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Drazer and ZanettEPhys. Rev. B0, 5858(1999] have reported on interesting experiments which show
that trapping-time distributions in porous media obey a scaling law of the negative power-law type. Unfortu-
nately, their theoretical interpretation of the experimental data has physical and mathematical inconsistencies
and errors. Drazer and Zanette assume the existence of a distribution of local adsorption isotherms for which
the random parameter is not a thermodynamic function, but a kinetic parameter, the trapping time. Moreover,
they mistakenly identify the reciprocal value of a rate coefficient with the instantarifiocisiating value of
the trapping time. Their approach leads to mathematically inconsistent probability densities for the trapping
times, which they find to be non-normalizable. We suggest a different theory, which is physically and math-
ematically consistent. We start with the classical patch approximation, which assumes the existence of a
distribution of adsorption heats, and introduce two linear energy relationships between the activation energies
of the adsorption and desorption processes and the adsorption heat. If the distribution of the adsorption heat
obeys the exponential law of Zeldovich and Roghinsky, then both the adsorption isotherm and the probability
density of trapping times can be evaluated analytically in terms of the incomplete beta and gamma functions,
respectively. Our probability density of the trapping times is mathematically consistent; that is, it is non-
negative and normalized to unity. For large times it has a long tail which obeys a scaling law of the negative
power-law type, which is consistent with the experimental data of Drazer and Zanette. By using their data we
can evaluate the numerical values of the proportionality coefficients in the linear energy relations. The theory
suggests that experimental study of the temperature dependence of the fractal exponents helps to elucidate the
mechanism of the adsorption-desorption process.

PACS numbds): 47.55.Mh, 05.40-a

I. INTRODUCTION first set of experiments, the system was flushed with an un-
tagged Nal solution having the same concentration as the
The study of fractal time and of its connections with dis-initial, labeled, solutior(exchange experimentswhereas in
persive diffusion was initiated by Montroll and co-workers the second set of experiments the untagged Nal solution was
in the early 197061,2]. Recently, this subject has become an€Placed by distilled wateldesorption experimentsThe re-
important topic of applied statistical physics, with applica-s?lﬁ of ﬂ:ﬁ exi:_hangetexggzl?mgnts shO\I/v that tlhe dreplatc_:errjent
tions in various branches of science and technology, ranginO € radioactive ISOtope 1 0beys a classical adsorption

¢ lation d X 4 vital L i dgesorption and dispersion mechanism commonly encoun-
rom population dynamics and vital statistics to appliederaq jn chemical engineering. In this case the observed con-

chemical kinetics and radiochemistry and to reliability analy-centration profiles can be reproduced theoretically by using a
sis and economick3,4]. classical reaction-convection-diffusion equation. The time
In an interesting paper, Drazer and Zanefttd have dependence of the concentration'dfl is described by a set
shown that the solute transport in desorption experiments iof kinetic curves, which decay very fast to zero. In the case

porous media, made of packings of activated carbon grain®f desorption experiments, the concentration profité%$
follows the dispersive mechanism suggested by Montroll an@lso decrease to zero for large times, but this decrease is
co-workers, which corresponds to power-law trapping-timemuch slower than in the case of exchange experiments. In

distributions. They have used nonconsolidated packings dhe case of desorption for large times, the concentration pro-
relatively uniform, spherical, activated carbon grains ob-fIIeS converge toward§ a_long-time ta'l. of the negative
power-law type C(t)~t~#, t>0, characterized by a fractal

tained from apricot pits, with an average radius a@f - . ;

. : exponentu=0.63. Such long tails cannot be explained by
=(0.13£0.01) cm. The carbon grains were packed in a 30,55 ming a classical reaction-diffusion mechanism. The ex-
cm-high, 2.54-cm-inner-diameter cylinder. In the experi-perimental results of the authors suggest that the displace-
ments, the porous medium is initially filled up with aqueousment of the radioactive isotop&Y involves a very slow,

0.1 M Nal solution tagged witd®. The authors have per- dispersive(Montroll and co-workersdiffusion process. The
formed measurements of tracer adsorption and dispersion, tgualitative physical picture suggested by the authors is the
which a stepwise variation of the concentration 8l is  following: the motion of an atom of the radioactive isotope
induced at timet=0 and kept constant thereafter. Two dif- along the column can be represented by a hopping mecha-
ferent types of experiments with a total constant flow ratenism involving a succession of desorption and readsoption

were carried out by using different displacing fluids. In the processes, which is basically a random walk in continuous
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time (CTRW [1-4]). According to Montroll and co-workers’ 1
theory of dispersive diffusion, such a continuous time ran- T= WK%]CaK&T), (7)
dom walk may lead to concentration profiles with long-time
tails of the negative power-law type if the probability density \wherew is a proportionality factor. By using this conjecture,
of the trapping time of the radioactive isotope in the ad-which is open to criticism, they express the overall adsorp-
sorbed state on the surface has a long time[ 1ai¥]. tion isotherm(6) in the form

Drazer and Zanette have tried to give a theoretical inter-
pretation of their experimental results, but unfortunately their
treatment contains a number of errors and confusions. In 92] alocaI(T)QD(T)dT:Jm@('r)d'r- ®
order to compute the probability density of the trapping time,
they assume that at any position in their apparatus, there isvahere
local equilibrium between the solution and the surface of the
carbon grains and that the carbon surface is heterogeneous.
They invoke the homottatic patch approximation in hetero-
geneous catalysi®] according to which the overall adsorp-
tion isotherm is made up of a contribution of local Langmuir is the probability that the trapping time on the surface has a

o(7)d7 with j(p(r)dTZl 9)

adsorption isotherms value betweerr and r+dr.
For the experimental system studied, the overall adsorp-
K. C tion isotherm obeys the Freundlich power law
0I0caI:Leaq7 )
1+ KoeaC 0=«kC* 1>a>0. (10

where#f,y is the local coverage of the surfacgijs the local By combining Eqs(8) and(9), Drazer and Zanette obtain an

concentration of the chemical in the solution, and integral equation inp(7) which can be solved by using the
Stieltjes transform, resulting in

B AH

Kleo?:al(T) = klgca/klocal= Kleo(?:al(oo)eXF{ - ﬁ

B

i) o(r)=J 1" (11

Equation(11) is consistent with the experimental data. The

probability density(11) has a singularity forr=0 and be-

cause of this singularity the integrf ¢(7)dr=; that is,

(3)  the probability density of the trapping time is not normaliz-
able, a result which is mathematically incorrect. This diver-

) ) ) gence is due to the fact that the Freundlich isothétf) is

are local adsorption and desorption rates, respectly, ot correct for large concentrations. Although in the reported

is the local equilibrium constant of the adsorption process,

+

kIJchcal(T) = kl:r)cal(oo)exﬁ{ - kB_T

are activation energies, experiments the concentrations are in the range for which the
P Freundlich isotherm is valid, the theoretical approach based
AH=E"-E =-¢ 4 on the assumption that the power lg#1) holds for any

. . _ values of the trapping time, from zero to infinity, is physi-
is the local change of the enthalpy during the adsorptionyg|ly and mathematically inconsistent. We emphasize that
process¢ is the adsorption heakg is Boltzmann’s constant, for consistency with experimental data it is enough if only
andT is the temperature of the system. Drazer and Zanettge tajl of the probability density(7) of the trapping times
mention that, according to the patch approximation in hety s the scaling forrte1). This is due to the fact that, accord-
erogeneous catalysis, different patches of the surface ajgy to the theory of Montroll and co-workers, the properties
characterized by different adsorption enthalpies and that thejs dispersive diffusion are determined by the Laplace trans-
stqt_istical distribution can be described in terms of a probform of the probability density of the trapping timeys)
ability density =[5 o(7)exp(—s7)dr, for small values of the Laplace vari-
able,s—0. The form of the Laplace transforig(s) of the
p(§)ds  with f p(§)dE=1; (5) trapping time p_robability densitxp(r) depends on_Iy on the
shape of the tail of the functiop(7) as r—« and is insen-
sitive with respect to the details of the functigfr) for small
the total adsorption isotherm can be expressed as an averaggpping times. We conclude that a physically consistent
of the local isothern{1) with respect to the adsorption heat: theory should come up with a probability densityr) obey-
ing the scaling law(11) for large trapping times— o, but
Kiotal £, T)C q which, unlike Eq.(11), has a cumulative distribution func-
1Tk (& T)c PEe tion ®(7) = J 3¢ ()d= which is not singular forr=0—that
(6) is, lim®(7)=finite as 7— 0—ensuring that the probability
density ¢(7) is properly normalized to unity.
So far, there is no problem. At this point, however, they The unproven conjecturé’) generates serious inconsis-
make the conjecture that the local equilibrium constant igencies in the theory, due to the fact that it assumes the
proportional to the trapping time of a molecule on the existence of a deterministic relationship between two random
surface: variables, the trapping time and the local adsorption heat. In

0=f 6’|oca|(5)p(5)dg:f
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general, within the framework of the homottatic patch ap- Kiseal T) = Kioea ) {€xd Elkg T1}=, (14)
proximation used by Drazer and Zanette, there is no deter-

ministic relationship between the trapping time and the localg thys, both for thermodynamic and kinetic variables, the

adsorption heat and the relation between these two randogjopa| averages can be expressed in terms of the probability
variables is not deterministic. The conjectrgis generated densityp(€) of the adsorption heat.

by a confusion between the reciprocal value of the adsorp- | order to describe the random properties of the trapping
tion rate, 1Ko, and the trapping time. Drazer and Zanetteimes, we use the theory of lifetime distributions of active

assume, without proof, that Kif., is equal to a random jntermediates in complex chemical systeiis We formally

(fluctuating value of the trapping time, corresponding to the represent the adsorption-desorption process as a chemical re-
adsorption heaf. We are going to show that this assumption gction

is not correct and that, under suitable circumstances, at local
equilibrium, 1k.y, can be interpreted as theonditional X+Y(E)=Z(E) (15)
average trapping timef a local equilibrium state character-

ized by the adsorption hedt , and denote byX]=C the concentration of chemical in the
The purpose of this article is to develop a physically con-gq tion, by [Y(£)]=Yy(£)dE the surface concentration of

sistent theory for explaining the experimental results Offree sites with an adsorption heat betwezand £+ d&, and

Drazer and Zanette. We shall show that the conjedftrés by [Z(€)]=2z(£)d€ the corresponding surface concentration

not appropriate and, moreover, that it is not necessary fog¢ .cipied sites. We also introduce a joint density function
explaining the experimental data. An adequate theoreticg] r the adsorption heat and the trapping time:
description of their data can be given by combining the clas- |

sical homottatic patch approximation with the theory of life-

time distributions of reaction intermediates in complex nA7,E)dEdT  with z(E)dE= dgf n7.E)dr. (16)
chemical systemf7]. The structure of the paper is the fol-

lowing. In Sec. Il we present the main assumptions of our ] ] .
approach. In Sec. Ill we study the equilibrium properties ofHere 7,(7,£)d€dr is the surface concentration of occupied
the system, expressed in terms of the overall adsorption isgités with an adsorption heat betweénand £+d& and
therm. Section IV deals with the evaluation of the trappingWhich has trapped a molecule for a time interval between
time distributions. Finally, in Sec. V we compare our theory@nd 7+dr. The density function can be computed from the

with the Drazer-Zanette approach. balance equations
Il. FORMULATION OF THE PROBLEM g d -
(E + &—> N 7,E)dEAT=— 1,(7,E)Kgcal®)
. A . . T
In our approach the adsorption equilibrium is described

by the homottatic patch approximatid®], and thus we x{exd Elkg T+ 71, (17)
assume the validity of Eqg1)—(6) of Sec. I. In addition,

we assume that the activation enerdies of the adsorption- 7 7=0E)=Cy(&) kﬁ{exp[—glkBT]}B+ (18)

desorption processes and the local adsorption heat

E£=—AH are related to each other by means of the IlnearIn terms of the density functio,(r,£)dEdr, we can com-

relations pute the conditional probability density
E.=E%+B.AH=E%-B.¢& (12
_ A 7,€) ith dr=
where3.. are proportionalityscaling coefficients. The ex- e(rl&)= [n(7,6)dr Wit e(r]&)dr=1 (19

istence of the linear relationshig$2) for adsorption kinetics

has been well documented in the literature of heterogeneoys e trapping time corresponding to a given value of the
catalysis, both experimentally and theoreticdl8]. In the ~ j4qorption heat. Finally, the unconditional probability den-

Iiteraturel of ghelmi_cal kine“tli.cs, th? relatio(t) arle .refef,red sity of the trapping times can be evaluated by averaging over
to as Polanyi relations or “linear free energy relations” even " occible values of the adsorption heat:

though they involve the adsorption enthalpy rather than the

Gibbs or Helmholtz free energy. They are equivalent to lin-

ear free energy relations only if the entropy factors of the QD(T)ZJ o(71&)p(E)dE  with f o(m)dr=1. (20
adsorption-desorption process, both thermodynamic and ki-

netic, are the same for all active sites on the surfi@e

From Egs.(4) and (12), it follows that the scaling coeffi- ~_ BY USing our approach it is possible to compute the prob-
cientsB.. are related to each other by means of the relation@Pility density of the trapping timesp(), in terms of the
ship probability densityp(€) of the adsorption heat. In order to
compare our approach with the experimental data of Drazer
Bi=B_+1. (13)  and Zanette, we have to assume a model for this probability

density. In the following we use the Zeldovich-Roginskii
An important consequence of the linear energy relatid@s  model[9], for which the adsorption heat can take any posi-
is that the rate coefficients,,, are deterministic functions tive value between zero and infinity, and the probability den-
of the adsorption heaf=—AH: sity p(€) is exponential:
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p(&)=(kgT*) Texd — &/ (kgT*)] pressed as a ratio between the surface concentrafifyul&
of active sites with the adsorption heat betwegrand £

with j wp( £de=1, T*>T. 1) +d¢&, and the total surface concentratibnof active sites:

0 p(E)dE=u(&E)dEIU. (30)

The physical meaning of the Zeldovich-Roginksii model has  \ye insert the Zeldovich-Roginskii distributiof21) into

been discussed in detail in the literaty&10]: it corre-  gq (27) and evaluate the integral over the adsorption eat
sponds to a canonical distribution “frozen” at a temperatureafier a number of transformations we obtain

T*>T, whereT is the current temperature of the system.
The value of the characteristic temperatiife>T provides _ eq N
information about the history of processing the surface. 0= a(CKjoea(*))*| B(1- @, @)

lll. FRACTAL ADSORPTION EQUILIBRIUM - CKigta(*)
AND GENERALIZED FREUNDLICH ISOTHERM ~Bll-ae 1+CKE9 (o)
We begin the analysis of our model by studying the ad- o
sorption equilibrium. At equilibrium, the adsorption rate =(CK,‘f)‘la,(oo))c‘sin(ml)—oz(CKﬁ,qCa ©))“
equals the desorption rate, resulting in
eq
CY(E)eaf=) (XL ET e TI} X8| 1 aya; el @31
ocal a,n, 1—|—CKﬁ)C(]:al(OC) ,
=2(E)Kpoeal( @) {EXH ETK TP+ 1. (22
where
In addition, the total number of sites, occupied and free, is N
conserved, and thus we have the balance equation B(p,q)zf x471(1-x)9"1dx, q,p>0, (32)
0

y(&)+z(&)=u(d), (23

X
whereu(&)d€ is the total number of sites, free and occupied, B(p,q;x)=f x7H(1-x)9%"1dx, q,p>0, x=0,
with an adsorption heat betweé¢hand £+d€. By solving 0

Egs.(22) and(23), we come to 33
. are the complete and the incomplete beta functions, respec-
CKinal(@)exg & (kgT)] tively, and
z(&)=u(é) eq : (24)
1+CK|Oca|(°°)EX[[5/(kBT)] CY:T/T*, 1>a,>0, (34)

where the local equilibrium constan{ﬁm(T) andK@l(*) s a scaling exponent between zero and unity.
for temperaturel are expressed as ratios of the correspond-  From Eq.(31) we notice that, in the limit of very small

ing forward and backward rate coefficients: concentrations in solutiorG— 0, we recover the Freundlich
_ isotherm[10
Kieocﬂ:al(T) = kl-gcal(T)/klocaI(T) = Kﬁ)?:al(oo)exq - AH/(kBT)]: [ ]
s
(25 0~ (CKEL(=) " grmay 85C—0. (39
Kﬁ)%a oo) = kl-(:cal(oo)/klgcal(m)' (26)

. . ) In the other limit of large concentrations, the adsorption iso-
By integrating Eq.(24) over all possible values of the ad- herm (31) tends towards a constant value:
sorption heat, we recover E() for the overall adsorption

isotherm: f—1 as C—oo, (36)
o Z(C) _f CKiota(@)exd — &l (kgT)] o(E)dE IV. TRAPPING-TIME DISTRIBUTIONS
= = - — ,

U 1+ CKioca ) ex — &/ (kg T) ] 5 At local equilibrium the time derivative in Eq17) is

27 equal to zero and the joint density functiep(7,£) can be

where easily evaluated. By integrating E@.7) with the initial con-

dition (18), we obtain
2©0)= [ zodeu=[uede @8 nunE=CyEK=IexT B EkeT]

X expl — TKigca ) eXH (B+— 1) &l (kg T) 1}
CKiglal =) X Bl (kT)]
1+ CKRL (0)exd &/(kgT)] tocal )

is the total surface concentration of active sites, free and X exp{ — mKipea( @) exd (81 —1)&/(KgT)]}.
occupied. In Eq(27) the probability densityp(£)d€ is ex- (37)

is the total surface concentration of occupied sites and

=u(é)

U= J u(&)de (29
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By combining Egs(19) and(38), we can compute the con- where the characteristic timg and the effective scaling ex-
ditional probability densityp(7€) of the trapping times cor- ponentag are given by
responding to a given value of the adsorption heat:

1 1+ \|A-BlatBs)
¢(71€) = Kigeal *)eXH (B + ~ 1) &/ (keT)] eyl R b @9
Xexp{_Tkl;cal(oo)eXF[(B+_1)5/(kBT)]}' at
(39 aep=7——— With 1>a>0 (46)
1-p8+
By using Egs.(14), Eq. (37) can be rewritten in a simpler
form and
@(T|£):k|;ca|(5,T)exq_Tchal(g,T)}. (39) F(a):fxtaflexq_t)dt with a>0 (47)
0

We notice that the conditional probability density of the trap-

ping times is an exponential with a characteristic decay ratés the complete gamma function. All positive moments of
Kioca( €, T). In particular, the conditional average value of the order bigger thanv are infinite:

trapping times is equal to the reciprocal value of the decay

rate,Kigeal(€,T): (7= for m>aeg. (48

x N This is a typical feature for a statistical fractal probability
(HE)e [ 7= €T (40 donsitf2.4]
In conclusion, in this section we have shown that, by
The unconditional probability density of the trapping combining the classical homottatic approximation with the
times can be evaluated from Edq&0), (21), and(38). After  theory of lifetime distributions of reaction intermediates in

some algebra we come to complex chemical systems, it is possible to derive a distribu-
tion of trapping times with a long tail, which is compatible
o(7)=ar AT A=BIIK - (00)]~HatBl1=F4)] with the experimental data of Drazer and Zanette and is
properly normalized to unity. The proportionality la()
1+a e o :
X y Kk (Oo)) (41) suggested inf5] is neither necessary nor appropriate for the
1-p, lecal TP development of the theory.

where V. COMPARISON WITH THE DRAZER-ZANETTE

APPROACH: DISCUSSION

X
a,x)=| t* lexpg—t)dt with a>0, x=0, .
v(@.x) jo =) We start out the comparison between our theory and the

(42 Drazer-Zanette approach by searching for the possible exis-
tence of a proportionality law similar to E¢/). By using the

is the incompletey function. In Eq.(41), for physical con- |inear free energy relationél2), we can express the local
sistency we have to assume that desorption ratd,.,(£) in terms of the equilibrium constant
1—a Kinta(E,T). We have
g (43

Kigal &) P71
Iocal( )J . (49)

Kiocal €, T) = klocal(oo)[ K|eq ()

These restrictions must be introduced in order to ensure the
non-negativity and normalization to unity of the probability o
density of trapping times. We shall see later that restriction®y combining Egs(40) and(49), we come to
(43) are fulfilled by the experimental data reported by Drazer
and Zanette. Unlike the Ia\Ml_) for ¢(7) derivgd by Drazer (T(5)>|s:£[Kﬁ)%m(&-r)]l_ﬁ*, (50)
and Zanette, the functiop(7) given by Eq.(41) is a properly
defined probability density; that is, it is non-negative and
normalized to unity. where

The probability density41) for the trapping time has the B eq 1-p
same type of asymptotic behavior as the improper probabil- W= Kioeal %) [ Kiocal(©) 17 7. (51

ity density (11) derived by Drazer and Zanette. We have ) o
Equation(50) has a similar structure as E(,) postulated by

(p(7)~a(klgcal(oo))*[<a+ﬁ+>/<1*5+>] Drazer and Zanette. However, EqS) and (50) are very
different; Equation(7) is a deterministic relation between
<T 1+a LAt two random quantities, the fluctuating values of the adsorp-
- B tion heat and the trapping time, whereas &) is a relation

N between the conditional average of the trapping time corre-
_ Joeft as oo (44) sponding to a given valugealization) of the adsorption heat
7t et ' and the value of the adsorption heat. The differences between
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the two approaches is obvious in the corresponding expres- Energy
sions of the joint probability distribution of the trapping time i
and adsorption heat: U,

Y(7,E)drdE  with the normalization condition

f: f:lp( r,&)drde=1. (52)

Within the framework of the homottatic patch approxima-
tion, the correct expression of this joint probability is given

by
W(7,E)drdE=o(7|E)dTp(E)dE

site(1)
=Kioeal £ T)EXP] — TKigea( £, T)IP(E)d 7 dE. e, \ \E@
(53) site(2) .

E®

As expected, the adsorption heat, which is a thermodynamic ite(3) \

fl_mct_lon, is independent of.the_ trapping time, which is a Liquid Adsotbed

kinetic variable. The opposite is, however, not true: the >

trapping time depends on the value of the adsorption heat,

and the relation between these two variables is not determin- Reaction Coordinate

istic, but random, and is expressed by the conditional prob-

ability density(39). FIG. 1. Schematic representation of the activation energy pro-
The Drazer-Zanette conjectuf@) implies that the condi- files for the adsorption-desorption process studied in the experi-

tional probability densityp(flé') is given by aé function ments of Drazer and Zanet{é]. The different activation energy
profiles correspond to adsorption sites characterized by different

o

liquid

S

=

)
)

1 . adsorption heats. All energy profiles start from the same value
i WKloqcaI(gvT) ) Uiiquia» Which corresponds to the liquid phase, increase up to the
same maximum valu¥ .., and then decrease to various final val-

which corresponds to the following joint probability density: UeS Usiew :Usitez) : Usiteg)» - - -, corresponding to surface sites
characterized by various adsorption heats.

e(71€)=4

1
Y(7,E)drdE= 6| 7— wKﬁ)qu(S,T) p()drd&.  (54) E.=E%=E® =const, (57)
Equation(54) is not compatible with Eq.53) as well as with E =E°+¢& (58)
Eq. (39) derived from the homotattic patchwise approxima-
tion. It follows that the adsorption rate is constant for all adsorp-

Another difference between the two theories refers to thgjon sites, irrespective of the value of the adsorption heat.

scaling conditions resulting from the computations. Ourpply the desorption rate depends on the adsorption heat in a
theory depends on two independent scaling exponents, th§mple way: up to a constant additive factor, the activation
therm (35) and one of the scaling parameteBs or B adsorption heat of the site considered. The activation energy
entering the linear free energy relatioll). The fractal ex-  profiles for the adsorption-desorption process have the form
ponentae, which determines the shape of the tail of the represented schematically in Fig. 1, which represents differ-
trapping-time distribution, is a combination of these twoent energy profiles for the adsorption-desorption process on
scaling exponents, given by E¢46). Drazer and Zanette sjtes characterized by different adsorption heats. All energy
have not assumed the existence of linear energy I’e|ati0fbrofi|es start from the same energy valug,,q correspond-
ships, and because of that, their theory has only one scalir]gg to a molecule in the liquid phase and go up to the same
exponent which determines both the shape of the Freundlichaximum valueU max. The descending parts of the activa-
isotherm and the tail of the trapping-time distribution. tion energy profiles are different for sites with different ad-
The desorption experiments presentedShshow that sorption heats. The difference between the eneigys,
d= ae—063 (55) corresponding to the surface site of tyjpend the character-
eff = == istic energyUjqiq corresponding to a molecule in the liquid

phase is equal to the variation of enthalpy during the adsorp-

By applying Egs(13) and(46), we can evaluate the numeri- M
tion process on the site

cal values of the scaling exponengs. entering the linear
energy relationg12),

B+=0, B-=-1 (56) _ _ : -
The corresponding adsorption heat is equal to the variation
and, thus of the enthalpy with a changed sign:

AH;=Ugjgj) = Ujiquia<O. (59
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= — =Uin— N £
&7 7 A= Viauia™ st =0 (60 P(E)= = exil — a&l(kaT)]  with f p(E)dE=1,
The activation energy of the adsorption process is equal to ® ° (66)
the difference between the maximum value of the energy,
U nax COrresponding to the top of the various energy profiles
and the characteristic energlfq,iq corresponding to a mol-  where nowa is a positive scaling parameter. The theoretical
ecule in the liquid: justification of the distribution(66) is related to the con-
straint that the adsorption heat is a linear function of the
E+ = Unax— Yliquid - (61)  coverage of the surface. This linear dependence of the ad-
_ sorption heat on the coverage is encountered for many cata-
Similarly, the activation energieg!) of the desorption pro- lytic systemg10]. The theory developed in this article is also
cesses corresponding to the various sites of the surface avalid in the case of the generalized distributi@d), with the
given by difference that now the temperature dependence of the scal-
ing parametew is generally unknown. In Ref5] there are
EUV) = U max— Usitg(j) - (62) no details concerning the temperature variation of the scaling
parametera. An experimental study of the temperature

We notice that, by combining Eq&60)—(62), we recover the variation of the parameterg and a.« would be of interest
linear energy relatiof58), compatible with the experimental for elucidating the detailed mechanism of the adsorption pro-
data of Drazer and Zanette. We have cess. In particular, a linear dependence of temperature would

indicate that the distribution of adsorption heats is given by a
frozen Maxwell-Boltzmann distribution of the Zeldovich-

EV=U pac Usite(j) = (Umax— Yliquia)  (Usiguia — Usitej)) Roginskii type.

=% +¢, (63 We finish our discussion by pointing out some limitations
of our approach. Many of the equations derived in this article
where are independent of the minimum and maximum values of the
adsorption heaf. Although in the general formulation of our
EC=U, Ujqua=E- = E(i- (64) theory we have not specified the integration limits with re-

spect to&, in the final computations we have assumed that
can take any value between zero and infinity. Even though
this range of variation of is commonly used in the litera-
éure, it may be subject to criticism. A straightforward analy-
Sis of our equations shows that the modification of the lower
integration limit from zero to an arbitrarfinite) positive or
negative value does not change the shape of the tail of the
probability density of the trapping times. The values of the
<T(5)>|82£Kﬁ)qca|(5,'r)- (65) scaling gxponents compu_ted in this article r_emai_n un-
changed: only the expressions for some proportionality fac-
tors change. In the case of the upper integration limit, how-
The similarity between Eqs.7) and (65) is deceiving; as ever, the situation is different. From the mathematical point
explained before, the terms on the left side of these equatiorsf view, the long-time tails predicted by our theory are due
have different meanings: in E¢7), 7is a random variable, to the fact that we have assumed that there is no finite upper
the fluctuating value of the trapping time, whereas in Eqlimit for the values of the adsorption he&t However, a
(65 (7(£))). is the conditional average of the trapping time rigorous physical analysis shows that an infinite adsorption
corresponding to a given value of the adsorption heat. Théeat is a mathematical artifact. The maximum adsorption
similar structure of Eqs(7) and (65) is the main reason for heat is associated with the closest possible packing configu-
which Drazer and Zanette managed to achieve a successfidtion at a separation distance corresponding to the minimum
data fit by using a theoretical approach based on the conjeof the van der Waals potential. Therefore, even though the
ture (7). maximum adsorption heat may be very large, it is, however,
Now we discuss an issue related to the temperature ddinite. In order that our theory be valid, it is enough that the
pendence of the fractal exponenbf the Freundlich adsorp- maximum activation energy, although finite, be large
tion isotherm. In our derivation we have used the originalenough, so that the beginning of the tail of the trapping time
Zeldovich-Roginskii adsorption heat distributipEq. (21)].  probability density obeys a scaling law of the negative
This distribution leads to the consequence that the fractgpower-law type. The finite value of the maximum adsorption
exponentx is a linear function of the absolute temperatlire heat results in a cutoff of the power-law portion of the tail. If
of the systeniEqg. (34)], a result which is consistent with the such a cutoff exists outside the range of times experimentally
experimental data for many heterogeneous systems. Hovavailable, it does not affect the predictions of our theory. We
ever, more recent research reported in the literature showsotice that such cutoff values for the ends of the tails of the
that the exponen& can be a nonlinear function of tempera- fractal probability densities are commonly encountered in the
ture or even a constant. Theoretical treatments of these sybterature(see, for example, Reff11-13). Usually, perfect
tems are based on a generalization of the Zeldovichstatistical fractals for which the self-similarity of the prob-
Roginskii distribution of the typé10] ability laws acts up to infinity do not exist:  self-similarity is

In the particular case described by E@56)—(58), the
relation(50) between the conditional average(&)),,. of the
trapping time attached to a given adsorption site and th
local equilibrium constank ), (£, T) for the adsorption pro-
cess becomes a proportionality
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generally valid on a finite range of the random variables<T(g)>|8~[Kﬁ)c§:al(g,T)]1—B+, where(7(€))|, is a conditional
limited by cutoff values. . average and3,(&,T) is the value of the equilibrium con-
Another simplification in our analysis is related t0 the giant for a single realization of the process. The second rela-
graphical representation of the activation energy profiles ifjon is a consequence of a physically and mathematically
Fig. 1. The energy of a molecule in the liquid phase is &gnsistent theory and explains the experimental data. The
r_andom vana_ble, which obeys the laws of eql_J|I|br_|um statisg|ation suggested by Drazer and Zanette, even though it
tical mechanics. In Eq459)—-(64), as well as in Fig. 1 we  «gyplains” the experimental results, leads to theoretical in-
have neglected this energy distribution. This approximation.qnsistencies.
which is also commonly usgd .in the Ii'gerature_, is'justified b_y Although here we focus on the system studied experimen-
the fact that the energy distribution in the liquid phase isiy|ly by Drazer and Zanette, the results presented in this ar-
generally much narrower than the energy distribution on §jcie have more general implications. The calculations pre-

heterogeneous surface. sented in this paper can be easily extended to more
complicated systems for which statistical fractal distributions
VI. CONCLUSIONS are needed for the interpretation of experimental data—for

ﬁxample, to the case of protein-ligand interactions far from

In this paper a theoretical approach has been introduced nguilibrium [14]

order to interpret the Drazer-Zanette experiments on powe
law trapping-time distributions in porous media. The model
suggested here is based on the theory of lifetime distributions
of active intermediates in complex chemical systems. The
mathematical crux of the paper is the following. Drazer and This research was supported in part by the National Sci-
Zanette assume that two random variables, the trapping timence Foundation and by the Department of Energy, Basic
7 of a molecule on the surface and the local equi|ibriumEnergy Sciences Engineering Program. The authors thank
constanK (€, T) for the adsorption on a site characterized Professor F. Moran and Dr. M. Tsuchiya for useful discus-
by the adsorption hea, have a relationship of the form  sions and for suggesting the use of the generalized adsorp-
~Kiea(E T), whereas the theory presented here proves thaton heat distributiof Eq. (66)].
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