equations w, X, andT) as
WKB techniques for slightly inhomogeneous systems are

; . dA B A B

well known. In the context of classical field theory, a funda- {AB}=|—< —— — — |- [(X,Ke(T,0)].

mental reference is the work by Carnevale and Mai@v) dxX gk ok X

[37], who, in the course of a general discussion of Markov- (147)

ian statistical closures, attempted to derive WKE's for the(x andk play the roles of canonical coordinate and momen-
energy and enstrophy evolution of Rossby waves in an inhog, , “respectively, as d6and— w.) One is led to the Dyson
mogeneous medium. Although their final equations obey reaw?quations in the form

a

sonable conservation properties, close inspection reveals al-

gebraic errors in their derivations. Furthermore, the general 31Ck (X, T+ (—iw+2y ,)Cko

form of their spectral evolution equatiqiEq. (150 below]

does not agree with the one implied by the recent work of =FroRkwt 21 ({Fio R o} ~{Zkor Ciol):
Smolyakov and Diamondl15], who used a(superficially (1483

different method. In order to reconcile the various results, we
shall therefore review and reconsider the development of (—iw+3, R (X, T +2i{—iw+3, Reo}=1.

CM. We will identify a subtle conceptual error in that other- (148b
wise excellent paper. When corrected, their results agree ) . ) .
with those of Ref[15]. CM pointed out that under iterative solution of EG.48h

As did CM, consider the treatment of the usual Dysonthe Poisson-bracket term vanishes through first order, so
equations for second-order statistics in the presence of weak 1 .
inhomogeneity. In this section, we will use a caret to distin- ReoXT)= =i+ 2, (X.T), (149
guish abstract operators from their coordinate-dependent ke

Eorrect through first order in the inhomogeneity.
nels. Then in operator form the Dyson equations are 9 9 y

The spectral balance equation f@y(X,T) follows by
taking the real part of Eq1483 and integrating over atb’s.
The details are given in Rdf37]. In the Markovian approxi-
mation for which the fluctuation-dissipation ansatz is in-
&tlinI?Q: i (143h voked., one is led tp a generglization of Efj5) thqt includes '
weak inhomogeneity. We will discuss the nonlinear terms in

4 C+3E=FR, (1433

T _ _ that equation elsewhere; for present purposes, it is sufficient
HereX=iL +X" includes both linear physics and the non-to consider the explicitly linear terms. Upon approximating
linear coherent damping, and we have writtBninstead & _ .- . Lo _
of F" to take account of possible external forcing. Operatori n (;t||_ Oﬁnic:] ; es sg;r:jlggtf%rbs)lmgrlllglt)é;?;as %‘éﬁ? Ei‘ 4r8e§I
products are realized as space-time convolutionst43] P ' g
(AB)(1,1)=(A*B)(1,1')=[d1A(1,1)B(1,1’). The pro-
cedure is to find an approximate representation for the con- IrC(X, T)—{Q,C,}~0. (150
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Explicitly, vation leading to Eq(155. For an explicit example, con-
sider for arbitrary functiorf the expressiorf(x) V2C(x,x’)
0, Co= e 9Ck A ICk 1518 =(QC)(x,x’), for which
G =T X T X Tk (1513 = ),
Q(x,x")=—f(x)V28(x—x"). 156)
R 0 (a0, (X,x") (X)V5o( ) (156
=ax 1ok G 7 a1 ox G 519 one has
This operator is the usual left-hand side of the WKE and is Q(p|X)=—f(X+ %p)V§5(p) (1573
quoted ubiquitously in similar contexts.
Unfortunately,Eq. (150) is incorrect in generalThe dif- ~—[f(X)+ %p-Vf]Vf,cS(p), (157b

ficulty manifests itself when one attempts to construct the

conservation laws associated with the statistical dynamics bgr, upon Fourier transforming,

summing Eq.(150 over k with appropriate weights. Thus, 1 )

for pure HM or Rossby waves, equations for energy or en- Qu(X) = F(XOK2+ EVf' (1583

strophy evolution follow by multiplying E(150) by (&) or a(—ik)
of(W) and summing ovek. In so doing, one must not forget L
that because those weight factors depen# trey cannot be =fk?+3i{f k% (158h
cavalierly moved in and out of the Poisson bracket. For ex- .
ample, withow= 0-(kW) , =fk“+ik-Vf. (1580
{0, C={Qy, o0 W} (152  The contribution from thek-Vf term is absent from Eq.
(155.
- le{ﬂk W +1{Q, UQvl}Wk (152h A systematic way of incorporating all first-order effects is

to note that for the weakly inhomogeneous reduction of mul-

tiple convolutions the Poisson brackets between all pairs of

operators must be included. This can be proved directly, but

w0, Cd={0 Wit +H{ O InoIW,. (153 should be clear since otherwise the result will not respect the
_ appropriate symmetry. For example,

CM mistakenly omitted the underlined correction term in . an L

their derivations of both the energy and enstrophy balances ~ABC~ABC+3i({A,B}C+{A,C}B+{B,C}A),

for Rossby waves. However, whereas the second, wave- (159

number derivative term of Eq151b vanishes upon integra- . . . .

tion overk, the correction term does not. Thus, according to}[/.vhere ;Er;(e qt:ja)?tltlezop the ”ghﬁ'ha&rjd sgl_;e_ areS(_)rdlnary Lunc-

Eq. (150, the equation for, say, evolution of total enstrophy lons ork-an (and, in general, o ’ an ). ( ince suc

would be functions commute, the ones outside the P0|s:<;on brackets
can be placed either to the left or the rightvith Q=AB,

e, a0 Eq. (159 can be rewritten as
WX, T)+ = - > Ik Wk
K

or, as would appear in the equation W, ,

QE~0C+1i({0,C}+{ABIC). (160)

=enstrophy-nonconserving term. (154

For situations in which enstrophy is, in fact, conservaslin Whenzapphed to t_he above e_xamp(le56) with A=1, B
the HM interaction between disparate scales studied below ™ — v+ the underlined correction terfi,B}C reproduces
Eq. (154 is evidently in error. That CM nevertheless ob- (€ contribution from the last term of E¢L580.

tained reasonable energy and enstrophy conservation laws in

the face of an identifiable algebraic error is a symptom that B. Wave kinetic equations for pure and generalized
their underlying WKE(150) is also incorrect. Hasegawa-Mima dynamics

the derivation of the weakly inhomogeneous convolution Eqproblem of the interactions of disparate scales in HM dynam-

(146), rewritten here for the applicatio&—@, B—C: ics. To derive an approximate dynamical equation valid to
lowest nontrivial order in the long-wavelength gradients, we
at~ac+ 1i{Q,c}. (155  neglect in Eq(1003 the second terniit does not contribute

to the WKB), the third term(short-wavelength renormaliza-

Consider the case whef is itself the product of two op- tion effects, and 'ghe fourth ternfof higher o_rder in the long-

- N - - wavelength gradientsFor pure HM dynamics, we thus con-
eratorsA and B: A=AB. If A andB do not commute, sider the dynamical equation
[A,B]=AB—BA+0, then the Fourier transform of the ker- A
nel of the product operatof) ,(X,T), contains terms of O +iQe=0, (161
first order as well as of zeroth order in the gradients; the
first-order contributions are incorrectly neglected in the deri-where
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iQ=[(1-V) 1[V(xt)-V][-V?], (162

o=¢, VEVE, andV-V=0. Nowiﬁ can be considered

to be the product of the three operators delimited by thel-

brackets in Eq(162). (Strictly speakingV andV are sepa-
rate operators, but since they commute becausms zero
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aTWk_{Qk ,Wk}: 0. (170@

This last enstrophy-conserving equation agrees with a result
of Smolyakov and Diamond15] for pure HM dynamics.
hose authors derived their formulas by working with a Fou-
rier representation of th¥ dependence; the presextspace
method is arguably cleaner and easier to apply in general

divergence, there is no need to consider them indepersituations.

dently) ThusQ=ABC, where

A=(1-V) 1 (1+k) L, (1633
B=—iV-V—k-V(X,T), (163b
C=—-V2-Kk2 (1639

Upon temporarily writing the correlation function Bsrather
thanC, one has

QD~QD+2i{Q,D}+i({A,B}C+{A,CIB+A{B,C})D,

(164

where the zeroth-order frequency is

QX T)=k-V(X, T)K2/(1+k?). (165)

Now {A,C}=0 [in general{f(E),g(E)} =0, wheref andg
are arbitrary functions of an operatgr here bothA andC
are functions ofk?]; however, the Poisson bracketd, B}
and{B,C} contribute corrections becaustedepends orX.
Thus

{A,B}cz—%(sz V(k-V)k® (1663
=2k-VQ,/(1+k?) (166h

[Eq. (165 was used to rewrite the final respénd
A{B,C}:( : )WkV)- M 167

1+k? K

=2k-VQ, /K> (167h

The coefficients of Eq9.166b and(167h add as

1 1 1+2k* 1 4

noyw, (168

+_:—:__
1+k? k¥ k&(1+k?) 2k ok

so the total correction to the basic wave kinetic Poissorb

bracket{Q},D} can easily be found to be

{Q,Inoyw}D=—{Q,04,"}W. (169

The same technique applies to the generalized HM prob-
lem. According to Eq(14), the basic advection equation for
the k) #0 potential is

oo+ (1-V) V. V[(1-V?)p]=0. (171
The basic frequency is therefor&5]
QX T)=k-V. (172

The operatorsA and B are as before, but no&=1-V?
=A"". One finds

2k-VQ,

{(A,BJC=A[B,C}= rEas

(173

the total correctio(},In o7}D, and theZ-conserving WKE

I1Z— Q. 2y} =0. (174

Again, this agrees with a result of R¢i.5].

C. Physical interpretation of energy nonconservation:
The significance ofy("

Although the appropriate invariant is conserved under the
modulational interaction, energy is not; we illustrate for pure
HM dynamics. Thus, upon multiplying E¢1703 by o(®,
one has

rE— k2 Qy KPE} =0 (179
or
IrE=10 Ed + 29VE, , (176
where
Y= Ink? =k- VO, /K2, 177

[The (1) superscript reminds one th,eﬁ‘) is linearly propor-

tional toV.] Although the first term on the right-hand side of
Eq.(176) is now in conservation form, thel*) term does not
onserve energy.

A physical interpretation ofy{") follows by considering
the ray equation for wave numbkrin a weakly inhomoge-
neous medium governed by frequer@y(X):

This exactly cancels the enstrophy-nonconserving term ob-

tained in Eqs(152b—(154), leading one to the final WKE
IrCi— o { Qi Wi =0 (1703

[compare Eq(150)] or the trivially related one

dk/dt=—-VQ,. (178
Then

d(k?)/dt=—2k-VQ,=—2yVk2 (179
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FIG. 7. lllustration of the
mechanism underlyingy(" and
the ray equatiori178). On the left
is plotted cofkx—Q(x)t] for
Q(x)=x att=0 (solid line) and
t=0.6 (dashed ling the effective
wave number decreases &dn-
creases. On the right is the result
of a Gaussian wave-number su-
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¥ thus describes the logarithmic rate of wave-number evo-  D- Justification of the heuristic energy algorithm for ¥q

lution due to the inhomogeneity induced by the long- These considerations provide the justification for the heu-
wavelength modulation. This same result follows by considristic energy algorithm described in Sec. Il. Formyi9)

ering the potential follows from Eq.(137). A virtue of the formal derivation is
that the nonlinear mode-mode interaction time is handled
®(X,1) = pocog K- x—Q(X)t] (180  systematically; cf. the presence Rf in Eq. (137). For heu-

ristic manipulations, one may introduce that by hand. For
and calculating the mean-square gradient averaged over tlexample, for the contribution of one long-wavelength Fou-
initial wavelength. Since Vo=—(k—tVQ)¢, sink-x  rier componeng to the enstrophy evolution, EL70b gen-
—Q,t), one finds that through first order in the gradient  eralizes to

K=V p|% p?=—2k- VO, (181 Wit (B _iq) " Wie={ Qi Wi, (185

which reproduces Eq179). The effect is illustrated in Fig. Where we now recognize that thé=V¢ in Eq. (169 is
7. Note that it exists fok-independenfl, i.e., for vanishing ~ created by the random long-wavelength potential, so we

group ve[ocity. _ ) write (), instead of(), . (We specifically do not ir_lcludélli”
Now since enstrophyVis conserved anW=k“Ey, one in view of the discussion in Sec. Ill C of thggy, term)
has heuristically The evolution of the short-wavelength energy(summed
_ _ _ over largek and integrated oveK) can be obtained most
W, =0=(k?)E,+ (k?)Ey, (182  conveniently from Eq(176):
or IrE=22, YUE (186
k
E=2yE,. (183

although exactly the same result could be obtained from Eq.
(1700 by dividing byk?, then integrating by parts under the
k sum(as was done in Sec.)llIf one notes thaf) is of first

order ing=, it is clear that the second-order variation of Eq.
(186) obeys

More formally, this last result is to be understood in the
sense of the integration of E¢L76) overk andX:

aTE=22k YYE,. (184)
91E=22 (K-VQieq/kD)* Eq (1873
We must emphasize that the physics content of this dis- :

cussion is entirely compatible with the one given by Kraich- 1
nan[5] in his interpretation of negative eddy viscosity in 2D. _ A A
In pz[ir%icular, KraiEhnan recognizged the imgortance )(/)f wave- _2§k: E(k' Vo)™ Wiia- (1879
number evolution, although he studied a particular example.
Our modest contribution is to give a more general discussioiSince Egs.(176) and (170b are equivalent, one may use
that shows how that effect arises in the general context ogjther to calculate the first-order variatiofsor W; it is most
WKE's. Also note that if the calculations of this section are convenient to use E(170b. The associated algebra was
repeated for generalized HM dynamics the only changes arfgerformed in Sec. II; the only difference is that, whereas
to replacek? by k? andW by Z. there we heuristically asserted that one should integrate the
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time-dependent enstrophy equati®8) over the mode-mode Upon calculating the resulting,, one is led to the second,
interaction time ea,k,—w more systematically one should drag term in Eq(66). [Note that the potentials that contrib-

solve Eq.(185) in steady state. ute in mean square to EL92) are those of themallscales]
It can be shown that the diffusion and drag terms also follow
E. Fokker-Planck interpretation of the short-scale spectral from detailed statistical analysis of the random WKE @y
evolution It was already noted in Reff2] that a “quasilinear” analysis

) of that equation led to the wave-number diffusion effect. The
Both the conservation o under long-wavelength ad- present calculations extend that analysis to include the
vection as well as the form of E(66) suggest that a Fokker- roper mode-mode interaction time and the drag effect; they

Planck description of the largewave packets is appropri- highlight the roles of the random ray equatid89h and the
ate, withQ, playing the role of a probability density function first-order distension rafg("
k .

for k. The general form of a Fokker-Planck equation is A useful analogy is to the classical plasma collision op-

9Qy 9 E eratorsCsy for electron-ion and ion-electron scatterir@e

T ﬁ-(Vka)-i‘ K ﬁ:(Dka)' (188 andC,, are not individually energy conserving, but do con-
serve kinetic energy when summed over species. Our expan-
sion parametee=q/k is analogous to the small parameter
me/m; in the classical problem, with smails being analo-

Vi=limar ege (AKY/AT gous to light electrons and larges being analogous to

heavy ions. In classical kinetic theorg,, obeys a Fokker-

and Dy =limy1_ - (AkAK)/2AT, Ak being the increment Planck e_quation ju_st as do€x in the present problem. The
of the random Lagrangian wave number in a short tikfe Dy term in Eq.(66) is analogous to velocity-space diffusion;
The quotes in the notatioAT—“0" mean that AT must thel term is analogous to polarization drag. Interactions of

remain larger than the appropriate autocorrelation timeComparable scale, which we do not study in this paper, are
which in this case i}, . Now in the presence of the analogous t€.. andC;; . Some more detailed discussion of

such analogies, including the relationship of incoherent noise
to polarization drag, was given in Rg#4].

where

slowly varying advection frequencfyk one has the ray equa-

tions (Hamiltonian in form, withﬁi< playing the role ofH)

_ F. A heuristic algorithm based on first-order flux
dxX 90, -

_ Tk (1893 Finally, we shall describe a heuristic algorithm based on
dT ok grk> first-order variation of the flux. Because there are some
subtle points, it is useful to first discuss some issues relating

dk ~ to particle transport in thedissipativeHM system, without
a7 V. (1890 worrying about the functional variation that must be taken to

obtain the ultimate answer for the nonlinegy. The gener-
alization to the nonlinear vorticity transport that determines
¥q Will then be straightforward.

Consider the HM system in the presence of nonadiabatic
electron response. For convenience, we repeat that here:

Becausd), is random and has zero meahdoes not vary to
zeroth order, so correct to first order one has

T+AT ~
Ak®= —J dT'VQ(X,T"). (190
T k Hn®+V, dy@+Ve-VnC=0, (1933

Upon averagingAk WAk overX as well as the statistics of NS nPol=n = (1-i3)e (193b

Eq, one readily finds thab, is given by Eq.(673. Upon L © ’

working out the second-order COI’]tI‘ibutiOI’l(tAk) from the where nipdtvzgo and all variables represent fluctuations.
first-order correction toX due to wave-packet propagation [We are not concerned here with the nonadiabatic response
described by EQ.(1893, one finds a contributiomMV, kj=0 modes, so we merely weita 1 rather thad on the

=d,- Dy, which when subtracted from the last term of Eq. right-hand side of Eq(193b.] In Eq. (193b 5 is a time-

(188 converts it to standard diffusion forfthe first term of independent operator in real space whose Fourier transform
Eq. (66)]; this is a well-known consequence of Hamiltonian . P P P

dynamics. Finally, we expand the total time derivative in Eq.IS 8>0. For smalla, the systen{193 supports a normal

(189b to nonlinear order, mode at frequency"=QI"+iyi"  whereQ!" is approxi-

mately given by Eq(7a) and
—=— 1V V, (192) M= 8 (1+K). (194

] o With the aid of Poisson’s equatiqd93b, one can easily
and find the second-order contribution(tbk) due to wave-  gho that the mean gyrocenter fluxes for either electrons or
packet advection to be ions are equal; that is, the gyrocenter transport is intrinsically

TEAT ambipolar on the average. We are interested i_n several dif-
(AK®) = _J dT’(Véﬂ(T’)Vk(”(T’)). (192  ferent ways of obtaining the formula for the unique fllix
T ' In method 1, we make a direct calculation Iof (and also
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use the GK Poisson constraint to show that=T".). In c dw
method 2, we calculatE; by first introducing the ion gyro- I :% j 77Ky IMxi(k,0)C(w). (200
center susceptibility, a technique employed in Rp4§] and
[2]. There are instructive subtleties in this latter approach. It is important to understand that formuf00) is not a

In general, one has decomposition into normal modes. Indeed, in linear theory

the imaginary part of the susceptibility contributes only at
G_ G
Id=(Vex(xOns(x.1)). (199 zero frequency: In)(iG(k,w) =7mw, 6(w). Thus

Almost invariably this function is taken to be independent of 1
fast space and time, so that Fourier representations can be l"iezz > Kyw, (K)Ci(w=0). (201
introduced. Thus K

A useful and physically significant alternative form of Eq.
IS=i2 k(nS ()i (1)) (1963  (201) follows by noting that for stationary correlation func-
K tions C(7), which depend only on time difference, an auto-
correlation time is conventionally defined byr,
i f”" do (%, 0%} (o) —C1fZd7C(r) = 1C(w=0)/C, whereC=C(r=0). Thus
v )27 sk¥Pk ' the Euleriank-dependent autocorrelation time is

(196b
TacykiCk(w=O)/2Ck, (202)
In Eq. (196D, w is real. The notatiodA B)(w) means the
Fourier transform with respect to of (A(t+ 7)B(t)). and formula(201) becomes
For the electron flux in method 1, one simply substitutes
one = (1—1i6y) ¢ into Eq. (1963, obtaining riG:Ek Ky[ @5 (K) Tack]Ci- (203
Ig= Ek ky 8 Cy(T), (197 (One can verify that this corresponds to a turbulent diffusion

coefficient with the standard random-walk scalirg
. 2

where in steady stat€,(T) would be independent of the (OVE) o) i i

slow timeT. The same result is obtained fBf if one sub- . Formulas(201) and (203 are not in obvyous agreement

stitutes Sn°= — nP°'+ sn,,, because the ion polarization with Eq. (197), but we have not yet determined the autocor-
relation time or equivalently the spectral intensitycst 0.

. _ 2 . . . .
dens[ty k®d¢y, is in phase with the potential and _does nOtTo do so, we examine the constraint imposed by Poisson’s
contribute on the average. Observe that nowhere in this Cal'quation(193tj'

culation did the ion gyrocenter dynamics or the properties of
the linear normal mode of the HM system enter. Of course, —vS(k 0)C —(1+K2—i8)C 204)
the fluctuation spectrum is not yet determined. But given that Xi (k@) Cil @) =( IC(®)- (204
spectrum, the electron flux obtains its value merely by virtuepon integrating the imaginary part of this equation over all

of the specified phase shift between electron density and pQ;'s a4 noting that (2) 1 _.dwC(w)=C,, one obtains
tential, and the ion flux realizes that same value by virtue of o ’

the constraint enforced by the GK Poisson equation. These 1

well-known results are true for arbitrarily large nonlinearity. 50k Cu(w=0)=—Cy. (209
Now consider method 2. Suppose one introduces the ion

gyrocenter susceptibility;’(k,») such that Thus the rigid constraint imposed by Poisson’s equation

G G fully determines the autocorrelation time:
i) =—=x7’ (K o) (o). (198
Tac,k: 5k/w* . (206)

Because(iG(k,w) is a causal response function, it is analytic
in the upper half of thes plane. The fully nonlinear suscep- This is exactly what is required in order to bring E¢803

tibility is very difficult to compute[19]. However, in linear ~and(197) into agreement. It also has an important physical
theory one readily finds interpretation. Recall that for a correlation function with fre-

quency() and weak damping;<() one has
_ p(w_*
w —  (9/Q<1).

Q%+92 02
(207)

where P denotes the principal value and the positive infini- . .
tesimal e ensures causalitylt is a common misconception With 7»— 7{1” andQ— Q" formula (207 reduces with the
that the drift-wave linear ion susceptibility is realn order  aid of Eq.(194) to the result(206).
to use this frequency-dependent function for flux calcula- Returning now to the interactions of disparate scales, one
tions, one must use the frequency-resolved fditB6bH. can use formul&203 to give an alternative heuristic deriva-
Thus tion of the long-wavelength growth rate by replacing

w
xE(kw)=—|—=

tiTw, 6(w),
(199

n 7

w+tie

o]
Tac™ Rejo dre 7 717=
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normal modes. For a spectrum with a single eigenmode at

o, [K2=Q'M by the advection frequenc® and using an : ,
w~{), a typical Lorentzian form would be

appropriate autocorrelation time. It is natural to builg

from y{V=9M[Q] and Q. For definiteness, we consider 1
~ ~ ~ Yk
pure HM dynamics. Thery(kl)lﬂzkv In Q/k?><1, which is Culw)= ;(_(w—ﬂ )2+ 12 27Cy, (213
I ~ k
the proper limit for the use of Eq207). Replacey by ", K
Q by Q, and the gradients bi. Then note that wherewr, must be determined. If the eigenmode is to be well

formed, one must have,/Q,<1. Then

07 =70 ik g k2=igk, /K2 (208
ack™— Yk o aKx Clw=0)

is independent ofp, so its functional variation vanishes. Tack™ 3¢, Q_i
Now Eq. (109 states that

(214

. According to Eq.(194), this will agree with the exact result
¥q= —(agtq?) tig- Ty, (209 (206 if one choosess =1y, (correct only in the limit of
. _ o _ small yi"/Q,).
where Iy describes the transport ebrticity k°, not ion This result might appear to be intuitively obvious. How-
gyrocenter density. From Poisson’s equation, one kfas  ever, so far the susceptibility calculations have invoked only
=(k?/k?)n?, so, for use in EQ(209), Eq. (2039 must be properties of linear theory, buinear theory cannot be in
corrected by the rati&?/k2: steady stateForms like Eq(213) are really appropriate only

in statistical steady state, in whid) the precise form of
. Cy(w) is not known, andii) v, is a measure of nonlinear
Crk.q- (210 decorrelation processes—not, intrinsically, linear growth.
Now the system(193 will not achieve steady state unless
ion damping is added to the dynamics. Assume that has been
done. The exact value of the steady-state flux is still Eq.

2

k2

lA—‘q: E]Zk ky(Pﬁ;ac,k)

Upon combining Eqs(208—(210), one obtains

o 2 (197). Let us enquire whether properties of the statistical
Yq= 2) 2 kykx(_2> (‘;k;q_ (211 steady state can be used to reconcile the vaIueEiGoand
agtqs/ k k FS. The general statistical balance equation can be written
as
The first-order variatiorf:k;q may be calculated from any of
Egs. (1703, (170b, or (176 in the standard waycf. Eq. E;k(a,)
(39)]; one again recovers E¢R2b). Clw)= > (215
This algorithm depends only on the nonlinear Dk, o)

(¢-dependentquantitiesy{™) and Q), as has been the case

discussion suggests how one might be misled into introdu .
. : ; I : D(k,w):
ing the properties dfinear modes into a heuristic algorithm,

sincey{)/Q is independent ob,. However, our systematic = de = do Cy)
7= 7k ) . G G _

derivations from renormalized field theory show that those f 5—xi (kuw)+Xe(k:w)]Ck(w)_f 27 D (k)

properties are irrelevant. Thus it is physically unjustifiable to ~ o (ko)

obtain the factor ok, in Eq. (211) from the relation

(216)
aD(k’“’)) — _(a_w) (aD(k'“’) (212 If the right-hand side were to vanish, the resulting constraint
X ak " k/l,\ dw K would reconcile the steady-state ion and electron fluxes. But

it does not vanishC,(w) both is a positive-definite form

(whereD is the linear dielectric functionas was suggested and, peing the Fourier transform of a two-sided covariance,
in Ref.[2]. The physics content of this formula is an assertedyas structure in both halves of the comptexplane. There-
balance between wave-packet propagation and linear normalye the nonlinear steady-state theory might appear to violate
Lnode energy growth. However, in fact the arises from  the known constraint of ambipolarity. However, this paradox
y(kl), the quite different physics content of which is the raycan be easily resolved: The susceptibilities, even in their
equation(189h. The origin of Eq.(212) is an incomplete fully nonlinear forms, are response functions that describe
energy-balance equation used in Rel5], as discussed in infinitesimal perturbations[19] away from steady state,
Sec. VII. whereas the density fluctuations that appear in the flux for-

We conclude this section with some further remarks aboutulas are the actual, finite-sized oniesthe steady state.
the frequency-resolved flux formuld96bh. We emphasize Density is not related to potential via a first-order infinitesi-
again that the calculations leading to Eg06) did not in-  mal response function. Therefore, it is inappropriate to use
voke normal modeéwhose properties are determined by theEq. (198 anywhere except for linear response. And then the
real part of the dielectric respons®ut suppose one insisted Poisson-equation constraint on the spectrum guarantees am-
that, in fact, the shape of the spectrismdetermined by the bipolarity.
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In the application of these ideas to the calculationygf Q) g

- i e = (1) OrE+ V| —=E | — — - (VOE) =27 E,.

one is not working with linear theory. Howevey,™’ de- ™k ok % ok Lo A Pl

scribes first-order response, which justifies the use of for- = “omimk QO
mula (203 with Eq. (208). *

(218

VII. DISCUSSION A partial correspondence between E(18 and Eq.(217)
can be obtained by identifyingyd"E,= — Q. The result of

specific example of Hasegawa-Mima dynamigscluding DK is missing f[hea/ak term[a consequence of inconsistent
the nonadiabatid =0 responsg systematic, unambiguous VKB assumptions about the. susceptibiligyk, ) and po-
derivations of the contributions to spectral-balance equation€ntial ¢(k,») in their Eq.(1); they mistakenly ignore&k
from the random interactions of fluctuations of disparated€Pendence ok, the first term in the second line of Eq.
scales. We focused on the long-wavelength growth ygte (145]. However, we have shown that, arises specifically
but also found expressions for the incoherent noise acting offo™ Precisely the terms that were neglected by DK. Thus,
the long wavelengths as well as the corresponding diffusioflPOn replacing the general frequerigyby the nonlinear one
and drag terms in the short-wavelength evolution. Energy i€), one finds that the first-order energy variation obeys
properly conserved between the long and short scales. The
general results are summarized by H§$)—(69). Somewhat - 2
.. : A < (9Ek ~ I?Sk an
more explicit formulas fory, are given by Eqs(22). &=V —— +V Qe — — —— -
Several(related systematic procedures were employed. Ik
In the first(Sec. Ill), we assumed the validity of the renor-
malized Markovian closure formula4d5) and (16) and ex- 9
panded them to lowest nontrivial order #=qg/k. In the
second(Sec. IV B), we explicitly performed the functional
variations that lead to the Markovian results. In the third ~
(Sec. V}, we derived a statistical Poynting theorem and usedrhe first, third, and fourth underlined terms vanish (at
the functional apparatus to verify that this led to equivalent=0; the second one vanishes because the perturbations are
results. made around a homogenous background. The remaining two
Heuristically, the statistical Poynting theorem shows thaterms combine to give
¥q is the negative of the variation of the time rate of change
of the short-wavelength enerdgy with respect to the long- . S 1 oW,
wavelength energy; this is a simple consequence of energy &=V Qe (E W)
conservation. More formallyy, is proportional to thesecond
functional variation of 9& with respect to the long-
wavelength potentiaf¢g). That y, is a second-order func-
tional Taylor coefficient shows that intrinsically nonlinear
random effects are involved; this is consistent with the ver
definition of y,. obeys at}=0
Previous authors have attempted to invoke the properties

The principal goal of this work was to provide, for the

0
3

VEA 29 VE+ 258, (219

; (220

the physics describes therave-numberevolution of the
weakly inhomogeneous wave packet, not wave-packet
>propagation. Similarly, the second-order energy variation

of linear normal modes and susceptibilities in interpreting af) P
the structure and content of formulas lik22). The authors etV | ke | - 2. Vfl Zy=2Mg (221
of Ref.[2] appear to have been motivated by the earlier work oK gk Kk (V&) =2¥ "6 (220

of Diamond and Kim(DK) [45] on poloidal flow generation

due to waves, where an attempt was made to derive a quadipon summing ovek and integrating oveK, one is led to

linear Poynting theorem for low-frequency linear normal Eqg. (184), in which only the dissipation term survives. The

modes. DK wrote their result in the form significance of these results is that E(®2) for y,, as well
as theDy term to whichy, is related, do not vanish even

whenflk;q does not depend dnat all (so the group velocity

I+ V- S+ Q=0 (217 vanisheg Thus calculations or interpretations ¢f, or Dy
that invoke a group velocity, such as the use of 242), are
_ _ . _ incorrect.
where E, is the wave energy densit§=(9Q"/Jk)E, is Let us now comment on an alternative way of writing Eq.

the linear energy flux, an@k is the diSSipation rate. They (22b) for Yq- Upon noting that for pure HM the group ve-

subsequently ignore@y , so found that flow generation was |ocity associated with the nonlinear advection obeys
driven by the propagation of wave packets at the linear group

velocity. It is instructive to compare that approach to the 2

, n A ~ d [ kk 2k,k
results of the present work. For any-independent fre- A V=0 = y = y_ (222
quency ), (linear or nonlineady, the rigorous energy conser- ' K\ 1+Kk?)  (1+k?)?

vation law for Hasegawa-Mima dynamics is E(L76),
which is explicitly one finds that Eq(22b) can be written as
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where (St,B(a)/k”)2 and o is to be evaluated at th@vell-

q4 A A A (9Wk .
Yo=—| —— > kyQ- VgrkOqk -k ——- (223  known) linear mode frequency
aqt?] & e ok
Iin:(l_é)w*(k) (226)
Although this form is mathematically correct for the present k 1+K2 -5

electrostatic model, we believe that it is misleading in sev-

eral ways and does not generalize to more complicated sitizjnite g thus introduces a frequency downshift, fundamen-

without electric field, one may be tempted to believe that theyresence of field-line bending. The advection frequency that
long-wavelength growth has something to do with linear noro|jows from Eq.(225) is

mal modes; note
~  k-VK3(1-6)

~ 22
K 1tk-s (227

~ d

k
e y
a9k

1+k?

: (224

This is larger than thé=0 electrostatic result studied earlier
in the paper, suggesting according to E2Rb) that finite 8
wherek, /(1+ k2) is the linear diamagnetic velocity for unit enhancesy, (for B<1). However, the very crude nature of
density scale length. However, we have seen that the truge approximations made in arriving at Eg§25) leads us to
physics involves nonlinear interactions having nothing to docaution that this result is extremely preliminary and that the
with linear eigenmodes. Second, the presence of a group Vetetails of Eq.(227) cannot be trusted. For present purposes,
locity may suggest that the physics arises from some sort afe merely use this estimate to illustrate the inequivalence of
balance between wave-packet propagation and fluctuatiormulas(223 and(22b) when Eq.(227) is used.

growth, as suggested in Refl45]. Although short- We return now to the electrostatic results. Our heuristic
wavelength wave packets can propagate in response to ggorithms employ only the nonlinear advection frequency
long-wavelength modulation, the analysis in Sec. VIAand the triad interaction time},, _,; no linear effects are in
shows that fory, the effect vanishes on the average; theeyidence (except through the trivial dependence @fon
residual energy loss from the large scales arises fn@ve- yi"). As we noted, the denominator & [formula (26), the

numberevolution, as described mathematically by EtB4) response function used in RE2] and subsequentfd1,3]
and explained in physical detail by Kraichnisi. Finally, if in

‘ X contains the linear group-velocity terqv'g',k, whereas no
for pure HM dynamics the group velocity should be calcu—Such term appears iﬁ;,k,—k- In the calculations of Ref2],

H H 21,2 2

Lﬁt;? fg:)r;e;g?allijzrgg f&eggﬂgrﬁgf gﬁ%ﬁlg k/)gl (Tall(cfj'late hat term arose from the heuristic use of a wave kinetic equa-
from the unit frequencyk, [cf. Eq. (172]; however ion that included linear effects but was not derived from first
- y ) ' ' } '’ principles. Now it might be asserted that in the approach of
q- dk(ky) =0, so clearly formulg223) does not hold in gen-  Ref. [2] a multiple-scale approach is used in which only the
eral. statistics of the short and rapid scales are averaged over
~ Thus it is unjustifiable to merely calculate a group veloc-yile the long-wavelength fluctuations evolve on an interme-
ity (either linear or nonlinearand somehow insert that into  giate time scale shorter than the autocorrelation tigeg for

formula (223. What matters is the nonlinear advection fre- the 4 flyctuations; if so, then one could reasonably expect the
quency, which depends on the form of the nonlinear modeg, jicit appearance afvgy, . However, in the fully statisti-
cpupllng c_oefﬂments; hote that Chang?s o the I|r_1ear disperza| formalism presented here, the spectral-balance equation
sion relation leave formula$22) invariant. Consider, for

| I X dificati he el for the short scales emerges only after averaging over the
example, electromagnetic modifications to the e ectrOStatI1:ong—wavelength statistics; that ¥, is a random variable in

HM system. Electromagnetic versions of the gyrokineticy, o :

. . e WKE. If that averaging is interpreted as a time average,
equation h?"e been discussed by Ha.mrall.[46] and Igrom- then it must be over times longer thag.,, so one is no
mhes and ;_<|r_n[47], f?mong othf(_erlsd. l\_Nlt}ﬂb=4;nTe_/B fl’ longer studying the intermediate time scale. If the averaging
the new finiteg effects are field-line bending in the GK s qtead interpreted in the more general ensemble sense, the

equation and an inductive component to the parallel elecm?atter objection does not necessarily apply, but averaging in a

field. As discussed in Ref47], it is most natural to intro- homogeneous ensemble removes certain terms in the mean

duce ? covariant de_scr|pt|on In terms .Of the tWO'V_e?torsquare and one is not free to calculate averages from nonsys-
(¢,A) . The resulting system describes both finite-

o i . tematically derived WKE’s. The equivalence between our
p-modified drift waves as well as shear Alfvavaves, but g ristic algorithms and the rigorous asymptotic results of
nonlinearly is somewhat complicated, being in matrix form.ggc 1| show(see discussion in Sec. li)Ghat the linear
E)Ocruginrg()lé%htheeszrrri]f?tvevé \(/)enebr;nni)g dgg‘r:]ee Z ;%%;?éawoondsegf}ﬁropagation must be ?xcluded at lowest order. Note that in

- . - [ in ;

cur for B>m,/m: . In that limit, a highly approximate gen- (I?(_ef. [48] the expl|_C|t_qvgnk _t(_erm was used in a central way to

ot . ) rive a parametric instability. While we have not fully ana-

eralization of the HM equationT;—0) is lyzed the physics of individual realizations on intermediate
time scales, the natural consequences of such an instability

(1—Vf—5)&tgo+i(1—5)v* dye would be to drive steady-state turbulence on long time

) scales. There is no hint of such a parametric drive in the
+Ve-V[-Vi+(0,/w)d]le=0, (229  gpectral-balance equations we have derived to dominant or-
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der in e. Of course, those equations are no longer valid fomamics represent a very simplified model; second, because it
€=0(1), butthen the entire calculation of, must be re- is not clear that the wave-number orderigk<1 is the
considered. physically relevant one. Recalling the discussion at the be-
Under very broad circumstanceg, is positive.(For iso-  ginning of Sec. | C, we stress that; and Eg"ise do not de-
tropic situations, it is sufficient, although not necessary, thascribe all of the contributions to the long-wavelength spectral
dQy/9k<0. More generally;y,>0 if 6y, _ is sensibly in-  balance. If they did, in the absence of linear dissipation
dependent ok; that is the case when the interactions are(y'(;”<0) no steady state could exist. Linear dissipation per-
dominated by large-scale random sheé#r.one speaks in- Mits a steady state, but one that may strongly depend on the
stead of eddy viscosity #,= — yq/qZ), then the small value of that dissipation. Hoyvever,_the effect of interactions
eddy viscosity(defined in the statistical sense of Kraichnan©f long-wavelength fluctuations with ones of comparable
[5]) is negative in those situations. Chechkinal. [7] have ~ Scales remains to be explorgthe physics is described by
recently attempted to calculate an eddy viscosity for RossbyEdS- (16)] and significant modifications to the calculations
and drift-wave turbulence. Although they find thag is MY be required for a complete toroidal treatmigt®. Con-
negative in some circumstances, for the case of 2D isotropiglderable further work must be done before these analytical

Navier-Stokes turbulence they find that it is always positive.mxetgﬁr‘fe:tzrl‘ drg;ke quantitative contact with simulation or
That is in disagreement with our results and the earlier one ot P '

Kraichnan, which we believe to be correct. In the Appendix Noted added in proofWith regard to the discussion of
N . ' PP wave kinetic equations in Se@/I A), Professor A. Kaufman
we pinpoint the source of the discrepancy.

In summary, our principal results are as follows for gen_has, in a private communication, called our attention to the
: ! . : literature on the Weyl calculus, which elegantly formalizes
eralized Hasegawa-Mima dynam_|cs. . . some of the manipulations beginning with EG45. A re-
(1) We performe.d a systematic calculation Qf the contn—vieW was given by S. W. McDonalfPhys. Rep158 337
butions to the nonlinear growth ratg, (whereq is not re- (1998]. The use of the Weyl symbdi (X) [the exact Fou-

stntitedbto dpuret zonal flpvvs;juke;](-) u;tg:actmns V:”;[h sh(lnrt rier transform of an operator kern8l(p|X) with respect to
scales by direct expansion af ot the general formula p] permits concise generalizations through all orders in the

(169 for renormalized damping that emerges from Secondinhomogeneitye [for example, the generalization of Eq.

order Markovian statistical closure. P : :
X . (146) is given by McDonald’s Eq(4.29]. However, the is-
(2) We also calculated the incoherent noise on the lon ue of incorporating all first-order corrections is not ad-

wavelengths and, mdepgndently, the effect_s on the .Shoaressecber seby the Weyl calculus. McDonald reviews the
scales of energy-conserving wave-number diffusiassoci- . jitional derivation of WKE's, in which a dissipativ@(e)
?Eﬁg eW'th 79 and drag(associated with the incoherent correction arises from the anti-Hermitian part of the dielec-
: . tric operator. In that language, the correction found in Eq.
(3.') We showed.how functlonal meth.ods can be used tct160) Ffilrises instead fromgthegHermitian part of the dielectri(j:
elucidate the .physu:al ongins of the various ‘e”T‘S- and is nondissipative. It must also be stressed that the usual
(4) We derived a statlsncally_ averaged Poynting theorerT}:ierivation leading to the linear-theory-based wave action as
[Eq. (.131)] that shows howy, is related to second-order the natural dependent variable rails for the intrinsically non-
variations of the short-wavelength energy with respect to tmﬁnear problems discuessed here, in which the appropriate

long-wavelength potentidEgs. (137) and(29)]. fi h Fsis dictat ’ £ th
(5) We derived the proper wave kinetic equations for en-ﬁgﬂﬁﬁ;\gﬁ;_]uan ity such dsis dictated by properties of the

ergy and enstrophy evolution, correcting conceptual and al-
gebraic errors in the classic derivation by Carnevale and
Martin [37] and bringing their results into agreement with ACKNOWLEDGMENTS

those of Smolyakov and Diamond5]. . . , . . . .
(6) We showed how WKE’s based on the nonlinear ad- We have enjoyed stimulating and informative discussions

: . with K. Hallatschek, G. Hammett, and W. Horton. This re-
vection frequency can b.e used to. derive the IO\’Ves’['ordeéearch was supported in part by the U.S. Department of En-
formula for y, by proceeding from either second-order ener-gray. Contract No. DE-AC02-76-CHO-3073, and in part by

getics or first-order flux. ._the Korea Research Foundation, Grant No. KRF-99-015-
(7) We stressed the key role of wave-number evolutionyp490.

and the first-order distension rajé® .

(8) We showed that the use of the interaction tiﬁggﬁ_k
rather than the response functigoontaining qv'g']?'k) em-
ployed in Ref.[2] and elsewhere is essential to provide a
consistent description of the lowest-order physics. Recently Chechkiret al. [7] generalized earlier work of

(9) We emphasized that, _, must be constructed from Montgomery and Hatoifi8] on the eddy viscosity of the 2D
renormalized damping rateyf that respect random Galilean Navier-Stokes equation to the Rossby-wave/Hasegawa-
invariance. Mima problem. Those authors calculated turbulent damping

(10) We pinpointed the source of the discrepancy in theof a mean field due to interactions with short scales whose
value of the eddy viscosity between our own work and thatstatistics ardixed (maintained against viscous dissipation by
of Refs.[8] and[7]. steady external forcing In the 2D NS limit, they found a

We did not attempt to work out the consequences of oupositiveeddy viscosityr,, whereas in broad circumstances
results for model drift-wave spectra—first, because HM dy-we, in agreement with Kraichnan, find tha{ is negative. It

APPENDIX: EDDY VISCOSITY FOR FIXED
SHORT-SCALE SPECTRUM



8538 JOHN A. KROMMES AND CHANG-BAE KIM PRE 62

is interesting to explore the reasons for this disagreement. (= dk dW(k)

Chechkinet al. did find a negative viscosity for the HM Vns— —f _— (A3a)
model in some situations, but their formulas are not in gen- 4 Jkmn2vk?  dk

eral agreement with ours, and the conceptual and algebraic

difficulties are best exposed by considering the NS limit. :_(Z> W(k) +Zf°° dk W(k) (A3b)
Although it is not necessary, we shall assume isotropy for 4\ 2,k? 4 Jkin k3 |
simplicity. Kmin

Let us rewrite Kraichnan's formula, our E€64), as The last term of Eq(A3b) is identical to Eq(A2). Thus the
result of Chechkiret al. (and that of Montgomery and Hatori
as wel) is missing the surface contribution that arises in

T (= dW(k) transforming Eq.(Al) by integration by parts. Indeed, the
ns(0] Kmin) = ZJ dkg;,k,ka (A1) value of that term is just the negative of Chechkin®. It
Kmin is interesting that Chechkiet al. wrote Eqg.(A2) without
explicit limits of integration.

We thus inquire into the origins of the surface term in our
where W(k)=k*(3¢?)(k) is the vorticity spectrum. One calculations. Upon referring to the algebra in Sec. Ill, one
finds thatvyg is unambiguously negative in two general situ- finds that the surface term is just the contribution from re-
ations. First, as discussed after E64), if the triad interac- gion D. Indeed, Eq(64) was put into its final form involving
tion time is independent d{, thenvys<O for any vorticity = dW/dk after an integration by parts with a surface correction
spectrumW(k) that vanishes dt=«~. Second, for arbitrary that was canceled by region D; see the discussions of Egs.
Ok —k» vns<O if W(K) is monotonically decreasing, as (57) and(85—(87). The methodology of Ref7] misses that
would be the case in the direct enstrophy cascpdd.  contribution. This appears to be related to the assumption
Chechkin et al, however, found for the special case of that the short-wavelength statistics do not respond to long-

white-noise short-wavelength forcirigheir Eq. (B11) with ~ Wavelength modulation. Thus, in formulas like EA13) of
[50] .= vk2, rewritten in terms ofV(k)] Chechkinet al,, only wave vectorg andk’ enter k andp in

our notation and are the negatives of each other for homo-
geneous short-wavelength statistics. Region D arises from
careful consideration of the triad relati@r p+q=0, so that
off T W(k) p# —k in the presence of the modulation.
VNST g f dk K3 (A2) Montgomery and Hatoii8] properly stressed that the as-

sumption of fixed short-wavelength spectrum can be true
only in an initial-value sense. Calculations made under that
assumption may therefore have some merit for assessing

wherev is the classical viscosity. Now the approach of Ref.transient effects. However, the energy-conserving calcula-
[7] was perturbanv_e and not renormalized, so only zerothtions presented in the present paper are appropriate for as-
order Green'’s functions appeared. To compare &) and  sessing steady or quasisteady states of turbulence in which

(A2), one should therefore replatb‘éyk,,ka 1/2vk?. Then all scales are interacting self-consistently.
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