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Thermodynamics and mechanics of bilayer membranes
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A mean-field lattice model is applied to chain molecules for the study of surfactant systems. As an example,
C,,E5 surfactants, modeled as £(C,0);5 chains, are forced into cylindrical and spherical shaped vesicles in
a monomer solvent. These aggregates are used to obtain the rigidity constants of the bilayers as a function of
the hydrophilicity of the surfactant’s headgroup from both a thermodynamic and a mechanical route. Within
the numerical accuracy, both routes are fully consistent. The magnitude and sign of the rigidity constants are
interpreted to gain insight into features of the experimentally well-established phase diagram. It is concluded
that the lattice model is a potentially valuable tool to help understand the generic phase behavior of surfactant
systems.

PACS numbds): 87.16.Dg, 82.65.Dp

[. INTRODUCTION gidity of the bilayer membrane. Introducing the bending
modulusk., which is an energy typically of the ordégT
In an aqueous environment, surfactants self-assemble in{8,4], dimensional analysis gives
finite-sized aggregates if their concentration exceeds the so-
called critical micellization concentration. The characteristic
length scale of these aggregates, e.g., the radius of spherical u
or cylindrical micelles, is comparable to that of the surfactant

molecules. The formation dynami¢s] and interfacial ge-  ara, is a numerical constant ands the distance between

ometry[2] of the aggregates can be related to this common,, adjacent membranes. Indeed, Helfr{& showed that
length scale. Here we will focus on bilayer membranes, in

. a=1 and has been confirmed by othgts4]. However, the
which a double sheet of surfactants separates two aqueo ?oportionality constant is still disputdd]. Depending on
phases. The exterior of the sheet consists of the hydrophili e magnitude ok, and the prefactor in Eq1), the repul-
headgroups, whereas the interior is formed by the hydrophoS:iVe undulation er?érgy El), may overcome t'he attractive
bic tails of the surfactants. The thickness of the membrane i§an der Waals energy, - —A/rz whereA is the Hamaker
comparable to the size of the constituting surfactant mol- dw !

X . ; . . constant[1]. In those cases, the stability of bilayer mem-
chles. Bilayer systems are of [nterest. fof mdu_strlal appIICabranes largely depends on the bending rigidity. Hence, it is
tions, e.g., cleaning and catalysis, and in life sciences, e.g., '

% interest t termink, for th t f surfactant -
models for biomembranes. 3t interest to dete &, for these types of surfactant sys

tems.
The headgroups of the surfactants are hydrated on the one Another parameter of interest for the phase behavior of

hand but also overlap to some extent with the conformation-

ally disordered tails. Consequently, the conformational flucih€ Surfactant layer is the saddle-splay modiusf k is
ositive, the free energy of the interface can be lowered by

tuations within the various parts of the surfactant molecule . X . .
are correlated. If the headgroups are well-hydrated, i.eforming saddle planes which have negative Gaussian curva-

swollen, their relatively large headgroup area allows for aUresK. It follows from the Gauss-Bonnet theore7]
disorder of the tail region. Conversely, a collapsed head-
group induces more conformational order in the tails. f KdA=4m(1—-g)
Bilayer membranes are also subject to collective, wave-
like, thermal motions of the constituting surfactant mol- i i
ecules. These so-called undulations give rise to a conformdhatg handles can be formed on a closed |nt2erface. For in-
tional disorder on the level of the membrane. When twoStance,g=0 for a spherical interfaceK(=1/R"). Conse-
bilayers approach each other, the undulations are confine§Uently, a positive saddle-splay modulus favors the forma-
which gives a loss of conformational entropy. This loss leaddion of handles. Hencek determines the topology of
to a repulsive steric interaction between the bilayers. A lowsurfactant layers.
rigidity allows for large shape fluctuations of a membrane The phase behavior of surfactants can thus be understood
and yields a strong steric repulsion. This suggests that thi& terms of the rigidity constan{s]. In order to study these
contribution to the Helmholtz energy per unit area owing toconstants, andk of a bilayer membrane, the free energy of
undulations,f,, is inversely proportional to the bending ri- the interface has to be considered as a function of curvature.
This can best be done by considering closed bilayers or so-
called vesicles. Vesicles are of interest for many biological
*Present address: Van 't Hoff Laboratory for Physical and Colloidpurposes and are used as, e.g., drug delivery vehicles
Chemistry, Debye Research Institute, Utrecht University, P.O. Bo1—3,7]. In the case of vesicles, there are no end-cap contri-
80051, 3508 TB Utrecht, The Netherlands. butions to the free energy of the bilayj&]. This also allows
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the application of a lattice model where spherically and cy-This relation holds for all geometries of the interface. In

lindrically shaped structures can be studied. order to describe curved interfaces, we will use the so-called
In the present paper, we will consider the phase behaviaiotal curvatureJ=1/R;+ 1/R, and Gaussian curvaturi
of the nonionic surfactant dodecyl petathylene oxidg or  =1/R;R,, whereR; andR, are the local radii of curvature

briefly C;,E5. This nonionic surfactant can form vesicles andof the interface aR;. From the principle of parallel inter-
is widely used as an emulsifying agent and detergent. It exaces[17,18, the infinitesimal volume can be written és
hibits the same characteristic features as more complex, muk= A(R)dR, where the interfacial are&(R) at any positiorR
ticomponent surfactant systerf@. Consequently, much ex- can pe given analytically relative to the interfacial afeat

perimental data are available for this systedvl0]. Firstwe R _[19]; A(R)=A{1+(R—Rg)J+(R—R4)?K}. Substitution
will derive in Sec. Il how the rigidity constants can be de- of thjs into Eq.(4) and dividing byA gives

duced consistently from both a thermodynamic and mechani-

cal analysis. In order to study surfactants, a lattice model is y=Po+P1J+ K, (5
briefly considered in Sec. Ill. Subsequently, in Sec. IV the

rigidity constants of GE5 vesicles will be investigated as a where we introduced the zeroth, first, and second bending
function of the hydrophilicity of the headgroup. From the moments,

obtained values, possible implications for the phase behavior

will be discussed i_n Sec. V. Finally, recommendations for POEJ [p*—p()dR, (63)
further study are given.

Il. THERMODYNAMICS AND MECHANICS OF CURVED PlEf (R—R){p*—p+(r)}dR, (6b)
INTERFACES

In spite of the fact that we will focus in this paper on _ 2 a
bilayer membranes in a single-component solvent, we first PZ:I (R=Rg)*{p*?—pr(r)}dR,
treat interfaces more generally, such that we need not go into
detail about the structure of the interface. It will turn out thatwhere, in turn, the step functiop*”=p“6(Rs—r)+ p”6(r
this generalized treatment, which originates from the early~ Rs) has been introduced, using the Heaviside step function
work of Gibbs[11] and Tolman(12,13, is easily applied to  6(r). Note that the moments of the excess pressure profile
surfactant bilayers. Consider a two-phase system consistirlgo, 'z, andl’, depend on the arbitrary position of the inter-
of the bulk phasesr and 8. The interface between both face, sincep®” generally depends oR;.
phases is generally not sharp due to the thermal motion of We next consider the interfacial work needed to bend an
the molecules. Consequently, there is no unambiguous poghterface. To that end, we use the well-known generalized
tion of the interface. Following Gibbgl1], the system is Gibbs adsorption equatidi5|,
split up into two bulk phases separated by an infinitely thin <
interface at an arbitrary positidRs. The bulk values of the R -
state variables are extrapolated up to the interface and the dy== R dT-T-du+CdJ+ Ak, ™
excesses are attributed to this arbitrary posifib4]. Since R
we are interested in the mechanical work on a system, theshereS® is the interfacial entropyT the temperaturd, the
grand potential is the appropriate state variable to study. Fofdsorbed amount, and the set of chemical potentials. The
a two-phase system, the grand potential has provenfid3e coefficients(; and C, conjugated to the curvature are the
so-called bending stress and torsion stress, respecfiély
Q=0+0F+0%= —p*V*—pPVPi+ yA, (2)  Integration of Eq.(7) from the planar interface to an inter-
face with a certain curvaturel{ K) at constant temperature
wherep® is the isotropic bulk pressure aM! is the volume  and chemical potentials yields for small deviations from the
of the respective bulk phasels=«a,B. The curvature- planar interface up to second order in the curvature
dependent interfacial tensiopacts on the interfacial are&
at the dividing plane located iRs.
Mechanically, it is argued that the tangential pressure pro-

file, p7(r), amounts to the grand potent{dl6]

(60)

aC.\°
2] 32+ 9K, ®)

1
~04 (034 =
y(J,K)=y"+(C1d 53

2

where the superscript O denotes evaluation at the planar in-
o terface. Helfrich gave a similar expression for a phenomeno-
0= —f pr(r)dr. (3)  logical description of the undulation of lipid bilayef20],

— A0 1 2.1 L1
Upon comparison of the thermodynamic expression,(2g. Y3 K=y —kedod F 2k 7KK, ©

and the mechanical expression, E8), for the total grand whereJ, is the spontaneous curvature. As argued in Sec. |,

potential, it is found that the excess pressure profile consti; i — .
tutes the grand potential of the interface, the saddle-splay modulds determines the topology of the

interface rather than its rigidity, which is in turn determined
by the bending moduluk,. Comparison of Eq(8) with the

VA:J [pa_pT(F)]dFJrJ [pP— pT(F)]dF_ (4) Helfrich equation, Eq(9), yields the following thermody-
Ve vA namic expressions for the rigidity constants:
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o [dY 0 the literature. Somehow, the “extra” terms of Ed.1) are
—kcJo=C1:<E) o (103 incorporated in the previously mentioned pressures in the
T.uK first terms for definitions of the local pressure other than
o 5 10 from Eq. (3). Consequently, simply copying the expressions
K :(3_L1> _ ( 2) (10b) from the literature, as has been done in previous stydi@s
© 1 a 932 .7 may lead to incorrect results if the pressure has a different
Tk origin.
o ay\° As may be clear from the above, it is necessary to apply a
=Cg=(—> , (109 model in order to evaluate either of the equatioh®) and
K Tud (11). In the remainder of this paper, we will use a mean-field

. . lattice model in which all conformations of chain molecules
where we have used the well-known total differential B 5re accounted for. By constraining the molecules to the ge-

for the d.efinitions of f[he bending and torsion st_ress. From th%metry of the lattice, we impose a curvature to the surfactant
mechanical expression for, Eq. (5), we then find the fol-  55semplies.

lowing expressions for the rigidity constants in terms of the

excess pressure profile: lll. A LATTICE MODEL FOR SURFACTANT SOLUTIONS

K= O ((9_130)0 (11 We will apply a mean-field lattice mod¢B0] to model
crOT L 5 T K’ the surfactant bilayer system, as elaborated before
’ [29,31,32. Here we will briefly summarize the relevant fea-
FIAL P 0 tures of this generalized Flory-Huggins model. In order to
kczz(—) —) , (11b have an easily accessible partition function, space is divided
dJ T\ 0 TK into cells with an equal volume of molecular size. The thus
formed lattice consists af=1, . .. M different layers, each
— o [T 0 containingL (z) indistinguishable sites. In order to have all
k=P2+ 9K TJ' (119 sites of equal volume,, the number of sites per layer de-

pends on the geometry and the layer indeXhat is,L(2)

At first sight, all second terms on the right-hand sides of*Z", Whered is the dimensionality of the latticed=0 is a
Eq. (11) are extra compared to the expressions given in th(ﬁ’_'ﬁ”?rvd? la C%/“f:jc_j”cahtaf?:“:_z a Sphhlerlcatll‘llattICH:;ﬁ].d
- oA ke 1O K — - e fractions of adjacent sites in each lagethe so-calle
lterature [3,21-24; —kedo=P, ke=(F1/0d)go, andk = oo probabilities, are given by the parametersThe

— )O . . . _ .
I’2. Moreover, in the f|rst_ term on the right hand side of fraction\o(2) is the probability of finding an adjacent site in
Eq. (11b), a factor 2 comes in compared to the literature. Thethe same layer, whereash _,(2) and\,(z) are the prob-

extra terms make the thermodynamic variables IndePende%ﬁoilities of finding adjacent sites in the previous and next

of the choice of the expression for the local presq@. layer, respectively. These are defined such that a detailed

Moreover, these terms require that one has to do real bendirl%lance is satisfied. That is, the probability of finding an

e D ey dcent e i he next lyeks (DL (). = equal to the

modyna%ically defi?]ed from Eq3) P probability of finding an adjacent site in the previous layer
Safran [3,21] derived mechanical expressions for therelaBt;irg)\}\?ee Qael;(tv:/?i}t/gp:jz)t\(/ﬁtﬁgl_(rzat\é) [§t3e]ﬁtial we first

bending and saddle-splay moduli from virtual work. He as- 9 P '

signed all the work to the pressure tensor, therefore théntroduce the so-called contact fraction,

chemical potentials are embodied in the pressure, which is (4 (z)\=\_(2)(z— 1)+ \o(2) p(2) + N 1(2) p(z+1),

not consistent with the aforementioned thermodynamic defi- (12)
nition that led to Eq(11). Something similar occurs in the

work of Szleiferet al. [26], where the pressure is strictly a where ¢(z) is the volume fraction of a species in layer
Lagrange multiplier to satisfy packing constraints, which isFrom series expansion @f(z—1) and¢(z+ 1), this may be

not obviously the local pressure. Inserting this constraint intapproximated in continuous space asp(z))~ ¢(2)

the partition function indeed adds a generalized term  +\4[(6°¢/9z%) + (d/2)(d¢/dz)], whered is again the di-
[22], also accounting for the chemical potentials. It has beemensionality of the lattice an8l;=lim,_,.A1(2).

shown indeed that the change in the chemical potentials must Using the above contact fraction, the energy a segment of
be accounted for in their expressiof@7]. However, far type A encounters at layeris, relative to the bulk phasg,
above the critical micellization concentration, this change isggiven by[32]

negligible and for lower concentrations this can be corrected
for by a normalization factdr21]. Gomppett al.[23] define

a Ginzburg-Landau free-energy density as the excess pres-
sure profile. It can be shown that in the vicinity of a critical
point, the mechanical expressions from such a free-energylere ¢z is the volume fraction of all other segment tyfs
density numerically yield the same rigidity constants as EqThe energy’(z) comes in to account for the constraint that
(11) for simple liquid-vapor interface$28]. We conclude the lattice must be completely filled. The interactions be-
that distinction in the definitions for the local pressure ex-tween the segment typesandB are accounted for by the
plains the differences between E41) with those given in  well-known Flory-Huggins interactions paramefeqs .

uA<z>=u'<z>+kBT§ xael(#s(2))— B8l (13
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The volume fraction profiles of the various segments fol- Q+pPV=—ApVe+yA, (15)
low trivially from the corresponding volume fraction profiles
o_f the molecules. The latter are found by generating all poSyhere A is the area of the bilayer and® the volume en-
sible and allowed conformations of each molecule and arg|yseq by the membrane. Since the inner bulk phasen-
weighted t_)y the appropriate Bol_tzmar_m factor. In thI_S factorcjosed by the bilayer, is identical to the continuous outer
the potential energy for a chain in a given conformation Onlyphase,B there is no Laplace pressure drop, i&p=0. An
depends on the potentials,(z) experienced by the indi- gqyilibrium system of membranes that forms spontaneously
vidual segments along the chain. In generating chain conforom the surfactant solution can adapt its own number of
mations, we have used a first-order Markov approximationpjjayers with the corresponding interfacial arkalt follows
That is, chain connectivity is guaranteed but correlationg,gm the thermodynamics of small systef3—37] that for
along the chain between preceding and subsequent segmeg$ equilibrium bilayer membrane, neglecting the transla-
are ignored. Within this approximation, an efficient matrix tjona| entropy of the membrane, the equilibrium bilayer is
procedure is available to generate the segment deng308s  (ansjonless, i.e.y=0 [29]. Moreover, it is easily seen from

Hence, the volume fractions of the segments of tpe symmetry considerations that the equilibrium membrane has
follow from the energiesia(z) [30,32. As can be seen from average a planar geomefsg], i.e., J,=0. Hence, the

Eq. (13), the energiesia(z) depend, in turn, on the volume Hetrich equation(9) for bilayer membranes reduces to
fractions. Consequently, the set of equations has to be solved

iteratively until the energies and volume fraction are consis- Q+phV -
tent. = y=3kJ?+kK. (16)
The grand potential relative to its bulk value can be de- A
rived in terms of the volume fraction profiles from statistical
thermodynamic$29,32, B. Mechanics of bilayer membranes
QO+ phv ¢{”_ (2) It has been shown in Sec. Il that the rigidity constants can
=> L(2) 2 —_— also be obtained mechanically, i.e., in terms of taeces}
kgT N;
B z ' ! pressure profile. The bending moduligs and spontaneous
da(D)ua(z) 1 curvatureJy can be found directly from the cylindrical bi-
_z kT ts ; % Xasl $a(2) layer. The saddle-splay modulkscan only be determined
from comparison of the bending modulus and the effective
5 5 s modulus of the spherical vesiclef. Eq. (11)],
X[(¢a(2))~ ¢51- Sl ba(2)~ SB]} o
(7 D)
—keJo= P20+ °> , (173
s -
=2 L@{p~pr(2)}. (14
o . . ars\® [ a5\ °
This defines the excess pressure profifé- pr(z), in terms k.= 2(_1) T , (17b
of the volume fractions. The factdr of the third term in N 832

. T
large curly brackets enters to correct for double-counting the

interactions while summing over all specidsand B. This <0 s
means that the interactions between speéiesdB are ef- K+ ;?:2< ‘7_}71) ‘9_}%
fectively locally averaged over both species. However, one ¢z A\ 9?
can also perform the double S ASg asZaSg-a, UsSiNg

the property that2,¢a(2){(¢s(2))=Z,¢s(2)($a(2)). In - - .
this way, the interactions are assigned to only one of th{here the superscriptsc™ and * s” refer to evaluation at

0
+35°, (179
.

: : : . the cylindrical and spherical interface, respectively. The
species. Although both ways of counting the interaction : .
yield the same grand potential, the excess pressure profi ending moments, Eq6), for the lattice model arg2g]
pP—p+1(2) is locally different. Still other schemes to calcu-
late the double sum can be thought of, each yielding the

M

= B_
same grand potential but different excess pressure profiles. Po 221 P"=pr(2)}, (189
Consequently, the local pressure is ambiguous, although it
yields an unequivocal value for the grand potentig]. M
P1=2 (z=Rs= ){pP~pr(2)}, (18b)
IV. BENDING A BILAYER z=1
A. Thermodynamics of bilayer membranes M
As outlined in Sec. |, the rigidity of a bilayer determines Py,= E [(Z_Rs)z_(Z_Rs_ %)]{pﬁ_ pr(z)}. (180
z=1

the phase behavior of bilayer membranes to some extent.

The rigidity constants can be derived from the curvature de-

pendence of the interfacial tension, as expressed in the HeFhe excess pressure profi — p(z) is given by Eq.(14).

frich equation, Eq(9) [20]. Thermodynamically, the interfa- Moreover, because there is no Laplace pressure difference,
cial tension follows fronicf. Eq. (2)] we used thap*?=p# for bilayer membranes.
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FIG. 1. (a) Volume fraction profiles of a cylindrical GE5 vesicle in water. The surfactant4E5 is modeled as GO(C,0)s, where the
C represents CHor CH; groups and the O mimics the O or OH groups. Water has been treated as a monomer with orientation-independent
interactions. A lattice of 40 layers has been used Wik 1/3, xcw= xco=1.6, andyow= —0.5. The dividing plane &R, is chosen to be
in the middle of the bilayer, whereas the center of the vesicle is located @t (b) The tangential excess pressure profile corresponding to
the density profiles as given () can be determined in various ways yielding the same grand potential. The excess pressure represented by
the solid line(left vertical axig effectively averages the interactions with units in adjacent layers, whereas the dasliegHineertical axig
one gives the excess pressure where the interactions with units in adjacent layers are assigned to one of the layers. Note that the scales diffe
by one order of magnitude.

C. Results for C,E5 in water Eq. (19), the dividing plane is located to a good approxima-
Using the lattice model, the &5 surfactants will be tion in the middle of the membrane. The contributions to the

modeled as the chain moleculg,0(C,0)s. Here, C stand C groups come from both the headgroups and the tails and

for CH, or CH, groups, which will not be discriminated, and are distributed over the complete bilayer. H_owever, ﬁne.
O mimics the oxygen or hydroxyl groups in the surfactant S€gments of the headgroups prefer the exterior of the vesicle

The water molecules will be modeled by a simple monomerbm are relatively diffusi\_/ely distributed because they are
solventW. Obviously, this is a poor model for water but can Pound to the hydrophobi€ groups. Note that the curved

be improved by accounting for the orientation-dependent inPilayer is asymmetric; theO groups are slightly more

teractions in a quasichemical mod@9)]. Given the three densely packed inside the vesicle(R;) than the groups on
monomer typesC, O, and W, three exchange parameters the outside. This forces the tails outwards, hence the maxi-
Yeo, Xew, andyow need to be specified. Indicating that the mum of theC groups is found foz? R. No'ge the relatively
interactions with theC group are hydrophobic, the exchange large penetration of the monomeric water in the center of the
parameters are positive and are taken to be conE3apt0— membrane due to the lack of specific interactions. As stated
42], xco=xcw=1.6. However, owing to the hydration of before, this can be improve®9] but does not change the

the hydrophilicO groups by the water moleculegoyy iS quah_tatlve behavior of the present analysis. )

more strongly temperature-dependent. Consequently, vary- Given the vplume fractions, the excess pressure profile

ing you May be regarded as changing the temperature(.:an be determined from Eq14): As stated, severa_ll Ways.to

Moreover, an fcc lattice type will be used, i.ag=\;= 2 perform the double sum counting the nearest-neighbor inter-
y y b - - 3

This lattice type in conjunction with the relatively low ex- actions can be considered. Note the different features of the
change parametepg suppresses the so-called lattice artifact O examples given in Fig. (b). For instance, the range of

[29,43. This artifact is originated in the fact that owing to the two given pressures differs by one order of magnitude,

the discretization of space, the fixed number of molecules ar nd the one given by the So"d.“ne has three maxima whereas
e one given by the dashed line has only one. Nevertheless,

forced to take place in one layer or the other, i.e., they ar . : e
oth excess pressure profiles are slightly more tensile, i.e.,

“squeezed” onto the lattice. Consequently, an extra field is S : .

introduced as a result of the presence of the lattice, whic ﬁgatlve,_ln&de the vesicle than outside due to the curvature.

causes a perturbation of the equilibrium state. he t.e”s"e parts are heeded to compensate for the compres-
In order to determine the interfacial tension from the?;\é?él"tg'r;s?gsmve’ parts resulting in the typical small inter-

bending moments, Eq18) [cf. Eq. (5)], the position of the .
dividing planeRg remains to be defined. Although both the W.'th t_he above set of parameters_and Hag) and(16),
e rigidity constants can be determined from the curvature

inner and outer radius of the bilayer are possible choices, th . - . .
Y P ependence of the interfacial tension as a function of the

dividing plane is found here from hydrophilicity yow of the headgroup. The curvature of a
M bilayer is varied by changing the number of surfactants in the
> (z-Ry){ps(2)— $E1=0, (199  system. Given the number of surfactamts, the constrained
z=1 equilibrium density profiles are found. The equilibrium is
constrained since the bilayer is forced into a curved, rather
where ¢s= ¢+ ¢g is the total surfactant volume fraction. than a planar, geometry, which was shown to be the global
The volume fraction profiles)c(z), ¢o(z), and py(z) are  equilibrium geometry. The resulting interfacial tensions are
illustrated in Fig. 1a) for a cylindrical vesicle, whergoyw  displayed by the symbols in Fig(& for both a spherical and
=-0.5 and the center of the vesicle is locate¢-a0 Using  cylindrical geometry as a function of the curvature taking
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FIG. 2. (8 The interfacial tension of GEs bilayer membranes in water as a function of the curvature, Wil 1/3, xcw= xco
=1.6, andyow= —0.5. The position of the dividing plane is given by Ef9). The squares apply to a spherical vesicle, whereas the circles
give the calculated values for a cylindrical geometry. The solid lines are a second-order polynomial fit to the(lpoirte. linearized
interfacial tension as given by ER0O) as a function of the curvature. The solid lines are linear fits to the calculated points. The magnifi-
cations show that the calculated values are subject to a relatively small lattice artifact.

xow=—0.5. A direct fit to the interfacial tension with a (#%y/8J%)+, is hardly dependent on the curvature. This ex-
second-order polynomial, shown by the solid lines, yieldsplains why vesicles, although not the equilibrium structure of
according to Eq(16) the rigidity constants. However, ac- the bilayer membranes, are relatively stable; the system can
cording to Eq.(16), the rigidity constants can also be found hardly change its free energy by growing or shrinking the
from a linear fit to vesicles. The system can only lower its free energy by fusing
1 vesicles, which is an activated process. The average rigidity

P =ke= (cylinders constants derived from Fig. 2 re&gd=1.645+=0.002 andk
Q+p-V _Y_ 2 "Ry (20) =—2.236-0.002. Apparently, the errors are relatively
JA J small. Since they are of a totally different origin, it is not
likely that the two different types of errors cancel each other.
The rigidity constants can also be determined mechani-
The fit to Eq.(20) is shown in Fig. 2o) for the same data. cally, as given by Eq(17). The derivatives in Eq(17) are
Using both the fit toy and (Q + p?#V)/JA gives information ~ subsequently determined from a second-order polynomial
about the accuracy of the fits. Deviations may occur for twoand linear fit to the zeroth and first bending moment, respec-
reasons. First, the calculated interfacial tensions are subjetively. Although the results are independent of the choice of
to lattice artifacts, as mentioned above. As can be seen froffie pressure profile, one may prefer a certain choice for fa-
the magnifications in Fig. 2, the deviations from the fits arevorable numerical accuracy. As can be seen from Fig. 3, for
relatively small as expected for the given set of parametersyow= — 0.5 these fits are fairly accurate and are hardly sub-
Second, the Helfrich equation is strictly only valid for small ject to lattice artifacts. Moreover, extrapolation to the planar
curvatures, i.e.J—0. However, as can most easily be seeninterface (1R;— 0) shows that’s=P5°=0, which recov-
from Fig. 2b), the description remains appropriate for rela- ers the fact that the planar interface is tensionless if the trans-
tively large curvatures. Consequently, the curvature energyational entropy is neglected, as is the case in this study.
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FIG. 3. (8 The zeroth bending moment of £ bilayer membranes in water as a function of the curvature, With 1/3, xcw
= xco= 1.6, andyow= —0.5. The position of the dividing plane is given by Ef9). The squares refer to a spherical vesicle, whereas the
circles give the calculated values for a cylindrical geometry. The solid lines are a second-order polynomial fit to the points. The graph
recovers the analytical result that the planar membrane is tensiom%sﬂ?gzo. (b) The first bending moment as a function of the
curvature. The solid lines are linear fits to the calculated points. As expected from symmetry consid@%ﬁ@quhe magnifications show
that the calculated values are subject to a relatively small lattice artifact.
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FIG. 4. The bending modulus and saddle-splay modulus for 4€!atively rigid. II: For —0.8< xow= —0.22, k. decreases, causing
C,,E5 bilayer membrane as a function of the hydrophilicity of the the bilayer to be less stiff, and yields an increasing spacing between
headgroup Withyco= xcw= 1.6, \g= % The dividing plane is cho- the membranes. Ill: For 0.22< yow< —0.12,k becomes positive,
sen to be in the middle of the membrane, using®8). The roman  Which favors the formation of connecting handles between the bi-
numbers indicate different phase regions. layers. IV: If yow=—0.12, the headgroups are not hydrophilic

enough, such that the bilayers are unstable and the surfactants phase
Since the planar bilayer is completely symmetrical with re-Separates into a phase of inverted micelles.
spect to its centercf. Eq. (19)], extrapolation indeed yields
P$O=1$9=0. Furthermore, it is found that for the system as Going through the range 0.8< yow= —0.22, the hydro-
shown in Fig. 3,75%=15%= —21.536. philicity decreases such that the headgroups can dissolve

From the fits to the bending moments in Fig. 3, using Eq.easier in the hydrophobic core of the membrane, making the
(17), it is found thatl,=0.00, k.= 1.61, andk=—2.11. The membrane less rigid. Consequently, the values of the bend-
exact error in these values is unknown; the accuracy of th#1g modulus decrease. Hence, the undulations increase with
fits is hard to determine and the sum of the respective ddhcreasingyow. As can be seen from E@l), the repulsive
rivatives typically yields a number that is one order of mag-forces in the system increase, which makes the spacing
nitude smaller than the individual values. Otherwise statedPetween bilayer sheets larger. This correlates well with the
the discrepancies between the values for the rigidity conexperimental finding that the so-calleg, phase swells with
stants determined from the direct fit to the interfacial tensiorincreasingT [9,10].
and those determined from the bending moments are due to For —0.22<xyow< —0.12, the saddle-splay modulus be-
numerical errors. comes positive, which favors the formation of saddle planes.

The above procedure has been repeated for several valuggnsequently, although the low value of the bending modu-
of xow- The results for the bending modulus and saddlelus gives rise to a large repulsive force between the mem-
splay modulus are shown in Fig. 4. The solid lines connecbrane sheets, connecting handles are formed between the bi-
the symbols calculated from the direct fits to the interfaciallayers. This may explain the experimentally obsertgdor
tension. The error bars are smaller than the symbols. Theponge phase at relatively high temperaf@e
dotted lines connect the symbols determined mechanically If xow=—0.12, the bending modulus tends to become
from the bending moments. There appears to be a constarit¢gative and, like the saddle-splay modulus, even seems to
minor deviation between the mechanically determined rigid-diverge. This implies that the bilayer membranes are no
ity constants and those determined from the fiyytoThis is  longer stable. Moreover, the solubility of the headgroup has
due to the fact that the error in the fits to the bending mobecome so low that the system will phase-separate into an
ments is systematic. This apparently leads to the conclusiodqueous and a surfactant-rich phase. Since @hand C
that the value for the mechanically determined bendingdroups still repel each other, the surfactant molecules tend to
modulus is typically too low. Consequently, since the sumform inverted micelles in which small amounts of water are
must yield by definition the same interfacial tensions as thoséissolved. Such phases have indeed been observed experi-
from the direct fit toy, the saddle-splay modulus from the mentally at high temperatur¢s].

bending moments is slightly overestimated. The described phase behavior is summarized and illus-
trated schematically in Fig. 5 for the regions indicated in Fig.
V. DISCUSSION AND CONCLUSIONS 4. Since all these phases have been observed experimentally

for the C.E5 surfactant system in wat¢®,10], it is con-

Rigidity constants have been determined consistentlgluded that the lattice model is suitable for a qualitative
from both a thermodynamic and mechanical route as a funcstudy of the phase behavior of surfactant systems. Already
tion of the hydrophilicity of the headgroup, which is closely with a restricted set of parameters, the basic experimental
related to the system’s temperature. Different regions may bfeatures of the phase diagram can be recovered. In order to
distinguished in Fig. 4. Foxow= —0.8, the value ok, is  do so, vesicles were forced into a cylindrical and spherical
almost constant and relatively high. Owing to the relativelygeometry, thus neglecting the end-cap energy and translation
good solubility of the O groups, the headgroups are well-entropy of the actual bilayer membranes. From these
hydrated. Consequently, the hydrophobic tails of the surfacvesicles, two independent fits to the interfacial tension yield
tants are forced more inwards into the bilayer, as outlined irtonsistent values for the rigidity constants of the surfactant
Sec. I. As a result, the membrane remains relatively rigid. bilayer membrane as a function of the hydrophilicity of the
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headgroup. The values are recovered with less numerical acf waves quantizedcf. the “particle in a box” from quan-
curacy from the mechanical expressions for the rigidity contum mechanics This restriction introduces another entropic
stants. Consequently, a direct fit to the interfacial tensiorterm that is not accounted for in the above route to the rigid-
suffices for future studies. It should be noted that the termsty constantd48,49. It is also of interest to study the influ-
that appear extra in the mechanical expressions(H, as  ence of this kind of entropy on the differences in rigidity
compared to those in the literature due to the definition of theonstants.
pressure, are required to amount to the same Helfrich con- In the model for surfactant bilayers presented here, con-
stants for any choice of the pressure profité Fig. 1(b)].  tributions of a lattice artifact have been shown to be negli-
Hence, these terms, which arise naturally in the analysis, argible. However, in the previously recommended systems,
needed to guarantee consistency between the thermodynantiigs artifact may need attention. In the case of microemul-
and mechanical route. sions, the amount of oil may be adjusted until the spurious
From the sign and magnitude of the bending and saddle-aplace pressure difference due to the artifact is eliminated.
splay modulus, one can determine in what phase the surfaSince the enclosed phase equals the outer phase, this method
tant layer prefers to be when the geometry restrictions aré not applicable to vesicle systems. In a previous sf2y,
relaxed. Hence, minimal surfaces may be studied from cylinthe number of surfactants of a vesicle system was adjusted
drical and spherical interfaces only. Nevertheless, the baluntil Pp=0. As can be seen from E@L7), this implies that

ance between attractive and repulsive forces accounting fq= ", as had been found indeed. However, the condition
the translational entropy of the bilayers upon actual inclusio —P,=0 only holds for the planar equilibrium membrane.
of multiple membrane sheets in the calculations remains ofhjs method thus appeared to eliminate the artifact by intro-
interest. Incorporation of the influence of charges in ionicqycing one. Consequently, at present there is no longer a
surfactant systenjgi4,45 and the role of, e.g., a cosurfactant ¢ongition available to warrant artifact-free vesicles within
or cosolvent on the phase behavior of surfactant layers is alsge presented mean-field lattice model. Since the sign and the
a challenge for future study. Moreover, the phase behavior ohrder of magnitude rather than the exact value of the rigidity
surfactant monolayers, such as e.g., in microemulsiés  constants determines the phase behavior, the lattice model
as a function of the aforementioned parameters deserves PrRray still prove to be a very valuable tool for the study of

found attention. _ ~ surfactant systems.
It has been argued that the bending route to the rigidity

constants, as elaborated on here, may lead to different rigid-
ity constants and, by that, different phase behavior as com-
pared to the fluctuation roufg7]. This may be due to the The work of S.M.O. was supported by the Netherlands
fact that the undulations on the closed interface of the vesicl®rganization for Scientific Research Chemical Sciences
are subject to boundary conditions, which makes the numb&iNWO/CW).
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