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Kulback-Leibler and renormalized entropies: Applications to electroencephalograms
of epilepsy patients
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Recently, ‘‘renormalized entropy’’ was proposed as a novel measure of relative entropy@P. Saparinet al.,
Chaos, Solitons and Fractals4, 1907 ~1994!# and applied to several physiological time sequences, including
electroencephalograms~EEGs! of patients with epilepsy. We show here that this measure is just a modified
Kullback-Leibler~KL ! relative entropy, and it gives similar numerical results to the standard KL entropy. The
latter better distinguishes frequency contents of, e.g., seizure and background EEGs than renormalized entropy.
We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing, we
also make some critical remarks about the implementation of these methods.

PACS number~s!: 87.90.1y, 05.45.Tp, 87.19.Nn
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I. INTRODUCTION

Since Shannon’s classical works, information theore
concepts have found many applications in practically
fields of science. In particular, tools derived from inform
tion theory have been used to characterize the degree of
domness of time sequences, and to quantify the differe
between two probability distributions. Indeed there are
number of constructs which qualify as distances between
distributions. Although the Kullback-Leibler~KL ! relative
entropy@1,2# is not a distance in the mathematical sense~it is
not symmetric!, it plays a central role as it has numero
applications and numerous physical interpretations. Anot
seemingly independent, observable measuring a dissimila
between two distributions was recently introduced in@3#.
This ‘‘renormalized entropy’’ was subsequently applied
various physiological time sequences, including heart be
@4,5# and electroencephalograms~EEGs! recorded in patients
with epilepsy@6#. The relation between KL and renormalize
entropy and their application to EEGs recorded in patie
with epilepsy are the subject of the present paper.

Ever since the first recordings in the late 1920s, the E
has been one of the most powerful tools in neurophysiol
@7#. An important application of EEGs in clinical practice
the diagnosis of epilepsy. Characteristic abnormal patte
help to classify epilepsies, to localize the epileptogenic
cus, and eventually to predict seizures@8#. About 20% of
patients suffering from focal epilepsies do not improve w
antiepileptic medication and are therefore assumed ca
dates for a surgical resection of the seizure-generating a
Successful surgical treatment of focal epilepsies requires
act localization of the seizure-generating area and its de
eation from functionally relevant areas. Recording the
tient’s spontaneous habitual seizures by means of long-t
~several days!, and in some cases intracranial, EEGs~i.e.,
with electrodes implanted within the skull! is currently as-
sumed most reliable.

Although EEG recordings have been in clinical use
more than half a century, conventional EEG analysis re
mostly on visual inspection or on linear methods such as
Fourier transform~see, e.g.,@9# for a comprehensive descrip
tion of Fourier analysis in EEGs!. Particularly for the diag-
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nosis of epilepsy, quantitative methods of analysis are
need to give additional information~for a review of quanti-
tative methods in EEG analysis, see, e.g.,@7#!. It is precisely
in this context that the authors of@6# found renormalized
entropy to be much more significant than any of the ot
methods they looked at.

In the following, we argue that renormalized entropy
very closely related to KL entropy. Indeed, itis preciselya
KL entropy, although not between the two distributions o
started out to compare. Nevertheless, we can relate renor
ized entropy to the KL entropy between these two distrib
tion. Moreover, when extracting these measures from EE
we find both to be very similar. It seems indeed from the
analyses that standard KL entropy is more useful than re
malized entropy.

In the next section we recall Shannon and KL entropi
and show how renormalized entropy is related to KL e
tropy. In Sec. III we present applications to seizure EE
data. In this section we also address several technical po
concerning the implementation in the case of EEG data,
we discuss the importance of the results from a neuroph
ological point of view. Finally, in Sec. IV we draw our con
clusions.

II. ENTROPY MEASURES

We consider a discrete random variable havingn possible
outcomesxk(k51, . . . ,n) with respective probabilitiespk ,
satisfyingpk>0 and(k51

n pk51. The Shannon entropy ofp
is defined as@10#

H@p#52(
k

pk ln pk . ~1!

In the following we shall takek as a frequency index andpk
as a normalized spectral density,

pk5
S~vk!

(
k

S~vk!

. ~2!
8380 ©2000 The American Physical Society



n-

g
t

ilit

th
-
a

ifi
ich

ity

ri-
ric
a
th

o
od

e

in
-

is

su

a

si-

of
y

n

-
L

t be
en

q.

y

of
led
.53

g
ter
000
o-

PRE 62 8381KULBACK-LEIBLER AND RENORMALIZED . . .
Moreover, the spectrum will be estimated from gliding wi
dows over a scalar~‘‘univariate’’ ! time sequencexn ,

S~vk!5St~vk!5@ uXt~vk!u2#smooth, ~3!

whereXt(vk) is the discrete Fourier transform ofxn taken
over a window of lengthT centered at timet ~see Sec. III for
details!, and the bracket@ #smooth indicates a local averagin
over nearby frequencies. We should stress, however, tha
the results of the present section apply to any probab
distribution.

Shannon entropy is equal to 0 in the case ofd distribu-
tions, and positive otherwise. It can be interpreted as
average amount of code length@measured in bits, if the loga
rithm in Eq. ~1! is taken with base 2# needed to encode
randomly chosen value ofk ~randomly with respect top).
The essential point here is that the minimal~average! code
length is obtained by codes which are optimal for a spec
probability distribution—see, e.g., the Morse code wh
uses shorter codes for the more frequent letters.

Let us now suppose we have two different probabil
distributionsp5$pk% and q5$qk%. We can then define the
KL ~relative! entropy as@1,2#

K~puq!5(
k

pk ln
pk

qk
. ~4!

It is also positive and vanishes only ifpk[qk , thus measur-
ing the degree of similarity between both probability dist
butions. Notice, however, that it is in general not symmet
K(puq)ÞK(qup), therefore it is not a distance in the usu
mathematical sense. Its most important interpretation is
following: assume thatp is the correct distribution, but the
encoding is made using a code which would have been
timal ~i.e., would have produced the shortest average c
length! if the distribution wereq instead. Then,K(puq) mea-
sures the average excess of the code length~again measured
in bits, if the logarithm is base 2! over the shortest cod
~which would have been based onp). But there are also
several different interpretations in different contexts. For
stance, mutual information@1# can be considered as KL en
tropy with p the true joint distribution andq the product of
the marginal distributions. Also, Boltzmann’s H theorem
most easily derived using KL entropies@2#.

A supposedly different and independent distance mea
between two distributions was introduced in@3#. These au-
thors calledq the ‘‘reference distribution.’’ They defined
‘‘renormalized’’ reference distributionq̃ as

q̃k5C@qk#
b, ~5!

whereC andb are uniquely fixed by demanding

(
k

q̃k ln qk5(
k

pk ln qk ~6!

and

(
k

q̃k51. ~7!

Then they define ‘‘renormalized entropy’’ as
all
y

e

c

,
l
e
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e

-
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DH5H@p#2H@ q̃# ~8!

and show that it is negative definite, except whenp[q.
When applying it to time-resolved spectra of several phy
ological time series, it is claimed in@3–6# that DH gives
more significant results~e.g., shows more clearly the onset
an epileptic seizure@6#! than any other observable studied b
these authors. We want to show now that~i! the renormal-
ized entropy is just the negative of the KL entropy betweep

and q̃,

DH52K~puq̃!; ~9!

~ii ! the absolute valueuDHu is less than the KL entropy be
tweenp andq, since the difference between both is also a K
entropy,

uDHu5K~puq!2K~ q̃uq!<K~puq!. ~10!

This strongly suggests that renormalized entropy canno
more useful than the standard KL relative entropy betwe
the unrenormalized distributions.

To prove our claims, we notice that we can rewrite E
~6!, using Eqs.~5! and ~7!, as

(
k

q̃k ln q̃k5(
k

pk ln q̃k . ~11!

Therefore,

DH5(
k

q̃k ln q̃k2(
k

pk ln pk

5(
k

pk ln q̃k2(
k

pk ln pk52(
k

pk ln
pk

q̃k

, ~12!

which proves our first claim. Furthermore, we can write

DH1K~puq!5(
k

pk ln q̃k2(
k

pk ln qk

5(
k

q̃k ln q̃k2(
k

q̃k ln qk5(
k

q̃k ln
q̃k

qk
,

~13!

which proves the second claim.

III. APPLICATION TO EEG DATA

A. Details of the data

We will illustrate the result of the preceding section b
reanalyzing some of the same data used in@6#. The data
correspond to an intracranial multichannel EEG recording
a patient with medial temporal lobe epilepsy; it was samp
with 173 Hz and band pass filtered in the range 0
285 Hz. In Fig. 1 we show EEG time sequences~500 000
data points, approximately 48 min of continuous recordin!
from three different recording sites prior to, during, and af
an epileptic seizure. Seizure starts at about point 270
~minute 26! and lasts for 2 min. The recording sites are l
cated within the seizure-generating area~upper trace!, adja-
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FIG. 1. Intracranial EEG re-
cordings prior, during, and afte
an epileptic seizure of right me
dial temporal origin. Recordings
were taken from within ~upper
plot! and adjacent~middle plot! to
the seizure-generating area as w
as from the nonaffected brain
hemisphere~lower plot!. For each
state and electrode, a 10 sec zoo
of the signal is shown. See text fo
further details. The vertical lines
at about 316 000, 415 000, an
451 000 data points are due to a
tifacts in the recording. The data
corresponding to these artifact
were not considered for furthe
analysis.
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cent to it~middle trace!, and on the nonaffected brain hem
sphere~lower trace! To better visualize the dynamics, inse
drawn on top of each signal show typical EEG sequence
10 sec duration during the preseizure~left!, seizure~middle!,
and the postseizure stage~right!.

B. Power spectrum

For a finite data setxn sampled at discrete timestn
5n D t,n51, . . . ,N,T5N Dt, we denote byX(vk) its dis-
crete Fourier transform atvk52 p k/T, with k51, . . . ,N.
We estimate the power spectrum as

S~vk!5C (
n52b

b

w~n!uX~vk1n!u2, ~14!

where w(n) is a smoothing function of window sizeB
52b11, andC is a normalization factor. As in Ref.@6#, a
Bartlett-Priestley smoothing function was used,
of
w~n!}H @12~n/b!2#, unu<b

0, unu.b.
~15!

As in @6# and for comparison purposes, we subdivide the d
in ~half overlapping! epochs ofT.24 s (N54096 data
points!, and choose the window size of the Bartlett-Priest
function asB533. This window length corresponds to a fr
quency resolution of 0.042 Hz. In the following, we consid
the spectrum in the regionv,30 Hz. Moreover, since we
are not interested in the absolute power, the normaliza
factor C is adjusted such that the sum over all frequenc
below 30 Hz gives unity.

C. Shannon entropy

Parts~a!–~c! of Figs. 2–4 show the EEG signals record
at the three sites, contour plots of the corresponding norm
ized power spectra, and time-dependent estimates of
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FIG. 2. ~A! EEG recording
from the electrode contact within
the seizure-generating area,~B! its
corresponding power spectrum
~C! Shannon entropy, and
Kullback-Liebler entropy taking a
preseizure~D! and a postseizure
~E! reference window, and~F!
renormalized entropy~same post-
seizure reference window!.
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Shannon entropyH. Prior to the seizure, power spectra e
hibit an almost stable but spread frequency composi
which is reflected in high values ofH.

When the seizure starts, the spectra in Figs. 2 and 3
dominated by a single frequency component (;7 Hz). This
is reflected in Fig. 2 by an abrupt decrease ofH by about
20%. Actually, the decrease is even more pronounced
smaller time windows, since the period of strong cohere
is much shorter than 24 sec. As the seizure evolves,
dominant frequency decreases rapidly. This dynamics
characteristic of seizures originating from the medial tem
n

re

or
e
e

is
-

ral lobe ~see, e.g.,@11#! but it is not the only possible one
@12#. The rise ofH in both Figs. 2 and 3 immediately befor
the final drop can partially be attributed to this fast change
dynamics. The estimated entropy is high during this ph
because of several subsequently appearing frequencies i
same window. The following concentration of activity
lower frequencies finally leads to a decrease ofH. To a lesser
degree this is also seen in Fig. 4. Within or close to
seizure-generating area,H remains small throughout the en
tire recorded postseizure stage. Finally, it slowly increa
towards values that compare to those obtained during
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FIG. 3. Same as Fig. 2 but fo
the electrode adjacent to th
seizure-generating area.
t

th
a

k-
of
th

i-
of
the

3 a
n of

nce
ge.
t is

our
preseizure stage. Using a Shannon entropy defined from
wavelet transform, similar results were obtained in Ref.@13#
from an analysis of a scalp recorded seizure.

D. Kullback-Leibler entropy

The time courses of the KL entropyK(puq) are shown in
parts ~d! of Figs. 2–4. As reference segments we used
signals from the preseizure stage consisting of 4096 d
points and starting atn520 480. The sensitivity@i.e., in-
crease ofK(puq) during the seizure relative to the bac
ground level# is notably improved when compared to that
the Shannon entropy. Background fluctuations during
he

e
ta

e

preseizure stage only slightly affectedK(puq) since presei-
zure power spectra from different windows are almost sim
lar. Also,K(puq) proved nearly independent of the choice
the reference segment, as long as it was chosen from
preseizure stage.

As with the Shannon entropy, we see in Figs. 2 and
marked change at seizure onset due to a concentratio
spectral power at frequencies;7 Hz. K(puq) clearly de-
tects this difference. It also detects the spectral differe
when lower frequencies dominate in the postseizure sta
But again the rapid frequency change after seizure onse
hard to distinguish from a broadband spectrum due to
somewhat large window sizeT.
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FIG. 4. Same as Fig. 2 but fo
the electrode located in the nona
fected brain hemisphere.
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The last two parts of Figs. 2–4 show time courses of
KL entropy and the renormalized entropy calculated usin
reference segment with lowest Shannon entropy as was
by the authors of@6#. For Figs. 2 and 3 this was after th
seizure ~4096 data points starting atn5335 872 andn
5315 392, respectively!, while it was during the seizure fo
data shown in Fig. 4~4096 data points starting atn
5284 672).

Here KL and renormalized entropies give similar resu
This illustrates the similarity between renormalized and
entropies as already pointed out in Sec. II. Differences w
results in@6# can be attributed partly to differences in th
exact choice of the reference segment. We see that p
values ofK(puq) are larger than those based on calculatio
e
a
ne

.

h

ak
s

using a preseizure reference window. However, the rela
increases over preseizure values are much less pronoun
Therefore, we consider postseizure reference segments a
very useful for seizure detection. Moreover, postseizure
erence segments obviously cannot be used in real-time a
cations. In addition, a postseizure reference segment is
very reasonable physiologically. Immediately after a seizu
the state of the patient and, accordingly, the EEG are hig
abnormal. Typically, the postseizure EEG exhibits slow flu
tuations of high amplitude, sometimes superposed with hi
frequency activity~see Fig. 1!. This is obviously not a typi-
cal background EEG. Moreover, the postseizure stage
often contaminated by artifacts, some of which are not
easily recognizable as those shown in Fig. 1.
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We therefore disagree with the procedure proposed
Ref. @6# of automatically choosing a reference as the segm
with lowest entropy for each recording channel. Instead,
propose to choose a reference segment recorded duri
state as ‘‘normal’’ as possible, i.e., far from a seizure~we
should note, however, that there is still a lot of controversy
neurophysiology over what is considered to be ‘‘far’’!, free
of artifacts and, if possible, free of abnormal alterations~ad-
mittedly, this is not always possible!. Moreover, the refer-
ence segment should be exactly the same time interval fo
channels. Otherwise comparisons between different rec
ing sites are not reliable. Also, one might consider tak
shorter time segments. This would of course enhance st
tical fluctuations, but would allow better time resolution.

Even then it would be difficult to detect the recording s
showing the very first sign of the seizure, which is necess
for an exact focus localization. We verified this for window
down to 1.5 sec~data not shown!. This is in agreement with
clinical experience, which shows that the time scales relev
for this detection can be less than 1 sec. Because of t
problems, the suggestions of@6# concerning clinical applica-
tions such as seizure detection or localization of epilep
foci seem too optimistic.

Finally, we remark that none of the entropy measures
peared to show information prior to the onset of the seiz
exceeding naked eye visualization or spectral analysis of
EEG. An unequivocal definition of a long-lasting preseizu
state, however, is of great importance. Apart from an ea
warning for the patient, this definition would allow pharm
cological or electrotherapeutic interventions as well as ba
research about seizure-generating mechanisms in huma
the preseizure period. Since all the entropies described in
study were defined from the Fourier power spectrum,
findings support the view that with traditional linear metho
relevant information of an impending seizure is restricted
li
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at most a few seconds prior to its onset@8#. In contrast,
measures defined within the analysis framework of
theory of nonlinear dynamical systems have recently sho
more promising results@8,14–16#.

IV. CONCLUSION

The aim of the present paper was twofold. First, w
showed that ‘‘renormalized entropy,’’ a novel entropy me
sure for differences in probability distributions, is close
related to Kullback-Leibler entropy. We also argued that it
very unlikely that more information is obtained from th
former than from the latter. Second, we checked rec
claims that renormalized entropy~and thus also KL entropy!
is very useful in applications to intracranial EEGs from e
lepsy patients. We found some of these claims to be un
tified. Nevertheless, the fact remains that KL entropy appl
to spectral distributions is a very promising tool which h
not yet been studied much in this context. In fact, ‘‘abno
mal’’ frequency patterns corresponding to epileptic seizu
were better identified with KL than with the Shannon e
tropy. While the present study was performed on a limit
amount of data, we suggest KL entropy to be an interes
tool for a more systematic study.

Finally, we point out that the KL entropy can also b
defined from other time-frequency distributions rather th
the windowed Fourier transform. In particular, we consid
wavelets as good candidates, since they have optimal res
tion both in the time and the frequency range~see@17,18# for
theoretical background and@19,20# for application to EEGs!.
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