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Recently, “renormalized entropy” was proposed as a novel measure of relative efrofppariret al,,
Chaos, Solitons and Fractads 1907 (1994 ] and applied to several physiological time sequences, including
electroencephalogram{&EGS9 of patients with epilepsy. We show here that this measure is just a modified
Kullback-Leibler(KL) relative entropy, and it gives similar numerical results to the standard KL entropy. The
latter better distinguishes frequency contents of, e.g., seizure and background EEGs than renormalized entropy.
We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing, we
also make some critical remarks about the implementation of these methods.

PACS numbds): 87.90+y, 05.45.Tp, 87.19.Nn

I. INTRODUCTION nosis of epilepsy, quantitative methods of analysis are in
need to give additional informatioffor a review of quanti-
Since Shannon’s classical works, information theoretidative methods in EEG analysis, see, €.d]). It is precisely
concepts have found many applications in practically allin this context that the authors §6] found renormalized
fields of science. In particular, tools derived from informa- entropy to be much more significant than any of the other
tion theory have been used to characterize the degree of ramethods they looked at.
domness of time sequences, and to quantify the difference In the following, we argue that renormalized entropy is
between two probability distributions. Indeed there are avery closely related to KL entropy. Indeed,ist preciselya
number of constructs which qualify as distances between tw&L entropy, although not between the two distributions one
distributions. Although the Kullback-Leible(KL) relative  started out to compare. Nevertheless, we can relate renormal-
entropy[1,2] is not a distance in the mathematical se(isis ized entropy to the KL entropy between these two distribu-
not symmetrig, it plays a central role as it has numeroustion. Moreover, when extracting these measures from EEGs,
applications and numerous physical interpretations. Anothenye find both to be very similar. It seems indeed from these
seemingly independent, observable measuring a dissimilaritgnalyses that standard KL entropy is more useful than renor-
between two distributions was recently introduced[&). malized entropy.
This “renormalized entropy” was subsequently applied to In the next section we recall Shannon and KL entropies,
various physiological time sequences, including heart beatand show how renormalized entropy is related to KL en-
[4,5] and electroencephalografiSEGS recorded in patients tropy. In Sec. Il we present applications to seizure EEG
with epilepsy{6]. The relation between KL and renormalized data. In this section we also address several technical points
entropy and their application to EEGs recorded in patient€oncerning the implementation in the case of EEG data, and
with epilepsy are the subject of the present paper. we discuss the importance of the results from a neurophysi-
Ever since the first recordings in the late 1920s, the EE®logical point of view. Finally, in Sec. IV we draw our con-
has been one of the most powerful tools in neurophysiologyglusions.
[7]. An important application of EEGs in clinical practice is
the diagnosis of epilepsy. Characteristic abnormal patterns
help to classify epilepsies, to localize the epileptogenic fo-
cus, and eventually to predict seizurfgd. About 20% of We consider a discrete random variable havingpssible
patients suffering from focal epilepsies do not improve withoutcomesx,(k=1, ... n) with respective probabilitieg,,
antiepileptic medication and are therefore assumed candgatisfyingp,=0 and=};_,p,=1. The Shannon entropy @f
dates for a surgical resection of the seizure-generating areg; defined ag10]
Successful surgical treatment of focal epilepsies requires ex-
act localization of the seizure-generating area and its delin-
eation from functionally relevant areas. Recording the pa- H[p]z—E P In py. (1)
tient’s spontaneous habitual seizures by means of long-term k
(several days and in some cases intracranial, EEGs.,
with electrodes implanted within the skuils currently as-  In the following we shall také as a frequency index ar,

Il. ENTROPY MEASURES

sumed most reliable. as a normalized spectral density,
Although EEG recordings have been in clinical use for
more than half a century, conventional EEG analysis relies S(wy)
mostly on visual inspection or on linear methods such as the py=——. 2
Fourier transform(see, e.g.[9] for a comprehensive descrip- > S(wy)
tion of Fourier analysis in EEGsParticularly for the diag- K
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Moreover, the spec:[rum will b,(’e e;timated from gliding win- AH=H[p]—-H[q] ®)
dows over a scalat‘univariate”) time sequence,,,
and show that it is negative definite, except whesq.

S(wi) =St @) = [| X @) |*Tsmootr (3 When applying it to time-resolved spectra of several physi-
ological time series, it is claimed i[8B—6] that AH gives
more significant resulte.g., shows more clearly the onset of
an epileptic seizurgs]) than any other observable studied by
éhwese authors. We want to show now tlfiatthe renormal-
))zed entropy is just the negative of the KL entropy betwpen

where X,(wy) is the discrete Fourier transform &f, taken
over a window of lengtfT centered at timé (see Sec. Ill for
detailg, and the brackdt |sy00mindicates a local averaging
over nearby frequencies. We should stress, however, that
the results of the present section apply to any probabilit

distribution. anddq,
Shannon entropy is equal to 0 in the casedsddistribu- -~
tions, and positive otherwise. It can be interpreted as the AH=—K(p[a); ©)

average amount of code lendtineasured in bits, if the loga-
rithm in Eq. (1) is taken with base Pneeded to encode a
randomly chosen value d€ (randomly with respect t).

(i) the absolute valupAH| is less than the KL entropy be-
tweenp andq, since the difference between both is also a KL

The essential point here is that the minintalerage code entropy,

length is obtained by codes which are optimal for a specific _ T

probability distribution—see, e.g., the Morse code which |AH[=K(pla)~K(ala)<K(pla). (10
uses shorter codes for the more frequent letters. This strongly suggests that renormalized entropy cannot be

Let us now suppose we have two different probability more useful than the standard KL relative entropy between
distributionsp={p,} andq={q}. We can then define the the unrenormalized distributions.
KL (relative) entropy ag1,2] To prove our claims, we notice that we can rewrite Eq.
(6), using Egs(5) and(7), as

K(pla)=2) pkln%- @) o B
“ Ek dkIn Qk:; Pk In gy (13)
It is also positive and vanishes onlypf=q,, thus measur-

ing the degree of similarity between both probability distri- Therefore,

butions. Notice, however, that it is in general not symmetric,

K(p|qg) #K(q|p), therefore it is not a distance in the usual o~ o~

mathematical sense. Its most important interpretation is the AH_EK: Gk n qk—zk: Pl pi

following: assume thap is the correct distribution, but the

encoding is made using a code which would have been op- ~ Pk

timal (i.e., would have produced the shortest average code :Ek Pk In Qk_; P In pe= —; pxIn=—, (12
length if the distribution wereg instead. Thenk(p|q) mea- Ak

sures the average excess of the code letaghin measured hich proves our first claim. Furthermore, we can write
in bits, if the logarithm is base)2over the shortest code

(which would have been based q). But there are also ~

several different interpretations in different contexts. For in- AH K(pM):Ek Pk '”qk_Ek PiIn ax

stance, mutual informatiofil] can be considered as KL en-

tropy with p the true joint distribution and) the product of

- - ~
the marginal distributions. Also, Boltzmann's H theorem is =2 g In QK—E gk In kaz kaq—k,
most easily derived using KL entropig2]. K k K k
A supposedly different and independent distance measure (13

between two distributions was introduced[®]. These au- ] .
thors calledq the “reference distribution.” They defined a Which proves the second claim.

“renormalized” reference distributioq as
I1l. APPLICATION TO EEG DATA

=Clail?, (5) A. Details of the data

whereC and g are uniquely fixed by demanding We will illustrate the result of the preceding section by
reanalyzing some of the same data used6h The data
2 N :2 | ©) correspond to an intracranial multichannel EEG recording of
7 Qi 1N Gk o Pic N e a patient with medial temporal lobe epilepsy; it was sampled
with 173 Hz and band pass filtered in the range 0.53
and —85 Hz. In Fig. 1 we show EEG time sequen¢B80 000
data points, approximately 48 min of continuous recorgling
E Te=1 ) from three different recording sites prior to, during, and after
o kT an epileptic seizure. Seizure starts at about point 270000
(minute 26 and lasts for 2 min. The recording sites are lo-
Then they define “renormalized entropy” as cated within the seizure-generating afe@per tracg adja-
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cent to it(middle trace, and on the nonaffected brain hemi-
sphere(lower trace To better visualize the dynamics, insets
drawn on top of each signal show typical EEG sequences of

10 sec duration during the preseiz\left), seizure(middle),
and the postseizure stagaght).

B. Power spectrum

For a finite data sek, sampled at discrete times,
=nAt,n=1,... N,T=NAt, we denote byX(w)) its dis-
crete Fourier transform ab,=2 7w k/T, with k=1, ... N.
We estimate the power spectrum as

b
S(0)=C 2 w(n)|X(@n)? (14

where w(n) is a smoothing function of window siz8
=2b+1, andC is a normalization factor. As in Ref6], a
Bartlett-Priestley smoothing function was used,

[1—(n/b)?], |n|<b

W= o, In|>b.

(15

As in [6] and for comparison purposes, we subdivide the data
in (half overlapping epochs of T=24 s (N=4096 data
points, and choose the window size of the Bartlett-Priestley
function asB=33. This window length corresponds to a fre-
guency resolution of 0.042 Hz. In the following, we consider
the spectrum in the regio®m<30 Hz. Moreover, since we
are not interested in the absolute power, the normalization
factor C is adjusted such that the sum over all frequencies
below 30 Hz gives unity.

C. Shannon entropy

Parts(a)—(c) of Figs. 2—4 show the EEG signals recorded
at the three sites, contour plots of the corresponding normal-
ized power spectra, and time-dependent estimates of the
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Shannon entropyd. Prior to the seizure, power spectra ex- ral lobe (see, e.g.[11]) but it is not the only possible one
hibit an almost stable but spread frequency compositionl12]. The rise ofH in both Figs. 2 and 3 immediately before
which is reflected in high values ®f. the final drop can partially be attributed to this fast change of
When the seizure starts, the spectra in Figs. 2 and 3 amynamics. The estimated entropy is high during this phase
dominated by a single frequency componenrt7( Hz). This  because of several subsequently appearing frequencies in the
is reflected in Fig. 2 by an abrupt decreasetbby about same window. The following concentration of activity at
20%. Actually, the decrease is even more pronounced folower frequencies finally leads to a decreaselofo a lesser
smaller time windows, since the period of strong coherencelegree this is also seen in Fig. 4. Within or close to the
is much shorter than 24 sec. As the seizure evolves, theeizure-generating ared, remains small throughout the en-
dominant frequency decreases rapidly. This dynamics isire recorded postseizure stage. Finally, it slowly increases
characteristic of seizures originating from the medial tempotowards values that compare to those obtained during the
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preseizure stage. Using a Shannon entropy defined from thereseizure stage only slightly affect&dp|q) since presei-
wavelet transform, similar results were obtained in R&8]  zure power spectra from different windows are almost simi-
from an analysis of a scalp recorded seizure. lar. Also,K(p|q) proved nearly independent of the choice of
the reference segment, as long as it was chosen from the
preseizure stage.
) As with the Shannon entropy, we see in Figs. 2 and 3 a
The time courses of the KL entrop¢(p|q) are shown in  marked change at seizure onset due to a concentration of
parts(d) of Figs. 2—-4. As reference segments we used thepectral power at frequencies7 Hz. K(p|q) clearly de-
signals from the preseizure stage consisting of 4096 datgects this difference. It also detects the spectral difference
points and starting ah=20480. The sensitivityi.e., in-  when lower frequencies dominate in the postseizure stage.
crease ofK(p|q) during the seizure relative to the back- But again the rapid frequency change after seizure onset is
ground leve] is notably improved when compared to that of hard to distinguish from a broadband spectrum due to our
the Shannon entropy. Background fluctuations during th&omewhat large window siZ&

D. Kullback-Leibler entropy
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The last two parts of Figs. 2—4 show time courses of thausing a preseizure reference window. However, the relative
KL entropy and the renormalized entropy calculated using ancreases over preseizure values are much less pronounced.
reference segment with lowest Shannon entropy as was doréderefore, we consider postseizure reference segments as not
by the authors of6]. For Figs. 2 and 3 this was after the very useful for seizure detection. Moreover, postseizure ref-
seizure (4096 data points starting at=335872 andn  erence segments obviously cannot be used in real-time appli-
=315 392, respectively while it was during the seizure for cations. In addition, a postseizure reference segment is not
data shown in Fig. 4(4096 data points starting at very reasonable physiologically. Immediately after a seizure,
=284672). the state of the patient and, accordingly, the EEG are highly

Here KL and renormalized entropies give similar results.abnormal. Typically, the postseizure EEG exhibits slow fluc-
This illustrates the similarity between renormalized and KLtuations of high amplitude, sometimes superposed with high-
entropies as already pointed out in Sec. Il. Differences witHrequency activity(see Fig. 1 This is obviously not a typi-
results in[6] can be attributed partly to differences in the cal background EEG. Moreover, the postseizure stage is
exact choice of the reference segment. We see that peaften contaminated by artifacts, some of which are not as
values ofK(p|q) are larger than those based on calculationseasily recognizable as those shown in Fig. 1.
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We therefore disagree with the procedure proposed imt most a few seconds prior to its ong&f. In contrast,
Ref.[6] of automatically choosing a reference as the segmenneasures defined within the analysis framework of the
with lowest entropy for each recording channel. Instead, weheory of nonlinear dynamical systems have recently shown
propose to choose a reference segment recorded duringnaore promising resultg3,14-18.
state as “normal” as possible, i.e., far from a seiznee

should note, however, that there is still a lot of controversy in IV. CONCLUSION
neurophysiology over what is considered to be “farfree ] )
of artifacts and, if possible, free of abnormal alterati¢ed- The aim of the present paper was twofold. First, we

mittedly, this is not always possibleMoreover, the refer- Showed that “renormalized entropy,” a novel entropy mea-
ence segment should be exactly the same time interval for aiure for differences in probability distributions, is closgly
channels. Otherwise comparisons between different recordélated to Kullback-Leibler entropy. We also argued that it is
ing sites are not reliable. Also, one might consider takingery unlikely that more information is obtained from the
shorter time segments. This would of course enhance stati§ermer than from the latter. Second, we checked recent
tical fluctuations, but would allow better time resolution. ~ claims that renormalized entrogggind thus also KL entropy
Even then it would be difficult to detect the recording siteiS very useful in applications to intracranial EEGs from epi-
showing the very first sign of the seizure, which is necessar{ePSY patients. We found some of these claims to be unjus-
for an exact focus localization. We verified this for windows tified. Nevertheless, the fact remains that KL entropy applied
down to 1.5 secdata not shown This is in agreement with  t0 spectral distributions is a very promising tool which has
clinical experience, which shows that the time scales relevarftot yet been studied much in this context. In fact, “abnor-
for this detection can be less than 1 sec. Because of thedgal” frequency patterns corresponding to epileptic seizures
problems, the suggestions [&] concerning clinical applica- Were bettgr identified with KL than with the Shannon en-
tions such as seizure detection or localization of epileptidroPy- While the present study was performed on a limited
foci seem too optimistic. amount of data, we suggest KL entropy to be an interesting
Finally, we remark that none of the entropy measures apto0l for a more systematic study.
peared to show information prior to the onset of the seizure Finally, we point out that the KL entropy can also be
exceeding naked eye visualization or spectral analysis of thdefined from other time-frequency distributions rather than
EEG. An unequivocal definition of a long-lasting preseizurethe windowed Fourier transform. In particular, we consider
state, however, is of great importance. Apart from an earlyvavelets as good candidates, since they have optimal resolu-
warning for the patient, this definition would allow pharma- tion both in the time and the frequency rarigee{17,18 for
cological or electrotherapeutic interventions as well as basitheoretical background arid9,2q for application to EEGs
research about seizure-generating mechanisms in humans in
the preseizure perlod. Since all the entropies described in this ACKNOWLEDGMENTS
study were defined from the Fourier power spectrum, our
findings support the view that with traditional linear methods K.L. acknowledges support from the Deutsche
relevant information of an impending seizure is restricted toForschungsgemeinschatt.
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