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Similarities between principal components of protein dynamics and random diffusion
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Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated
motions in atomic simulations of macromolecules. It has become an established technique for analyzing
molecular dynamics simulations of proteins. The first few principal components of simulations of large pro-
teins often resemble cosines. We derive the principal components for high-dimensional random diffusion,
which are almost perfect cosines. This resemblance between protein simulations and noise implies that for
many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

PACS numbd(s): 87.14.Ee, 87.15.Aa, 87.15.He

INTRODUCTION where( ) is the average over all data points. The data can
consist of a finite number df-dimensional points, in which
This article focuses on the use of covariance analysis as@ase the average is a summatiof{t) can also be an
tool to gain information about the conformational freedom ofN-dimensional function; then the average is an integral. The
proteins. Knowledge about the conformational freedom of aymmetricN XN matrix C can be diagonalized with an or-
protein can give insight into the stability and functional mo-thonormal transformation matrii:
tions of the protein. Conformational freedom is related to the
potential energy: in equilibrium the distribution of conforma- RTCR=diag\{, Ny, - . . Ap)-
tions can, in principle, be calculated from the potential. In
practice this is not possible, since proteins are too complexrhe columns ofR are the eigenvectors or princinal modes
not only because of their high dimensionality, but aiso be- he eigenvalue& are equal gt]o the variancepin thpe direction.
cause the energy landscape usually consists of many minimg 9 : 9 i
Normal mode analysis can be used to analyze any of the f the corresponding eigenvector; they can be chosen such

potential energy minima, but it does not take entropy due t at A=) ,=---=Ay=0. The original data can be pro-
the occupation of several minima into account, which playéec'[e.oI on the e!genvectors to give the principal components
an important role at room temperature. For reviews on nort’i =1,...N:

mal mode and principal component analysis applied to pro-

teins, sed1,2]. The first application of principal component p=R"(x—(x)).

analysis to macromolecules was performed to estimate the

configurational entropy3]. More recently the application of When the data are the result of a dynamic process, the prin-
principal component analysis to proteins has been termegipal components are a function of time amgt) will be the
“molecule optimal dynamic coordinateg4,5] and “essen-  principal component with the largest mean square fluctua-
tial dynamics”[6]. It has now become a standard techniquetion. Note that if the system obeys Newton's laws every
for analyzing molecular dynamics trajectories. However, thecoordinate has to be weighted with the square root of the
effects of insufficient sampling on the results are not wellmass to obtain physically relevant dynamic principal compo-
understood. nents.

Covariance analysis, also called principal component For a system moving in &uasjharmonic potential, the
analysis, is a mathematical technique for analyzing highprincipal modes are similar to the normal modes, which are
dimensional data sets. Essentially, it defines a new coordihe eigenvectors of the Hessian in the energy minimum. The
nate system for the data set, with the special property that thgdvantage of normal mode analysis is that it depends only on
covariance is zero for any two coordinates. In this sensgne shape of the potential energy surface; however, its use is
these new coordinates can be called uncorrelated. These g@stricted to quasiharmonic systems. Covariance analysis can
ordinates are to be ordered according to the variance of thige applied to any dynamic system, but the results will also
data in that coordinate. This can allow for a reduction of thedepend on the sampling. The problem is how to separate
dimensionality of the space by neglecting the coordinatesntrinsic properties of the system from sampling artifacts. As
with small variance, thus concentrating on the coordinategyas shown by Linssef¥], the principal components of mul-
with larger spread or fluctuations. tidimensional random diffusion are cosine shaped, with am-

The procedure foN-dimensional datx(t) is as follows.  plitudes inversely proportional to the eigenvalue ranking
First the covariance matrix has to be constructed. The covawumber. This behavior is very similar to that observed from

rianceC;; of coordinatei and coordinatg is defined as simulations of proteins. In order to interpret protein data cor-
rectly, it is important that the behavior of random diffusion is
Cij ={(xi— (X)) (X;—= (X)), basically understood. In the next section we will perform a
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theoretical analysis of random diffusion. The results of ran- T
dom diffusion depend only on the sampling, because there is Jl) fr() () dt= oy, (11)
no potential.
T
ANALYSIS OF RANDOM DIFFUSION ci“:f fl(O[x (1) —{x;)]dt. (12
0
N-dimensional diffusion is described by a systemNof _ _
independent stochastic differential equations: We can choose th§, such thatf,(t) is proportional to the
projection on eigenvector K (t)~e.[x(t)—(x)], thusf,
dxi(t) - will contribute only to\,. f,(t) is the function that maxi-
dt =rih), i=1,...N. (1) mizes the variance:
ri(t) is a .stat|onary stochastic noise term, which is N = maxmax= | [e,ctf,(1)]?dt
S-correlated: _ TJo
legi=1 3
E[ri(1]=0, @ 1
= maxmax=(e;-c)*. (13
E[ri(r(t+7)]=2D&; (1) ©) ledl=1
i ; i ; 1.
where E[ ] denotes the expectation;; is the Kronecker It can easily be derived tha is proportional toc™
delta andé§(7) is the Dirac delta function. The solution of 1
this system is a set dfl nonstationary stochastic functions o = c (14)
X;i(t), which represent Wiener procesq@&. The displace- 1 oot

mentsx;(t+ 7) — x;(t) are Gaussian distributed with
WhenN is 1, f4(t) is proportional tax,(t) —(x;). As N gets
E[xi(t+7)—xi(1)]=0, (4) larger, the set ok;’s will form a better representation of the

full ensemble. For larg® we can approximat@ ; with an
E[{Xi(t"r‘ T)_Xi(t)][Xj(t"r‘ T)_X](t)}]:2D7'5” . (5) ensemble average:

We will use this continuum description for the analysis of 1 1
random diffusion. Realizations can be generated only for a )\1=max?cl«cl~ max? E[c-ct]
finite number of time points. This is not a problem, since the f1 fy
results of the covariance analysis will be virtually identical 1
when we have more thaN time points. =max— E[Ncilcil]z)\f ) (15)

We are interested in the eigenvalues and eigenvectors of fq T
the covariance matrixC and in the shapes of the principal . )
components: The integral oveff is zero:

1T T T
Ci=7 fo [0 = ()X (0= (g)ldt, () fo fDdt~ fo B =(Jdt=0. (16
(D) =6 [X()—(x)], @) For large N we can approximatd,; by the function that

maximizes\y ; we will call this functionfy . Since the in-

whereeg, is eigenvectok and(x;) is the average of; : tegral overf, is zero and we want to approximate, we
demand that the integral ovét is zero as well. Using this

we can calculate the expectationdfic! :
T 2
. . . . 3 (t)x;(t)dt
The eigenvectors are ordered according to descending eigen- ( Jo H(Ox() ) }
value. The first eigenvect@ is the vector that produces the .
linear combination ok;’s with the largest mean square fluc- ZZDJ
tuation. Thuse, is the vector with|e||=1 which maximizes 0

1T
<X|>:?JO X|(t)dt (8)
E[(c)?]=E

t 2
j f’{(u)du) dt. 17

0

- 1 IT - 24t g The full derivation is given in the Appendix. When we define
1_\\$\a=>i T 0 [el'(x( ) <X>)] . ( ) g(t) as
We can writex(t) —(x) as a sum of a series of orthonormal g(t)= ftf’{(u)du, (19
0

functionsf, :

1 (T * 2 we can rephrase the optimization problem in termg ahd
A= max ?f (el- E ckfk(t)) dt, (10 add the constraint6l1) and (16) using Lagrange multipliers
legl=1 'O k=0 w1 and u,. We have to find the functiog that maximizes
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.
JO [9(D1?+ 119" () +pa([g' (H]?— 1)dt

-
=f L(t,g,g")dt (19
0
with the boundary conditions

0
g(O):f f1(t)dt=0, (20

0

-
g(T)=fO f1(t)dt=0. (21)

According to the Euler-Lagrange formalism, the optirgas
the solution of

L d dL s ) =0 -
79 aﬁ—g,— g(t)—2u.9"(t)=0. (22
The solutions are
[kt ]
gk(t)=Csm(T) with k=0,1,2,3... . (23

0o only satisfies the boundary conditions wh@ér 0, so we
discard this function. By differentiating, and using Eg.
(11) we obtain a set of orthonormal functiohg:

dgk<t> \F mkt)
h(t)=—— TCO T with k=1,23....
(24)
We have to find thd, that maximizes\y :
f*=h=\*¥ ! E[Ncicl] 2NDT (25)
=h=N == GCil= .
1 k 177 i i ’7T2k2

Thus the best guess for the projection on the first eigenvect
f1 ish;. We can apply the same procedure f§r, with the
extra restriction that Eq(11) should hold for all =I<Kk.
The result is

fx =hy, (26)
2NDT
’772|(2 ’

1
T EINcici]= (27)

The derivation ofA} is based on expectations and statistica

fluctuations are not taken into account. Since the difference

between\} and A} is a factor of 4, we expect that the

projection on the first eigenvector is very close to a half

cosine. But for largé the statistical fluctuations might cause
mixing of the cosines.
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(28)

whereck is defined as

T 2 (7 kt
ci= fo xi(H)f (Hdt= \/;fo xi(t)cos(%)dt. (29

The cosine coefficients are zero on average and uncorrelated:

E[cK]=0, wherek=1,23..., (30)

2DT
E[cfc ]— 2] 5.,5k|, where k,1=1,2,3 ... . (31

Full derivations are given in the Appendix. The covariance
matrix can be expressed in terms of cosine coefficients:

Cij= f 2 ckfy (t)E clff (t)dt

(32

We can writeC* as a matrix product which involves a di-
agonal matrix and a matrix with independent stochastic ele-
ments with variance 1:

o \/2DT) mk [ 7wk, (sz)
= V2pT )\ b1 )\ wk
— (Yl/2xxTY1/2)ij , (33)

whereY is a diagonal matrix withY,,=2DTx %k 2. Re-
cﬁently Bai and Silverstein proved that for larljethe eigen-
values of (IN)C* andY have the same separati@]. Since
Y is a diagonal matrix with separated eigenvaluég
=\¢/N, the eigenvalues oE* andY are identical for large
N. BecauseC* is a good approximation of, the eigenval-
ues ofC are\j .

We want to prove that the projections on the first few
eigenvectors ofC resemble cosines. When this is the case,
we can approximate the eigenvector matrix®fvith a ma-
trix of the first N normalized cosine coefficients for each
coordinate:

I
1

k_
VE[ ¢ & ‘i
N.

wk
V2NDT

1
" Voo
=R, whereik=1,...

cf

(34

The projectiond suggest that the covariance matrix can For reasonably larghl, R’ will be a good approximation of

be approximately diagonalized with a matrix of cosine coef-

ficients. To test this approximation we have to write each
as a sum of cosines:

R*. The use oR’ instead ofR* simplifies the analysis. On
average the rows and columns Bf are uncorrelated and
have norm 1:
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N
E| > RiR|=38;, (35)
=y
N
E{Zl Ri,kRill}:‘Skl- (36)

However, the columns are only approximately orthogonal:

2
E

N
241 RiRi| 37

2N

2k| ky2 1\2
= ! : 38
NDT >, E[(cH?IE[(c)?] (39)
_1 1 1
=N for i#j. (39

We can use the matriR’ to transform the covariance ma-

trix:
N N

Bij:(R'TCR')iJZZJl RI’im§=:l CimRm; (40)

N . N 0 .
Tri . 1 ] )
= cl > = > ckeK c)
121 2NDT 'mzﬁgl m oot ™ (4D

2

M =z
M

> ¢

_ k
2NDT E1 :

) c{nk ck . (42)

C
1

Since the columns dR’ are not completely orthogonal, ma-

trix B will not inherit all the properties o€. We hope that

the matrix B is approximately diagonal. To check this we
have to calculate the expectation of each matrix element:

w22 Nz
E[B;]=——E c > c ckeK 43
[ ||] 2NDT3 (Izl |mZ:l mkgl I¥m ( )
w?i? N N
= E| > c?> ¢ (1-4
2NDT3( {2’1 ImEzl m ( 'm)}
N o N
+E| 2, ¢ cf%(1-8y) | +E| X ci“D (44)
= k=1 I=1
_2DTi2 N2—N N/#2 1) 3N 45
N2 | el et “9
=2DT 1+N+1 46
= 6" 22/ (46)
E[B”]:O f0r|¢J, (47)
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The expectation of the off-diagonal elements is zero, because
every term contains at least oosvith an odd power. For the
same reason the cross correlation between elemersiof
Zero:

E[B”Bk|]:0 fOI’I#] ork#l. (48)

The off-diagonal elements are zero on average, but they
might be very large. The variance of the off-diagonal ele-
ments ofB is

ErBoziapzr Lo L (1, L) N¥3(1 1

[( ij) 1= 90 3,2\i2 j2 =4 |4 j4
2N+4 1 49
oE N (49)

The derivation is given in the Appendix. Whére /N, the
off-diagonal elements are ordefN, which is /N smaller
than the diagonal elements. Although there Bre 1 off-
diagonal elements, they are completely uncorrelated. The
sum of N random elements i§N larger than each element
and also random. A cumulative effect can be achieved for
one inner product of an eigenvector with a rowRfbut for

an eigenvalue of ordeX the inner products with alN rows
should beN larger than the eigenvector elements and of the
correct sign. Since this is impossible and fez N the ei-
genvalues ofC areB;; +O(1), theprojections will resemble
cosines. Wheri= N, the off-diagonal elements are of the
same order as the diagonal elements and the resemblance
will be lost.

VALIDATION

To see how much real principal components resemble co-
sines, we have to compare the theory with results from
Langevin dynamics simulations. Ax(t) can be generated
only for a finite number of time points. This can be done
using the algorithnx;((n+1)7)=X;(n7) + AX. The value of
x;(0) is irrelevant.Ax should be drawn from a Gaussian
distribution which obeys Eqs4) and (5). When 7 is small,
the distribution does not have to be Gaussian, since the con-
volution of many distributions will converge to a Gaussian
distribution. The simulations and covariance analysis were
performed with thesRoMACS packagd 10]. For the simula-
tions we always used 1000 steps and a convolution of four
uniform distributions, which corresponds to 4000 steps with
a uniform distribution. Figure 1 shows the eigenvalues ob-
tained from a simulation and thB;; from Eg. (40) with
normalized eigenvector length fod=120, D=0.5, andT
=1. The first three eigenvalues are predicted quite accu-
rately. After ten eigenvalues the diagonal element8 afre
too small compared to the off-diagonal elements to be a rea-
sonable approximation of the eigenvalues. The predictions
are close to the estimated valyésy. (46)]; the term 1/6 in
Eq. (46) starts to dominate for>10. When this term is

where we have used the fourth moment of a Gaussian distrifiscarded and the eigenvalues are estimated\ by[Eq.
bution forE[c*]. The trace oB is twice as large as the trace (27)], a good correspondence is obtained over the whole
of C. ComparingB;; with \{* shows that this difference is range. Using\} it can be calculated that on average the first
caused by the term 1/6, which arises from correlations bethree eigenvalues contain 80% of the mean square fluctua-

tween the columns oR’. The 1/6 is negligible foi < \/N.

tion whenN=10 and 84% for larg&\. The first five princi-
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FIG. 1. The eigenvalues of the covariance matrix of a 120- F|G. 3. The average inner products of the eigenvectors of the
dimensional Brownian dynamics simulation. The eigenvalue estizgvariance matrix and the estimated eigenvecRits[Eq. (34)].
mates are th&;; from Eq.(40), using the normalized vectors of EQ. The inner products were averaged over 100 simulations for each
(34). system size. Since the columnsRf are cosine coefficients, these

inner products show how much each principal component re-
pal components are shown in Fig. 2; they resemble cosinesembles a cosine with the number of periods equal to one-half the

The cosine content of an eigenvector can be determineprincipal component index. The inner product is one-half at the
by taking inner products with columns B* . Because these square root of the system size. The error bars show the standard
inner products fluctuate heavily, we have calculated averag@eviation.
inner products over 100 Langevin dynamics simulations with ] )

N set to 30, 120, and 480. Figure 3 shows average inndpfincipal component can be approximated as

products of eigenvector with columni of R*. The first — .
eigenvector is almost a perfect cosine, with an inner product pi(t)~ 4_NDTCOS<7T” (50)
larger than 0.996 for all three system sizes. The inner prod- T T

ucts are one-half for=+/N, which is exactly the behavior
we expected.

The cosinelike principal components lead to strange dy
namic effects. One example is the mean square displacement,

From this we can calculate the mean square displacement
along eigenvector.

which is proportional to time for a single pure diffusive co- . t)~ 4 JT_t ANDT cos( 'Wy)
ordinate. The mean square displacement along the cosine- ' T-t)o i27r? T
shaped principal components is proportional to the time _ 5
squared. This can be shown with a simple derivation. The _Jimly+D)
co T dy (52)
- 8NDT i 7t T i 7t
3] — i - - ginl —
: " izg? S'”Z( 2T)[”iw(T—t) S'”( T ”
~ (52)
=
2NDt2 ; T 53
~—7 or t<§' (53
2
= The mean square displacements of the principal components
for the 120-dimensional Brownian systdfig. 2) are shown
b in Fig. 4. The whole system behaves diffusively, but the first
& few eigenvectors exhibit ballistic motion.
“é 0 PROTEIN SIMULATIONS
-4t ! ! ! ! 7 Molecular simulations of macromolecules are good ex-
0 0.2 0.4 0.6 0.8

amples of high-dimensional systems where principal compo-

nent analysis can be useful. It will reveal global motions
FIG. 2. The first five principal components of a 120-dimensionalwhen they are present in the system, without having to visu-

Brownian dynamics simulation. ally inspect the whole trajectory. In order to analyze internal

Time
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FIG. 4. The mean square displacem@iiSD) of the first five
principal components of a 120-dimensional Brownian simulation
The principal components are ballistic (MSBt?) over a large
range of times. The MSD of the whole system is proportional to
time.

FIG. 5. Eigenvalues of the covariance matrix of subunit 1 of an
"OMPf trimer. The analysis was done over time 1-2 ns of the MD
simulation.

atoms of monomer 1340 atoms, 1020 dimensionsAll
motions of a molecule, the overall rotation has to be re_structures were least squares fitted on theatbms of t-he
moved. The most simble way to accomplish this is leas onomer 1 at time 0. Since there are 101. structures in each
squareé fitting each structure on a reference structure. Ca art, there are only 1996.:94 nonzero elg.envalues. The

' ?genvalues of the covariance matrix for time 1-2 ns are

feront referonce Sucturon wil lead to aifieront ortentationSOWN i Fig. 5. The eigenvalues decay with approximately a
of the structures with respect to each other, the referenc ower of —1.1. The first five principal components are
P ’ %‘rown in Fig. 6. The first four resemble cosines with the

structure should be representative for the whole ensemble Qlumber of periods equal to half the eigenvalue index. Thus

structures. When large movements take place the fit m'ghﬁwe sampling in these directions is far from complete. The

Eg:vxt/)eeeﬁv%l:f% (?'éenrtm g?iiﬁtgggntgeﬂfitsed rsc;[lr)lljg:#riessmnggthgjurgf_principal components resemble those of the Brownian sys-
. . L P bp tem, which suggests that the protein might be diffusing on a
ent in elongated linear chains, such as polymers, where th

rotational orientation around the chain axis is not well de-&jlrt of Fhe free-gngrgy landscape that is aI_most flat in @ few
fined dimensions. If this is the case, then these eigenvectors do not

. o . describe relevant motions, but only give an indication in
We will present principal component analysis results for

three different protein systems. In all these systems the d yhich directions the protein is more free to move.
; p ystems. y . 9" To check the relevance of the eigenvectors, we can look
namics of the first few principal components is mainly dif-

fusive, but the sampled part of the free-energy landscape héalst the overlap between subspaces spanned by eigenvectors

different characteristics for the different simulations. The
three simulations and the covariance analyses were pery
formed with theGROMACS packagg 10]. e

OMPf porin in a bilayer

pc 2

Outer membrane protein (OMPY) is a trimeric protein
that consists of threg barrels of 340 residues each. The
protein was simulated with molecular dynami&4D) at pH
3 in a bilayer of 153 di-miristoyl-phosphatidyl-choline
(DMPCQ) lipids, surrounded by 11419 simple-point-charge
(SPQ water molecules and 66 chloride ions. This system of &
51813 atoms was simulated for 3 ns with a time step of 2 fs;
the coordinates were written to file every 10 ps. A twin-range
cutoff was used: 1.0 nm for the Lennard-Jones and shorig
range Coulomb interactions and 1.8 nm for the long range
Coulomb interactions, updated every 10 steps. The tempera

pc3

Ti
ture and pressure were coupled to 310 K and 1 bar, respec- ime (ns)

tively. The system is similar to the system[fti]. A descrip- FIG. 6. The first five principal components of subunit 1 of the
tion of the force-field parameters can be found 1a. OMPf trimer. The analysis was done over time 1-2 ns of the MD

We split the trajectory into three parts of 1 ns each. Co-simulation. Each principal components is fitted to a cosine with
variance analyses were performed for each part on the Cnumber of periods equal to one-half the index. In nm.
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TABLE |. Properties of the first five eigenvectors of the

1.00 , B-hairpin simulationi is the eigenvector index, is the eigenvalue,
- ’;g; 1322 / k=kgT/\ is an estimate of the harmonic force constant in the di-
,,,,,,, pc 3 1-2ns ‘ rection of eigenvector, a and = are the result of an exponential fit
——- pc41-2ns _ aexp(—t/7) from 1 to 20 ps to the autocorrelation function of prin-
—-— pc51-2ns cipal componeni, and {=k7 is a rough estimate of the friction
—_ . ?31 0-3ns coefficient.
NE’ 0.10
3 i A (P k(k‘]) a  r(ps) gﬂ”)
= mol nn? ps
1 17.1x10°3 146 0.81 19 2.910°
2  10.8x10°3 236 0.78 17 4.x1C°
AAAAAA 3 9.9x10°3 252 0.73 14 3.410°
) 4 58<10°° 429 0.66 22 9.410°
0.01.5 100 00 °  42x107° 600 0.38 20 12.210°
Time (ps)

FIG. 7. The mean square displacement of the first five principafimulation setup can be found [13]. We performed the
components of subunit 1 of the OMPf trimer. The analysis wascovariance analysis on the 24 001 structures from 5.3 to 7.7

done over time 1-2 ns of the MD simulation. The first principal nS. We chose this period because the peptide seems to reside
component for the analysis over 0—3 ns is shown as well. Thesih one free-energy minimum for these 2.4 ns. Because the
principal components are subdiffusive on short time scales. The firdermini are very flexible, only the backbone atoms of resi-
two principal components show ballistic behavior, due to their co-dues 2 to 15 were included in the analysis. The first five
sine shapdsee Fig. 6. eigenvalues can be found in Table I; they contain 65% of the
fluctuations and the first ten eigenvalues contain 81% of the
for different parts of the simulation. The overlap betweenfluctuations. The eigenvectors are well defined for this part

two sets of n orthonp_rmal vectors vy, ... v, and  of the simulation; the subspace overlap between the first and
Wy, ... Wy can be quantified as follows: second 1.2 ns is 0.89 for the first five eigenvectors. The first
0o five principal components are shown in Fig. 8. These look
1 very noisy and resemble diffusion in a harmonic potential;
overlagv,w) = n ; Z vie Wl (54) their distributions are almost Gaussian. The force constants

for the harmonic well can be estimated from the eigenvalues
When setss andw span the same subspace, the overlap is land the temperatursee Table)l Kinetic information can be
The overlap between the subspace spanned by the first Idbtained from the autocorrelation functions of the principal
eigenvectors is 0.13 between the first and second nanosescemponents, shown in Fig. 9. There is a rapid drop in the
ond, 0.16 between the second and third nanosecond, and 0.figst half picosecond followed by an approximately exponen-
between the first and third nanosecond. This means that 1 nigl decay. After 20 ps the curves level off, which is an in-
is not enough to get a good impression of the conformationadiication that the peptide is not diffusing in a single harmonic
freedom of this protein. We have also calculated the meawell, but in several connected wells. The fast effect can also
square displacement along eigenvectors; these are shown e found in the velocity autocorrelation functions of the eig-
Fig. 7. On time scales below 100 ps the behavior is subdif-
fusive, which is reasonable for a set of connected atomson¢ 04
relatively flat part of the free-energy landscape. On Iongero 0.0
time scales eigenvectors 1 and 2 go ballistic. This is not a~ —0.4
property of the system, but rather an artifact of the short 0.4
simulation time in combination with the covariance analysis, & 0.0
which filters ballistic motions out of a diffusive system. This = _04 |
can be illustrated by doing the same analysis for the whole 3 0.4
ns. Again the principal components look like cosines, but0 0.0
now the wavelength is three times as long. Thus the cosine~ 04l
behavior is linked to the analysis interval and not to inherent 0.4
properties of the protein. The mean square displacemeny, o¢.0
looks similar as well, but the transition to ballistic motion is = _04

shifted by approximately a factor of @ee Fig. 7. 0.4
2 00
B hairpin in water —0.4

5.5 6.0 6.5 7.0 7.5
Time (ns)

The second system is a 16-resigBidairpin solvated in a
box of 1414 SPC water molecules and three sodium ions.
This system was simulated for 10 ns; structures were written FIG. 8. The first five principal components of thg
to trajectory every 0.1 ps. A complete description of thehairpin. In nm.
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FIG. 9. The autocorrelation of the first five principal compo- 1 1.5 2 25 3 35 4 45 5
nents of theB hairpin. Time (ns)
envectors functions; these have a negative peak at 0.3 to 0. ({RMSDﬂZG
ps. This time scale corresponds to the momentum effect,

which should occur on a time scale gfn/k, wherem is FIG. 11. Matrix showing the RMS deviation of the, & of HPr
approximately 12 amu. The long time scale motions argor each pair of structures in the upper left half. The lower right half
overdamped, since the velocity autocorrelation is almost zerghows the result of Jarvis-Patrick clustering. A black dot means that
after a few picoseconds. In a diffusive system the correlatwo structures are in the same cluster. There are three large clusters.
tions decay exponentially with= {/k, where{ is the fric- ) ) )

tion coefficient. We can estimate the friction coefficient for 'S (Fig- 10. The global shape of the first and second eigen-
the first three eigenvectors by fitting the autocorrelation’€Ctors resemble a half and a full cosine. The jumping be-

; ; : havior can also be observed in the root mean square devia-
function with an exponential from 1 to 20 gsee Table)l tion (RMSD) matrix (Fig. 11, which has several light

triangles along the diagonal. The structures can be clustered
using RMSD as a distance measure, for instance, a Jarvis-

The last system is the 85-residue protein HRistidine-  Patrick algorithm. In this algorithm a list of the nine closest
containing protein [18] simulated in a box of 5315 SPC heighbors is constructed for each structure. Two structures
water molecules. The total simulation time was 5 ns; struc2'€ in the same cluster when they are in each other’s list and
tures were written to trajectory every picosecond. We left the)ave at least three list members in common. The algorithm
first nanosecond out of the analysis to remove equilibratiodinds three large clustet§ig. 11). The first five eigenvectors
effects. The first five and ten eigenvalues contain 63% an#nainly describe the difference between the clusters. Because
74% of the fluctuations, respectively. The first five principal Of the jumping behavior the overlap between the first and
components show plateaus with distinct jumps at 2.5 and 4.8econd halves of the 4 ns is only 0.32 and 0.46 for the sub-
space spanned by the first five and ten eigenvectors, respec-
tively. When the simulation is prolonged, jumps to new clus-
ters might occur, which can cause large changes in the
eigenvectors.

HPr in water

DISCUSSION

pc 2

Principal component analysis is considered to be a pow-
erful tool for finding large scale motions in proteins. The
advantages of the analysis do not lie in the analysis itself, but
in the fact that most of the fluctuations can be captured with

pc3

< the first few principal modes. This means that many analyses
8 can be performed in only a few dimensions, which makes
= [ [ visual inspection of the results easier. This can reveal fea-
© g-g F o " A tures of the free-energy landscape. Kinetic properties can
2 g5l also be analyzed, since all the time information is still
b > 3 present in the principal components.

Time (ns)

FIG. 10. The first five principal components of HPr. In nm.

However, one cannot conclude from the eigenvalues
alone that only a small subspace is important. We have
shown that for high-dimensional random diffusion, the first
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three eigenvalues contain 84% of the fluctuations. This doel is more likely that this behavior is the result of random
not mean that the first three principal modes reveal specialiffusion, since the simulation time is not long enough to
properties of the system. In random diffusion all directionsrepeatedly reach barriers on the free-energy landscape. The
are equivalent; a second simulation will produce completelyfirst principal component, a half cosine, can be very mislead-
different principal modes. How can the relevance of the prining, as it seems if the protein moves from one “well-
cipal modes be determined? One should always divide thdefined” conformation to another. The cosine-shaped princi-
simulation into two or more parts and compare the principapal components lead to ballistic behavior on longer time
modes for each part. A simple measure is the subspace oveseales. Garaet al. [15] write that this behavior belongs to
lap of the first few principal moddd€Eq. (54)]. Amadeiet al.  the “Lévy flight” class. However, this behavior is caused by
extensively analyzed the overlap for molecular dynamicghe incomplete sampling and scales with the simulation time,
MD simulations of proteirL and cytochromeC [14]. They  as shown for OMPf, and it will disappear when a free-energy
found that the overlap for the first 10 principal components isminimum has been sampled to a reasonable extent, as shown
0.6 for two parts of 50 ps, irrespective of the time intervalfor the 8 hairpin. When one sees cosinelike principal com-
between the two parts. This indicates that the proteirponents, one should interpret the results carefully and always
samples only one free-energy minimum, as is the case for thieeep in mind that most of the fluctuations could be caused by
B-hairpin simulation. The overlap can be lower when therandom diffusion. The analysis is still useful, because it can
protein samples multiple minima, as was shown for HPr. Inseparate the “random diffusion” degrees of freedom from
that case the principal modes describe the differences béhe more restricted degrees of freedom. In such cases insight
tween the minima, rather than the shape of the energinto the principal modes of random diffusion in a harmonic
minima. Although the subspace of the first five or ten prin-potential will make better estimates of the conformational
cipal modes might not be well defined, there will always befreedom possible. In future work we hope to present simula-
a splitting in a subspace of diffusive modes, which containtions of proteins of reasonable size, which are long enough to
most of the fluctuations and a subspacerdarjharmonic  analyze the convergence.
modes. This splitting will not change significantly between
different simulations. ACKNOWLEDGMENTS

We have shown that the first few principal components of i
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jected on the plane of the first two principal components, the
half and full cosine produce a characteristic semicircle, as APPENDIX
can been seen for bovine pancreatic trypsin inhibiB#T1) The variance of the integral ové(t)x;(t) can be calcu-
simulations in[17]. Often these simulations are relatively ated, given that
short (a few nanosecondsand of relatively large proteins
(more than 200 residugslike the OMPf simulation pre- T
sented in this article. It is very improbable that properties of Jo f(t)dt=0. (A1)
the protein will produce cosine-shaped atomic displace-
ments, consisting of exactly a half period, a full period, etc.We can apply partial integration

o

|
E:<—f0Tfotf(v)dv d);(tt)dw f;f(v)dvxi(t)
( —fOTJ:f(v)dv d);it)dt)z}
:ﬂf;f(v)dv%dtﬂﬁf(w)dw%du}
:jonon;f(v)du fouf(w)dwE dx(t) dx(w)

dt du
:LTJOTﬂf(v)dv fouf(w)dwzw(t—u)dudt

T/ [t 2
=2DJO(jOf(u)du) dt. (A2)

The expectations af andc{c| can be calculated using integration by parts:

2
t=T
t=0

Il
m

I
m

dudt
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2 (T wkt J_ Tdx;(t kt V2 T [dx(t) JTkt
E[cKl=E \ﬁj Xi(t co{—)dt =E| - I s'n(—)dt =— E| ——| sin dt=
(A3)
Fork=1,2,... and=1,2,...,
£ EZJT WdeJT 7T|td
[c ] xi(s)co - S 0xj(t)co T t
_foer dex(s). mks| Jdeﬂt) 7t
“E Lz )o ar ST /ds ), Tar S )
B ff dx(s) dxj(t)| . 7rksd [t dt
g dtdr | ST /dssin
it
= 2klf f 2D &(s—t) & sin| — dssm T dt
ADT T [akt) [t
=;§EI&jﬁ)sm-fF-sm 1F'dt
2DT?
- W2k|5”5H (A4)
The size of the off-diagonal elements Bfis
2] N N o 2
27 j k .k
E[(By)?]=E (ZNDT3 262 ch2 c.cm) 1
w2ij \? ,
= SNDT E[(U-I—Vij-l-Vji)]
= \*
= SNDT? (E[U ]+E[V ]+E[V ]+2E[UV|]]+2E[UVJ|]+2E[V|JVJ,]) (A5)
where
N N ]
U=2 ¢ > ch > cfef(1-80(1- 5 (A6)
=1 m=1 k=1
N N
.2 PR
Vij:E ¢l > clch. (A7)
I=1 m=1
N N * 2\ 22 4
. 2DT2\“N2+O(N) [ 7% 1 1
2 2 2 k2 k2 .
E(U?)= E[Zlc mZZI clmgl c cm(l—aik)(l—ajk)}— — oE %_i_“_j_“)’ (A8)
N 2 N 2\ 2,3 P
) P 2DT N°+2N“(3—1)+O(N
E[V2I=E[| 3 ¢’ 3 clch|= Eorom, (A9)
=1 m=1 2 i6j2

2DT?

WZ

N2+O(N) [#2 1 1
— , (A10)
i

N N o0
E[UV]= E[E ' ciﬁc‘é(E cﬁf—chf—c"nf”=
k=1

I=1 m=1
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N N N 2\ 2113 2
) P ) 2DT N°+2N“(3—1)+O(N
E[VyVil=E| Y ¢ 3 cheh > of = Sh Ol (A11)
=1 m=1 k=1 w2 P44
E[(B )2]—4D2T2 1 N 1 /1 N 1 N N+3[1 1 N 2N+4 O( 1) (A12)
1 90 37212 j2 4\ j4 i2j2 N
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