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Similarities between principal components of protein dynamics and random diffusion

Berk Hess
Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Gron

Nijenborgh 4, 9747 AG Groningen, The Netherlands
~Received 11 February 2000!

Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated
motions in atomic simulations of macromolecules. It has become an established technique for analyzing
molecular dynamics simulations of proteins. The first few principal components of simulations of large pro-
teins often resemble cosines. We derive the principal components for high-dimensional random diffusion,
which are almost perfect cosines. This resemblance between protein simulations and noise implies that for
many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

PACS number~s!: 87.14.Ee, 87.15.Aa, 87.15.He
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INTRODUCTION

This article focuses on the use of covariance analysis
tool to gain information about the conformational freedom
proteins. Knowledge about the conformational freedom o
protein can give insight into the stability and functional m
tions of the protein. Conformational freedom is related to
potential energy: in equilibrium the distribution of conform
tions can, in principle, be calculated from the potential.
practice this is not possible, since proteins are too comp
not only because of their high dimensionality, but also b
cause the energy landscape usually consists of many min
Normal mode analysis can be used to analyze any of th
potential energy minima, but it does not take entropy due
the occupation of several minima into account, which pla
an important role at room temperature. For reviews on n
mal mode and principal component analysis applied to p
teins, see@1,2#. The first application of principal componen
analysis to macromolecules was performed to estimate
configurational entropy@3#. More recently the application o
principal component analysis to proteins has been term
‘‘molecule optimal dynamic coordinates’’@4,5# and ‘‘essen-
tial dynamics’’ @6#. It has now become a standard techniq
for analyzing molecular dynamics trajectories. However,
effects of insufficient sampling on the results are not w
understood.

Covariance analysis, also called principal compon
analysis, is a mathematical technique for analyzing hi
dimensional data sets. Essentially, it defines a new coo
nate system for the data set, with the special property tha
covariance is zero for any two coordinates. In this se
these new coordinates can be called uncorrelated. Thes
ordinates are to be ordered according to the variance of
data in that coordinate. This can allow for a reduction of
dimensionality of the space by neglecting the coordina
with small variance, thus concentrating on the coordina
with larger spread or fluctuations.

The procedure forN-dimensional datax(t) is as follows.
First the covariance matrix has to be constructed. The co
rianceCi j of coordinatei and coordinatej is defined as

Ci j 5Š~xi2^xi&!~xj2^xj&!‹,
PRE 621063-651X/2000/62~6!/8438~11!/$15.00
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where ^ & is the average over all data points. The data c
consist of a finite number ofN-dimensional points, in which
case the average is a summation.x(t) can also be an
N-dimensional function; then the average is an integral. T
symmetricN3N matrix C can be diagonalized with an or
thonormal transformation matrixR:

RTCR5diag~l1 ,l2 , . . . ,lN!.

The columns ofR are the eigenvectors or principal mode
The eigenvaluesl are equal to the variance in the directio
of the corresponding eigenvector; they can be chosen s
that l1>l2>•••>lN>0. The original data can be pro
jected on the eigenvectors to give the principal compone
pi , i 51, . . . ,N:

p5RT~x2^x&!.

When the data are the result of a dynamic process, the p
cipal components are a function of time andp1(t) will be the
principal component with the largest mean square fluct
tion. Note that if the system obeys Newton’s laws eve
coordinate has to be weighted with the square root of
mass to obtain physically relevant dynamic principal comp
nents.

For a system moving in a~quasi!harmonic potential, the
principal modes are similar to the normal modes, which
the eigenvectors of the Hessian in the energy minimum. T
advantage of normal mode analysis is that it depends only
the shape of the potential energy surface; however, its us
restricted to quasiharmonic systems. Covariance analysis
be applied to any dynamic system, but the results will a
depend on the sampling. The problem is how to sepa
intrinsic properties of the system from sampling artifacts.
was shown by Linssen@7#, the principal components of mul
tidimensional random diffusion are cosine shaped, with a
plitudes inversely proportional to the eigenvalue ranki
number. This behavior is very similar to that observed fro
simulations of proteins. In order to interpret protein data c
rectly, it is important that the behavior of random diffusion
basically understood. In the next section we will perform
8438 ©2000 The American Physical Society
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theoretical analysis of random diffusion. The results of ra
dom diffusion depend only on the sampling, because ther
no potential.

ANALYSIS OF RANDOM DIFFUSION

N-dimensional diffusion is described by a system ofN
independent stochastic differential equations:

dxi~ t !

dt
5r i~ t !, i 51, . . . ,N. ~1!

r i(t) is a stationary stochastic noise term, which
d-correlated:

E@r i~ t !#50, ~2!

E@r i~ t !r j~ t1t!#52Dd i j d~t! ~3!

where E@ # denotes the expectation,d i j is the Kronecker
delta andd(t) is the Dirac delta function. The solution o
this system is a set ofN nonstationary stochastic function
xi(t), which represent Wiener processes@8#. The displace-
mentsxi(t1t)2xi(t) are Gaussian distributed with

E@xi~ t1t!2xi~ t !#50, ~4!

E@$xi~ t1t!2xi~ t !#@xj~ t1t!2xj~ t !%#52Dtd i j . ~5!

We will use this continuum description for the analysis
random diffusion. Realizations can be generated only fo
finite number of time points. This is not a problem, since
results of the covariance analysis will be virtually identic
when we have more thanN time points.

We are interested in the eigenvalues and eigenvector
the covariance matrixC and in the shapes of the princip
components:

Ci j 5
1

TE0

T

@xi~ t !2^xi&#@xj~ t !2^xj&#dt, ~6!

pk~ t !5ek•@x~ t !2^x&#, ~7!

whereek is eigenvectork and ^xi& is the average ofxi :

^xi&5
1

TE0

T

xi~ t !dt. ~8!

The eigenvectors are ordered according to descending e
value. The first eigenvectore1 is the vector that produces th
linear combination ofxi ’s with the largest mean square flu
tuation. Thuse1 is the vector withie1i51 which maximizes

l15 max
ie1i51

1

TE0

T

@e1•~x~ t !2^x&!#2dt. ~9!

We can writex(t)2^x& as a sum of a series of orthonorm
functions f k :

l15 max
ie1i51

1

TE0

TS e1•(
k50

`

ckf k~ t !D 2

dt, ~10!
-
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0

T

f k~ t ! f l~ t !dt5dkl , ~11!

ci
k5E

0

T

f k~ t !@xi~ t !2^xi&#dt. ~12!

We can choose thef k such thatf k(t) is proportional to the
projection on eigenvector k:f k(t);ek•@x(t)2^x&#, thus f k
will contribute only tolk . f 1(t) is the function that maxi-
mizes the variance:

l15 max
ie1i51

max
f 1

1

TE0

T

@e1•c1f 1~ t !#2dt

5 max
ie1i51

max
f 1

1

T
~e1•c1!2. ~13!

It can easily be derived thate1 is proportional toc1:

e15
c1

Ac1
•c1

. ~14!

WhenN is 1, f 1(t) is proportional tox1(t)2^x1&. As N gets
larger, the set ofxi ’s will form a better representation of th
full ensemble. For largeN we can approximatel1 with an
ensemble average:

l15max
f 1

1

T
c1
•c1'max

f 1

1

T
E@c1

•c1#

5max
f 1

1

T
E@Nci

1ci
1#5l1* . ~15!

The integral overf k is zero:

E
0

T

f k~ t !dt;E
0

T

ek•@x~ t !2^x&#dt50. ~16!

For large N we can approximatef 1 by the function that
maximizesl1* ; we will call this function f 1* . Since the in-
tegral overf 1 is zero and we want to approximatef 1 , we
demand that the integral overf 1* is zero as well. Using this
we can calculate the expectation ofci

1ci
1 :

E@~ci
1!2#5EF S E

0

T

f 1* ~ t !xi~ t !dtD 2G
52DE

0

TS E
0

t

f 1* ~u!duD 2

dt. ~17!

The full derivation is given in the Appendix. When we defin
g(t) as

g~ t !5E
0

t

f 1* ~u!du, ~18!

we can rephrase the optimization problem in terms ofg and
add the constraints~11! and~16! using Lagrange multipliers
m1 andm2 . We have to find the functiong that maximizes
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E
0

T

@g~ t !#21m1g8~ t !1m2~@g8~ t !#221!dt

5E
0

T

L~ t,g,g8!dt ~19!

with the boundary conditions

g~0!5E
0

0

f 1* ~ t !dt50, ~20!

g~T!5E
0

T

f 1* ~ t !dt50. ~21!

According to the Euler-Lagrange formalism, the optimalg is
the solution of

]L

]g
2

d

dt

]L

]g8
52g~ t !22m2g9~ t !50. ~22!

The solutions are

gk~ t !5C sinS pkt

T D with k50,1,2,3, . . . . ~23!

g0 only satisfies the boundary conditions whenC50, so we
discard this function. By differentiatinggk and using Eq.
~11! we obtain a set of orthonormal functionshk :

hk~ t !5
dgk~ t !

dt
5A2

T
cosS pkt

T D with k51,2,3, . . . .

~24!

We have to find thehk that maximizesl1* :

f 1* 5hk⇒l1* 5
1

T
E@Nci

1ci
1#5

2NDT

p2k2
. ~25!

Thus the best guess for the projection on the first eigenve
f 1* is h1 . We can apply the same procedure forf k* , with the
extra restriction that Eq.~11! should hold for all 1< l ,k.
The result is

f k* 5hk , ~26!

lk* 5
1

T
E@Nci

1ci
1#5

2NDT

p2k2
. ~27!

The derivation oflk* is based on expectations and statisti
fluctuations are not taken into account. Since the differe
betweenl1* and l2* is a factor of 4, we expect that th
projection on the first eigenvector is very close to a h
cosine. But for largek the statistical fluctuations might caus
mixing of the cosines.

The projectionsf k* suggest that the covariance matrix c
be approximately diagonalized with a matrix of cosine co
ficients. To test this approximation we have to write eachxi
as a sum of cosines:
or

l
e

f

-

xi~ t !2^xi&5 (
k51

`

ci
kf k* ~ t !5A2

T(
k51

`

ci
k cosS pkt

T D ,

~28!

whereci
k is defined as

ci
k5E

0

T

xi~ t ! f k* ~ t !dt5A2

TE0

T

xi~ t !cosS pkt

T Ddt. ~29!

The cosine coefficients are zero on average and uncorrela

E@ci
k#50, where k51,2,3, . . . , ~30!

E@ci
kcj

l #5
2DT2

p2kl
d i j dkl, where k,l 51,2,3, . . . . ~31!

Full derivations are given in the Appendix. The covarian
matrix can be expressed in terms of cosine coefficients:

Ci j 5
1

TE0

T

(
k51

`

ci
kf k* ~ t !(

l 51

`

cj
l f l* ~ t !dt

5
1

T (
k51

`

ci
kcj

k5
1

T (
k51

N

ci
kcj

k1OS 1

ND
5Ci j* 1OS 1

ND . ~32!

We can writeC* as a matrix product which involves a d
agonal matrix and a matrix with independent stochastic e
ments with variance 1:

Ci j* 5 (
k51

N SA2DT

pk D S pk

A2DT
ci

kD S pk

A2DT
cj

kD SA2DT

pk D
5~Y1/2XXTY1/2! i j , ~33!

whereY is a diagonal matrix withYkk52DTp22k22. Re-
cently Bai and Silverstein proved that for largeN the eigen-
values of (1/N)C* andY have the same separation@9#. Since
Y is a diagonal matrix with separated eigenvaluesYkk

5lk* /N, the eigenvalues ofC* andY are identical for large
N. BecauseC* is a good approximation ofC, the eigenval-
ues ofC arelk* .

We want to prove that the projections on the first fe
eigenvectors ofC resemble cosines. When this is the ca
we can approximate the eigenvector matrix ofC with a ma-
trix of the first N normalized cosine coefficients for eac
coordinate:

Rik* 5
1

Ack•ck

ci
k'

1

AE@ck•ck#
ci

k5
pk

A2NDT
ci

k

5Rik8 , where i ,k51, . . . ,N. ~34!

For reasonably largeN, R8 will be a good approximation of
R* . The use ofR8 instead ofR* simplifies the analysis. On
average the rows and columns ofR8 are uncorrelated and
have norm 1:
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EF (
k51

N

Rik8 Rjk8 G5d i j , ~35!

EF(
i 51

N

Rik8 Ril8 G5dkl . ~36!

However, the columns are only approximately orthogona

EF S (
i 51

N

Rik8 Ril8 D 2G5EF S p2kl

2NDT2D 2

(
i 51

N

(
j 51

N

ci
kcj

kci
lcj

l G ~37!

5S p2kl

2NDT2D 2

(
i 51

N

E@~ci
k!2#E@~ci

l !2# ~38!

5
1

N
for iÞ j . ~39!

We can use the matrixR8 to transform the covariance ma
trix:

Bi j 5~R8TCR8! i j 5(
l 51

N

Rli8 (
m51

N

ClmRm j8 ~40!

5(
l 51

N
p i

A2NDT
cl

i (
m51

N
1

T (
k51

`

cl
kcm

k p j

A2NDT
cm

j
~41!

5
p2i j

2NDT3 (
l 51

N

cl
i (
m51

N

cm
j (

k51

`

cl
kcm

k . ~42!

Since the columns ofR8 are not completely orthogonal, ma
trix B will not inherit all the properties ofC. We hope that
the matrix B is approximately diagonal. To check this w
have to calculate the expectation of each matrix elemen

E@Bii #5
p2i 2

2NDT3
EF S (

l 51

N

cl
i (
m51

N

cm
i (

k51

`

cl
kcm

k D G ~43!

5
p2i 2

2NDT3 S EF(
l 51

N

cl
i2 (

m51

N

cm
i 2~12d lm!G

1EF(
l 51

N

cl
i2(

k51

`

cl
k2~12d ik!G1EF(

l 51

N

cl
i4G D ~44!

5
2DTi2

Np2 FN22N

i 4
1

N

i 2 S p2

6
2

1

i 2D 1
3N

i 4 G ~45!

52DTS 1

6
1

N11

p2i 2 D , ~46!

E@Bi j #50 for iÞ j , ~47!

where we have used the fourth moment of a Gaussian di
bution forE@cl

i4#. The trace ofB is twice as large as the trac
of C. ComparingBii with l i* shows that this difference i
caused by the term 1/6, which arises from correlations
tween the columns ofR8. The 1/6 is negligible fori !AN.
ri-

e-

The expectation of the off-diagonal elements is zero, beca
every term contains at least onec with an odd power. For the
same reason the cross correlation between elements ofB is
zero:

E@Bi j Bkl#50 for iÞ j or kÞ l . ~48!

The off-diagonal elements are zero on average, but t
might be very large. The variance of the off-diagonal e
ments ofB is

E@~Bi j !
2#54D2T2F 1

90
1

1

3p2 S 1

i 2
1

1

j 2D 1
N13

p4 S 1

i 4
1

1

j 4D
1

2N14

i 2 j 2
1OS 1

ND G . ~49!

The derivation is given in the Appendix. Wheni !AN, the
off-diagonal elements are orderAN, which is AN smaller
than the diagonal elements. Although there areN21 off-
diagonal elements, they are completely uncorrelated.
sum of N random elements isAN larger than each elemen
and also random. A cumulative effect can be achieved
one inner product of an eigenvector with a row ofB, but for
an eigenvalue of orderN the inner products with allN rows
should beN larger than the eigenvector elements and of
correct sign. Since this is impossible and fori !AN the ei-
genvalues ofC areBii 1O(1), theprojections will resemble
cosines. Wheni>AN, the off-diagonal elements are of th
same order as the diagonal elements and the resemb
will be lost.

VALIDATION

To see how much real principal components resemble
sines, we have to compare the theory with results fr
Langevin dynamics simulations. Anxi(t) can be generated
only for a finite number of time points. This can be do
using the algorithmxi((n11)t)5xi(nt)1Dx. The value of
xi(0) is irrelevant.Dx should be drawn from a Gaussia
distribution which obeys Eqs.~4! and ~5!. Whent is small,
the distribution does not have to be Gaussian, since the
volution of many distributions will converge to a Gaussi
distribution. The simulations and covariance analysis w
performed with theGROMACS package@10#. For the simula-
tions we always used 1000 steps and a convolution of f
uniform distributions, which corresponds to 4000 steps w
a uniform distribution. Figure 1 shows the eigenvalues o
tained from a simulation and theBii from Eq. ~40! with
normalized eigenvector length forN5120, D50.5, andT
51. The first three eigenvalues are predicted quite ac
rately. After ten eigenvalues the diagonal elements ofB are
too small compared to the off-diagonal elements to be a
sonable approximation of the eigenvalues. The predicti
are close to the estimated values@Eq. ~46!#; the term 1/6 in
Eq. ~46! starts to dominate fori .10. When this term is
discarded and the eigenvalues are estimated byl i* @Eq.
~27!#, a good correspondence is obtained over the wh
range. Usingl i* it can be calculated that on average the fi
three eigenvalues contain 80% of the mean square fluc
tion whenN510 and 84% for largeN. The first five princi-
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pal components are shown in Fig. 2; they resemble cosi
The cosine content of an eigenvector can be determ

by taking inner products with columns ofR* . Because these
inner products fluctuate heavily, we have calculated aver
inner products over 100 Langevin dynamics simulations w
N set to 30, 120, and 480. Figure 3 shows average in
products of eigenvectori with column i of R* . The first
eigenvector is almost a perfect cosine, with an inner prod
larger than 0.996 for all three system sizes. The inner pr
ucts are one-half fori 5AN, which is exactly the behavio
we expected.

The cosinelike principal components lead to strange
namic effects. One example is the mean square displacem
which is proportional to time for a single pure diffusive c
ordinate. The mean square displacement along the cos
shaped principal components is proportional to the ti
squared. This can be shown with a simple derivation. T

FIG. 1. The eigenvalues of the covariance matrix of a 1
dimensional Brownian dynamics simulation. The eigenvalue e
mates are theBii from Eq.~40!, using the normalized vectors of Eq
~34!.

FIG. 2. The first five principal components of a 120-dimensio
Brownian dynamics simulation.
s.
d

ge
h
er

ct
d-

-
nt,

e-
e
e

principal componenti can be approximated as

pi~ t !'
A4NDT

ip
cosS p i t

T D . ~50!

From this we can calculate the mean square displacemenM
along eigenvectori:

Mi~ t !'
1

T2tE0

T2t 4NDT

i 2p2 FcosS ipy

T D
2cosS ip~y1t !

T D G2

dy ~51!

5
8NDT

i 2p2
sin2S ipt

2T D F11
T

ip~T2t !
sinS ipt

T D G
~52!

'
2ND

T
t2 for t,

T

2i
. ~53!

The mean square displacements of the principal compon
for the 120-dimensional Brownian system~Fig. 2! are shown
in Fig. 4. The whole system behaves diffusively, but the fi
few eigenvectors exhibit ballistic motion.

PROTEIN SIMULATIONS

Molecular simulations of macromolecules are good e
amples of high-dimensional systems where principal com
nent analysis can be useful. It will reveal global motio
when they are present in the system, without having to vi
ally inspect the whole trajectory. In order to analyze intern

-
i-

l

FIG. 3. The average inner products of the eigenvectors of
covariance matrix and the estimated eigenvectorsR* @Eq. ~34!#.
The inner products were averaged over 100 simulations for e
system size. Since the columns ofR8 are cosine coefficients, thes
inner products show how much each principal component
sembles a cosine with the number of periods equal to one-half
principal component index. The inner product is one-half at
square root of the system size. The error bars show the stan
deviation.
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motions of a molecule, the overall rotation has to be
moved. The most simple way to accomplish this is le
squares fitting each structure on a reference structure.
should be taken when applying this procedure. Because
ferent reference structures will lead to different orientatio
of the structures with respect to each other, the refere
structure should be representative for the whole ensemb
structures. When large movements take place the fit m
not be well determined and the fitted structures might ju
between different orientations. This problem is most app
ent in elongated linear chains, such as polymers, where
rotational orientation around the chain axis is not well d
fined.

We will present principal component analysis results
three different protein systems. In all these systems the
namics of the first few principal components is mainly d
fusive, but the sampled part of the free-energy landscape
different characteristics for the different simulations. T
three simulations and the covariance analyses were
formed with theGROMACS package@10#.

OMPf porin in a bilayer

Outer membrane protein f~OMPf! is a trimeric protein
that consists of threeb barrels of 340 residues each. Th
protein was simulated with molecular dynamics~MD! at pH
3 in a bilayer of 153 di-miristoyl-phosphatidyl-cholin
~DMPC! lipids, surrounded by 11 419 simple-point-char
~SPC! water molecules and 66 chloride ions. This system
51 813 atoms was simulated for 3 ns with a time step of 2
the coordinates were written to file every 10 ps. A twin-ran
cutoff was used: 1.0 nm for the Lennard-Jones and s
range Coulomb interactions and 1.8 nm for the long ran
Coulomb interactions, updated every 10 steps. The temp
ture and pressure were coupled to 310 K and 1 bar, res
tively. The system is similar to the system in@11#. A descrip-
tion of the force-field parameters can be found in@12#.

We split the trajectory into three parts of 1 ns each. C
variance analyses were performed for each part on thea

FIG. 4. The mean square displacement~MSD! of the first five
principal components of a 120-dimensional Brownian simulati
The principal components are ballistic (MSD;t2) over a large
range of times. The MSD of the whole system is proportional
time.
-
t
re

if-
s
ce
of
ht
p
r-
he
-

r
y-

as

r-

f
;

e
rt
e
ra-
c-

-

atoms of monomer 1~340 atoms, 1020 dimensions!. All
structures were least squares fitted on the Ca atoms of the
monomer 1 at time 0. Since there are 101 structures in e
part, there are only 10026594 nonzero eigenvalues. Th
eigenvalues of the covariance matrix for time 1–2 ns
shown in Fig. 5. The eigenvalues decay with approximate
power of 21.1. The first five principal components a
shown in Fig. 6. The first four resemble cosines with t
number of periods equal to half the eigenvalue index. Th
the sampling in these directions is far from complete. T
principal components resemble those of the Brownian s
tem, which suggests that the protein might be diffusing o
part of the free-energy landscape that is almost flat in a
dimensions. If this is the case, then these eigenvectors do
describe relevant motions, but only give an indication
which directions the protein is more free to move.

To check the relevance of the eigenvectors, we can l
at the overlap between subspaces spanned by eigenve

.
FIG. 5. Eigenvalues of the covariance matrix of subunit 1 of

OMPf trimer. The analysis was done over time 1–2 ns of the M
simulation.

FIG. 6. The first five principal components of subunit 1 of t
OMPf trimer. The analysis was done over time 1–2 ns of the M
simulation. Each principal components is fitted to a cosine w
number of periods equal to one-half the index. In nm.
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for different parts of the simulation. The overlap betwe
two sets of n orthonormal vectors v1 , . . . ,vn and
w1 , . . . ,wn can be quantified as follows:

overlap~v,w!5
1

n (
i 51

n

(
j 51

n

~vi•wj !
2. ~54!

When setsv andw span the same subspace, the overlap i
The overlap between the subspace spanned by the firs
eigenvectors is 0.13 between the first and second nano
ond, 0.16 between the second and third nanosecond, and
between the first and third nanosecond. This means that
is not enough to get a good impression of the conformatio
freedom of this protein. We have also calculated the m
square displacement along eigenvectors; these are show
Fig. 7. On time scales below 100 ps the behavior is sub
fusive, which is reasonable for a set of connected atoms
relatively flat part of the free-energy landscape. On lon
time scales eigenvectors 1 and 2 go ballistic. This is no
property of the system, but rather an artifact of the sh
simulation time in combination with the covariance analys
which filters ballistic motions out of a diffusive system. Th
can be illustrated by doing the same analysis for the who
ns. Again the principal components look like cosines,
now the wavelength is three times as long. Thus the co
behavior is linked to the analysis interval and not to inher
properties of the protein. The mean square displacem
looks similar as well, but the transition to ballistic motion
shifted by approximately a factor of 3~see Fig. 7!.

b hairpin in water

The second system is a 16-residueb hairpin solvated in a
box of 1414 SPC water molecules and three sodium io
This system was simulated for 10 ns; structures were wri
to trajectory every 0.1 ps. A complete description of t

FIG. 7. The mean square displacement of the first five princ
components of subunit 1 of the OMPf trimer. The analysis w
done over time 1–2 ns of the MD simulation. The first princip
component for the analysis over 0–3 ns is shown as well. Th
principal components are subdiffusive on short time scales. The
two principal components show ballistic behavior, due to their
sine shape~see Fig. 6!.
1.
10
ec-
.12
ns
al
n
in

f-
a
r
a
rt
,

3
t
e
t
nt

s.
n

simulation setup can be found in@13#. We performed the
covariance analysis on the 24 001 structures from 5.3 to
ns. We chose this period because the peptide seems to r
in one free-energy minimum for these 2.4 ns. Because
termini are very flexible, only the backbone atoms of re
dues 2 to 15 were included in the analysis. The first fi
eigenvalues can be found in Table I; they contain 65% of
fluctuations and the first ten eigenvalues contain 81% of
fluctuations. The eigenvectors are well defined for this p
of the simulation; the subspace overlap between the first
second 1.2 ns is 0.89 for the first five eigenvectors. The fi
five principal components are shown in Fig. 8. These lo
very noisy and resemble diffusion in a harmonic potent
their distributions are almost Gaussian. The force constank
for the harmonic well can be estimated from the eigenval
and the temperature~see Table I!. Kinetic information can be
obtained from the autocorrelation functions of the princip
components, shown in Fig. 9. There is a rapid drop in
first half picosecond followed by an approximately expone
tial decay. After 20 ps the curves level off, which is an i
dication that the peptide is not diffusing in a single harmo
well, but in several connected wells. The fast effect can a
be found in the velocity autocorrelation functions of the e

l
s
l
se
st
-

FIG. 8. The first five principal components of theb
hairpin. In nm.

TABLE I. Properties of the first five eigenvectors of th
b-hairpin simulation.i is the eigenvector index,l is the eigenvalue,
k5kBT/l is an estimate of the harmonic force constant in the
rection of eigenvectori, a andt are the result of an exponential fi
a exp(2t/t) from 1 to 20 ps to the autocorrelation function of prin
cipal componenti, and z5kt is a rough estimate of the friction
coefficient.

i l (nm2) k S k J

mol nm2D a t (ps) z Samu

ps D
1 17.131023 146 0.81 19 2.93103

2 10.831023 236 0.78 17 4.13103

3 9.931023 252 0.73 14 3.43103

4 5.831023 429 0.66 22 9.43103

5 4.231023 600 0.38 20 12.23103
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envectors functions; these have a negative peak at 0.3 to
ps. This time scale corresponds to the momentum eff
which should occur on a time scale ofAm/k, wherem is
approximately 12 amu. The long time scale motions
overdamped, since the velocity autocorrelation is almost z
after a few picoseconds. In a diffusive system the corre
tions decay exponentially witht5z/k, wherez is the fric-
tion coefficient. We can estimate the friction coefficient f
the first three eigenvectors by fitting the autocorrelat
function with an exponential from 1 to 20 ps~see Table I!.

HPr in water

The last system is the 85-residue protein HPr~histidine-
containing protein! @18# simulated in a box of 5315 SPC
water molecules. The total simulation time was 5 ns; str
tures were written to trajectory every picosecond. We left
first nanosecond out of the analysis to remove equilibra
effects. The first five and ten eigenvalues contain 63%
74% of the fluctuations, respectively. The first five princip
components show plateaus with distinct jumps at 2.5 and

FIG. 9. The autocorrelation of the first five principal comp
nents of theb hairpin.

FIG. 10. The first five principal components of HPr. In nm
.4
t,

e
ro
-

n

-
e
n
d
l
.2

ns ~Fig. 10!. The global shape of the first and second eige
vectors resemble a half and a full cosine. The jumping
havior can also be observed in the root mean square de
tion ~RMSD! matrix ~Fig. 11!, which has several light
triangles along the diagonal. The structures can be clust
using RMSD as a distance measure, for instance, a Ja
Patrick algorithm. In this algorithm a list of the nine close
neighbors is constructed for each structure. Two structu
are in the same cluster when they are in each other’s list
have at least three list members in common. The algorit
finds three large clusters~Fig. 11!. The first five eigenvectors
mainly describe the difference between the clusters. Beca
of the jumping behavior the overlap between the first a
second halves of the 4 ns is only 0.32 and 0.46 for the s
space spanned by the first five and ten eigenvectors, res
tively. When the simulation is prolonged, jumps to new clu
ters might occur, which can cause large changes in
eigenvectors.

DISCUSSION

Principal component analysis is considered to be a p
erful tool for finding large scale motions in proteins. Th
advantages of the analysis do not lie in the analysis itself,
in the fact that most of the fluctuations can be captured w
the first few principal modes. This means that many analy
can be performed in only a few dimensions, which mak
visual inspection of the results easier. This can reveal f
tures of the free-energy landscape. Kinetic properties
also be analyzed, since all the time information is s
present in the principal components.

However, one cannot conclude from the eigenvalu
alone that only a small subspace is important. We h
shown that for high-dimensional random diffusion, the fi

FIG. 11. Matrix showing the RMS deviation of the Ca’s of HPr
for each pair of structures in the upper left half. The lower right h
shows the result of Jarvis-Patrick clustering. A black dot means
two structures are in the same cluster. There are three large clu
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three eigenvalues contain 84% of the fluctuations. This d
not mean that the first three principal modes reveal spe
properties of the system. In random diffusion all directio
are equivalent; a second simulation will produce complet
different principal modes. How can the relevance of the pr
cipal modes be determined? One should always divide
simulation into two or more parts and compare the princi
modes for each part. A simple measure is the subspace o
lap of the first few principal modes@Eq. ~54!#. Amadeiet al.
extensively analyzed the overlap for molecular dynam
MD simulations of proteinL and cytochromeC @14#. They
found that the overlap for the first 10 principal components
0.6 for two parts of 50 ps, irrespective of the time interv
between the two parts. This indicates that the prot
samples only one free-energy minimum, as is the case fo
b-hairpin simulation. The overlap can be lower when t
protein samples multiple minima, as was shown for HPr.
that case the principal modes describe the differences
tween the minima, rather than the shape of the ene
minima. Although the subspace of the first five or ten pr
cipal modes might not be well defined, there will always
a splitting in a subspace of diffusive modes, which cont
most of the fluctuations and a subspace of~near-!harmonic
modes. This splitting will not change significantly betwe
different simulations.

We have shown that the first few principal components
high-dimensional random diffusion are a half cosine, a f
cosine, one and one-half cosine, etc. Many protein sim
tions with similar principal components can be found in t
literature, for instance@5,15,16#. When the trajectory is pro
jected on the plane of the first two principal components,
half and full cosine produce a characteristic semicircle,
can been seen for bovine pancreatic trypsin inhibitor~BPTI!
simulations in@17#. Often these simulations are relative
short ~a few nanoseconds! and of relatively large proteins
~more than 200 residues!, like the OMPf simulation pre-
sented in this article. It is very improbable that properties
the protein will produce cosine-shaped atomic displa
ments, consisting of exactly a half period, a full period, e
es
al
s
y
-
e
l
er-

s

s
l
n
he

n
e-
y

-

n

f
ll
a-

e
s

f
-
.

It is more likely that this behavior is the result of rando
diffusion, since the simulation time is not long enough
repeatedly reach barriers on the free-energy landscape.
first principal component, a half cosine, can be very misle
ing, as it seems if the protein moves from one ‘‘we
defined’’ conformation to another. The cosine-shaped prin
pal components lead to ballistic behavior on longer tim
scales. Garcı´a et al. @15# write that this behavior belongs t
the ‘‘Lévy flight’’ class. However, this behavior is caused b
the incomplete sampling and scales with the simulation tim
as shown for OMPf, and it will disappear when a free-ene
minimum has been sampled to a reasonable extent, as sh
for the b hairpin. When one sees cosinelike principal co
ponents, one should interpret the results carefully and alw
keep in mind that most of the fluctuations could be caused
random diffusion. The analysis is still useful, because it c
separate the ‘‘random diffusion’’ degrees of freedom fro
the more restricted degrees of freedom. In such cases ins
into the principal modes of random diffusion in a harmon
potential will make better estimates of the conformation
freedom possible. In future work we hope to present simu
tions of proteins of reasonable size, which are long enoug
analyze the convergence.
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APPENDIX

The variance of the integral overf (t)xi(t) can be calcu-
lated, given that

E
0

T

f ~ t !dt50. ~A1!

We can apply partial integration
EF S E
0

T

f ~ t !xi~ t !dtD 2G5EF S 2E
0

TE
0

t

f ~v !dv
dxi~ t !

dt
dt1E

0

t

f ~v !dvxi~ t !U t50
t5TD 2G

5EF S 2E
0

TE
0

t

f ~v !dv
dxi~ t !

dt
dtD 2G

5EF E
0

TE
0

t

f ~v !dv
dxi~ t !

dt
dtE

0

TE
0

u

f ~w!dw
dxi~u!

du
duG

5E
0

TE
0

TE
0

t

f ~v !dvE
0

u

f ~w!dwEFdxi~ t !

dt

dxi~u!

du Gdudt

5E
0

TE
0

TE
0

t

f ~v !dvE
0

u

f ~w!dw2Dd~ t2u!dudt

52DE
0

TS E
0

t

f ~u!duD 2

dt. ~A2!

The expectations ofci
k andci

kcj
l can be calculated using integration by parts:
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E@ci
k#5EFA2

TE0

T

xi~ t !cosS pkt

T DdtG5EF2
A2

ATpk
E

0

Tdxi~ t !

dt
sinS pkt

T DdtG52
A2

ATpk
E

0

T

EFdxi~ t !

dt G sinSATpkt

T D dt50.

~A3!

For k51,2, . . . andl 51,2, . . . ,

E@ci
kcj

l #5EF 2

TE0

T

xi~s!cosS pks

T DdsE
0

T

xj~ t !cosS p l t

T DdtG
5EF 2T

p2kl
E

0

Tdxi~s!

dt
sinS pks

T DdsE
0

Tdxj~ t !

dt
sinS p l t

T DdtG
5

2T

p2kl
E

0

TE
0

T

EFdxi~s!

dt

dxj~ t !

dt G sinS pks

T DdssinS p l t

T Ddt

5
2T

p2kl
E

0

TE
0

T

2Dd~s2t !d i j sinS pks

T DdssinS p l t

T Ddt

5
4DT

p2kl
d i j E

0

T

sinS pkt

T D sinS p l t

T Ddt

5
2DT2

p2kl
d i j dkl . ~A4!

The size of the off-diagonal elements ofB is

E@~Bi j !
2#5EF S p2i j

2NDT3 (
l 51

N

cl
i (
m51

N

cm
j (

k51

`

cl
kcm

k D 2G
5S p2i j

2NDT3D 2

E@~U1Vi j 1Vji !
2#

5S p2i j

2NDT3D 2

~E@U2#1E@Vi j
2 #1E@Vji

2 #12E@UVi j #12E@UVji #12E@Vi j Vji # !, ~A5!

where

U5(
l 51

N

cl
i (
m51

N

cm
j (

k51

`

cl
kcm

k ~12d ik!~12d jk!, ~A6!

Vi j 5(
l 51

N

cl
i 2 (

m51

N

cm
j cm

i . ~A7!

E~U2!5EF(
l 51
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i 2 (

m51

N

cm
j 2

(
k51

`

cl
k2

cm
k2

~12d ik!~12d jk!G5S 2DT2

p2 D 2
N21O~N!

i 2 j 2 S p4

90
2

1

i 4
2

1

j 4D , ~A8!

E@Vi j
2 #5EF S (

l 51

N
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i 2D 2

(
m51

N

cm
j 2

cm
i 2G5S 2DT2

p2 D 2
N312N2~321!1O~N!

i 6 j 2
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E@UVi j #5EF(
l 51
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i 2 (

m51
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cm
j 2

cm
i 2S (

k51

`

cm
k2

2cm
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6
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