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Interactions of disparate scales in drift-wave turbulence

John A. Krommes* and Chang-Bae Kim†

Princeton University, P.O. Box 451, Princeton, New Jersey 08543-0451
~Received 18 May 2000!

Renormalized statistical theory is used to calculate the interactions between short scales~wave vectork) and
long scales~wave vectorq!k) in the Hasegawa-Mima model of drift-wave turbulence~generalized to include
proper nonadiabatic response forki50 fluctuations!. The calculations include the zonal-flow growth rate as a
special case, but also describe long-wavelength fluctuations withq oriented at an arbitrary angle to the back-
ground gradient. The results are fully renormalized. They are subtly different from those of previous authors,
in both mathematical form and physical interpretation. A term arising in previous treatments that is related to
the propagation of short-scale wave packets is shown to be a higher-order effect that must consistently be
neglected to lowest order in a systematic expansion inq/k. Rigorous functional methods are used to show that
the long-wavelength growth rategq is related to second-order functional variations of the short-wavelength
energy and to derive a heuristic algorithm. The principal results are recovered from simple estimates involving

the first-order wave-number distension rateg̃k
(1)8k•“Ṽk /k2, where Ṽk is a nonlinear random advection

frequency. Fokker-Planck analysis involvingg̃k
(1) is used to heuristically recover the evolution equation for the

small scales, and a random-walk flux argument that relatesg̃k
(1) to an effective autocorrelation time is used to

give an independent calculation ofgq . Both the rigorous and heuristic derivations demonstrate that the results
do not depend on, and cannot be derived from, properties of linear normal modes; they are intrinsically
nonlinear. The importance of random-Galilean-invariant renormalization is stressed.

PACS number~s!: 52.35.Ra
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I. INTRODUCTION

It is widely believed that random zonal flows play a
important role in determining the steady state and trans
levels of drift-wave and Rossby-wave turbulence. In a s
geometry with profile gradients in thex direction and mag-
netic field in thez direction, zonal flows are defined to be th
y-directedE3B velocities that result from electrostatic po
tentials with wave numbers (qx ,qy ,qz)5(qx,0,0). Such
flows can be driven by nonlinear mode coupling, e.g.,

~qx,0,0!5~kx ,ky ,kz!1~2kx1qx ,2ky ,2kz!. ~1!

In the present paper we calculate the short-wavelen
driven contribution to the long-wavelength nonlinear grow
rategq of zonal flows and other long-wavelength fluctuatio
by proceeding systematically from well-established theo
of statistical dynamics applied to a generalization of
Hasegawa-Mima~HM! paradigm of nonlinear drift waves
~It is well known that the HM system is homologous
simple models of Rossby waves@1#, so our results are appli
cable to certain problems in geostrophic physics as we!
When specialized to zonal flows, some of our formulas
quite similar in form to ones proposed heuristically in R
@2#. They are not identical, however, and the differences
both conceptually interesting and quantitatively significa
Without an underlying systematic derivation, it would be d
ficult on purely heuristic or dimensional grounds to argue
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one form over the other. Therefore, we present our calc
tions in considerable detail and from several different rout
We also derive from first principles several heuristic alg
rithms for gq whose interpretations differ in fundament
physical ways from earlier suggestions in the literature.

Let q be a characteristic wave vector of the long sca
~such as zonal flows!; similarly, let k be a typical wave vec-
tor of the short scales~frequently associated with drift-wav
turbulence!. In general, the scales of zonal flows may
comparable to drift-wave scales (qx;kx), and such fluctua-
tions have been observed in computer simulations@3,4#.
However, the assumption of disparate scales (q!k) is a use-
ful device that enables analytical progress.~Some workers
have also attempted to argue that the long wavelengths
be more effective in regulating the saturation of the sh
scales in some situations, but this assertion is controve
and does not motivate the present work.! Then the key or-
dering parameter ise8q/k!1 ~where8 denotes definition!.
It is important to note thate does not depend on the dynam
cal properties of the fluctuations. Of course, those proper
must enter any calculation, since they are contained in
primitive amplitude equations whose statistics are stud
but it is the small-q assumption that enables one to simpli
the general formulas. Therefore, one need not focus on z
flows per se. The formulas we obtain are also applicable
the generation of random streamers@q5(0,qy,0)# as well
as to other long-wavelength fluctuations with arbitra
~small! q.

The interactions of disparate scales have a long histor
statistical turbulence theory. In fundamental work, Kraic
nan@5# gave an exact definition of eddy viscosity for hom
geneous, isotropic Navier-Stokes~NS! turbulence, and he
discussed its properties for two- and three-dimensional

g
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PRE 62 8509INTERACTIONS OF DISPARATE SCALES IN DRIFT- . . .
bulence. His eddy viscosityn(qukm) describes, in a statistica
sense, the effective turbulent damping of resolved mo
with wave numberq due to interactions with unresolve
modes having wave numbersk>km. Given a statistical clo-
sure such as the test-field model~TFM! @6#, an exact formula
can be given forn. Kraichnan found an appealing approx
mate result@our Eq.~64! below# by expanding in powers o
q/km!1. His results for two-dimensional~2D! isotropic tur-
bulence are particularly relevant in the context of dr
waves. Indeed, some of the algebra described in the pre
paper is essentially merely an extension of Kraichnan’s
culations to anisotropic quasi-2D turbulence. However,
also give alternative calculational procedures and phys
interpretations that should be of interest in the contexts
both NS and plasma turbulence, and we attempt to clari
number of confusions in the literature.

For 2D isotropic NS turbulence, Kraichnan showed th
the eddy viscosity is negative under quite broad circu
stances; we show that this same conclusion holds for an
tropic HM dynamics as well. Recently Chechkinet al. @7#
attempted to calculate eddy viscosity for Rossby- and d
wave turbulence, generalizing earlier work of Montgome
and Hatori@8# on 2D NS flows. The results of those autho
disagree with that of Kraichnan; they found a positive ed
viscosity in the 2D NS limit. Our present work confirm
Kraichnan’s result. We explain the source of the discrepa
in the Appendix.

We shall consider the statistical interactions between l
and short scales for the specific model of HM dynamics, w
an appropriately modified Poisson equation forki50 Fourier
components.~Hereki is the component ofk in the direction
of the magnetic fieldB.! By direct expansion ine of well-
known general formulas for Markovian statistical closu
we obtain formulas for the nonlinear growth rategq of the
long-wavelength modes, the nonlinear noise acting on th
modes, and the corresponding energy-conserving terms
the evolution of the short-wavelength fluctuations. Spec
results for zonal flows can be trivially extracted as a spe
case. Our formulas are fully renormalized, apply uniform
to regimes of both weak and strong turbulence, and red
properly to Kraichnan’s result for 2D isotropic NS turb
lence. We provide two versions of the direct calculatio
one appropriate for isotropic statistics; the other valid
arbitrary anisotropy. As a nontrivial cross-check, we ver
that the anisotropic results reduce correctly to the isotro
ones.

Although the direct reduction of the general Markovi
formulas is relatively concise and the final forms of the
sults are suggestive, the algebraic details are not particu
physically illuminating. Accordingly, we derive from firs
principles several heuristic algorithms and demonstrate
they recover the correctgq to lowest order ine. Our work in
this direction was strongly influenced by the earlier work
Diamondet al. @2#, who for the special case of pure zon
flows made a well-motivated attempt to obtain a simple h
ristic algorithm for gq by combining the use of a certai
‘‘quasilinear’’ Poynting theorem with an action-conservati
principle. That algorithm~which was not derived from firs
principles! suggests that the results depend upon, and ca
calculated from, the properties of the short-wavelength lin
normal modes, i.e., the conventional electrostatic d
s
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waves. In fact, however, the proper results have virtua
nothing to do with short-wavelength linear theory; they a
intrinsic properties of the nonlinear mode coupling. Thu
long-wavelength fluctuations have a nonzero nonlin
growth rate even in the complete absence of linear waves
Kraichnan’s results for 2D NS turbulence, the linear theo
of which consists merely of weak viscous dissipation. In
beautiful and detailed physical explanation of his resu
Kraichnan emphasized the importance of enstrophy con
vation during the nonlinear interactions. The authors of R
@2# also focused on conservation properties~they did not cite
Kraichnan’s work!. However, whereas they attempted to i
voke a quasilinear wave-energy theorem, we will show t
the proper derivation ofgq from energetics requires use of
nonlinearenergy-balance theorem. That is not a trivial mo
fication of the quasilinear one to include small nonlinear c
rections; it is a different version of the theorem that descri
the intrinsically nonlinear interactions between dispara
scale fluctuations and has nothing to do with linear theo
Indeed, one finds thatgq arises fromsecond-ordervariations
of the short-wavelength energy, consistent with nonlinear
teractions in a random medium, and this observation m
vates a heuristic algorithm that makes it clear that one m
work with nonlinear fluctuations that are unrelated to line
normal modes. When applied to the 2D NS equation,
results are entirely compatible with Kraichnan’s analysis,
are obtained from a somewhat more general point of vie

A key quantity that emerges from the analysis is the fir

order wave-number distension rateg̃k
(1)8k•“Ṽk /k2, where

Ṽk is an appropriate nonlinear advection frequency. This
scribes the evolution of the characteristic wave number
short-scale wave packets under a long-wavelength ran
modulation,d ln k2/dt522g̃k

(1) , which is responsible for the
transfer of energy between short and long scales. We s
that gq can be naturally written in terms ofg̃k

(1) , and also
that a heuristic Fokker-Planck analysis recovers the syst
atically derived spectral evolution equation for the sm
scales. The significance ofg̃k

(1) has not been previously rec
ognized in the literature on zonal flows to our knowledge

A. The Hasegawa-Mima model of nonlinear drift-wave
dynamics

Hasegawa-Mima dynamics are a useful paradigm for
nonlinear interaction of drift waves. They emerge as a sim
limit of the nonlinear gyrokinetic~GK! equation@9# in which
the ion temperature and parallel motion are taken to van
the resulting GK continuity equation for ion gyrocenter de
sity fluctuationni

G ~normalized to background densityNi) is

] tni
G1VE•“Ni1VE•“ni

G50, ~2!

where in appropriately dimensionless units~cf. Ref. @10#! the
E3B velocity is VE8 ẑ3“w, w being the electrostatic po
tential. The system is closed by the GK Poisson equation@9#

¹'
2 w52~ni

G2ne
G!, ~3!

an expression of the quasineutrality conditionni5ne ~the
latter quantities are the particle, not gyrocenter, densiti!.
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The left-hand side of Eq.~3! describes the ion polarizatio
charge density; the electron polarization is negligible,
ne

G'ne . For kiÞ0 fluctuations the electrons are assumed
be adiabatic,ne5w, and one obtains the convention
Ti→0 limit of the gyrokinetic Poisson equation,

~12¹'
2 !w5ni

G . ~4!

However, forki50 fluctuations~a special case being zon
flows! electron parallel response is inhibited and a stand
justifiable approximation@11,12# is to drop the 1 from Eq.
~4!. The resulting dynamical system, a generalization of
familiar equation of Hasegawa and Mima@13#, can be writ-
ten as

] tw1~ â2¹'
2 !21V* ]yw1~ â2¹'

2 !21VE•“@~ â2¹'
2 !w#

50 ~5!

~whereâ vanishes forki50 and is the identity operator oth
erwise, and where the diamagnetic velocity is defined
V* 8Ln

2182]x ln N) or, upon Fourier analysis in space~as-
suming constantV* ), in the standard form

] twk1 iVk
linwk5

1

2 (
D

M k,p,qwp* wq* , ~6!

where

Vk
lin8

v* ~k!

ak1k2
, ~7a!

M k,p,q8
~ ẑ•p3q!@~aq1q2!2~ap1p2!#

ak1k2
, ~7b!

ak8H 1 ~kiÞ0!

0 ~ki50!,
~7c!

v* (k)8kyV* , k[uk'u, and(D[(D(k;p,q) denotes the sum
over all p andq such thatk1p1q50. For the later algebra
it will be useful to adopt the shorthand notationk̄28ak
1k2; thus

M k,p,q5~ ẑ•p3q!~ q̄22 p̄2!/ k̄2. ~8!

This defines what we callgeneralized HM dynamics. In the
original HM approximation, alla ’s were set to 1, giving rise
to the HM mode-coupling coefficient

M k,p,q
HM 8

~ ẑ•p3q!~q22p2!

11k2
. ~9!

This defines what we callpure HM dynamics. For 2D NS
turbulence, alla ’s vanish.

For generalized HM dynamics, we define the two weig
factorssk

(E) andsk
(Z) according to

S sk
(E)

sk
(Z) D 8

1

2 S 1

k̄2D k̄2. ~10!
o
o

d,

e

y

t

One then has the detailed conservation properties

sk
(Q)M k,p,q1c.p.50 ~Q5E or Z!, ~11!

where c.p. denotes the cyclic permutationsk→p→q. These
guarantee that the nonlinear term of Eq.~6! conserves both
the primitive energyẼ and the generalized enstrophy@14# Z̃,
where

S Ẽ

Z̃
D 5(

k
S Ẽk

Z̃k
D , ~12a!

S Ẽk

Z̃k
D 8S sk

(E)

sk
(Z) D udwku2. ~12b!

Here the tilde denotes a random variable~or a property of a
particular realization of the turbulence!. For later discussions
of pure HM dynamics, we shall also define the potent
enstrophyW̃ such that

W̃k8sk
(W)udwku2, sk

(W)8 1
2 k2k̄ 25k2sk

(E) . ~13!

For kiÞ0 fluctuations, one hasZ̃5Ẽ1W̃; in pure HM dy-
namics,W̃ is conserved. Also note thatk̄2 is the ratio be-
tween generalized enstrophy and energy:Z̃k5 k̄2Ẽk .

Another way of describing the physical content of Eq.~5!

is to decomposew into a ki50 part w̄ and akiÞ0 part w̆:
w5w̄1w̆. Thus, â is a projection operator onto thekiÞ0
subspace:w̆5âw. Then

] tw1~ â2¹'
2 !21V* ]yw1~ â2¹'

2 !21VE•“~2¹'
2 w!

1~ â2¹'
2 !21V̄E•“w̆50. ~14!

For pure HM dynamics,â51 and the underlined correctio
term disappears. The importance of that term has been
ognized in Refs.@2# and @15#; it involves the so-calledE
3B nonlinearity as opposed to the so-called polarizatio
drift nonlinearity of HM. Its significance is that it destroy
the pure HMW̃ invariant, replacing it byZ̃.

We have specifically omitted linear dissipation and
growth in Eq.~6! so that one can focus on intrinsically non
linear effects and avoid being confused by possible lin
phase shifts, which turn out to be largely irrelevant@they
affect only the detailed form of the mode-mode interacti
time u, Eq. ~17!#. Actually we could omit the diamagneti
term proportional toV* as well. We retain it because it de
fines the conventional HM model, but it will also disappe
from the final answer. Frequently Eq.~4! is generalized to
include nonadiabatic electron response@ne5(12 i d̂)w#,
which introduces a linear growth rate due to inverse Land
damping, and Eq.~6! is supplemented by an artificially in
serted dissipation term; such models are variants of the
called Terry-Horton~TH! equation@16#. In the absence of
linear growth and damping, one does not obtain realis
states of forced, dissipative turbulence with the well-kno
dual cascades of energy and enstrophy@17#; the basic
dissipation-free HM equation will relax to thermal equilib
rium. However, with one possible exception to be noted
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the next paragraph, that distinction will not affect the form
our final answers either. Thus we study a minimal, intrin
cally nonlinear model.

Some general background on the physics of the HM
related equations is given in Ref.@18#. As is well known, the
most important difference between the TH equation and
HM equation is that in the latter the mode-coupling coe
cients are real whereas in the former they are complex
cause of the dissipative nonadiabatic response. The co
quence is that separateẼ andW̃ conservation is lost; only a
single hybrid invariantZ̃d @approximately equal to theZ̃ de-
fined by Eqs.~12!# survives. This affects certain long-tim
properties of the turbulence, and the asymptotic behavio
the TH system in the limit of smalld̂ is peculiar. However,
we do not believe that our results are affected by ignorin
small dissipatived̂. ~We retain strongly nonadiabatic re
sponse for theki50 modes.! In any event, the generalize
HM model enables us to demonstrate the techniques for
culating the interactions of disparate scales with a minim
of complications; it is a definite and interesting dynamic
system in its own right.

B. Markovian statistical closures

Now consider the statistical description of Eq.~6!. ~Some
background on statistical closures can be found in Refs.@19–
21#, each of which contains many further references.! Since
V* is assumed to be a constant independent of space,
may assume periodic boundary conditions and appropr
initial statistics such that there is no mean field:^w&50. The
statistical description of Eq.~6! then reduces to a theory o
the fluctuationdw8w2^w& with spatially homogeneous sta
tistics. ~It is necessary to emphasize this point because l
we will consider particular kinds of perturbations away fro
the homogeneous state.! With that assumption, the gener
form of a Markovian spectral balance equation@20# for a
single scalar fieldw evolving under quadratic nonlinearity i

] tCk12 RehkCk52Fk
nl , ~15!

whereCk8^udwku2&, hk8 ivk
lin1hk

nl is a coherent~generally
complex! damping@vk

lin8Vk
lin1 igk

lin contains the linear fre-
quency and growth rate, the latter being absent from Eq.~6!#,
andFk

nl is the covariance of an internally produced incoh
ent noise. Realizable Langevin representations underly
Eq. ~15! were discussed in Refs.@22#, @23#, and@20#; see also
the related discussion in Ref.@24#. In the eddy-damped qua
sinormal Markovian closure@25# and the steady-state limit o
the realizable Markovian closure@20#, one obtains

hk
nl82(

D
M k,p,qMp,q,k* uk,p,q* Cq , ~16a!

Fk
nl8

1

2 (
D

uM k,p,qu2 Reuk,p,qCpCq , ~16b!

whereuk,p,q is the triad interaction time~assumed here to b
a symmetrical function of its arguments! described in the
next paragraph. It is readily shown that the forms~16! pre-
serve the same quadratic invariantsE8^Ẽ& and Z8^Z̃& as
f
-

d

e
-
e-
se-

of

a

l-

l

ne
te

er

-
g

do the primitive amplitude equations, by virtue of the d
tailed conservation properties~11!.

In steady state, one has

uk,p,q5~hk
S1hp

S1hq
S!21, ~17!

wherehk
S is a modified version ofhk , as discussed in the

next paragraph.~S stands for solenoidal; for the closure
cited so far,hk

S5hk .) The general form of Eq.~17! is intu-
itively plausible in view of the primitive triadic couplings
stemming from Fourier analysis of the quadratic nonline
ity. More formally,u is defined in terms of a mean respon
function Rk

S(t;t8) that describes the averaged dynamical
sponse of modek at time t due to an infinitesimal perturba
tion at timet8:

uk,p,q~ t !5E
2`

t

dt8Rk
S~ t;t8!Rp

S~ t;t8!Rq
S~ t;t8!. ~18!

Since

] tRk
S~ t;t8!1hk

SRk
S5d~ t2t8!, ~19!

one is led in steady state directly to Eq.~17!. It is worth
noting that the Markovian theories build in the fluctuatio
dissipation ansatz, which in steady state reads@26,27#

Ck~t!5Rk~t!Ck~0! ~t.0!. ~20!

Some subtle issues relating to the form of that ansatz
transient evolution were discussed in Ref.@20#; however,
they will not play a role in the present calculations, whi
can be taken to be in steady state.

In the previous equations, the solenoidal qualificati
arises because of an important physics issue relating to
derivation of Eq.~17!. The cited closures are close relativ
of Kraichnan’s direct-interaction approximation~DIA ! @28#,
so they inherit the problems of that approximation with ra
dom Galilean invariance@29#. This is not an issue when th
interacting scales are of comparable size; however, it is
great importance when interactions between disparate sc
are considered, as in the present work. As Kraichnan
emphasized in the derivation of his test-field model@6#, the
random advection of small-scale eddies by large-scale o
is dominated by the mean-squareshear in the large scales
not the large-scale energy. A consequence is that in the d
vations of the effective interaction time for the spectral b
ance equation thehnl’ s must be calculated with mode
coupling coefficients modified at small wave numbe
Kraichnan accomplished that heuristically by tying the d
correlation effects to the behavior of the solenoidal part o
test field advected by the turbulence. Bowman and Kromm
@30# discussed the issue in a context similar to the pres
one in the course of deriving a test-field model that remain
realizable in the presence of linear waves.

In the present paper, we are concerned with the struct
forms and physical interpretations ofgq and related quanti-
ties, not with quantitative calculations. Accordingly, w
write all of the results in terms of a givenuk,p,q whose prop-
erties are qualitatively well understood@5#, so we do not
need to face the issue of constructing appropriately rand
Galilean-invarianthnl’s. For practical application of the for
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mulas, however, one must be very careful to use in Eq.~17!
the appropriatehk

S , which is obtained from a formula differ
ent from Eq.~16a!.

C. Overview of results and comparison to previous work

In general, the mean long-wavelength energyEq evolves
according to

] tEq52~gq
lin1gq

nl!Eq1Ėq
inc , ~21!

where Ėq
inc.0. @gq

nl52Rehk
nl ; cf. Eq. ~15!.# gq

nl is called
the coherent nonlinear response or the nonlinear growth
Ėq

inc is called the incoherent response or noise.~For general
discussion of coherent and incoherent responses, see
@19#.! In this paper we study the contributions togq

nl andĖq
inc

due to interactions with largek’s; we call those contributions
gq andĖq

noise. We will show@Eq. ~69a! below# that correct to
lowest order ine one has, with“→ iq,

gq522S 1

aq1q2D (
k large

1

k4
~k•“V̂k;q!* uq,k,2k

r
“V̂k;q•

]Qk

]k
~22a!

522S q2

aq1q2D q2 (
k large

S kx

k4D V̂k
2uq,k,2k

r q̂•
]Qk

]k
,

~22b!

whereu r[Reu,

Q8H W ~qiÞ0!

Z ~qi50!,
~23!

and
he
-
ca
e

m

te;

ef.

V̂k8S k2

ak1k2D ky5S k2

k̄2D ky , ~24a!

V̂k;q8 iqV̂k . ~24b!

In all formulas describinggq and related nonlinear quant
ties, thex direction is to be interpreted as being parallel toq,
not to a background profile gradient. Thuskx5k cosb̂ and
ky5k sinb̂, whereb̂ is the angle betweenq andk ~see Fig.

1!, so V̂k implicitly depends on the direction ofq. V̂k is an
effectiveE3B advection frequency based on a unit elect
field in the 2q direction. Thus, according to Eq.~5!, if
VE8E3 ẑ were constant and ifE5Eq̂, then the frequency
associated with vorticity advection would beVnl52 ẑ•E

3k k2/(ak1k2)52EV̂k . @Note that the caret has been us
in four different ways in the above formulas: as an opera
(â); as a unit vector (q̂); as an object from which linea
dependence onw or E has been removed by functional di

ferentiation (V̂k); and as an exterior angle (b̂). Context en-
ables one to distinguish these different usages.# From Eq.
~17! and standard reality conditions, one has

FIG. 1. Geometry for the wave-vector triad such thatk1p1q
50, with interior anglesa, b, and g. The exterior angles are

â8/(p,q)5p2a, b̂8/(q,k)5p2b, ĝ8/(k,p)5p2g.
uq,k,2k
r 5

Rehq
nl,S12 Rehk

nl,S2~gq
lin12gk

lin!

~Vq
lin1Im hq

nl,S!21@Rehq
nl,S12 Rehk

nl,S2~gq
lin12gk

lin!#2
. ~25!
e
be-
d

~Note thatg lin50 for pure HM dynamics and thatVq
lin50

for pure zonal flows.! The result obtained in Ref.@2# has the
same structural form as Eq.~22b!, but with uq,k,2k

r replaced
~in our notation! by

Rk;q8
2gk

lin

~ Im hq
nl2qvgr,k

lin !21~2gk
lin!2

, ~26!

wherevgr,k
lin 8 x̂•]Vk

lin/]k is the linear group velocity.~In Ref.
@2#, thex direction was in the radial direction opposite to t
profile gradient, andq was aligned with that direction be
cause pure zonal flows were considered. That special
unfortunately obscures important differences between lin
and nonlinear physics, as we will clarify later.! The several
differences between Eqs.~22! and the result of Ref.@2# are
seen to be in the form of the effective autocorrelation ti
se
ar

e

between the interacting modes. First, formula~26! contains
the wave-packet propagation termqvgr,k

lin in the denominator,
whereas the systematically derived result~25! does not. Sec-
ond, Eq.~26! contains no nonlinear renormalization of th
linear growth rate and does not recognize the distinction
tweenhS andh, whereas our result is fully renormalized an
is random Galilean invariant. Third, Eq.~26! is proportional
to the linear growth rategk

lin and changes sign withgk
lin ,

whereas formula~25! is proportional to Rehq
S12 Rehk

S ~the
sum of the nonlinear damping rates,minus the sum of the
linear growth rates! and is intrinsically positive.@Equation
~15! guarantees that in steady statehk.0, because it is then
in balance with the positive-definite covarianceFk

nl , and a
similar result can be obtained forhk

S.# If one were to merely
drop theh ’s in Eq. ~25!, one would obtain a form similar to
Eq. ~26! but with the opposite sign. Of course, formula~26!
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vanishes for nondissipative HM dynamics, so it is obviou
incomplete.

These differences are mostly a consequence of inadeq
treatment of renormalization in the derivation of formu
~26!. ~In some subsequent references@31,32#, gk

lin was more
correctly replaced by a nonlinear frequency spreadDv, for
which, however, no formula was given.! The appearance o
the linear group velocity of small-scale wave packets in E
~26! but not in the systematically derived answer~25! is a
more subtle issue that we will discuss in Sec. III C, where
show thatqvgr,k

lin is a higher-order effect that must be omitte
to lowest order in a systematice expansion. Indeed, in th
course of the article we will show that neither the dire
systematic calculations nor our heuristic algorithms exp
itly involve any linear properties of the undamped drift wa
to lowest order ine.

Upon multiplying Eq. ~22a! by 1
2 (aq1q2)^uwqu2&5Eq ,

one can write it for dimensional purposes as

gqEq;2 (
k large

K 1

k2
(uĝk;q

(1)u)S uq,k,2k
r uqV̂k;quq̂•

]Qk

]k D L ,

~27!

where ĝk;q
(1) is the large-scale Fourier transform (“→ iq) of

ĝk
(1)8k•“V̂k;q /k2. The first-order growth rateĝk

(1) de-
scribes the rate of evolution of wave numberk due to ray
propagation in the inhomogeneousq modulation.~For more
detailed discussion, see Sec. VI B.! As we will show in Sec.
II, the second parenthesized factor in Eq.~27! is the first-
order Eulerian enstrophy increment that develops during
effective timeuq,k,2k

r of interaction between modesk andq.
The product of the two parenthetic factors in Eq.~27! de-
scribes how the random first-order distension of the sh
wavelength fluctuations leads at second order to a mean
ergy drain@note the minus sign in Eq.~27!# from the short
wavelengths that shows up as long-wavelength growth.

D. Outline

Our goals are several. Given the generalized Hasega
Mima model and the Markovian statistical closure formu
described above, we want to systematically obtain~asymp-
totically to lowest nontrivial order in the scale-separati
parametere) the statistical equations that describe the int
actions of disparate scales, we want to interpret the res
heuristically, and we want to understand their relationsh
to prior work. As an introduction, we present in Sec. II
heuristic derivation ofgq that emphasizes the role of enstr
phy conservation, the significance ofg̃k

(1) , and the intrinsic
nonlinearity of the physics. In Sec. III we derive the exa
results, including Eqs.~22!, as a direct expansion ine of
formulas ~16! ~which contain no assumptions about sca
sizes!. Although the intermediate algebra is straightforwa
it is tedious and without immediate physical interpretatio
Therefore, in Sec. IV we present a generalized renormal
tion procedure that takes explicit account of the presenc
disparate scales and provides a systematic apparatus fo
scribing the functional variations of short-wavelength sta
tics with respect to long-wavelength potentials. As a con
tency check, we focus ongq and show that the procedur
y

ate

.

e

t
-

e

t-
n-

a-
s

-
lts
s

t

,
.
a-
of
de-
-
-

leads to precisely the same answer as the one obtaine
Sec. III. We show in Sec. V that the field-theoretic tec
niques introduced in Sec. IV can be exploited in an alter
tive derivation ofgq based on a nonlinear statistical energ
balance~Poynting! theorem. We demonstrate that the proc
dure again leads to the same results as in Secs. III and
The general Poynting calculation is not algebraically si
pler, but it provides a useful formula that clearly shows ho
gq arises from second-order variations of the sho
wavelength energy. In Sec. VI we show how to use WK
expansion in conjunction with enstrophy conservation to
tain the correct lowest-order answer forgq without the ne-
cessity for subsidiary expansion ine. In Secs. VI A and VI B
we reexamine the theory of wave kinetic equations, corre
ing a conceptual mistake in the literature. We describe

physical significance ofg̃k
(1) in Sec. VI C, then justify the

heuristic algorithm of Sec. II in Sec. VI D. In Sec. VI E w
show that heuristic Fokker-Planck analysis of the wa
number evolution recovers the dominant wave-number di
sion and drag terms in the spectral evolution equation for
short scales. In Sec. VI F we describe an alternative a
rithm based on first-order variation of the enstrophy flux th
shows howg̃k

(1) is related to an effective nonlinear autoco
relation time. Finally, we conclude with some discussion
Sec. VII. ~For further orientation, the reader may find it us
ful to read the last paragraph of that section, which summ
rizes the principal results in more detail than we have do
so far, before proceeding to the detailed calculations.! The
Appendix discusses the relation of our work to a recent
ternative calculation of eddy viscosity. A summary of impo
tant notation is given in Table I.

II. A HEURISTIC DERIVATION OF THE
LONG-WAVELENGTH GROWTH RATE BASED

ON SECOND-ORDER ENERGETICS

Before turning to formal calculations, we shall give a he
ristic derivation of gq that obtains it from the drain o
~second-order! energy from the small scales under the co
straint of enstrophy conservation in the face of lon
wavelength modulation. For definiteness, we give the det
for the pure HM dynamics defined by Eq.~9!, but we indi-
cate the ready generalization.

Energy conservation demands that, under the interact
between disparate scales, positive energy incrementsDE in
long-wavelength fluctuations~of space scaleX and slow time
scaleT) arise from negative energy increments in the sho
scale fluctuations. Thus, withE, (E.) denoting the long-
~short-!wavelength energy, one has schematically

]TDE,52g,DE,52]TDE., ~28!

whereg,→gq is the nonlinear growth rate. Because the
teractions are both nonlinear and random, the variationD
involves second-order effects. If one notes that the contri
tion to E, from one Fourier component isEq5

1
2 (aq

1q2)^udwqu2& and that Eq.~28! contains a factor of 2, a
plausible formula~derived in Sec. V! is
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gq52S 1

aq1q2D S d2]TE
dw̃qdw̃q*

D U
w̃q50

, ~29!

where E[E. is the mean short-wavelength ener

@E8 1
2 (k large(ak1k2)^udwku2&# averaged overX ~denoted by

the overbar! and the tilde indicates the random nature ofw̃q .
~In the formal work of subsequent sections, we will differe
tiate instead with respect to the mean fieldPq8^wq&.! Now
Smolyakov and Diamond@15# have shown that for pure HM
dynamics the enstrophy densityWk8k2Ek is conserved un-
der a long-wavelength modulation. Upon concentrating o
on nonlinear contributions toWk , one has the wave kineti
equation~WKE!

]TWk~X,T!1Ṽgr,k•“Wk2“Ṽk•]kWk50, ~30!

where“[]/]X, ]k[]/]k, and

Ṽk~X,T!8S k2

ak1k2D k• ẑ3“ w̃̄ ~31!

TABLE I. Important notation.

Wave numbers
q: wave vector of long-wavelength fluctuations~e.g., zonal

flows!. q5uq'u<qmax

k: wave vector of short-wavelength fluctuations~e.g., drift
waves!. k5uk'u>kmin

kx ,ky: q̂•k, ẑ•q̂3k
e: ordering parameterq/k!1

k̄2: ak1k2

Potentials

w̃: random potential

P: mean field^w̃&

w̄: ki50 projection ofw

w̆: kiÞ0 projection ofw

Fluctuation spectra
Ck: potential spectrum̂udwku2&
Ek: energy spectrumsk

(E)Ck @sk
(E)8

1
2 (ak1k2)5

1
2 k̄2#

E: short-wavelength energy(k largeEk

Q: eitherW ~pure HM! or Z ~generalized HM!
Wk: potential enstrophy spectrumsk

(W)Ck (sk
(W)8k2sk

(E))
Zk: generalized enstrophy spectrumsk

(Z)Ck (sk
(Z)8 k̄2sk

(E))
Frequencies
Vk

lin: HM linear drift-wave frequencyv* /(ak1k2)

Ṽk: advection frequencyV̂k;qw̃q . For pure HM,

Ṽk5(k2/ k̄2)k•Vq ; for generalized HM,Ṽk5k•Vq .

V̂k;q: advection frequency without potential,iqV̂k

V̂k: unit advection frequency, either (k2/ k̄2)ky or ky

Growth rates
gk

lin: linear growth rate
gk

(1): first-order wave-number distension ratek•“Vk /k2.

g̃k
(1)8gk

(1)@Ṽk# ~brackets denote functional dependence!

gq: long-wavelength nonlinear growth rate driven by the lar
k’s
-

y

is the random advection frequency associated with the lo

wavelength potential;Ṽgr,k8]Ṽk /]k is the associated grou
velocity ~not the linear group velocity!. For considering the
total short-wavelength enstrophy or energy, the equiva
equation

]TWk~X,T!1“•~Ṽgr,kWk!2]k•~“ṼkWk!50 ~32!

is more useful, as it is in conservation form. Upon averag
Eq. ~32! over space, one finds that the mean short-scale
strophy evolves according to

]TW̄k~T!5]k•~“ṼkWk!. ~33!

Parseval’s theorem can be used to replace the barring op
tion by a sum over allq’s: for arbitrary functionsa(X) and
b(X), one hasa(X)b(X)5(qaq* bq . This might appear to
involve largeq’s as well as small ones, but since we ha
restricted the wave kinetic dynamics to first-order gradien
q is effectively small. Thus, in subsequent formulas we sh
write (q small→(q and similarly (k large→(k . Then enstro-
phy variations due to long-wavelength modulations at wa
vectorsq obey

]TW̄k5
]

]k
•(

q
~ iqṼk;q!* Wk;q , ~34!

where

Ṽk;q8 iqV̂kw̃q . ~35!

~Here and subsequently we writew̃q instead of the redundan

w̃̄q .) An equation for the short-wavelength energyE follows
by dividing Eq.~34! by k2 and summing the result over th
largek’s:

]TE5(
k

(
q

S 1

k2D S 2 iq•
]

]k
~Ṽk;q* Wk;q! D ~36a!

5 i(
k

(
q

Fq•
]

]k S 1

k2D G Ṽk;q* Wk;q ~36b!

522q2(
k

(
q

S kx

k4D V̂kw̃q* Wk;q . ~36c!

We emphasize again that all Cartesian directions in th
formulas are relative toq. To arrive at Eq.~36b!, we inte-
grated the last term of Eq.~36a! by parts and ignored the
associated surface term~which describes interactions wit
moderately sizedk’s!. Upon performing the two variations
required by formula~29!, one obtains

gq52S q2

aq1q2D(k
S kx

k4D V̂kŴk;q . ~37!

The first-order enstrophy variationŴk;q8dWk /dw̃q follows
from the Fourier transform of Eq.~30!; at w̃q50,
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]TŴk;q52~V̂gr,k;q•“Wk2 i V̂k;q•]kWk!. ~38!

For spatially homogeneous statistics, unperturbed fluctua
spectra are independent ofX, so the underlined term on th
right-hand side of Eq.~38! vanishes. Under the modulation
the final enstrophy variation builds up over the mode-mo
interaction timeuq,k,2k

r , so integrating Eq.~38! over that
time yields

Ŵk;q52q2V̂kuq,k,2k
r q̂•]kWk . ~39!

Upon inserting this result into Eq.~37!, one finds Eq.~22b!.
One of the significant results of the formal calculations
Secs. III–V is the justification ofuq,k,2k

r as the relevant in-
teraction time.

This calculation can be repeated for the generalized
namics described by Eq.~7b!. The minor changes are t

write Eq. ~30! for Z instead ofW, useṼk5k•ṼE instead of
Eq. ~31!, and divide theZ analog of Eq.~34! by k̄25Zk /Ek
instead ofk2. One is led again to Eq.~22b!. @Note that

ky / k̄25V̂k /k2 with V̂k defined by Eq.~24a!.#
Formula~29! can be criticized on the grounds that it pu

ports to calculate the statistical propertygq by examining
variations of the averaged quantityE with respect torandom
potentials. In fact, the proper formula that we will deriv
later @Eq. ~137!# involves variations with respect to themean
potentialPq . Now the statistical problem defined by Eq.~6!
is assumed to be spatially homogeneous, in which casePq
50. However, we will see that the correct generalization
formula ~29! requires the second-order response to the p
ence of anonzeromean potentialPq , perhaps introduced by
an external symmetry-breaking perturbation to Eq.~6! or by
averaging in an inhomogeneous statistical subensemble
will make these notions mathematically precise in Sec.
However, the distinction between variations with respec
w̃q and Pq is moot at lowest order ine. Further discussion
about the subtly different roles ofw̃q andPq is given in Sec.
VI.

This algorithm highlights the importance of wave-numb
evolution due to the slightly inhomogeneous advection f
quency. Note that the physics content of the last term of
~38!, which figured prominently in the derivation, is the ra

equationdk/dT52“Ṽk . We will discuss the significance
of this equation more systematically in Sec. VI, where
use WKB and Fokker-Planck techniques to derive vario
WKE’s for energy and enstrophy evolution. The present
gorithm is justified in Sec. VI D, and an alternative algorith
based on first-order flux variation is presented in Sec. V
All of the heuristic procedures as well as the formal deriv
tions show that the relevant physics has little to do w
linear dispersion relations or normal modes; the results
pend only on the properties of the nonlinear advection exc
for trivial linear dissipative effects on the value of the tria
interaction time. We will return to this important point a
various places throughout the subsequent discussion.
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III. FORMAL STATISTICAL CALCULATIONS OF THE
INTERACTIONS BETWEEN DISPARATE SCALES

In this and the next section we show how to obtain E
~22! and related formulas by using well-known results a
techniques of renormalized statistical dynamics@19#. The
general goal is to obtain the contributions to Eq.~15! for
] tCk from fluctuations withq!k, and the corresponding
~energy-conserving! terms in the equation for] tCq . We will
obtain those contributions by successively employing sev
different approaches. In the first one, which we call the dir
method and describe in the present section, we simply
pand formulas~16! in the limit e!1. Given the standard
assumptions built into second-order statistical closure,
direct method is exact to the order retained; it invokes
subsidiary physical or mathematical assumptions. In sub
quent sections we consider alternative approaches. We v
that all procedures lead to consistent results.

Note that Eq.~15! is written forCk8^udwku2&, whose sum
over k is not conserved by the nonlinear interactions. A
though the content of the final results cannot depend on
choice of dependent variable, a particular choice may s
plify intermediate algebra. For pure HM dynamics, Kraic
nan’s results as well as the work of Ref.@15# motivate con-
sideration of the equation for] tWk . For generalized HM, the
work of Ref. @15# suggests that consideration of] tZk is use-
ful. Upon eliminating the factor ofM k,p,q* in Eq. ~16b! ~our
mode-coupling coefficients are real, so we shall subseque
drop the complex conjugate on theM ’s! by using one of the
detailed conservation laws~11!, one is led, for any nonlinea
invariantQ, to

] tQk52(
D

M k
(Q)Mp

(Q)uk,p,q
(Q) Qq~Qk2Qp!, ~40!

where

M k
(Q)8sk

(Q)M k,p,q , ~41a!

uk,p,q
(Q) 8Reuk,p,q /sk

(Q)sp
(Q)sq

(Q) . ~41b!

The conservation ofQ is immediate, given the antisymmetr
of the summand of Eq.~40! in k andp.

For future use, we record that Eq.~40! is explicitly

] tZk5
1

2 (
D

~ ẑ•p3q!2@ k̄2~ q̄22 p̄2!#@ p̄2~ k̄22q̄2!#

3uk,p,q
(Z) Zq~Zk2Zp! ~42a!

5
1

2 (
D

p2sin2aS q2

q̄2D ~ q̄22 p̄2!~ k̄22q̄2!

3uk,p,q
(E) Zq~Zk2Zp!, ~42b!

where

uk,p,q
(E) 5

8uk,p,q
r

~ak1k2!~ap1p2!~aq1q2!
~43!
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and the triad geometry is shown in Fig. 1. The role of t
factor (q2/q̄2) in Eq. ~42b! is to changeZq to Wq . Note that
the law of sines enables one to employ alternative angle
Eq. ~42b! if that is convenient; e.g.,p sina5ksinb.

Equation~42b! has the form

] tZk5(
p,q

dk1p1q,0K~k,p,q! ~44a!

5(
q

K„k,2~k1q!,q…, ~44b!

wheredk,k8 is the Kronecker delta function andK is a known
function. The form~44b! can be expanded directly ine, as
we will do in Sec. III B, leading to results valid for arbitrar
anisotropy. However, it is instructive to first assume isotro
in k' ~so thatZk and uk,p,q

(Z) depend only on wave-numbe
magnitude!. The algebra of the isotropic and anisotropic c
culations is sufficiently different that reconciling the resu
provides a nontrivial check on the calculations, and the i
tropic calculations illustrate certain issues about wa
number integration domains with a minimum of complic
tion.

A. Isotropic calculations

To avoid some clutter in the notation, we shall present
isotropic calculations for pure HM dynamics, so we writeW
rather thanZ in this section. We also follow the original HM
assumption and assume that the dynamics are local inx' , so
we do not sum overki . The generalization to 3D fluctuation
is obvious, and the fully anisotropic algebra is sketched
Sec. III B. For isotropic statistics, angle dependence ar
only from the d function in Eq. ~44a! because the mode
coupling coefficients can be written entirely in terms
wave-number magnitudes with the aid of the law of cosin
To integrate over angle, we shall pass to the continuum lim
A consistent set of Fourier transform conventions in a box
lengthL in spatial dimensionalityd is, for the discrete trans
form,

Ak5
1

LdE2L/2

L/2

dx e2 ik•xA~x!, A~x!5(
k

eik•xAk ,

~45!

and, for the continuous transform,

A~k!5E
2`

`

dx e2 ik•xA~x!, A~x!5E
2`

` dk

~2p!d
eik•xA~k!.

~46!

One passes between the discrete and continuous repres
tions with the replacements

(
k

→E
2`

` dk

dkd
, Ak→L2dA~k!, dk,0→dkdd~k!,

~47!
in

y

-

-
-

e

n
es

s.
t.
f

nta-

where dk82p/L. A consequence is thatCk8^uAku2&
→L2dC(k), whereC(k)8*dr e2 ik•r^A(x1r)A(x)&. It is
then a standard result that when the angular integrations
performed in 2D one finds

(
D

dk1p1q→
1

NED
dp dq

2

usinau
, ~48!

whereN8dkd and the integration domainD is shown in Fig.
2. Upon inserting this result into Eq.~42b!, one obtains

] tWk5
1

NED
dp dqusinau~q22p2!p2~k22q2!

3uk,p,q
(E) Wq~Wk2Wp!, ~49!

with the law of cosines giving

usinau5~2pq!21@2~p22q2!212~p21q2!k22k4#1/2.
~50!

1. Evolution of large k’s (isotropic spectrum)

Consider the contributions to formula~49! from fluctua-
tions with q!k ~region A! or p!k ~region B!; see Fig. 3.
For region A, write p5k1lq, where 21<l<1. Then
usinau5(12l2)1/2(12 1

2 lq/k)1O(e2). Also define Fkpq

8uk,p,q
(E) (Wp2Wk) and expand in smallq to find

Fkpq5lqS ]F

]p D U
k

1
1

2
~lq!2S ]2F

]p2D U
k

1O~e3!. ~51!

Then to dominant order one finds

] tWk
(A)5

1

2
k4S E

21

1

dlA12l2 l2D
3

1

NE0

qmax
q dq q2Wquk,k,q

(E) S 7k
]F

]p U
k

1k2
]2F

]p2U
k
D .

~52!

Further algebra using the definition ofF and the result
(]uk,p,q

(E) /]p)uk5 1
2 ]uk,k,q

(E) /]k leads one to

] tWk
(A)5

1

k

]

]k S kDk

]Wk

]k D , ~53!

where

Dk8
1

4
Ik6

1

NE0

qmax
2pq dq q2Wquk,k,q

(E) ~54!

with I[I 2,25
1
8 and I m,n8(2p)21*0

2pdu sinmu cosnu. We
have written the diffusion operator in the natural form of
divergence in~an isotropic! k space. It conservesW except
for a boundary term~which describes the flow of enstroph
to the intermediate scales!.

Region B can be treated symmetrically by writingq5k
1lp, with usinau'(12l2)1/2(12 1

2 lp/k). It is not hard to
verify that region B contributes at one higher order
(qmax/k)2. The WqWk term is related to incoherent nois
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~note thatq is large in region B!; the remaining terms, to
gether with higher-order contributions from region A, mere
provide corrections to the wave-number diffusion effect. A
ter some algebra, one finds

] tWk
(B)'2

1

k

]

]k
~kVkWk!, ~55!

where

Vk8
1

2
Ik3S 1

NE0

qmax
2pp dp p4uk,p,k

(E) DWk . ~56!

The drag operator in Eq.~55! also conservesW except for a
boundary term.

2. Evolution of small q’s (isotropic spectrum)

Now consider the evolution of the smallq’s with the iso-
tropic assumption. One must integrate over regions C an
in Fig. 4. For region C, writep5k1lq; then usingu
5(q/k)(12l2)1/2(12 1

2 lq/k)1O(e2). After tedious but
straightforward algebra, one finds that to lowest order

FIG. 2. Integration domainD for all wave-number magnitudesp
andq such thatk1p1q50 for fixed k.

FIG. 3. Integration domain for the effect of small wave vecto
@q!k ~region A! or p!k ~region B!# on a large wave vectork.
-

D

] tWq
(C)52

1

2
Iq4

1

N S E
kmin

`

2pk dk k3uq,k,k
(E) Wk8Wq

12p@k4uq,k,k
(E) Wk~Wq2Wk!#ukminD , ~57!

whereWk88]W/]k and the last term is a surface contributio
arising after an integration by parts.~For a more explicit
calculation, see Sec. III B 2.! To treat region D, define

t8p2k, T8 1
2 (p1k), then writet5lk (0<l<1) andT

5kmin1lrq (2 1
2 <r< 1

2 ). One has usingu'(q/kmin)(1
2l2)1/2. In evaluating formula~49!, one may replacep andk
by kmin everywhere except in sing and in p22k2

'2lqkmin . One then finds that the contribution from regio
D precisely cancels the surface term in Eq.~57!, giving rise
to the growth rategq given by Eq.~62! below.

Finally, to obtain the contribution of incoherent noise
the smallk’s, symmetrize theWpWq term in Eq.~49! to find,
after interchangingk andq,

Ẇq
noise5

1

2
q2

1

NED
dp dkusingu~p22k2!2uq,k,k

(E) WpWk

~58a!

'Iq6
1

NEkmin

`

2pk dkuq,k,k
(E) Wk

2 . ~58b!

In summary of the isotropic calculations, we have fou
that for pure HM dynamics the small scales evolve un
their interaction with the large ones according to

] tWk5
1

k

]

]k S kDk

]Wk

]k D2
1

k

]

]k
~kVkWk!, ~59!

where

Dk8
1

4
Ik6

1

NE0

qmax
2pq dq q2uk,k,q

(E) Wq , ~60a!

FIG. 4. Integration domain for the interaction of large wa
vectorsk and p for fixed, smallq. Region C:k>kmin . Region D:
k,kmin , p>kmin .
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Vk8
1

2
Ik3S 1

NE0

qmax
2pp dp p4uk,p,k

(E) DWk , ~60b!

and that the corresponding long-wavelength evolution is

] tWq52gqWq1Ẇq
noise, ~61!

where

gq82
1

4
q4I

1

NEkmin

`

2pk dk k3uq,k,k
(E) Wk8 ~62!

andẆq
noise is defined by Eq.~58b!. To verify that these equa

tions appropriately conserve energy, divide Eq.~59! by k2,
then integrate*kmin

` k dk. Also, divide Eq.~61! by q2, then

integrate*0
qmaxq dq. It is straightforward to verify that the

energy drain from the wave-number diffusion is accoun
for by the gq term, and that the energy drain from theVk

drag shows up inẆq
noise.

As a check, one can compare Eq.~62! with Kraichnan’s
eddy viscosity for 2D isotropic Navier-Stokes turbulenc
With n(qukmin)82gq /q2, and upon recalling the definition
~43! of u (E), one can write Eq.~62! more explicitly as

nHM~qukmin!5
p

2 S q2

aq1q2D
3

1

NEkmin

`

dkS k2

ak1k2D 2

uq,k,k
r dWk

dk
. ~63!

One passes from HM to NS dynamics by settingâ50. Kra-
ichnan writesEk5 1

2 dkdU(k) @see his Eq.~2.8!#. Then

nNS~qukmin!5
p

4Ekmin

`

dk uq,k,k
r d~k2U !

dk
. ~64!

This agrees exactly with Kraichnan’s Eq.~4.6!.
Kraichnan gave a thorough discussion of the phys

mechanism~involving W conservation! underlying this re-
sult, and his insights carry over to HM dynamics witho
essential change. A key observation is that, to the extent
uq,k,k

r is a functionuq
r independent ofk, as it will be when the

interactions are dominated by large-scale random strain
formula ~64! involves a perfect derivative and is negative.
this same approximation, formula~63! is negative as well, as
follows from integration by parts:

nHM52
p

2 S q2

aq1q2D uq
r 1

N F S k4Wk

~ak1k2!2D U
kmin

14akE
kmin

`

dk
k2Wk

~ak1k2!3G . ~65!

These results do not require thatdWk /dk be uniformly nega-
tive; it is merely necessary thatWk vanish at`. Further
discussion of Eq.~65! and its relation to the results of Re
@7# is given in the Appendix.
d

.

l

t
at

g,

B. Anisotropic calculations

We now turn to the general anisotropic case, which
present for generalized HM dynamics. For short-scale evo
tion, one finds the Fokker-Planck equation

] tZk5
]

]k
•S Dk•

]Zk

]k D2
]

]k
•~VkZk!, ~66!

where

Dk8
1

4
k̄4(

q
ky

2q2Wquk,2k,q
(E) ~ q̂ q̂!, ~67a!

Vk8
1

2 S (
q

q̂ky
2kxq

4uk,q,2k
(E) DZk . ~67b!

For the long-wavelength evolution, one finds

] tZq52gqZq1Żq
noise, ~68!

where

gq82
1

4
q4(

k
ky

2kxuq,k,2k
(E) q̂•

]Zk

]k
, ~69a!

Żq
noise8q̄2q4(

k
S kx

2ky
2

k̄4 D uq,k,2k
(E) Zk

2 . ~69b!

It is easily verified that these forms reduce properly to
isotropic HM results summarized in Eqs.~59!–~62! by drop-
ping the overbars onk and q @denominators of (11k2) are
still retained in theu (E)’s#, replacingZ by W, and noting that
for isotropic statisticsq̂•]Wk /]k5(kx /k)Wk8 and the k̂ k̂
component ofD is proportional tokx

2ky
2 . Note that Eq.~69a!

can be written in the forms~22! by recalling the definitions
~43! of u (E) and ~24a! of V̂k . It is also straightforward to
verify the energy-conservation theorems

2(
k

1

k̄2

]

]k
•S Dk•

]Zk

]k D5(
q

1

q̄2
~2gqZq!, ~70a!

(
k

1

k̄2

]

]k
•~VkZk!5(

q

1

q̄2
Żq

noise. ~70b!

We emphasize that Eqs.~66! and ~68! are not the complete
spectral balance equations; they describe only the inte
tions due to disparate scales.

In the following subsections, we describe the derivatio
of these formulas. We shall present the algebra for theDk
term in some detail, since it illustrates some tricky poin
We merely sketch the remaining calculations.

1. Evolution of large k’s (anisotropic spectrum)

To derive formula~66!, one must consider interactions o
triads with shapes shown in Fig. 5. For region A (q small!,
Eq. ~42b! is conveniently written with the aid of the law o
sines as
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] tZk
(A)5

1

2
k2(

q
s2ZqS q2

q̄2D ~ p̄22q̄2!~ k̄22q̄2!Fk,p,q ,

~71!

where s8sinb and Fk,p,q8uk,p,q
(E) (Zp2Zk). Since p52k

2q, one hasp25k212k•q1q2. Also, one may expand
Fk,p,q aroundp52k:

Fk,p,q52q•S ]F

]pD U
2k

1
1

2
~q q!:S ]2F

]p]pD U
2k

1O~e3!,

~72!

where the lowest-order termFk,2k,q vanished by definition
of F. ~Note thatZ2k5Zk .) Upon retaining terms through
O(q2) and recalling that (q2/q̄2)Zq5Wq , one finds to domi-
nant order

] tZk
(A)5

1

2
k2(

q
s2Wqq

2S 22k̄2k•q̂ q̂•
]F

]p

1
1

2
k̄4~ q̂ q̂!:

]2F

]p]pD , ~73!

where to avoid clutter we no longer explicitly indicate thap
is to be replaced by2k. Now

]F

]p
5

]uk,p,q
(E)

]p
~Zp2Zk!1uk,p,q

(E) ]Zp

]p
, ~74a!

]2F

]p]p
5

]2uk,p,q
(E)

]p]p
~Zp2Zk!12

]uk,p,q
(E)

]p

]Zp

]p
1uk,p,q

(E) ]2Zp

]p]p
,

~74b!

where the terms inZp2Zk vanish atp52k. It is a straight-
forward exercise, using the fact thatuk,p,q

(E) is real, to show
that

S ]uk,p,q
(E)

]p DU
p52k

52
1

2

]uk,2k,q
(E)

]k
. ~75!

Thus twice the parenthesized term in Eq.~73! can be written
in the form

2~••• !5uk,2k,q
(E) S k̄4~ q̂ q̂!:

]2Zk

]k]k
14k̄2k k̂•q̂q̂•

]Zk

]k D
1 k̄4q̂•

]uk,2k,q
(E)

]k
q̂•

]Zk

]k
~76a!

5q̂•
]

]k S k̄4uk,2k,q
(E) q̂•

]Zk

]k D , ~76b!

so

FIG. 5. Possible triads with one small leg that contribute to
evolution of disparate scales. Region A:q small; region B:p small.
] tZk
(A)5

1

4
k2(

q
s2q2Wq~ q̂ q̂!:

]

]k S k̄4uk,2k,q
(E) ]Zk

]k D
~77a!

5
1

4 (
q

s2q2Wq~ q̂ q̂!:F ]

]k S k2k̄4uk,2k,q
(E) ]Zk

]k D
22kk̄4uk,2k,q

(E) k̂
]Zk

]k G . ~77b!

The final step is to move the leftmostk derivative in the first
term outside theq sum. That must be done with care becau
s5uk̂3q̂u depends onk. Now with c8 k̂•q̂5cosb̂ (b̂8p

2b) and since] k̂/]k5(I2 k̂ k̂)/k ands2512c2, one has

]c

]k
5

1

k
~ q̂2ck̂!, ~78a!

]~s2!

]k
52

2c

k
~ q̂2ck̂!. ~78b!

One then readily finds that the contribution from](s2)/]k
cancels the second term of Eq.~77b!, so

] tZk
(A)5

]

]k
•S Dk•

]Zk

]k D , ~79!

whereDk is given by Eq.~67a!.
Now consider the contributions to the large-k evolution

from region B. From Eq.~42b!, one has

] tZk
(B)52

1

2
k2 (

p small
F S p2

q2D s2G S q2

q̄2D ~ q̄22 p̄2!~ q̄22 k̄2!

3uk,p,q
(E) Zq~Zk2Zp!, ~80!

where nows8sing. It can be verified that theZpZq term
merely contributes a higher-order correction@of O(p4)# to
Eq. ~67a!. Expansion of theZqZk term proceeds generally a
before. Noteq̄25 k̄212k•p1p2, defineFk,p,q8uk,p,q

(E) Zq , in-

troduce the shorthand notationūk[uk,p,2k
(E) , and expand

aroundq52k:

Fk,p,q'Fk,p,2k2p•S ]Fk,p,q

]q D U
2k

~81a!

5 ūkZk1 ūk p•
]Zk

]k
1

1

2
p•

]ūk

]k
Zk .

~81b!

Upon collecting terms to dominant order, one has

] tZk
(B)52

1

2
k2Zk (

p small
s2p4S ūkZk

12kcūk p̂•
]Zk

]k
1kc p̂•

]ūk

]k
ZkD . ~82!

Further straightforward algebra leads to the result

e
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] tZk
(B)52]k•~VkZk!, ~83!

where~after renamingp→q) Vk is defined by Eq.~67b!.

2. Evolution of small q’s (anisotropic spectrum)

We now apply similar procedures to find the evolution
the smallq’s, for which, after interchangingk andq in Eq.
~42b!,

] tZq52
1

2
q2(

k
s2ZkS k2

k̄2D ~ p̄22 k̄2!~ q̄22 k̄2!

3uk,p,q
(E) ~Zq2Zp!, ~84!

wheres8sinb. One must take some care with the domain
integration, which as in Fig. 4 consists of all wave vectork
andp such that eitherk or p is greater thankmin . Referring to
Fig. 6, this defines region C (k>kmin) and region D (k
,kmin , p>kmin). In region C, the angleb̂ betweenk andq
runs over the entire domain 0<b̂,2p, whereas in region D
b̂ is restricted to a domain2(p/21D)<b̂<p/21D, where
D'q/2k!1.

Consider first region C. Upon expanding aroundp52k
and writing ūk[uq,2k,k

(E) , one finds that through dominan
order the contribution togq5

1
2 ] tln Zq is

gq
(C)5

1

4
q4(

k
s2k2ZkS ūk1k•~ q̂ q̂!•

]ūk

]k D ~85a!

5
1

4
q4(

k
Zk q̂•

]

]k
~k3s2cūk! ~85b!

52
1

4
q4(

k
k3s2cūk q̂•

]Zk

]k

1
1

4
q4

1

N S R dSk•q̂k3s2cūkZkDU
k5kmin

, ~85c!

wheredSk•q̂5kminc db. In evaluating formula~84!, one can
assume to lowest order thatk5kmin everywhere except in
p22k2'2kq cosb, and neglectD!1:

gq
(D)'2

1

2
q3(

pPD
s2c~k3Zkuk,2k,q

(E) !uk5kmin
, ~86!

where

(
pPD

'
1

NE2p/2

p/2

dbE
kmin2q cosb

kmin
k dk ~87a!

'
1

NE2p/2

p/2

db kminq cosb. ~87b!

Because the integrand of Eq.~86! is unchanged under th
substitutionp→2p, the b integral can be extended to th
full domain @0,2p) at the price of a factor of12 . It can then
be seen that to lowest order ine the contribution of region D
f

f

cancels the boundary term in Eq.~85c! and one obtains for-
mula~69a! for gq . For more discussion of the significance
region D, see the Appendix.

Finally, the noise contribution can be obtained by symm
trizing formula~84! in k andp. ~Insertdk1p1q and sum over
p.! TheZq term merely contributes a higher-order correcti
to gq , while in theZp term one may setp52k everywhere
except inp22k2. One is immediately led to Eq.~69b!.

C. Why qvgr,k
lin does not appear in the denominator of theq-k

interaction time

The differences between the triad interaction timeuq,k,2k
r

and the response functionR employed in Ref.@2# were enu-
merated in Sec. I C. With the systematic algebra presente
Secs. III A and III B in hand, we can now discuss whyqvgr,k

lin

does not, and should not, appear in the denominator of
interaction time, our Eq.~25!. The systematic calculation
begin with Eq.~16a!, which involves the real part of

uq,k,p5~hq
S1hk

S1hp
S!21, ~88!

wherehk8 iVk
lin1hk

nl2gk
lin . The small-q expansion expands

formula ~88! aroundp52k according to

uq,k,p5uq,k,2k2q•S ]uq,k,p

]p D U
2k

1•••. ~89!

However, one could have alternatively performed the exp
sion of Eq.~88! in the denominator as

uq,k,p'Fhq
S1hk

S1h2k
S 2q•S ]hp

S

]p DU
2k

G21

. ~90!

If the large-k h ’s are approximated by their linear parts an
the linear part ofhq is ignored, then Eq.~90! reduces to

uq,k,p'F i S Im hq
S2q•

]Vk
lin

]k D 22gk
linG21

, ~91!

the real part of which is, to within a minus sign, Eq.~26!.

FIG. 6. Integration domains for the evolution of the smallq’s.
Region C:k>kmin . Region D:k,kmin , p>kmin . Compare Fig. 4,
the isotropic version of this figure.
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We now inquire whether it is valid to proceed from E
~90! to Eq. ~89! for q→0. The answer is yes for our fully
renormalized form, since asq→0 the quantityhk

S1h2k
S

52(Rehk
nl,S2gk

lin) remains nonzero. Thus theqvgr,k
lin effect

is captured by the second and unwritten terms on the ri
hand side of Eq.~89!. Now in the spectral balance equatio
only the real part ofu enters, so for the energy balance t
effect enters only atO(q2). However, the calculations in
Secs. III A and III B show that only the explicit,O(q) cor-
rection in Eq.~89! is relevant to dominant order, and its re
part does not containqvgr,k

lin . Thus, although the~real part of
the! correction term in Eq.~89! is included in all the formu-
las involving either wave-number diffusion, drag, or deriv
tives with respect tok @cf. Eqs.~22! for gq#, those formulas
do not contain any contribution from theqvgr,k

lin term. A con-
sequence is that it is inconsistent to write such formulas
ing ~a renormalized version of! Rk;q instead ofuq,k,2k ; to do
so ~cf. Refs. @2# and @31#! is to introduce one particula
second-order effect into the lowest-order calculation in
uncontrolled way. Note that if there were an actual resona
~if the denominator vanished asq→0), then the expansion
~89! would be invalid; however, that is not the case.

This analysis also explains why, in the heuristic algorith
of Sec. II and in various discussions in Sec. VI, we om
linear physics from the WKE. It does not imply, howeve
that no effects of wave-packet propagation enter the low
order theory. Indeed, we will show in Sec. VI E that the dr
term in Eqs.~59! and~66! arises from just that effect. Furthe
discussion is given in Sec. VII.

IV. RENORMALIZED FIELD THEORY FOR DISPARATE
INTERACTING SCALES

The direct method of calculation leads one via system
although possibly obscure algebra to the desired answer.
details are tedious partly because the fundamental form
~16! treat all scales on equal footing. One might expect th
renormalization procedure that recognizes the presenc
disparate scales from the outset would lead to simplified
culations. Accordingly, we present in this section a gener
zation of the usual renormalization technique that treats
long- and short-wavelength fluctuations as separate com
nents. Actually, in the general version of the calculation o
is merely led to the same starting point as before, nam
Eq. ~42b!, which still requires expansion ine. Nevertheless,
it proves useful to introduce the extended formalism, as
will use it in Sec. V to derive an alternative method of ca
culation that will motivate the heuristic energy algorith
presented in Sec. II.

There is one important caveat to the calculations to
low, relating to the issues of random Galilean invarian
discussed in Sec. I B. The variational procedure to be
ployed is firmly rooted in Eulerian correlation functions, so
is not naturally random-Galilean-invariant. This means th
if one were to work out the nonlinear renormalizations e
plicitly, one would in all formulas obtainhk , nothk

S . This is
not a critical issue, since from the calculations in Sec. III o
already knows the correct form of the answer and can in
hS’s by hand if necessary.~Actually, we merely couch the
results in terms ofuq,k,2k

r .! However, it is an important de
ficiency of the general method.~Lagrangian or mixed
t-
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Eulerian-Lagrangian techniques@33# are useful in this con-
text, but are beyond the scope of this article.!

For notational simplicity, we shall illustrate the procedu
for pure HM dynamics. However, the techniques and gen
form of the results apply to generalized HM dynamics
well.

A. Background: The Martin-Siggia-Rose approach to classical
field theory

In seminal work, Martin, Siggia, and Rose~MSR! @34#
showed how to adapt powerful methods of quantum fi
theory to the problem of classical statistical dynamics. T
basic idea is to construct generating functionals for corre
tion and response functions in terms of a classical ac
built from the given nonlinear dynamics in the presence o
vector of external sourcesh. ~There should be no confusio
between thish and the renormalized dampinghk in the Mar-
kovian closures.! Generalizedn-point correlation functions
follow from n derivatives of the generating functional wit
respect to appropriate sources; physical correlations are
tained in the limith→0. Repeated differentiation with re
spect toh merely generates an unclosed multipoint statisti
hierarchy ~a multitime generalization of the Bogoliubov
Born-Green-Kirkwood-Yvon hierarchy of classical kinet
theory!. However, by making a Legendre transformati
@35,36# from h to the mean field̂ w&h[^w&@h# ~square
brackets denote functional dependence!, one can define ver-
tex functions, the~functional! equations for which can be
usefully truncated to obtain approximate and closed ren
malized equations. The DIA emerges by neglecting ver
renormalization altogether; the second-order Markovian c
sures have a similar interpretation@37#. The MSR technique
was reviewed by Krommes@19#, who provided many refer-
ences to the original papers; see also the introductory dis
sion in Chap. 9 of Ref.@38#. Probably the most useful rea
ization of the formalism employs path-integral techniques
discussed by Jensen@39# and in the references therein.

Thus, to effect MSR renormalization of the pure H
equation, one supplements the original dynamical equa
~6! with a scalar, statistically sharp sourceĥ:

~a2¹2!] tw~x,t !1V* ]yw1VE•“~2¹2w!5ĥ~x,t !.
~92!

~We write¹2 instead of¹'
2 , and also writea instead ofâ to

avoid confusion with other uses of the caret in this sectio!
Such a source breaks the statistical symmetry and induc
nonzero mean field̂w&ĥ functionally dependent onĥ. More
generally, a conjugate fieldŵ is also introduced that obeys a
adjoint dynamics~not written here, but coupled to those o
w) and interacts with an external sourceh. Averages with
respect to the enlarged ensemble that embraces bothw andŵ
lead to mean fields and higher-order cumulants~denoted by

^^•••&&) that depend on bothh and ĥ. We write (w,ŵ)T

[w and (h,ĥ)T[h ~T denotes transpose! and must consider
the mean field̂ ^w&&h . It can be shown that cumulants of th
physical fieldw follow by functional differentiation with re-
spect toh, and that mixed derivatives with respect to bothh
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and ĥ generate various infinitesimal response functions.
example, with 1[(x1 ,t1) and C1(1)[^^w&&(1)5^w&(1),
one has

C2~1,2![^^w~1!w~2!&&5^dw~1!dw~2!&5
dC1~1!

dh~2!
~93!

and, in general,

Cn11~1,2, . . . ,n,n11!5
dCn~1,2, . . . ,n!

dh~n11!
. ~94!

The fundamental two-point infinitesimal response funct
R(1;18) is

R~1;18!5dC1~1!/dĥ~18!. ~95!

To avoid clutter, we do not explicitly indicate the depe
dence of the cumulants onh, or that physical observable
obtain their values ath50. However, in generating variou
statistical equations, a key caveat is that one must not
mean fields to zero until the very end of the calculatio
because they are nonvanishing in the perturbed ensemble
may be differentiated. Also note that the functional deriv
tives employed here are parametrized by both time
space, whereas the operator employed in Sec. II~and in Ref.
@2#! is parametrized only by space.

For quadratically nonlinear dynamics of the form

] tw1 iLw5O~ww!, ~96!

whereL is a linear operator, these considerations lead to
general set of coupled Dyson equations

] tR~1;18!1 iLR1E d1̄ Snl~1;1̄!R~ 1̄;18!

5d~1218!, ~97a!

] tC~1,18!1 iLC1E d1̄ Snl~1;1̄!C~ 1̄,18!

5E d1̄Fnl~1,1̄!R~18;1̄!, ~97b!

whereSnl andFnl represent the set of all connected diagra
that arise from the nonlinearity.Snl is a generalized nonlin
ear damping, andFnl can be interpreted as the covariance
an internal ‘‘incoherent’’ noise arising from the nonline
mode coupling@40#. @The semicolon notation is used here
indicate functions that are one sided~causal! in time; thus
R(t;t8)}H(t2t8), whereH is the unit step function. More
generally, the coordinate~s! after the semicolon can also b
interpreted as signifying the point~s! in space and time a
which a perturbation is applied, and we will use that notat
later in considering responses to perturbingwq’s.# In various
closures such as the DIA, explicit forms are obtained forSnl

and Fnl. For present purposes, we just note that, when
dynamical equation is written in the conservation form
r

et
,
nd

-
d

e

s

f

n

e

] tw1 iLw1“•G̃50, ~98!

one finds the general formulas

Snl~1;1̄!5
d“•G~1!

dP~ 1̄!
, ~99a!

Fnl~1,1̄!52
d“•G~1!

d P̂~ 1̄!
, ~99b!

whereG8^G̃&. These results are well known to workers
statistical field theory@34,19#.

B. Wave-number filtering and the long-wavelength
growth rate

If one were merely to proceed in this vein, one wou
arrive at the DIA by neglecting vertex renormalization. T
content and implications of the DIA are very well understo
@19,21#, so need not be discussed here. The further reduc
of the DIA to Markovian form was discussed at length
Ref. @37# for the general case of weakly inhomogeneous a
nonstationary statistics; for statistically homogeneous sit
tions, one arrives at Eqs.~16!. Additional discussion of Mar-
kovian approximations was given in Ref.@20#. We are inter-
ested here in developing a variant of the renormalizat
procedure that treats the long- and short-wavelength fluc
tions as separate components. Accordingly, we decomp
the potential into a short-wavelength componentw. and a
long-wavelength componentw,: w5w.1w,. For ex-
ample, a realization of w. is w.(x)
5(2p)2d*k>k!

dk eik•xw(k) and similarly w,5*k,k!
•••,

wherek! is some wave number intermediate in the spectru
Note that, if one wants to strictly match this formalism to t
expansions ine developed in Sec. III, one should actual
introduce three filtered fields: w.5*k>kmin

•••, w,

5*q<qmax
•••, and a field with intermediate wave-numb

contentw (mid). We shall not introducew (mid) explicitly, rely-
ing instead on subsidiary approximations to obtain
disparate-scale interactions betweenw. andw,.

Such wave-number filtering is a projection operatio
Therefore, upon projecting Eq.~92! ~in the presence of an
external sourceĥ) onto the. and, subspaces, one obtain

~a2¹2
~1!

!] tw
.1V* ]y

~2!

w.1@VE
.
•“~2¹2w.!

~3!
.

1VE
.
•“~2¹2w,)

~4!

1VE
,
•“~2¹2w.)

~5!

'~a2¹2!ĥ., ~100a!

~a2 ¹2
~18!

!] tw
,1V* ]yw

,
~28!

1VE
,
•“~2¹2w,)

~38!

1@VE
.
•“~2¹2w.!

~48!
,

5~a2¹2!ĥ,. ~100b!
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@In writing Eq. ~100a!, we used the fact that the sel
interactions betweenw, cannot contribute tow. except near
the boundary betweenw. and w, in wave-number space
We ignore that interaction; it could be taken into account
the introduction ofw (mid).# The various terms are numbere
to help one follow the algebra.@We eschew the more mean
ingful numbering scheme (1.) and (1,) as being too cum-
bersome.#

Our goal is to study statistics in a spatially homogene
background. To ensure that, one must ultimately aver
over the statistics of bothw. and w,. As usual, we shall
denote the full statistical average by^•••&. Later we shall
discuss a conditional averaging procedure wherein one a
ages only over the short-wavelength statistics. However, h
we shall employ unconditional statistical averaging to der
a general formula for the long-wavelength growth rate. T
cumulant average of Eq.~100b! is
nd
w

y

s
e

er-
re
e
e

~a2¹2)] t^^w
,&&

~18!

1V* ]y^^w
,&&

~28!

1^^VE
,&&•“~2¹2^^w,&&)

~38!

1“•^^VE
,~2¹2w,!&&

~48!

1@^^VE
.&&•“~2¹2^^w.&&!]

~58!
,

1“•^^VE
.~2¹2w.!&&

~68!
,

5~a2¹2!ĥ,. ~101!

According to the MSR procedure, one obtains the equa
for the long-wavelength covarianceC,8^^w,w,&&[C,,

by functionally differentiating Eq.~101! with respect toh,.
If one writes VE(1)5V̂(1,1̄)w(1̄) @where V̂(1,1̄)
5 ẑ3“d(121̄) or V̂k(t, t̄ )5 ẑ3 ikd(t2 t̄ )#, then one ob-
tains
tics.
tor. We
ith the
e under
Galilean
~a2¹2!] tC
,~1,18!

~18!

1V* ]yC
,~1,18!

~28!

1V̂~1,1̄!C,~ 1̄,18!•“~2¹2^^w,&&!

~38a!

1^^VE
,&&•“[ 2¹2C,~1,18!

~38b!

1d^^self, &&
~48!

/dh~18!1@V̂~1,1̄!C.,~1,18! •

~58a!

“~2¹2^^w.&&!#,1$^^VE
.&&•“@2 ¹

~58b!
2C.,~1,18!#%,

1d“•G ,~1!/dh~18!
~68!

50, ~102!

whereG8^^VE
.(2¹2w.)&& is the flux of vorticity. In the limith→0, the underlined terms vanish for homogeneous statis

The self-interaction term (48) generates a nonlinear damping rate that renormalizes the linear long-wavelength propaga
shall not work out that effect explicitly for two reasons: first, our goals here are merely to show consistency w
systematic, fully renormalized calculations we have already done in Sec. III and to identify the key terms that contribut
long-wavelength modulation to the final answer; second, the resulting Eulerian renormalizations would not be random
invariant. However, upon Legendre transforming fromh to ^^w&&h , the derivative in term (68) of Eq. ~102! becomes

~103!
d
In the limit h→0, cross correlations between long- a
short-wavelength fluctuations vanish to lowest order, so
ignore the last two terms in Eq.~103!. Upon passing to the
physical limit h→0, one then obtains

~a2¹2!] tC
,~1,18!

~18!

1V* ]yC
,~1,18!

~28!

1~renormalized damping!,
~4!

1~a2¹2!Snl,,~1,1̄!C,~ 1̄,18!

(68a)

5~noise!,
~68b!

, ~104!

where

Snl,,~1,1̄!8~a2¹2!21
d“•G,~1!

dP,~ 1̄!
. ~105!
e
The damping rateSnl,, is closely related to the desire

gq . To reduce Eq.~105! further to a Markovian form, one
must introduce the fluctuation-dissipation ansatz

Cq~ t, t̄ !5Rq~ t; t̄ !Cq~ t ! ~ t> t̄ ! ~106!

~see discussions in Refs.@37# and @20#! and consider Eq.
~104! for equal timest85t. With C(t,t)[C(t), one there-
fore finds

] tCq~ t !22gqCq~ t !5 . . . , ~107!

where
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gq82ReE
2`

t

d t̄ Sq
nl,,~ t; t̄ !Rq

,~ t; t̄ !* ~108a!

52S 1

aq1q2D ReE
2`

t

dt8
d~“•Gq!~ t !

dPq~ t8!
Rq* ~ t;t8!.

~108b!

We have dropped the, superscript onGq , Pq , andRq be-
cause theq subscript already denotes the long-wavelen
projection. The factor ofRq in Eq. ~108b! is the formalism’s
way of introducing the long-wavelength autocorrelation tim
;hq

21 , which is required because the short-wavelen
modesk andp are interacting nonlinearly with modeq. Ul-
timately, it will be seen that the presence ofRq is essential in
order to recover expressions involving the correct triad in
action time uk,p,q . ~There is no significant distinction be

tween Rq and Rq
S because small-q modulations cannot be

advected by substantially longer wavelengths.! However,
one can obtain an approximate formula by dropping the t
integral andRq , provided that one then parametrizes t
functional derivative only by space, not time, and inserts
appropriateu by hand. The resulting formula

gq52S 1

aq1q2D Re
d~“•Gq!

dPq
~109!

is essentially the one employed in Ref.@2#, except that those
authors differentiated with respect to the random poten
w̃q . One can show that formulas~108b! and ~109! hold for
generalized HM dynamics as well.

To simplify Eq. ~108b! further, we observe thatG(1) can
be obtained from certain differential operations applied
C(1,2), after which the limit 2→1 may be taken:
h

h

r-

e

e

l

o

G~1!5^^VE~1!•“1@2¹1
2w~1!#&&

5V̂~1,1̄!•“2~2¹2
2!C~ 1̄,2!u251.

The functional differentiation required in Eq.~105! intro-
duces the function

Ĉ~1,2;18!8
dC.~1,2!

dP~18!
. ~110!

Note that by homogeneityĈ(1,2;18) must be a function of
just two spatial difference variables. We shall adopt the c
vention~temporarily ignoring the time arguments and den
ing spatial variables by underlines! Ĉ(1,2;18)5Ĉ(122;1
218). Upon usingk as a wave vector for the. coordinates
1 and 2 and usingq for the , coordinate 18, one has

Ĉ~1,2;18!5(
k,q

eik•(x12x2)eiq•(x12x18)Ĉk;q~ t1 ,t2 ;t8!.

~111!

Upon inserting this into Eq.~108b!, one is finally led to the
general Markovian formula

gq5~aq1q2!21Re(
k

ẑ•~q3k!k2

3E
2`

t

dt8 Ĉk;q~ t,t;t8!Rq* ~ t;t8!. ~112!

An equation forĈ follows by successive differentiation
of Eq. ~100a! with respect toh. andP. Upon differentiating
with respect toh., one obtains
05~a2¹2! ] t

~1!

C.~1,2!1V* ]yC
.

~2!

~1,2!1
d

dh.~2!
~self terms!.

~3!

~1!1V̂~1,1̄!C.~ 1̄,2!•“@2¹2P~1!#

~4a!

1^^VE
.&&~1!•“@2¹2C,.~1,2!

~4b!

1
d

dh.~2!
“•^^VE

.~2¹2w,!&

~4c!

1V̂~1,1̄!C,.~ 1̄,2!•“@2¹2P.~1!#

~5a!

1^^V E
,&&•“@2¹2C.~1,2!

~5b!

1
d

dh.~2!
“•^^V E

,~2¹2w.!&

~5c!

, ~113!

where the mean fields have again been underlined. Upon differentiating this result with respect toP(18), one finds

05~a2¹2! ] t

~1!

Ĉ~1,2;18!1V* ]yĈ ~
~2!

1,2;18)1~self terms!
~3!

1V̂~1,1̄!Ĉ~ 1̄,2;18!•“@2¹2P~1!#

~4a!

1V̂~1,1̄!C.~ 1̄,2!•“@2¹2d~1218!#

~4a!

1
d^^VE

.~1!&&

dP~18!
•“@2¹2C,.~1,2!

~4b!

1^^VE
.&&•“S 2 ¹2

~4b! dC,.~1,2!

dP~18!
D

1@ term ~4c!#1V̂~1,1̄!
dC,.~ 1̄,2 )

~5a!

dP~18!
•“@2¹2P.~1!#1V̂~1,1̄!C,.~ 1̄,2!•“S 2¹2

dP.~1!

dP~18!
D~5a!

1V̂~1,18!•“@2¹2C.~1,2!

~5b!

1VE
,~1!•“@2¹2Ĉ~1,2;18!#

~5b!

1@ term ~5c!#. ~114!
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Later we shall differentiate this equation yet again, so ke
ing track of the mean fields is important. However, f
present purposes one can obtain the equation for the phy
Ĉ by setting the mean fields and cross correlations to z
Thus, upon moving terms not involvingĈ to the right-hand
side and indicating nonlinear renormalizations by•••, one
obtains

~a2¹1
2!] t1

Ĉ~1,2;18!1V* ]y1
Ĉ~1,2;18!1•••

52V̂~1,1̄!C.~ 1̄,2!•“@2¹2d~1218!#

2V̂~1,18!•“@2¹2C.~1,2!#. ~115!

The spatial Fourier transform of Eq.~115! is

] tĈk;q~ t1 ,t2 ;t8!1 iV2p
lin Ĉk;q~ t1 ,t2 ;t8!1•••

5 ẑ•~k3q!Ak;q~ t1 ,t2!d~ t12t8!, ~116!

wherep82k2q,

Ak;q~ t1 ,t2!8~ap1p2!21~q22k2!Ck
.~ t1 ,t2!, ~117!

andVk
lin is the linear diamagnetic frequency defined by E

~7a!. For Eq. ~112!, one requires Ĉk;q(t,t;t8). Now
] t Ĉ (1,t,2,t;18) 5 @] t1

Ĉ(1,2;18) 1 ] t2
Ĉ (2,1;18)#u t15t25t ,

and from Eq.~111! one hasĈ(2,1;18)k;q5Ĉp;q(t2 ,t1 ;t8).
Thus one obtains

] tĈk;q~ t,t;t8!2 iVp
linĈk;q~ t,t;t8!2 iVk

linĈp;q~ t,t;t8!1•••

5Sk,p;q~ t !d~ t2t8!, ~118!

where

Sk,p;q~ t !8 ẑ•~k3q!@Ak;q~ t,t !2Ap;q~ t,t !# ~119!

is symmetric ink andp. From Eq.~118! follows an equation
for the desired quantityCk;q(t;t8)8Ĉk;q(t,t;t8)Rq* (t;t8):

] tCk;q~ t;t8!2 i ~Vk
lin1Vp

lin1Vq
lin!Ck;q~ t;t8!1•••

1 iVk
lin@Ck;q~ t;t8!2Cp;q~ t;t8!#50 ~ t.t8!,

~120!

with initial condition Ck;q(t8;t8)5Sk,p;q(t). Were it not for
the Ck;q2Cp;q[DCk,p;q term, the operator on the left-han
side of Eq.~120! would be identical to the complex conju
gate of the one that defines the inverse of the triad interac
time. However, we will show that the contribution of th
term to the final answer vanishes. To do so, we integrate
~120! over t8t2t8 and define C̄8*0

`dtC(t). One can
verify that C(`)50. Therefore

~uk,p,q* !21C̄k;q1 iVk
linD C̄k,p;q5Sk,p;q . ~121!

From Eq.~121!, form an equation forD C̄ by interchangingk
andp and subtracting the resulting equations. The right-ha
side vanishes becauseS is symmetric, so one obtains
-

cal
o.

.

n

q.

d

~uk,p,q* !21D C̄k,p;q1 i ~Vk
lin2Vp

lin!D C̄k,p;q50. ~122!

The unique solution of this homogeneous linear equation
D C̄k,p;q50. Therefore the solution of Eq.~121! is

C̄k;q5uk,p,q* Sk,p;q . ~123!

Upon inserting this into Eq.~112!, one finds

gq52~aq1q2!21Re(
k

~ ẑ•q3k!2k2uk,p,q~Ak;q2Ap;q!

~124a!

5~aq1q2!21 (
k,p large

dk1p1q~ ẑ•q3k!2

3~p22k2!uk,p,q
r Ak;q . ~124b!

Upon recalling the definitions~43! of uk,p,q
(E) , ~117! of Ak;q ,

and ~13! of Wk , one readily finds

gq5
1

4
q2 (

k,p large
dk1p1q sin2b~p22k2!~q22k2!uk,p,q

(E) Wk .

~125!

This result is identical to the formula forgq that follows
from Eq.~84! by dropping the bars and retaining only theWq
term.

This calculation is merely an extensive consistency che
It shows the equivalence between~i! the direct method of
renormalizing all interactions at once, then extracting
contributions due to interactions between disparate sca
and ~ii ! an initial filtering into short- and long-wavelengt
components, followed by renormalization of this extend
multicomponent system.~We did not perform all renormal-
izations in detail here, being content to display the flow
the logic and to identify the particular terms that contribu
to the final answer.! In its raw form, it does not provide
algebraic simplifications over the direct method. However
does illustrate the variational procedure for obtaining sta
tical equations. We shall now use that procedure to give
alternate derivation of formula~125! based on a nonlinea
statistical Poynting theorem.

V. THE LONG-WAVELENGTH GROWTH RATE
FROM RIGOROUS ENERGETICS

The authors of Ref.@2# advocated a method of calculatio
based on a quasilinear wave-energy or Poynting-theorem
proach. As we discussed in Sec. I C, their results are no
complete agreement with ours, either in mathematical de
or, more importantly, in physical interpretation, so it is us
ful to examine their procedure in detail. We shall first pr
ceed systematically, using the techniques of renormali
field theory introduced in the last section, and show how o
can recover the correct long-wavelength growth rategq @Eq.
~69a!# to dominant order ine. ~With extra work, one can also
recover the noise terms, but we omit those details as the
not add additional insight.! Subsequent discussion and he
ristic examples will demonstrate why interpretations and
gorithms based on linear physics fail.
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A. A nonlinear statistical Poynting theorem

We shall derive a nonlinear energy-conservation theor
The use of such theorems is well established in statist
plasma theory. Dupree and Tetreault@41# discussed deficien
cies of standard resonance-broadening theory with respe
energy conservation. Similon@42# showed in detail why the
DIA was properly energy conserving and why various si
pler closures such as resonance-broadening theory were
Krommes@19# reviewed the general procedure of obtaini
statistical energy-conservation theorems in the context of
magnetized Vlasov dynamics. The fundamental operatio
to multiply the continuity equation for fluctuating charg
density by the fluctuating potential, then average over sp
and integrate by parts, thereby obtaining an expression
the time rate of change of the mean fluctuation energy. N
if such a procedure is applied to the basic HM equation
the absence of linear growth or dissipation, a trivial resul
obtained: one merely finds that total energy does not evo
at all under the action of either the linear or nonlinear term
Put another way, fluctuation energy evolves because
Ohmic heatinĝ d j•dE&. For perpendicular currents compri
ing polarization and gyrocenter contributions, t
^d j'•dE'& term vanishes and only the dissipative parts
^d j idEi& ~Landau damping or collisions! contribute; how-
ever, those effects are omitted in the basic HM model.

Nevertheless, thegq arising from the interaction with the
short scales does not vanish even forqi50, as energy can be
transferred from short to long perpendicular scales. To ob
that effect, one can develop a statistically averaged ene
conservation law or Poynting theorem that applies spe
cally to the short scales. To do so, multiply Eq.~100a! by
w., average over the short-scale statistics and integrate
the short spatial scales~jointly indicated by an overbar!, and
integrate by parts. Note that the short-scale averaging iscon-
ditional on the long-wavelength field or statistics. The int
gration by parts introduces surface terms, which we s
ignore in the following discussion. The first term arisin
from Eq. ~100a! gives] tĒ., where

Ē.8
1

2
@a~w.!21u“w.u2#. ~126!

If one had averaged as well over the long-wavelength sta
tics and ignored additive sourcesh, then formula ~126!
would reduce to the standard result

E5^Ē.&5
1

2 (
k

~ak1k2!Ck5(
k

sk
(E)Ck ; ~127!

however, in the absence of such averaging and in the p
ence of external sources, the statistical ensemble is inho
geneous and it is preferable to work with the form~126!. The
second, linear diamagnetic term of Eq.~100a! does not con-
tribute because of periodicity in they direction. The third and
fourth terms do not contribute because, after integration
parts, one obtains the constructionE.

•VE
.50. The fifth

term, however, contributes
.
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w.
“•@V E

,~2¹2w.!#5E.
•V E

,~2¹2w.! ~128a!

52E,
•Ḡ., ~128b!

where the last result was obtained by interchanging a dot
cross product. We thus obtain the conditionally averag
Poynting theorem

] tĒ.5E,
•Ḡ.1O~ ĥ.!. ~129!

B. Long-wavelength growth from second-order energetics

Equation~129! can be used to obtain a new expression
the mean fluxG8^Ḡ.&, whose first-order response is re
quired in Eqs.~108b! or ~109! for gq . Again, we stress tha
Eq. ~129! describesconditionally averagedstatistics. To
complete the statistical averaging, one must average
~129! over the statistics ofE,:

] tE5^^E,&&•G1^^E,
•G&&1O~ ĥ.!. ~130!

We shall ignore the cumulant^^E,
•G&&, which contributes

renormalization effects that can be inserted heuristica
~From the work in Sec. III, one already knows the corre
fully renormalized result.! Thus, we work with the statisti-
cally averaged Poynting theorem

] tE'^^E,&&•G1O~ ĥ.!. ~131!

One can extract a formula fordG/dP,[Ĝ by two functional
differentiations of Eq.~131!. A first functional derivative
with respect toP,(18) gives

]

]t S dE~1!

dP,~18!
D '^^E,&&~1!•Ĝ~1;18!2“d~1,18!•G~1!.

~132!

Another derivative with respect toP,(19) leads in the limit
h→0 to

]

]t S d2E~1!

dP,~18!dP,~19!
D '2@“d~1,19!•Ĝ~1;18!

1~18⇔19!#. ~133!

Upon defining Ê̂(1;18,19)8d2E(1)/dP,(18)dP,(19)

5 Ê̂(1218,1219,t;t8,t9)→Ê̂q8,q9(t;t8,t9), one finds that
the Fourier transform of Eq.~133! obeys

] t Ê̂q8,q9~ t;t8,t9!'2@ iq9•Ĝq8~ t;t8!d~ t2t9!

1 iq8•Ĝq9~ t;t9!d~ t2t8!#. ~134!

Thus a first-order flux increment leads to asecond-orderen-
ergy variation.~The physics is no different from the familia
result that Ohmic heating is a second-order effect.! This sug-
gests an alternative method of calculation in which one
rectly computes the second-order energy, then infers
first-order flux variation that definesgq . This was the proce-
dure used in the heuristic algorithm of Sec. II.
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We now demonstrate in detail that the energy meth
leads to consistent results. Two procedures can be use
extract iq•Ĝq(t;t8) from Eq. ~134!. One way is to setq8
5q95q and t95t8; then, somewhat informally,

iq•Ĝq~ t;t8!52
1

2
] t Ê̂q,q~ t;t8,t8!/d~ t2t8!. ~135!

However, this route is not the best: in addition to the form
difficulty of dividing by a Diracd function, the choiceq8
5q95q corresponds to two differentiations with respect

Pq and leads togq}1] t Ê̂q,q ~with a counterintuitive sign!,
whereas from the calculations in Sec. II it appears more n
ral to differentiate once with respect toPq and once with
respect toPq* . Therefore, a more intuitive and also mo
mathematically justifiable procedure is to ordert.t8.t9 and
to obtain the coefficient of the firstd function in Eq.~135! by
integration. Upon settingq85q andq952q, one finds

iq•Ĝq~ t;t8!5E
2`

t82e
dt9] t Ê̂q,2q~ t;t8,t9! ~ t.t8!

~136!

Upon inserting this result into formula~108b!, one finds

gq'2S 1

aq1q2D E2`

t

dt8E
2`

t82e
dt9

3@] t Ê̂q,2q~ t;t8,t9!#Rq* ~ t;t8!. ~137!

The overall minus sign in this formula is physically sensib

since Ê̂ describes the second-order energy variation of
small scales whereasgq refers to the long wavelengths.

Let us show that formula~137! reduces to our previou

result ~112!. An equation forÊ̂ follows by differentiation of
Eq. ~114! with respect toP,(19), Fourier transformation
and summation over the largek’s. Upon differentiating Eq.
~114! and setting to zero all mean-field and cross-correlat
terms, one obtains

05~a2¹2!] tĈ̂~1,2;18,19!1V* ]yĈ̂~1,2;18,19!1•••

1V̂~1,1̄!Ĉ~ 1̄,2;18!•“@2¹2d~1,19!#1~18⇔19!

1V̂~1,18!•“@2¹2Ĉ~1,2;19!#1~18⇔19!. ~138!

With Ĉ̂(1,t1 ,2,t2 ;18,t8,19,t9)5 Ĉ̂(122,t1 ,t2 ;1218,t8,1

219,t9)→ Ĉ̂k;q8,q9(t1 ,t2 ;t8,t9), Eq. ~138! becomes

] t1
Ĉ̂k;q8,q9~ t1 ,t2 ;t8,t9!

52 iVk1q81q9
lin Ĉ̂k;q8,q91

1

a1uk1q81q9u2
$ẑ•~k1q8!

3q9~q922uk1q8u2!Ĉk;q8~ t1 ,t2 ;t8!d~ t2t9!

1@~q8,t8!⇔~q9,t9!#%. ~139!
d
to

l

u-

,

e

n

From ] tĈ̂k;q8,q9(t,t;t8,t9)5] t1
Ĉ̂k;q8,q9(t1 ,t2 ;t8,t9)u t15t25t

1@k→2(k1q81q9)#, one obtains

] tĈ̂k;q,2q~ t,t;t8,t9!5~ak1k2!21ẑ•~q3k!

3@~q22p2!Ĉk;q~ t;t8!

2~q22uk2qu2!Ĉ2k;q~ t;t8!#d~ t2t9!

1~q,t8!⇔~2q,t9!. ~140!

~Note that the linear terms have canceled out.! Upon multi-
plying by 1

2 (ak1k2) and summing overk to form the short-
wavelength energy, one simplifies this to

] t Ê̂q,2q~ t;t8,t9!5(
k

ẑ•~q3k!~q22p2!

3@Ĉk;q~ t;t8!d~ t2t9!

1Ĉ2k;2q~ t;t9!d~ t2t8!#. ~141!

According to Eq. ~136!, the coefficient of d(t2t9) is
iq•Ĝq(t;t8). Thus formula~137! becomes

gq5S 1

aq1q2D Re(
k

ẑ•~q3k!~p22q2!

3E
2`

t

dt8 Ĉk;q~ t;t8!Rq* ~ t;t8!. ~142!

Now p22q25k212k•q. One can verify that thek•q term
vanishes under thek summation by symmetry and reality
the resulting formula forgq is identical to Eq.~112!, proving
the equivalence of the energy method with the original d
nition based on first-order flux.

VI. CONDITIONAL AVERAGING AND THE WAVE
KINETIC EQUATION

A feature of the calculations in both Secs. IV and V is th
they all lead, though through somewhat different algebr
routes, to a general formula forgq that includes terms of al
orders ine. On the other hand, the heuristic algorithm pr
sented in Sec. I C directly produces the lowest-order term
the e expansion. It is of interest to understand why this ha
pens and how various heuristic algorithms follow from t
formal theory.

The fundamental distinction is that the formal methods
Secs. IV and V, involving unconditional averages over bo
short- and long-wavelength statistics, deal with a homo
neous statistical ensemble from the outset, whereas the
ristic algorithms~and a generalization thereof, a more form
conditional averaging procedure to be discussed below! refer
to the response to a random potential and therefore w
with a necessarily inhomogeneous ensemble~conditional on
the statistics ofw̃q). The methods differ in the way in which
inhomogeneity is exploited to obtain information about t
statistics.

In the homogeneous ensemble, it is necessary to break
symmetry ‘‘by hand,’’ via the external sourcesh, in order to
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enable functional derivation to probe successively finer
finer details of the statistics. Legendre transformation fromh
to ^^w&& enables one to close the statistical equations an
establish nontrivial functional relations between vario
quantities. However, because the functional variations r
to the exact nonlinear dynamics~which generate a spectrum
of interactions involving all orders ine), the final formulas
also contain effects through all orders.

An alternative procedure is to average conditionally o
the short scales, temporarily freezing the statistics of the l
wavelengths. This procedure, which also breaks the sym
try, provides a different way of probing the system. One c
examine the response of the short scales by a WKB ana
that proceeds order by order ine. The lowest-order non-
trivial description is the WKE correct through first order
the long-wavelength gradients. Note that there is no adv
tage to first averaging conditionally, developing a gene
description of inhomogeneous statistics, then finally aver
ing over the long-wavelength statistics; one will merely
led back to the functional relations in the homogeneous
semble and to the general formula forgq . The key to a
reduced description is to truncate the dynamical conten
the outset by working only to, say, first order in the WK
expansion.

A. WKB derivation of wave kinetic equations

WKB techniques for slightly inhomogeneous systems
well known. In the context of classical field theory, a fund
mental reference is the work by Carnevale and Martin~CM!
@37#, who, in the course of a general discussion of Marko
ian statistical closures, attempted to derive WKE’s for t
energy and enstrophy evolution of Rossby waves in an in
mogeneous medium. Although their final equations obey r
sonable conservation properties, close inspection reveal
gebraic errors in their derivations. Furthermore, the gen
form of their spectral evolution equation@Eq. ~150! below#
does not agree with the one implied by the recent work
Smolyakov and Diamond@15#, who used a~superficially!
different method. In order to reconcile the various results,
shall therefore review and reconsider the developmen
CM. We will identify a subtle conceptual error in that othe
wise excellent paper. When corrected, their results ag
with those of Ref.@15#.

As did CM, consider the treatment of the usual Dys
equations for second-order statistics in the presence of w
inhomogeneity. In this section, we will use a caret to dist
guish abstract operators from their coordinate-dependent
nels. Then in operator form the Dyson equations are

] tĈ1ŜĈ5F̂R̂†, ~143a!

] tR̂1ŜR̂51̂. ~143b!

Here Ŝ8 i L̂ 1Ŝnl includes both linear physics and the no
linear coherent damping, and we have writtenF instead
of Fnl to take account of possible external forcing. Opera
products are realized as space-time convolutio
(ÂB̂)(1,18)5(A!B)(1,18)8*d1̄A(1,1̄)B(1̄,18). The pro-
cedure is to find an approximate representation for the c
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volution valid for small deviations from homogeneity. T
illustrate with spatial coordinates only, we introduce

r8x2x8, X8 1
2 ~x1x8! ~144!

and writeA(x,x8)5A(ruX). One now assumes that eitherA
and/orB have a short correlation length inr. Then expansion
in small r/X led CM ~incorrectly in general, as we will ex
plain shortly! to

~ÂB̂!~x,x8!'E dr̄ A~ r̄uX!B~r2r̄uX!

1
1

2
S ]A~ r̄uX!

]X
•~r2r̄!B~r2r̄uX!

2r̄A~ r̄uX! •
]B~r2r̄uX!

]X D ~145!

or, upon Fourier transforming with respect tor,

~ÂB̂!k~X!'Ak~X!Bk~X!1 1
2 i $A,B%. ~146!

Here braces denote the Poisson bracket. Upon general
to include temporal variations, one defines the Pois
bracket of the two functionsA andB ~both with argumentsk,
v, X, andT) as

$A,B%8S ]A

]X
•

]B

]k
2

]A

]k
•

]B

]XD2@~X,k!⇔~T,v!#.

~147!

(X andk play the roles of canonical coordinate and mome
tum, respectively, as doT and2v.! One is led to the Dyson
equations in the form

1
2 ]TCk,v~X,T!1~2 iv1Sk,v!Ck,v

5Fk,vRk,v* 1 1
2 i ~$Fk,v ,Rk,v* %2$Sk,v ,Ck,v%!,

~148a!

~2 iv1Sk,v!Rk,v~X,T!1 1
2 i $2 iv1Sk,v ,Rk,v%51.

~148b!

CM pointed out that under iterative solution of Eq.~148b!
the Poisson-bracket term vanishes through first order, so

Rk,v
21~X,T!'2 iv1Sk,v~X,T!, ~149!

correct through first order in the inhomogeneity.
The spectral balance equation forCk(X,T) follows by

taking the real part of Eq.~148a! and integrating over allv ’s.
The details are given in Ref.@37#. In the Markovian approxi-
mation for which the fluctuation-dissipation ansatz is
voked, one is led to a generalization of Eq.~15! that includes
weak inhomogeneity. We will discuss the nonlinear terms
that equation elsewhere; for present purposes, it is suffic
to consider the explicitly linear terms. Upon approximati

Ŝ' i L̂ and assuming for simplicity thatL5Vk(X,T) ~a real
function independent ofv), one obtains from Eq.~148a!
@43#

]TCk~X,T!2$Vk ,Ck%'0. ~150!
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Explicitly,

2$Vk ,Ck%5
]Vk

]k
•

]Ck

]X
2

]Vk

]X
•

]Ck

]k
~151a!

5
]

]X
•S ]Vk

]k
CkD2

]

]k
•S ]Vk

]X
CkD . ~151b!

This operator is the usual left-hand side of the WKE and
quoted ubiquitously in similar contexts.

Unfortunately,Eq. (150) is incorrect in general. The dif-
ficulty manifests itself when one attempts to construct
conservation laws associated with the statistical dynamic
summing Eq.~150! over k with appropriate weights. Thus
for pure HM or Rossby waves, equations for energy or
strophy evolution follow by multiplying Eq.~150! by sk

(E) or
sk

(W) and summing overk. In so doing, one must not forge
that because those weight factors depend onk they cannot be
cavalierly moved in and out of the Poisson bracket. For
ample, withsW[sk

(W) ,

$Vk ,Ck%5$Vk ,sW
21Wk% ~152a!

5sW
21$Vk ,Wk%1$Vk ,sW

21%Wk, ~152b!

or, as would appear in the equation for] tWk ,

sW$Vk ,Ck%5$Vk ,Wk%1$Vk , ln sW
21%Wk. ~153!

CM mistakenly omitted the underlined correction term
their derivations of both the energy and enstrophy balan
for Rossby waves. However, whereas the second, wa
number derivative term of Eq.~151b! vanishes upon integra
tion overk, the correction term does not. Thus, according
Eq. ~150!, the equation for, say, evolution of total enstrop
would be

]TW~X,T!1
]

]X
•S (

k

]Vk

]k
WkD

5enstrophy-nonconserving term. ~154!

For situations in which enstrophy is, in fact, conserved~as in
the HM interaction between disparate scales studied belo!,
Eq. ~154! is evidently in error. That CM nevertheless o
tained reasonable energy and enstrophy conservation law
the face of an identifiable algebraic error is a symptom t
their underlying WKE~150! is also incorrect.

The difficulty can be traced to a subtle error in the logic
the derivation of the weakly inhomogeneous convolution E

~146!, rewritten here for the applicationÂ→V̂, B̂→Ĉ:

V̂Ĉ'VC1 1
2 i $V,C%. ~155!

Consider the case whereV̂ is itself the product of two op-

erators Â and B̂: V̂5ÂB̂. If Â and B̂ do not commute,

@Â,B̂#8ÂB̂2B̂ÂÞ0, then the Fourier transform of the ke
nel of the product operator,Vk,v(X,T), contains terms of
first order as well as of zeroth order in the gradients; t
first-order contributions are incorrectly neglected in the de
s

e
y

-

-

es
e-

o

in
t

f
.

i-

vation leading to Eq.~155!. For an explicit example, con
sider for arbitrary functionf the expressionf (x)¹x

2C(x,x8)

5(V̂Ĉ)(x,x8), for which

V~x,x8!52 f ~x!¹x
2d~x2x8!. ~156!

One has

V~ruX!52 f ~X1 1
2 r!¹r

2d~r! ~157a!

'2@ f ~X!1 1
2 r•“ f #¹r

2d~r!, ~157b!

or, upon Fourier transforming,

Vk~X!5 f ~X!k21
1

2
“ f •

]~k2!

]~2 ik!
~158a!

5 f k21 1
2 i $ f ,k2% ~158b!

5 f k21 ik•“ f . ~158c!

The contribution from thek•“ f term is absent from Eq
~155!.

A systematic way of incorporating all first-order effects
to note that for the weakly inhomogeneous reduction of m
tiple convolutions the Poisson brackets between all pairs
operators must be included. This can be proved directly,
should be clear since otherwise the result will not respect
appropriate symmetry. For example,

ÂB̂Ĉ'ABC1 1
2 i ~$A,B%C1$A,C%B1$B,C%A!,

~159!

where the quantities on the right-hand side are ordinary fu
tions of k andX ~and, in general, ofv andT). ~Since such
functions commute, the ones outside the Poisson brac

can be placed either to the left or the right.! With V̂8ÂB̂,
Eq. ~159! can be rewritten as

V̂Ĉ'VC1 1
2 i ~$V,C%1$A,B%C!. ~160!

When applied to the above example~156! with Â5 f , B̂
52¹2, the underlined correction term$A,B%C reproduces
the contribution from the last term of Eq.~158c!.

B. Wave kinetic equations for pure and generalized
Hasegawa-Mima dynamics

Let us now apply these considerations to the spec
problem of the interactions of disparate scales in HM dyna
ics. To derive an approximate dynamical equation valid
lowest nontrivial order in the long-wavelength gradients,
neglect in Eq.~100a! the second term~it does not contribute
to the WKE!, the third term~short-wavelength renormaliza
tion effects!, and the fourth term~of higher order in the long-
wavelength gradients!. For pure HM dynamics, we thus con
sider the dynamical equation

] tw1 i V̂w50, ~161!

where
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i V̂8@~12¹2!21#@V̄~x,t !•“#@2¹2#, ~162!

w[w., V̄[VE
, , and“•V̄50. Now i V̂ can be considered

to be the product of the three operators delimited by
brackets in Eq.~162!. ~Strictly speaking,V̄ and“ are sepa-
rate operators, but since they commute becauseV̄ has zero
divergence, there is no need to consider them indep

dently.! ThusV̂5ÂB̂Ĉ, where

Â8~12¹2!21→~11k2!21, ~163a!

B̂82 i V̄•“→k•V̄~X,T!, ~163b!

Ĉ82¹2→k2. ~163c!

Upon temporarily writing the correlation function asD rather
thanC, one has

V̂D̂'VD1 1
2 i $V,D%1 1

2 i ~$A,B%C1$A,C%B1A$B,C%!D,

~164!

where the zeroth-order frequency is

Vk~X,T!5k•V̄~X,T!k2/~11k2!. ~165!

Now $A,C%50 @in general,$ f (E),g(E)%50, wheref andg
are arbitrary functions of an operatorE; here bothA andC
are functions ofk2#; however, the Poisson brackets$A,B%
and $B,C% contribute corrections becauseV̄ depends onX.
Thus

$A,B%C52
]

]k S 1

11k2D •“~k•V̄!k2 ~166a!

52k•“Vk /~11k2! ~166b!

@Eq. ~165! was used to rewrite the final result# and

A$B,C%5S 1

11k2D“~k•V̄!•
]~k2!

]k
~167a!

52k•“Vk /k2. ~167b!

The coefficients of Eqs.~166b! and ~167b! add as

1

11k2
1

1

k2
5

112k2

k2~11k2!
5

1

2k

]

]k
ln sW , ~168!

so the total correction to the basic wave kinetic Poiss
bracket$V,D% can easily be found to be

$V, ln sW%D52$V,sW
21%W. ~169!

This exactly cancels the enstrophy-nonconserving term
tained in Eqs.~152b!–~154!, leading one to the final WKE

]TCk2sW
21$Vk ,Wk%50 ~170a!

@compare Eq.~150!# or the trivially related one
e

n-

n

b-

]TWk2$Vk ,Wk%50. ~170b!

This last enstrophy-conserving equation agrees with a re
of Smolyakov and Diamond@15# for pure HM dynamics.
Those authors derived their formulas by working with a Fo
rier representation of theX dependence; the presentX-space
method is arguably cleaner and easier to apply in gen
situations.

The same technique applies to the generalized HM pr
lem. According to Eq.~14!, the basic advection equation fo
the kiÞ0 potential is

] tw̆1~12¹2!21V̄•“@~12¹2!w̆#50. ~171!

The basic frequency is therefore@15#

Vk~X,T!5k•V̄. ~172!

The operatorsÂ and B̂ are as before, but nowĈ512¹2

5Â21. One finds

$A,B%C5A$B,C%5
2k•“Vk

~11k2!2
, ~173!

the total correction$V, ln sZ%D, and theZ-conserving WKE

]TZk2$Vk ,Zk%50. ~174!

Again, this agrees with a result of Ref.@15#.

C. Physical interpretation of energy nonconservation:
The significance ofgk

„1…

Although the appropriate invariant is conserved under
modulational interaction, energy is not; we illustrate for pu
HM dynamics. Thus, upon multiplying Eq.~170a! by s (E),
one has

]TEk2k22$Vk ,k2Ek%50 ~175!

or

]TEk5$Vk ,Ek%12gk
(1)Ek , ~176!

where

gk
(1)8 1

2 $Vk , ln k2%5k•“Vk /k2. ~177!

@The (1) superscript reminds one thatgk
(1) is linearly propor-

tional to V̄.# Although the first term on the right-hand side
Eq. ~176! is now in conservation form, thegk

(1) term does not
conserve energy.

A physical interpretation ofgk
(1) follows by considering

the ray equation for wave numberk in a weakly inhomoge-
neous medium governed by frequencyVk(X):

dk/dt52“Vk . ~178!

Then

d~k2!/dt522k•“Vk522gk
(1)k2. ~179!
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FIG. 7. Illustration of the
mechanism underlyinggk

(1) and
the ray equation~178!. On the left
is plotted cos@kx2V(x)t# for
V(x)5x at t50 ~solid line! and
t50.6 ~dashed line!; the effective
wave number decreases ast in-
creases. On the right is the resu
of a Gaussian wave-number su
perposition of such cosines. Th
spatial narrowing of the wave
packet is not properly described a
shearing.
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gk
(1) thus describes the logarithmic rate of wave-number e

lution due to the inhomogeneity induced by the lon
wavelength modulation. This same result follows by cons
ering the potential

w~x,t !5w0cos@k•x2V~x!t# ~180!

and calculating the mean-square gradient averaged ove
initial wavelength. Since “w52(k2t“V)w0 sin(k•x
2Vkt), one finds that through first order in the gradient

k̄28u“wu2/w̄2522k•“Vt, ~181!

which reproduces Eq.~179!. The effect is illustrated in Fig
7. Note that it exists fork-independentV, i.e., for vanishing
group velocity.

Now since enstrophyW is conserved andWk5k2Ek , one
has heuristically

Ẇk505~ k̇2!Ek1~k2!Ėk , ~182!

or

Ėk52gk
(1)Ek . ~183!

More formally, this last result is to be understood in t
sense of the integration of Eq.~176! over k andX:

]TĒ52(
k

gk
(1)Ek. ~184!

We must emphasize that the physics content of this
cussion is entirely compatible with the one given by Kraic
nan@5# in his interpretation of negative eddy viscosity in 2D
In particular, Kraichnan recognized the importance of wa
number evolution, although he studied a particular exam
Our modest contribution is to give a more general discuss
that shows how that effect arises in the general contex
WKE’s. Also note that if the calculations of this section a
repeated for generalized HM dynamics the only changes
to replacek2 by k̄2 andW by Z.
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the
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D. Justification of the heuristic energy algorithm for gq

These considerations provide the justification for the h
ristic energy algorithm described in Sec. II. Formula~29!
follows from Eq.~137!. A virtue of the formal derivation is
that the nonlinear mode-mode interaction time is hand
systematically; cf. the presence ofRq in Eq. ~137!. For heu-
ristic manipulations, one may introduce that by hand. F
example, for the contribution of one long-wavelength Fo
rier componentq to the enstrophy evolution, Eq.~170b! gen-
eralizes to

]TWk1~uk,2k,q
r !21Wk5$Ṽk ,Wk%, ~185!

where we now recognize that theV̄[VE
, in Eq. ~165! is

created by the random long-wavelength potential, so

write Ṽk instead ofVk . ~We specifically do not includeVk
lin

in view of the discussion in Sec. III C of theqvgr,k
lin term.!

The evolution of the short-wavelength energyE ~summed
over largek and integrated overX) can be obtained mos
conveniently from Eq.~176!:

]TE52(
k

g̃k
(1)Ek, ~186!

although exactly the same result could be obtained from
~170b! by dividing byk2, then integrating by parts under th
k sum~as was done in Sec. II!. If one notes thatṼ is of first
order inw̃,, it is clear that the second-order variation of E
~186! obeys

]TÊ̂52(
k

~k•“V̂k;q /k2!* Êk;q ~187a!

52(
k

1

k4
~k•“V̂k;q!* Ŵk;q . ~187b!

Since Eqs.~176! and ~170b! are equivalent, one may us
either to calculate the first-order variationsÊ or Ŵ; it is most
convenient to use Eq.~170b!. The associated algebra wa
performed in Sec. II; the only difference is that, where
there we heuristically asserted that one should integrate
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time-dependent enstrophy equation~38! over the mode-mode
interaction timeuq,k,2k

r , more systematically one shoul
solve Eq.~185! in steady state.

E. Fokker-Planck interpretation of the short-scale spectral
evolution

Both the conservation ofQk under long-wavelength ad
vection as well as the form of Eq.~66! suggest that a Fokker
Planck description of the large-k wave packets is appropri
ate, withQk playing the role of a probability density functio
for k. The general form of a Fokker-Planck equation is

]Qk

]T
52

]

]k
•~VkQk!1

]

]k

]

]k
:~DkQk!, ~188!

where

Vk8 limDT→ ‘‘0’’ ^Dk&/DT

and Dk8 limDT→ ‘‘0’’ ^DkDk&/2DT, Dk being the incremen
of the random Lagrangian wave number in a short timeDT.
The quotes in the notationDT→ ‘‘0’’ mean that DT must
remain larger than the appropriate autocorrelation tim
which in this case isuq,k,2k

r . Now in the presence of the

slowly varying advection frequencyṼk one has the ray equa

tions ~Hamiltonian in form, withṼk playing the role ofH)

dX

dT
5

]Ṽk

]k
[Ṽgr,k , ~189a!

dk

dT
52“Ṽk . ~189b!

BecauseṼk is random and has zero mean,X does not vary to
zeroth order, so correct to first order one has

Dk(1)52E
T

T1DT

dT8“Ṽk~X,T8!. ~190!

Upon averagingDk(1)Dk(1) overX as well as the statistics o
w̃q , one readily finds thatDk is given by Eq.~67a!. Upon
working out the second-order contribution to^Dk& from the
first-order correction toX due to wave-packet propagatio
described by Eq.~189a!, one finds a contributionDVk
5]k•Dk , which when subtracted from the last term of E
~188! converts it to standard diffusion form@the first term of
Eq. ~66!#; this is a well-known consequence of Hamiltonia
dynamics. Finally, we expand the total time derivative in E
~189b! to nonlinear order,

d

dT
5

]

]T
1Ṽgr,k•“, ~191!

and find the second-order contribution to^Dk& due to wave-
packet advection to be

^Dk(2)&52E
T

T1DT

dT8^Ṽgr,k
(1) ~T8!•“k(1)~T8!&. ~192!
,

.

.

Upon calculating the resultingVk , one is led to the second
drag term in Eq.~66!. @Note that the potentials that contrib
ute in mean square to Eq.~192! are those of thesmallscales.#
It can be shown that the diffusion and drag terms also foll
from detailed statistical analysis of the random WKE forQk .
It was already noted in Ref.@2# that a ‘‘quasilinear’’ analysis
of that equation led to the wave-number diffusion effect. T
present calculations extend that analysis to include
proper mode-mode interaction time and the drag effect; t
highlight the roles of the random ray equation~189b! and the
first-order distension rateg̃k

(1) .
A useful analogy is to the classical plasma collision o

eratorsCss8 for electron-ion and ion-electron scattering.Cei
andCie are not individually energy conserving, but do co
serve kinetic energy when summed over species. Our ex
sion parametere8q/k is analogous to the small paramet
me /mi in the classical problem, with smallq’s being analo-
gous to light electrons and largek’s being analogous to
heavy ions. In classical kinetic theory,Cie obeys a Fokker-
Planck equation just as doesQk in the present problem. The
Dk term in Eq.~66! is analogous to velocity-space diffusion
the G term is analogous to polarization drag. Interactions
comparable scale, which we do not study in this paper,
analogous toCee andCii . Some more detailed discussion
such analogies, including the relationship of incoherent no
to polarization drag, was given in Ref.@44#.

F. A heuristic algorithm based on first-order flux

Finally, we shall describe a heuristic algorithm based
first-order variation of the flux. Because there are so
subtle points, it is useful to first discuss some issues rela
to particle transport in thedissipativeHM system, without
worrying about the functional variation that must be taken
obtain the ultimate answer for the nonlineargq . The gener-
alization to the nonlinear vorticity transport that determin
gq will then be straightforward.

Consider the HM system in the presence of nonadiab
electron response. For convenience, we repeat that here

] tni
G1V* ]yw1VE•“ni

G50, ~193a!

ni
G1ni

pol5ne5~12 i d̂ !w, ~193b!

where ni
pol8¹2w and all variables represent fluctuation

@We are not concerned here with the nonadiabatic respo
of ki50 modes, so we merely write a 1 rather thanâ on the
right-hand side of Eq.~193b!.# In Eq. ~193b!, d̂ is a time-
independent operator in real space whose Fourier transf
is dk.0. For smalldk , the system~193! supports a norma
mode at frequencyvk

lin5Vk
lin1 igk

lin , whereVk
lin is approxi-

mately given by Eq.~7a! and

gk
lin/Vk

lin'dk /~11k2!. ~194!

With the aid of Poisson’s equation~193b!, one can easily
show that the mean gyrocenter fluxes for either electron
ions are equal; that is, the gyrocenter transport is intrinsic
ambipolar on the average. We are interested in several
ferent ways of obtaining the formula for the unique fluxG.
In method 1, we make a direct calculation ofGe ~and also
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use the GK Poisson constraint to show thatG i5Ge). In
method 2, we calculateG i by first introducing the ion gyro-
center susceptibility, a technique employed in Refs.@45# and
@2#. There are instructive subtleties in this latter approach

In general, one has

Gs
G5^VE,x~x,t !ns

G~x,t !&. ~195!

Almost invariably this function is taken to be independent
fast space and time, so that Fourier representations ca
introduced. Thus

Gs
G5 i(

k
ky^ns,k

G ~ t !wk* ~ t !& ~196a!

5 i(
k
E

2`

` dv

2p
ky^ns,k

G wk* &~v!.

~196b!

In Eq. ~196b!, v is real. The notation̂A B&(v) means the
Fourier transform with respect tot of ^A(t1t)B(t)&.

For the electron flux in method 1, one simply substitu
dne,k5(12 idk)wk into Eq. ~196a!, obtaining

Ge
G5(

k
kydkCk~T!, ~197!

where in steady stateCk(T) would be independent of th
slow timeT. The same result is obtained forG i

G if one sub-
stitutes dni

G52dni
pol1dne , because the ion polarizatio

density2k2dwk,v is in phase with the potential and does n
contribute on the average. Observe that nowhere in this
culation did the ion gyrocenter dynamics or the properties
the linear normal mode of the HM system enter. Of cour
the fluctuation spectrum is not yet determined. But given t
spectrum, the electron flux obtains its value merely by vir
of the specified phase shift between electron density and
tential, and the ion flux realizes that same value by virtue
the constraint enforced by the GK Poisson equation. Th
well-known results are true for arbitrarily large nonlinearit

Now consider method 2. Suppose one introduces the
gyrocenter susceptibilityx i

G(k,v) such that

ni ,k
G ~v!52x i

G~k,v!wk~v!. ~198!

Becausex i
G(k,v) is a causal response function, it is analy

in the upper half of thev plane. The fully nonlinear suscep
tibility is very difficult to compute@19#. However, in linear
theory one readily finds

x i
G~k,v!52S v*

v1 i e D52PS v*
v D1 ipv* d~v!,

~199!

where P denotes the principal value and the positive infi
tesimale ensures causality.~It is a common misconception
that the drift-wave linear ion susceptibility is real.! In order
to use this frequency-dependent function for flux calcu
tions, one must use the frequency-resolved form~196b!.
Thus
f
be

s

t
l-
f
,
t

e
o-
f

se

n

i-

-

G i
G5(

k
E dv

2p
ky Im x i~k,v!Ck~v!. ~200!

It is important to understand that formula~200! is not a
decomposition into normal modes. Indeed, in linear the
the imaginary part of the susceptibility contributes only
zero frequency: Imx i

G(k,v)5pv* d(v). Thus

G i
G5

1

2 (
k

kyv* ~k!Ck~v50!. ~201!

A useful and physically significant alternative form of E
~201! follows by noting that for stationary correlation func
tions C(t), which depend only on time difference, an aut
correlation time is conventionally defined bytac

5C21*0
`dtC(t)5 1

2 C(v50)/C, whereC[C(t50). Thus
the Eulerian,k-dependent autocorrelation time is

tac,k8Ck~v50!/2Ck , ~202!

and formula~201! becomes

G i
G5(

k
ky@v* ~k!tac,k#Ck . ~203!

~One can verify that this corresponds to a turbulent diffus
coefficient with the standard random-walk scalingD
;^dVE

2&tac.)
Formulas~201! and ~203! are not in obvious agreemen

with Eq. ~197!, but we have not yet determined the autoco
relation time or equivalently the spectral intensity atv50.
To do so, we examine the constraint imposed by Poisso
equation~193b!:

2x i
G~k,v!Ck~v!5~11k22 idk!Ck~v!. ~204!

Upon integrating the imaginary part of this equation over
v ’s and noting that (2p)21*2`

` dvCk(v)5Ck , one obtains

2
1

2
v* Ck~v50!52dkCk . ~205!

Thus the rigid constraint imposed by Poisson’s equat
fully determines the autocorrelation time:

tac,k5dk /v* . ~206!

This is exactly what is required in order to bring Eqs.~203!
and ~197! into agreement. It also has an important physi
interpretation. Recall that for a correlation function with fr
quencyV and weak dampingh!V one has

tac5ReE
0

`

dt e2 iVt2ht5
h

V21h2
'

h

V2
~h/V!1!.

~207!

With h→gk
lin andV→Vk

lin , formula ~207! reduces with the
aid of Eq.~194! to the result~206!.

Returning now to the interactions of disparate scales,
can use formula~203! to give an alternative heuristic deriva
tion of the long-wavelength growth rate by replacin
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v* / k̄25V lin by the advection frequencyṼ and using an
appropriate autocorrelation time. It is natural to buildtac,k

from g̃k
(1)8gk

(1)@Ṽ# and Ṽ. For definiteness, we conside

pure HM dynamics. Theng̃k
(1)/Ṽ5k•“ ln Ṽ/k2!1, which is

the proper limit for the use of Eq.~207!. Replaceh by g̃k
(1) ,

V by Ṽ, and the gradients byiq. Then note that

Ṽt̃ac,k5g̃k
(1)/Ṽ→ ik•q/k25 iqkx /k2 ~208!

is independent ofw̃q , so its functional variation vanishes
Now Eq. ~109! states that

gq52~aq1q2!21iq•Ĝq , ~209!

where Ĝq describes the transport ofvorticity k2w, not ion
gyrocenter density. From Poisson’s equation, one hask2w

5(k2/ k̄2)ni
G , so, for use in Eq.~209!, Eq. ~203! must be

corrected by the ratiok2/ k̄2:

Ĝq5q̂(
k

ky~ k̄2Ṽt̃ac,k!S k2

k̄2D Ĉk,q . ~210!

Upon combining Eqs.~208!–~210!, one obtains

gq5S q2

aq1q2D(k
kykxS k̄2

k2D Ĉk;q . ~211!

The first-order variationĈk;q may be calculated from any o
Eqs. ~170a!, ~170b!, or ~176! in the standard way@cf. Eq.
~39!#; one again recovers Eq.~22b!.

This algorithm depends only on the nonline

(w̃-dependent! quantitiesg̃k
(1) and Ṽ, as has been the cas

for all of the algorithms discussed in this article. The pres
discussion suggests how one might be misled into introd
ing the properties oflinear modes into a heuristic algorithm

sinceg̃k
(1)/Ṽ is independent ofw̃q . However, our systematic

derivations from renormalized field theory show that tho
properties are irrelevant. Thus it is physically unjustifiable
obtain the factor ofkx in Eq. ~211! from the relation

kx}S ]D~k,v!

]k D U
v

52S ]v

]k D U
D
S ]D~k,v!

]v D U
k

~212!

~whereD is the linear dielectric function!, as was suggeste
in Ref. @2#. The physics content of this formula is an asser
balance between wave-packet propagation and linear nor
mode energy growth. However, in fact thekx arises from
g̃k

(1) , the quite different physics content of which is the r
equation~189b!. The origin of Eq.~212! is an incomplete
energy-balance equation used in Ref.@45#, as discussed in
Sec. VII.

We conclude this section with some further remarks ab
the frequency-resolved flux formula~196b!. We emphasize
again that the calculations leading to Eq.~206! did not in-
voke normal modes~whose properties are determined by t
real part of the dielectric response!. But suppose one insiste
that, in fact, the shape of the spectrumis determined by the
t
c-

e

d
al-

t

normal modes. For a spectrum with a single eigenmode
v'Vk , a typical Lorentzian form would be

Ck~v!'
1

p S nk

~v2Vk!
21nk

2D 2pCk , ~213!

wherenk must be determined. If the eigenmode is to be w
formed, one must havenk /Vk!1. Then

tac,k5
Ck~v50!

2Ck
'

nk

Vk
2

. ~214!

According to Eq.~194!, this will agree with the exact resul
~206! if one choosesnk5gk

lin ~correct only in the limit of
small gk

lin/Vk).
This result might appear to be intuitively obvious. How

ever, so far the susceptibility calculations have invoked o
properties of linear theory, butlinear theory cannot be in
steady state. Forms like Eq.~213! are really appropriate only
in statistical steady state, in which~i! the precise form of
Ck(v) is not known, and~ii ! nk is a measure of nonlinea
decorrelation processes—not, intrinsically, linear grow
Now the system~193! will not achieve steady state unles
ion damping is added to the dynamics. Assume that has b
done. The exact value of the steady-state flux is still E
~197!. Let us enquire whether properties of the statisti
steady state can be used to reconcile the values ofG i

G and
Ge

G . The general statistical balance equation can be wri
as

Ck~v!5
C̃k~v!

uD~k,v!u2
, ~215!

whereC̃ describes nonlinear incoherent noise. A constra
on the spectral intensity is obtained by multiplying Eq.~215!
by D(k,v):

E
2`

` dv

2p
@x i

G~k,v!1xe
G~k,v!#Ck~v!5E

2`

` dv

2p

C̃k~v!

D* ~k,v!
.

~216!

If the right-hand side were to vanish, the resulting constra
would reconcile the steady-state ion and electron fluxes.
it does not vanish;C̃k(v) both is a positive-definite form
and, being the Fourier transform of a two-sided covarian
has structure in both halves of the complexv plane. There-
fore the nonlinear steady-state theory might appear to vio
the known constraint of ambipolarity. However, this parad
can be easily resolved: The susceptibilities, even in th
fully nonlinear forms, are response functions that descr
infinitesimal perturbations @19# away from steady state
whereas the density fluctuations that appear in the flux
mulas are the actual, finite-sized onesin the steady state
Density is not related to potential via a first-order infinite
mal response function. Therefore, it is inappropriate to
Eq. ~198! anywhere except for linear response. And then
Poisson-equation constraint on the spectrum guarantees
bipolarity.
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In the application of these ideas to the calculation ofgq ,

one is not working with linear theory. However,g̃k
(1) de-

scribes first-order response, which justifies the use of
mula ~203! with Eq. ~208!.

VII. DISCUSSION

The principal goal of this work was to provide, for th
specific example of Hasegawa-Mima dynamics~including
the nonadiabaticki50 response!, systematic, unambiguou
derivations of the contributions to spectral-balance equat
from the random interactions of fluctuations of dispar
scales. We focused on the long-wavelength growth rategq ,
but also found expressions for the incoherent noise acting
the long wavelengths as well as the corresponding diffus
and drag terms in the short-wavelength evolution. Energ
properly conserved between the long and short scales.
general results are summarized by Eqs.~66!–~69!. Somewhat
more explicit formulas forgq are given by Eqs.~22!.

Several~related! systematic procedures were employe
In the first ~Sec. III!, we assumed the validity of the reno
malized Markovian closure formulas~15! and ~16! and ex-
panded them to lowest nontrivial order ine8q/k. In the
second~Sec. IV B!, we explicitly performed the functiona
variations that lead to the Markovian results. In the th
~Sec. V!, we derived a statistical Poynting theorem and us
the functional apparatus to verify that this led to equival
results.

Heuristically, the statistical Poynting theorem shows t
gq is the negative of the variation of the time rate of chan
of the short-wavelength energyE with respect to the long-
wavelength energy; this is a simple consequence of en
conservation. More formally,gq is proportional to thesecond
functional variation of ]TE with respect to the long-
wavelength potential̂wq&. That gq is a second-order func
tional Taylor coefficient shows that intrinsically nonline
random effects are involved; this is consistent with the v
definition of gq .

Previous authors have attempted to invoke the prope
of linear normal modes and susceptibilities in interpret
the structure and content of formulas like~22!. The authors
of Ref. @2# appear to have been motivated by the earlier w
of Diamond and Kim~DK! @45# on poloidal flow generation
due to waves, where an attempt was made to derive a qu
linear Poynting theorem for low-frequency linear norm
modes. DK wrote their result in the form

] tEk1“•Sk1Qk50, ~217!

where Ek is the wave energy density,Sk8(]V lin/]k)Ek is
the linear energy flux, andQk is the dissipation rate. The
subsequently ignoredQk , so found that flow generation wa
driven by the propagation of wave packets at the linear gr
velocity. It is instructive to compare that approach to t
results of the present work. For anyv-independent fre-
quencyVk ~linear or nonlinear!, the rigorous energy conse
vation law for Hasegawa-Mima dynamics is Eq.~176!,
which is explicitly
r-

s
e

n
n
is
he

.

d
t

t
e

gy

y

es

k

si-
l

p

~218!

A partial correspondence between Eqs.~218! and Eq.~217!
can be obtained by identifying 2gk

(1)Ek52Qk . The result of
DK is missing the]/]k term @a consequence of inconsiste
WKB assumptions about the susceptibilityx(k,v) and po-
tential f(k,v) in their Eq. ~1!; they mistakenly ignoredX
dependence ofx, the first term in the second line of Eq
~145!#. However, we have shown thatgq arises specifically
from precisely the terms that were neglected by DK. Th
upon replacing the general frequencyV by the nonlinear one

Ṽ, one finds that the first-order energy variation obeys

]TÊk5“ V̂̃k•
]Ek

]k
1“Ṽk•

] Êk

]k
2

]V̂̃k

]k
•“Ek

2
]Ṽk

]k
•“ Êk12ĝk

(1)Ek12g̃ (1)Êk . ~219!

The first, third, and fourth underlined terms vanish atṼ
50; the second one vanishes because the perturbation
made around a homogenous background. The remaining
terms combine to give

]TÊk5“ V̂̃k•S 1

k2

]Wk

]k D ; ~220!

the physics describes thewave-numberevolution of the
weakly inhomogeneous wave packet, not wave-pac
propagation. Similarly, the second-order energy variat

obeys atṼ50

]TÊ̂k1“•
S ]V̂̃k

]k
ÊkD 2

]

]k
•~“ V̂̃kÊk!52ĝk

(1)Ek . ~221!

Upon summing overk and integrating overX, one is led to
Eq. ~184!, in which only the dissipation term survives. Th
significance of these results is that Eqs.~22! for gq , as well
as theDk term to whichgq is related, do not vanish eve

whenV̂k;q does not depend onk at all ~so the group velocity
vanishes!. Thus calculations or interpretations ofgq or Dk
that invoke a group velocity, such as the use of Eq.~212!, are
incorrect.

Let us now comment on an alternative way of writing E
~22b! for gq . Upon noting that for pure HM the group ve
locity associated with the nonlinear advection obeys

q̂•V̂gr,k5q̂•
]

]k S kyk
2

11k2D 5
2kxky

~11k2!2
, ~222!

one finds that Eq.~22b! can be written as
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gq52S q4

aq1q2D(k
kyq̂•V̂gr,kuq,k,2k q̂•

]Wk

]k
. ~223!

Although this form is mathematically correct for the prese
electrostatic model, we believe that it is misleading in s
eral ways and does not generalize to more complicated
ations. First, since we have calculated the group velo
without electric field, one may be tempted to believe that
long-wavelength growth has something to do with linear n
mal modes; note

q̂•
]

]k S kyk
2

11k2D 52q̂•
]

]k S ky

11k2D , ~224!

whereky /(11k2) is the linear diamagnetic velocity for un
density scale length. However, we have seen that the
physics involves nonlinear interactions having nothing to
with linear eigenmodes. Second, the presence of a group
locity may suggest that the physics arises from some so
balance between wave-packet propagation and fluctua
growth, as suggested in Ref.@45#. Although short-
wavelength wave packets can propagate in response
long-wavelength modulation, the analysis in Sec. VI
shows that forgq the effect vanishes on the average; t
residual energy loss from the large scales arises fromwave-
numberevolution, as described mathematically by Eq.~184!
and explained in physical detail by Kraichnan@5#. Finally, if
for pure HM dynamics the group velocity should be calc
lated from the unit advection frequencykyk

2k2/(11k2),
then for generalized HM dynamics it should be calcula
from the unit frequencyky @cf. Eq. ~172!#; however,
q̂•]k(ky)50, so clearly formula~223! does not hold in gen-
eral.

Thus it is unjustifiable to merely calculate a group velo
ity ~either linear or nonlinear! and somehow insert that int
formula ~223!. What matters is the nonlinear advection fr
quency, which depends on the form of the nonlinear mo
coupling coefficients; note that changes to the linear disp
sion relation leave formulas~22! invariant. Consider, for
example, electromagnetic modifications to the electrost
HM system. Electromagnetic versions of the gyrokine
equation have been discussed by Hahmet al. @46# and Krom-
mes and Kim@47#, among others. Withb84pnTe /B2!1,
the new finite-b effects are field-line bending in the GK
equation and an inductive component to the parallel elec
field. As discussed in Ref.@47#, it is most natural to intro-
duce a covariant description in terms of the two-vec
(w,Ai)

T. The resulting system describes both finit
b-modified drift waves as well as shear Alfve´n waves, but
nonlinearly is somewhat complicated, being in matrix for
For a rough estimate, one may derive a scalar model
focusing on the drift-wave branch. Some simplifications o
cur for b.me /mi . In that limit, a highly approximate gen
eralization of the HM equation (Ti→0) is

~12¹'
2 2d!] tw1 i ~12d!V* ]yw

1VE•“@2¹'
2 1~v* /v!d#w50, ~225!
t
-
u-
y
e
-

ue
o
e-
of
on

a

-

d

-

-
r-

ic

ic

r
-

.
y
-

whered8b(v/ki)
2 and v is to be evaluated at the~well-

known! linear mode frequency

Vk
lin5

~12d!v* ~k!

11k'
2 2d

. ~226!

Finite b thus introduces a frequency downshift, fundame
tally a consequence of a reducedEi due to Lenz’s law in the
presence of field-line bending. The advection frequency t
follows from Eq.~225! is

Ṽk'
k•Vk2/~12d!

11k22d
. ~227!

This is larger than thed50 electrostatic result studied earlie
in the paper, suggesting according to Eq.~22b! that finiteb
enhancesgq ~for b!1). However, the very crude nature o
the approximations made in arriving at Eq.~225! leads us to
caution that this result is extremely preliminary and that
details of Eq.~227! cannot be trusted. For present purpos
we merely use this estimate to illustrate the inequivalence
formulas~223! and ~22b! when Eq.~227! is used.

We return now to the electrostatic results. Our heuris
algorithms employ only the nonlinear advection frequen
and the triad interaction timeuq,k,2k

r ; no linear effects are in
evidence~except through the trivial dependence ofu on
gk

lin). As we noted, the denominator ofR @formula ~26!, the
response function used in Ref.@2# and subsequently@31,32##
contains the linear group-velocity termqvgr,k

lin , whereas no
such term appears inuq,k,2k

r . In the calculations of Ref.@2#,
that term arose from the heuristic use of a wave kinetic eq
tion that included linear effects but was not derived from fi
principles. Now it might be asserted that in the approach
Ref. @2# a multiple-scale approach is used in which only t
statistics of the short and rapid scales are averaged
while the long-wavelength fluctuations evolve on an interm
diate time scale shorter than the autocorrelation timetac,q for
theq fluctuations; if so, then one could reasonably expect
explicit appearance ofqvgr,k

lin . However, in the fully statisti-
cal formalism presented here, the spectral-balance equa
for the short scales emerges only after averaging over
long-wavelength statistics; that is,Vq is a random variable in
the WKE. If that averaging is interpreted as a time avera
then it must be over times longer thantac,q , so one is no
longer studying the intermediate time scale. If the averag
is instead interpreted in the more general ensemble sense
latter objection does not necessarily apply, but averaging
homogeneous ensemble removes certain terms in the m
square and one is not free to calculate averages from non
tematically derived WKE’s. The equivalence between o
heuristic algorithms and the rigorous asymptotic results
Sec. III show~see discussion in Sec. III C! that the linear
propagation must be excluded at lowest order. Note tha
Ref. @48# the explicitqvgr,k

lin term was used in a central way t
drive a parametric instability. While we have not fully an
lyzed the physics of individual realizations on intermedia
time scales, the natural consequences of such an instab
would be to drive steady-state turbulence on long ti
scales. There is no hint of such a parametric drive in
spectral-balance equations we have derived to dominan
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der in e. Of course, those equations are no longer valid
e5O(1), but then the entire calculation ofgq must be re-
considered.

Under very broad circumstances,gq is positive.~For iso-
tropic situations, it is sufficient, although not necessary, t
]Qk /]k,0. More generally,gq.0 if uq,k,2k

r is sensibly in-
dependent ofk; that is the case when the interactions a
dominated by large-scale random shear.! If one speaks in-
stead of eddy viscosity (nq52gq /q2), then the small-q
eddy viscosity~defined in the statistical sense of Kraichn
@5#! is negative in those situations. Chechkinet al. @7# have
recently attempted to calculate an eddy viscosity for Ross
and drift-wave turbulence. Although they find thatnq is
negative in some circumstances, for the case of 2D isotro
Navier-Stokes turbulence they find that it is always positi
That is in disagreement with our results and the earlier on
Kraichnan, which we believe to be correct. In the Appen
we pinpoint the source of the discrepancy.

In summary, our principal results are as follows for ge
eralized Hasegawa-Mima dynamics.

~1! We performed a systematic calculation of the con
butions to the nonlinear growth rategq ~whereq is not re-
stricted to pure zonal flows! due to interactions with shor
scales by direct expansion inq/k!1 of the general formula
~16a! for renormalized damping that emerges from seco
order Markovian statistical closure.

~2! We also calculated the incoherent noise on the lo
wavelengths and, independently, the effects on the s
scales of energy-conserving wave-number diffusion~associ-
ated with gq) and drag ~associated with the incoheren
noise!.

~3! We showed how functional methods can be used
elucidate the physical origins of the various terms.

~4! We derived a statistically averaged Poynting theor
@Eq. ~131!# that shows howgq is related to second-orde
variations of the short-wavelength energy with respect to
long-wavelength potential@Eqs.~137! and ~29!#.

~5! We derived the proper wave kinetic equations for e
ergy and enstrophy evolution, correcting conceptual and
gebraic errors in the classic derivation by Carnevale
Martin @37# and bringing their results into agreement wi
those of Smolyakov and Diamond@15#.

~6! We showed how WKE’s based on the nonlinear a
vection frequency can be used to derive the lowest-or
formula forgq by proceeding from either second-order en
getics or first-order flux.

~7! We stressed the key role of wave-number evolut
and the first-order distension rategk

(1) .
~8! We showed that the use of the interaction timeuq,k,2k

r

rather than the response function~containing qvgr,k
lin ) em-

ployed in Ref.@2# and elsewhere is essential to provide
consistent description of the lowest-order physics.

~9! We emphasized thatuq,k,2k
r must be constructed from

renormalized damping rateshk
S that respect random Galilea

invariance.
~10! We pinpointed the source of the discrepancy in

value of the eddy viscosity between our own work and t
of Refs.@8# and @7#.

We did not attempt to work out the consequences of
results for model drift-wave spectra—first, because HM d
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namics represent a very simplified model; second, becau
is not clear that the wave-number orderingq/k!1 is the
physically relevant one. Recalling the discussion at the
ginning of Sec. I C, we stress thatgq and Ėq

noise do not de-
scribe all of the contributions to the long-wavelength spec
balance. If they did, in the absence of linear dissipat
(gq

lin,0) no steady state could exist. Linear dissipation p
mits a steady state, but one that may strongly depend on
value of that dissipation. However, the effect of interactio
of long-wavelength fluctuations with ones of comparab
scales remains to be explored@the physics is described b
Eqs. ~16!# and significant modifications to the calculation
may be required for a complete toroidal treatment@49#. Con-
siderable further work must be done before these analyt
methods can make quantitative contact with simulation
experimental data.

Noted added in proof.With regard to the discussion o
wave kinetic equations in Sec.~VI A !, Professor A. Kaufman
has, in a private communication, called our attention to
literature on the Weyl calculus, which elegantly formaliz
some of the manipulations beginning with Eq.~145!. A re-
view was given by S. W. McDonald@Phys. Rep.158, 337
~1998!#. The use of the Weyl symbolAk(X) @the exact Fou-
rier transform of an operator kernelA(ruX) with respect to
r# permits concise generalizations through all orders in
inhomogeneitye @for example, the generalization of Eq
~146! is given by McDonald’s Eq.~4.29!#. However, the is-
sue of incorporating all first-order corrections is not a
dressedper seby the Weyl calculus. McDonald reviews th
traditional derivation of WKE’s, in which a dissipativeO(e)
correction arises from the anti-Hermitian part of the diele
tric operator. In that language, the correction found in E
~160! arises instead from the Hermitian part of the dielect
and is nondissipative. It must also be stressed that the u
derivation leading to the linear-theory-based wave action
the natural dependent variable rails for the intrinsically no
linear problems discuessed here, in which the appropr
conserved quantity such asZ is dictated by properties of the
nonlinearity.
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APPENDIX: EDDY VISCOSITY FOR FIXED
SHORT-SCALE SPECTRUM

Recently Chechkinet al. @7# generalized earlier work o
Montgomery and Hatori@8# on the eddy viscosity of the 2D
Navier-Stokes equation to the Rossby-wave/Hasega
Mima problem. Those authors calculated turbulent damp
of a mean field due to interactions with short scales wh
statistics arefixed~maintained against viscous dissipation
steady external forcing!. In the 2D NS limit, they found a
positiveeddy viscositynq , whereas in broad circumstance
we, in agreement with Kraichnan, find thatnq is negative. It
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is interesting to explore the reasons for this disagreem
Chechkin et al. did find a negative viscosity for the HM
model in some situations, but their formulas are not in g
eral agreement with ours, and the conceptual and algeb
difficulties are best exposed by considering the NS lim
Although it is not necessary, we shall assume isotropy
simplicity.

Let us rewrite Kraichnan’s formula, our Eq.~64!, as

nNS~qukmin!5
p

4Ekmin

`

dkuq,k,k
r dW~k!

dk
, ~A1!

where W(k)8k4^dw2&(k) is the vorticity spectrum. One
finds thatnNS is unambiguously negative in two general sit
ations. First, as discussed after Eq.~64!, if the triad interac-
tion time is independent ofk, thennNS,0 for any vorticity
spectrumW(k) that vanishes atk5`. Second, for arbitrary
uq,k,2k

r , nNS,0 if W(k) is monotonically decreasing, a
would be the case in the direct enstrophy cascade@17#.
Chechkin et al., however, found for the special case
white-noise short-wavelength forcing@their Eq. ~B11! with
@50# gk5nk2, rewritten in terms ofW(k)#

nNS
eff 5

p

4E dk
W~k!

nk3
, ~A2!

wheren is the classical viscosity. Now the approach of R
@7# was perturbative and not renormalized, so only zero
order Green’s functions appeared. To compare Eqs.~A1! and
~A2!, one should therefore replaceuq,k,2k

r →1/2nk2. Then
J.
gy

e,

,

u

.

s

il
0

t.

-
ic

.
r

.
-

nNS→
p

4Ekmin

` dk

2nk2

dW~k!

dk
~A3a!

52S p

4 D S W~k!

2nk2 D U
kmin

1
p

4Ekmin

`

dkS W~k!

nk3 D . ~A3b!

The last term of Eq.~A3b! is identical to Eq.~A2!. Thus the
result of Chechkinet al. ~and that of Montgomery and Hator
as well! is missing the surface contribution that arises
transforming Eq.~A1! by integration by parts. Indeed, th
value of that term is just the negative of Chechkin’sn (3). It
is interesting that Chechkinet al. wrote Eq. ~A2! without
explicit limits of integration.

We thus inquire into the origins of the surface term in o
calculations. Upon referring to the algebra in Sec. III, o
finds that the surface term is just the contribution from
gion D. Indeed, Eq.~64! was put into its final form involving
dW/dk after an integration by parts with a surface correcti
that was canceled by region D; see the discussions of E
~57! and~85!–~87!. The methodology of Ref.@7# misses that
contribution. This appears to be related to the assump
that the short-wavelength statistics do not respond to lo
wavelength modulation. Thus, in formulas like Eq.~A13! of
Chechkinet al., only wave vectorsk andk8 enter (k andp in
our notation! and are the negatives of each other for hom
geneous short-wavelength statistics. Region D arises f
careful consideration of the triad relationk1p1q50, so that
pÞ2k in the presence of the modulation.

Montgomery and Hatori@8# properly stressed that the a
sumption of fixed short-wavelength spectrum can be t
only in an initial-value sense. Calculations made under t
assumption may therefore have some merit for asses
transient effects. However, the energy-conserving calc
tions presented in the present paper are appropriate fo
sessing steady or quasisteady states of turbulence in w
all scales are interacting self-consistently.
d
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Zh. Éksp. Teor. Fiz.86, 646 ~1998! @JETP86, 357 ~1998!#.
@8# D. Montgomery and T. Hatori, Plasma Phys. Controlled F

sion 26, 717 ~1984!.
@9# D. H. E. Dubin, J. A. Krommes, C. R. Oberman, and W. W

Lee, Phys. Fluids26, 3524~1983!.
@10# G. Hu, J. A. Krommes, and J. C. Bowman, Phys. Plasma4,

2116 ~1997!.
@11# W. D. Dorland, Ph.D. thesis, Princeton University, 1993, ava

able as GAX94-07080 from University Microfilms Inc., 30
N. Zeeb Road, Ann Arbor, MI 48106-1346.
-

-

@12# G. W. Hammett, M. A. Beer, W. Dorland, S. C. Cowley, an
S. A. Smith, Plasma Phys. Controlled Fusion35, 973 ~1993!.

@13# A. Hasegawa and K. Mima, Phys. Fluids12, 87 ~1978!.
@14# It was noted in Ref.@18# that Z̃ can be related to wave mo

mentum density. However, the properties of linear wa
propagation do not figure into most of the work in this pap

@15# A. I. Smolyakov and P. H. Diamond, Phys. Plasmas6, 4410
~1999!.

@16# P. Terry and W. Horton, Phys. Fluids25, 491 ~1982!.
@17# R. H. Kraichnan, Phys. Rev. Lett.10, 1417~1967!.
@18# W. Horton and Y.-H. Ichikawa,Chaos and Structures in Non

linear Plasmas~World Scientific, Singapore, 1996!.
@19# J. A. Krommes, inHandbook of Plasma Physics, edited by

A. A. Galeev and R. N. Sudan~North-Holland, Amsterdam,
1984!, Vol. 2, Chap. 5.5, p. 183.

@20# J. Bowman, J. A. Krommes, and M. Ottaviani, Phys. Fluids
5, 3558~1993!.

@21# J. A. Krommes, Phys. Rep.283, 5 ~1997!.
@22# C. E. Leith, J. Atmos. Sci.28, 145 ~1971!.
@23# R. H. Kraichnan, J. Fluid Mech.41, 189 ~1970!.
@24# J. A. Krommes, Phys. Plasmas7, 1148~2000!.



.

v.

s-

ui

-

s-
n-

ys.

ned
In

ntz-

PRE 62 8539INTERACTIONS OF DISPARATE SCALES IN DRIFT- . . .
@25# S. A. Orszag, inFluid Dynamics, edited by R. Balian and J.-L
Peube~Gordon and Breach, New York, 1977!, p. 235.

@26# R. H. Kraichnan, Phys. Rev.113, 1181~1959!.
@27# J. A. Krommes, Phys. Fluids B5, 650 ~1993!.
@28# R. H. Kraichnan, J. Fluid Mech.5, 497 ~1959!.
@29# R. H. Kraichnan, Phys. Fluids7, 1723~1964!.
@30# J. C. Bowman and J. A. Krommes, Phys. Plasmas4, 3895

~1997!.
@31# P. H. Diamondet al., Phys. Rev. Lett.84, 4842~2000!.
@32# A. I. Smolyakov, P. H. Diamond, and M. Malkov, Phys. Re

Lett. 84, 491 ~2000!.
@33# R. H. Kraichnan, J. Fluid Mech.83, 349 ~1977!.
@34# P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A8,

423 ~1973!.
@35# C. de Dominicis and P. C. Martin, J. Math. Phys.5, 14 ~1964!.
@36# J. A. Krommes,Theoretical and Computational Plasma Phy

ics ~International Atomic Energy Agency, Vienna, 1978!, p.
405.

@37# G. F. Carnevale and P. C. Martin, Geophys. Astrophys. Fl
Dyn. 20, 131 ~1982!.

@38# U. Frisch, Turbulence ~Cambridge University Press, Cam
bridge, U.K., 1995!.
d

@39# R. V. Jensen, J. Stat. Phys.25, 183 ~1981!.
@40# In the notation of Ref.@37#, Snl52S r andFnl5S,.
@41# T. H. Dupree and D. J. Tetreault, Phys. Fluids21, 425 ~1978!.
@42# P. Similon, Ph.D. thesis, Princeton University, 1981.
@43# The last term of Eq.~148a! involves the additional contribution

]T(VvC)2]v(VTC). The first term vanishes because we a
sume thatV is v independent; the second term does not co
tribute after integration overv.

@44# J. A. Krommes and M. T. Kotschenreuther, J. Plasma Phys.27,
83 ~1982!.

@45# P. H. Diamond and Y.-B. Kim, Phys. Fluids B3, 1626~1991!.
@46# T. S. Hahm, W. W. Lee, and A. Brizard, Phys. Fluids31, 1940

~1988!.
@47# J. A. Krommes and C.-B. Kim, Phys. Fluids31, 869 ~1988!.
@48# A. I. Smolyakov, P. H. Diamond, and V. I. Shevchenko, Ph

Plasmas7, 1349~2000!.
@49# L. Chen, Z. Lin, and R. White, Phys. Plasmas7, 3129~2000!.
@50# It is assumed that the short-scale spectrum is maintai

against viscous dissipation by white-noise external forcing.
perturbation theory, the frequency spectrum then has Lore
ian form with a widthgk5nk2.


