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Frictional-collisional regime for granular suspension flows down an inclined channel
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Here granular suspensions refer to very concentrated suspensions of particles within a Newtonian fluid.
Under certain conditions given in the paper, the bulk stresses mainly result from the combination of frictional
and collisional interactions at the particle scale. The corresponding flow regime is called the frictional-
collisional regime. The constitutive equation adapted to this regime is not well known. We propose a consti-
tutive model based on the balance between frictional and collisional interactions. We have applied this model
to granular flow down an inclined channel. It is shown that the mass flow rate is proportional to the flow depth.

PACS numbgs): 45.70—-n, 45.50-j, 83.20—d

[. INTRODUCTION netic theories used to infer motion equations for rapidly
sheared flows of particldg]. In this case, we consider that
In a previous paper referred to as paper | here@fiprwe  the main interactions between particles are collisions and the
suggested that very concentrated mixtures of noncolloidabart played by the fluid phase in the generation of stress can
solid particles within a fluid should be called “granular sus- be disregarded. Likewise, the frictional behavior exhibited at
pensions.” The introduction of this notion is motivated by very low shear rates is usually modeled using the phenom-
the peculiar role played by the solid concentratibtdefined  enological law of Coulomi8—10]. In this case, it is shown
as the ratio of solid volume to total volumes the motion of  that the bulk stresses result from sustained contacts between
particles through the bulk is increasingly impeded as thearticles, which carry frictional forces throughout the bulk
solid concentration increases. When it exceeds a criticgl11]; the role of the fluid phase is mainly limited to the fluid
value (sometimes called the random loose packing concenpressure in the pores.
tration) similar to a dynamical percolation yields(), a con- In many cases of interest, the flow regime is intermediate
tinuous network of particles in contact forms throughout thebetween these two limiting regimes; in other words, both
bulk [2]. The formation of this network causes significant frictional and collisional contacts play a role. For instance, in
changes in the flow behavior: dilatancy, the ordering ofa geophysical context, gravity-driven flows, such as stony
particles in layergfor simple shear flows rearrangement of debris flows or rock falls, are presumed to belong to the
stress components, the appearance of a minimum in the flofrictional-collisional regime. In this case, the constitutive
curve, and so on. These abrupt changes arehnidave been  equation is poorly delineated. It is now well established that
shown by several numerical simulations on various systemasymptotic theorieésuch as kinetic theories based on purely
[3] together with rheometric world]. Generally, the authors collisional interactions can no longer be used to suitably
found that the critical concentratiog is close to the con- represent the behavior of frictional-collisional regimes for a
centration of a face-centered-cubic arrangement for suspemvide range of flow conditiongl2]. In neighboring scientific
sions made up of identical spherical particlegh,=7/6  areas concerned by the present issue, such as geophysics,
~0.52 (¢.=ml4~0.785). A second critical value of the scientists are not always convinced themselves of the differ-
solid concentration exists: it corresponds to the randonences between frictional-collisional argdurely) collisional
solid concentratiorp,,,, above which it is not possible to add regimes, and Bagnold-like constitutive models or models
particles without bending them. In the case of monosizeddapted from kinetic theories are used.
sphere mixtures, numerical simulations have shown that this The development of constitutive equations suitable for de-
concentration is¢,,=0.635[5]. As a consequence, in the scribing the frictional-collisional regime has received little
range of concentratiof¢.,¢,] particle suspension flows attention. As far as we known, the first attempt is due to
exhibit many peculiarities due to the formation of a particleSavagd 13]. In order to fit experimental data obtained on an
network, which preclude inferring the bulk behavior by annular shear cell, he proposed to divide the total shear stress
merely extrapolating from dilute or moderately concentratednto a part due to a Coulombic frictional contribution
suspension behavior. Specific theories are needed to modglamely, rate-independent peaind a collisional contribution
granular suspension flows. Furthermore, owing to the higlidepending on the square of the shear)rd&arther develop-
concentrations, bulk behavior is chiefly dictated by particle-ments were introduced by Johnson and Jack&dh Follow-
particle interactiongcollision, lubricated contacts, friction, ing the suggestion by Savage, Johnson and Jackson ex-
colloidal forces, etg. According to the type of predominant pressed bulk stress as the sum of a collisional contribution
contact, various types of bulk behavior are obsef&d and a frictional term. More recently, a very similar approach
The constitutive equation of granular suspensions of parhas been used by Jyotsana and Rdg to study dry granular
ticles is known only for limiting flow conditions, where only confined flows through hoppers. An alternative point of view
one type of particle contact prevails. Examples include ki-have been proposed by Mills, Loggia, and TiXi&6]. These
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authors have modeled dry granular flows as the motion of & agreement with most theoretical models developed for the
network of transient solid chains through an assembly ofrictional-collisional regime, we find that the shear stress
particles behaving as a viscous fluid. In addition to theséiot a simple one-to-one function of the shear rate, but must
constitutive equations examined for particular flow condi-also depend on the normal strass and the granular tem-
tions, we can quote the more general tensorial expressioperature(i.e., the root mean square of the velocity fluctua-
obtained by Berker and VanArsddl&0] or the original ap- tions) T:  7=17(Yy,0,,,T). But whereas most of the avail-
proach proposed by SavafE?]. able theoretical models have expressed the bulk shear stress
From an experimental point of view, little is known about @S the simple sum of a collisional contribution and a fric-
the frictional-collisional regime and, more generally, granu-tional term and have admitted that both elementary contribu-
tlons are independent, here we explore the possibility of a

lar suspension flows. To date, not many experiments hav . X - F ,
been carried out. Published experimental works have e strong relationship between these two contributions. This re-
ationship is sought via the energy balance equation.

deavored to measure a few quantitigslocity profile, den-
sity profile, etc) in a narrow range of flow conditions with-
out providing a comprehensive picture of flow pattéflow Il. TOWARDS A DEFINITION OF THE
regimes, discharge equation, @tcThis perhaps explains FRICTIONAL-COLLISIONAL REGIME
why they are not always consistent when compared with

each other. For instance, in the case of dry granular rowaP In paper |, we showed that, when a granular suspension

ow can be regarded as a one-phase flow at the macroscopic
evel (namely, when there is no significant difference be-
tween the mean velocities of each phadbe constitutive
equation of the equivalent continuum depends on the(§ype

of predominant contact. We define tfréctional-collisional

gime in the following way. It is mainly characterized by

e predominance of frictional and collisional interactions
etween particles within the bulk. Indirect particle interac-
p’_ons(such as lubricated conta&nd viscous stresses may be

down inclined channels, some authors found that, for
steady uniform flow, the discharge equation wgsh?®
(with h the flow depth andj the flow rate [18], whereas
others found a relation in the form @fch [19]. Another
example includes the direction of free surface wave of granu
lar avalanches, which can propagate downwards or upwar
depending on the experimental conditions as reported b
Douady, Andreotti, and Daefi20]. Our opinion is that all
experimental and theoretical aspects are not necessarily i
reconcilable, but, on the contrary, constitute various aspecf nor_ed. - - -

of a complex flow pattern. To date, the theoretical models It |s_w_orth noticing that friction a_md CO”'S.'On are base_d on
(quoted abovkfail to describe the observed flow pattern and very similar mechanisms at the microscopic le&]. Their

the paramount features of the frictional-collisional features.d's‘tInCtlon is meaningful only at the particle scale where it is

In order to gain insight into the behavior of granular suspenp?‘c’bs.'bIe to d'ft'r;gu.'sr; t_hlem_by Ithex eﬁﬁ.Ct.S' The trgatr;ent
sions, we suggest studying a granular suspension flow in inary contacts 1S fairly simpie. A collision may be de-

simple flow geometry. Here we shall study the case o ined as a very brief contact whose effect is an exchange of
gravity-driven flows down an inclined, rough, infinite plane. momentum_between partlcle_s. ThL.‘S the contact lf.iw IS gener-
Our model focuses on simple granular suspensions, made Jy sought in t_hg for_m ofa d|s_cont|nuous change in veIoc@y.

of noncolloidal monodisperse, solid, spherical particles onversely, f”CF'On is a sustained contact; the long duration
within a Newtonian fluid. First, we outline the definition of of cpntaqt requires a force to be applled to keep the tW.O
the frictional-collisional regime using dimensionless num_partlcles in close contact and accordingly the contact law is

bers. The second part of the paper is devoted to an overvie pressed as a relation linking the components of the applied

of the microstructural approach applied to the frictional- orce.l The treatmentﬂ (;tllmlultlbo?y.cr?tr;tac(m\éolvedd n
collisional regime. In our case, computation of the averag(,granu ar suspension Tlowss 1ess straightiorward and espe-

stress tensor is limited by poor knowledge of the contacf"ial!y. for coIIisiQnaI contacts. Here we sugge_st defining a
distribution within the bulk. Here we propose a simple modelCOIIISIOn as a brief exchange of momentum during the impact

based on a physical analysis of the behavior at the particl f two (or morg particles regardiess of what happens after

level. Emphasis is given to the characteristic times associated® impact(propagation of elastic waves, rebound, frictional

with each type of interaction and interplay between them. ipontact, sticking Likewise, we consider friction as a long-

a similar way to what was done in the earlier stages of turf219¢ interactign. . .
y N On the basis of the above comments, it is possible to

bulence theoryboundary layer and energy cascade thegries S L - > ;
we shall use dimensional arguments and approximate evallyoPOse criteria defining the frictional-collisional regime us-
ing dimensionless group$,22]. The occurrence of direct

ations of physical mechanisms to gain insight into the ) ; .
frictional-collisional regime. As in turbulence or kinetic contact between p_amcles is conditioned by the collase
theories, the constitutive equation must be coupled with thc!:eaStI m_parjtr(])f Iubncatled contacts. Ifr_1 paper I,hwe sggg?sted
(kinetic) energy balance equation for the motion equationefmp.Oym.g the Bagnold ”“mbef de. ined as the ratio of par-
system to be closed. In the third part of this paper, we ex:[ICIe inertia to the work the lubrication force,
amine the particular case of gravity-driven flow down an 2
inclined channel. Such a geometry is very appropriate, be- N :ppR I' 4R (1)
cause the normal and shear stress distribution is perfectly Ba u  Iné/R’
known in a steady uniform flow.

The main distinctive feature in comparison with previouswhere u is the fluid viscosity I' the mean shear ratp,, the
models is the peculiar role ascribed to the kinetic energyarticle density,R the particle radius, andd the mean

balance in the interplay between particle interactions. Indeedarticle-to-particle distance. For lubrication effects to be neg-
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ligible with respect to collisions, the Bagnold number mustwherea(?) denotes the collisional contribution?), the fric-

satisfy Ng,> 1. Likewise, in paper |, we have defined the tional contribution,Q’ the fluctuations of angular velocity,
Coulomb number as the ratio of collision magnitude to theand J, the inertia moment. The purely viscous contribution

typical stress% acting on particles: 2ud in Eq. (4) may be neglected compared with the particu-
p,R2T2 late contributions. It may be shown that the particulate con-
Neo=— 5— (2)  tribution (o) or &P} reflects the effects of local forces at

the particle level and may be deduced by averaging the local

Introducing dimensionless numbers to characterize bullforcesl1,24k:

behavior of granular suspensions is not new. Many different RN
versions of key dimensionless numbers have already been —p_ j _
proposed. For instance, the number that we suggest calling i szl Agﬂ)F®kdk Rny(Fek), ©

the Bagnold numbefEq. (1)] is formally identical to the
Stokes number or the particle Reynolds number, used byhereF is the contact forcek is the outward normal at the
other autho_rs. o _ _ contact pointdk is the angle arounll, andng is the number
The frictional-collisional regime is expected to occur density. In the first term of the equality, we use a volume
when the corresponding contributions in bulk stress have thaverage of all contact forces acting on the surf,gg@ of N
same order of magnitude, namely, wheg,=O(1). Natu-  peads included in a control volurve The second equality is
rally, this is a rather crude classification since many parama simple translation of the first one in terms of ensemble
eters controlling dynamics have been omitted. For Instanc&yerage, which is more usual in kinetic theories or homog-

in a viscous surrounding fluid, collisions between particlesgpjzation techniques. In most cases, the ensemble average of
involve more complicated mechanisms based on the cou; guantityf(r,t) is computed as follow§25];

pling between hydrodynamics and elasticity as described by

Daviset al.[23]. In this case, another dimensionless number R

is required to quantify the capacity of particles to deform due (f(r,t))= f Pa(tx,y) P (x,t;,CY)dxdy, (7
to the action of lubrication forces. But insofar as we focus ¢

our attention on chief flow regimes, this classification canynerecN denotes the configuration &f particles(specified
provide an approximate and simple way of determining th&,y their positions, linear and angular velociiés the vol-

prevailing particle interactions. umeV, andP, is thepair distribution functiondefined as the
probability that the centers of two spheres simultaneously lie,
I1l. CONSTITUTIVE EQUATIONS respective|y, inx andy,

A. General expression

1
In paper |, we showed that the constitutive equation in a  Pa(t;x,y)= mj P(t;x,y,CN=2)dCcN=2) (g)
frictional-collisional regime may be written as follows. The

gngiris;lrjeﬂsésn.ls the sum of a fluid contribution and a partlclewhereC(N_z) denotes the remaininy— 2 particles. Like-

wise, f(® denotes the conditional averaged function when
o=0")+o", (3)  the position of two spheres is fixed:

where the fluid part may be written -
(2) = N — .~N (N-2)
f B B f JCZP(t,N 2|x,y)f(r,t;CNydC , 9
' =2ud—(1- ¢)Prl—pyu'eu’), (4)
where the conditional probabilit(N—2|x,y) is the distri-

whered denotes the strain-rate tenspk, is the mean inter- bution probability of the remainindl—2 spheres when two
stitial fluid pressurep; is the fluid density, and’ refers to spheres are fixed atx and y: P(N—2|xy)

velocity fluctuations. We employ brackets and the over bai_ P(N)/P5(x,y). Most often, it is implicitly assumed that
symbol to represent ensemble and volume-averaged quanth " L 20
e conditional averaged function® may be merely re-

ties, respectively. Using the ergodicity assumption, we ma)} . X
replace the volume-averaged terms by ensemble-averag@l}aced byf. For dilute suspensions, apart from systems gov-

terms. Moreover, in most cases, the particle contribution out€€d by fluctuationscritical phase transition such an as-

weighs the viscous term in the equation, which can thereforgumption is generally sound. For concentrated suspensions,

be neglected. This is usually shown by considering a genercjue to the development of strong correlations between neigh-

alized Reynolds number in the fordge=p, R/ 0F Nge boring partlcles., it is not (-:ertz%m that replacmg the. cor-ldltlon
=3/(ul). Generally, the large value required g, (for a averaged functiori (®) by f is still meaningful. Investigations
frictional-collisional regime to occlrimplies in turn that of f(® or P, are still scarce and restricted to limiting regimes
Ngre must be very large. The particle contribution may be(frictional or collisiona). To our knowledge, no work has
evaluated as been published on this topic for the frictional-collisional re-
gime.
.1 | in ord lose the moti ti t

—p)_—=tp) L —p) _ L , n_ A n many cases, in order to close the motion equation set,

o= 0ol t Oric— PPy 2‘]p<Q 2Q) = pp{ueu’), the energy balance equation is needed. We have shown in
(5) paper | that its general expression is
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_— 3dpT ds ferred assuming that the pair-distribution functi®p was
od=5 4 +V-Q+ a‘(n']UUD, (100 the product of Maxwellian single-particle velocity distribu-
tions and that particles were smooth, but inelastic with a
= - . . coefficient of restitutiore (kinetic theory. He obtainedr.,
wherep=p=pp+ (1= )py is the mean local density and _ " > T "The frictional contribution was estimated using
¢ the mean solg concentratlpﬁjs the granular temperature he empirical Coulomb relationshigic;= po Sin ¢, wherep,
(T=(u{u{)/3), & the mean internal energR=—ou" an  denoted a mean normal stress apcthe internal friction
energy flux due to thermal motion, andrd[ denotes the angle. To close the motion equations, he needed the energy
discontinuity ofeu through the particle surfaces oriented by balance equatiofil0), but he did not take the frictional dis-
the normal vecton (due to dissipative contagisandeo de-  sipation{n- Jou[) into account. To solve the resulting mo-
notes the local stres@n the fluid or solid phase On the tion equations, he assumed further that the ratio of the mean
right-hand side of Eq(10), the first term represents the in- pressure to the dynamic pressiipy/(p,T)] was constant at
crease in random kinetic energy, the second term stands feivery depth. His model resulted in linear velocity profiles
the diffusion of energy due to thermal motion, the third termand a mass flow rate varying gs h2>. He also found that
denotes energy loss during inelastic collisions, and the fourtBteady flows were possible only within a narrow range of
term represents frictional dissipation during slipping con-channel inclinations. Compared to the experimental data,
tacts. In the absence of friction@lipping contact, Eq(10)  such a model is in good agreemdt least qualitatively
is similar to the one found for kinetic theories. It is worth with some experimental observations, but fails to describe a
noticing that most authors using a kinetic theory for studyinglarge number of experiments. For instance, the prediction of
the frictional-collisional regime have continued to employthe mass flow rate contrasts with the experimental trgnd
Eq. (10) without including the frictional dissipation. This o«h. Most subsequent models were based on the same ap-
omission is not physically sound. Another phySiCEl| intel’pl’e-proach as the one followed by Sava@mup”ng a kinetic
tation of Eq.(10) is provided by integrating it over a control theory and the Coulomb relationshifput used different as-
volume V. In the case of an isochoric steady flow that we sumptions or boundary conditions. But on the whole, predic-
shall study in the next section, we easily find tions of the overall flow features were approximately identi-
cal, namely, in partial agreement with all experimental data.
— This shortcoming may originate in irrelevant approximations
f\,o"ddv_ LV(EpTu‘nwLQn)dS or an overly simplified approach, which would have dis-
carded some ingredients. Here, rather than challenge the en-
- tire approach followed so far by most authors, we suggest
+ fv(s —(n-Joul))dv. (D exploring a new direction by examining a different interplay
between collisional and frictional contributions while keep-
The different terms of this equation may be interpreted ad"d the same ingredients as Savage. Indeed, Savage and sub-
follows. The contribution on the left-hand side of the equa-S€guent authors implicitly admitted that the two contribu-
tion represents the energy production résepplied to the tions o) and of?, can be calculated regardless of each
volume V by shear work There are two types of energy other. Here we shall attempt to show that these two contri-
sink. First, energy may be dissipated by diffusion processeutions may be related and thereby such a coupling leads to
Two different mechanisms occur. In fact they merely redis-very different flow features from the one exhibited by Sav-
tribute energy in the bulk without generally contributing to age.
energy decay. The advection of the granular temperature is
the balance between the incoming and receding granular
temperaturegtransported by the mean velodityt should be
noted that in a well-established flotfor instance, down a If collision and friction involve the same physical mecha-
duct, this contribution is zero. The energy fl@x transports  nisms at the particle scalelastoplastic deformations, fric-
part of the supplied energy to the boundaries of the contralional traction during tangential displacement, creep,)etc.
volume, where it may be dissipated. This is the case, fothey are associated with very different characteristic times.
instance, whenever the control volume includes a solid wallln a similar way to Mills et al. [16] or Vardoulakis and
A second type of energy sink includes volume dissipationSulem[9], we consider that, at a given timgt is possible to
processes, mainly due to particles. Several elementary prakistinguish two populations of particles.
cesses, such as inelasticity or viscous dissipation within the Photoelastic experiments and numerical simulations have
interstitial fluid, are responsible for the energy decreaseshown the existence of force networks spanning throughout
Last, contacts between particles constitute another importagranular medig11,26—28. Although the existence of par-
dissipation mechanism: since neighboring particles do noticle networks and different populations is now well estab-
move at the same velocity and exert significant forces orished, not many experiments or simulations have been per-
each other, mechanical energy is lost and transformed inttormed to gain insight into the dynamic features of these
heat. networks. In Fig. 1, we have reproduced a typical diagram
The framework presented above is very general and inshowing the distribution of contact forces within a granular
cludes most of the available theoretical models dealing wittflow down an inclined channel, obtained by numerical simu-
the frictional-collisional regime. In the earlier model pro- lations using a contact dynamics numerical scheme. Aha-
posed by Savagfl3] to describe granular flows down in- ronov and Sparkg§27] performed numerical simulations,
clined rough channels, the collisional contribution was in-which involved arrays of disks sheared by the motion of the

B. Proposal of a model
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particle to travel a distande as a result of the action &f (if

we assume a zero initial velocjtyComputing the time re-
quired for an angular displacement of approximately 1 rad,
Tkachenko and Putkradze also found that the particle relax-
ation time is given by Eq(12) [29]. The life duration of a
contact networkt,, is of the order ofl'~*, wherel is the
typical shear rate of the flow. Indeed, after a titpe two
particles which belong to two adjacent layers and are initially
in contact must separate. It should be noted that the Coulomb
number{Eg. (2)] may also be seen as the square of the ratio
of these two characteristic times:

2
Neo= (—") . (13)
FIG. 1. Normal force diagram in a dry granular flg®@ourtesy

of F. Chevoir, LMSGC, Champ-sur-Marne, Francene line thick-  Seen as the ratio of a particle relaxation time to a flow char-
ness is proportional to the force strength. The material is made upcteristic time, the Coulomb number can be interpreted as for
of polydisperse diskduniform distribution in size ranging from the Stokes numbeisee[30], for instancg For the frictional
0.83R to 1.13R). The channel slope is 18°. The Coulombic friction (Neg<1) or the frictional-collisiona[ Ne,=O(1)] regime,
coefficient isf=0.4. The tangential and normal restitution coeffi- contact is sustained for any particle belonging to the net-
cients are zer4s]. work. Consequently, local dynamical processes are damped

boundarnyC f Th idered and the main interaction between neighboring particles is a
upper boundaryCouette flow. They considered o types ¢, iompjc frictional process. For a network particle, the lo-

of boundary conqmons: For experiments at con;tant \{Olumecal motion is then characterized by the relationship between
they observed intermittent networks due to jamming of

. . . the normal and tangential components of the contact force
grains. If the material was free to dilatieee upper boundary g P

with a constant normal force appliggbarticle networks with (respectivelyN andsS):

two populations of particles were observed. Furthermore, |S|=AIN|, (14)
they showed that the density of the sheared material tended

towards a constant valughatever the initial or flow condi- where\ is the mobilized friction coefficient, whose value
tions). More recently, Cappart al. [28] performed experi- depends on the nature of the contack=f for a slipping
ments using an inclined channel with a conveyor belt at thecontact and 6CA<f for a sticking contact. Equatiofid4) is
bottom (recirculating system He employed different kinds known as Coulomb’s law or Amontons’ law. In the simplis-
of water-saturated mixtures of cylinder-shaped PVC grantic case of an isotropic contact distributidnamely, the
ules. Although they were not able to measure contact forcegrobability of finding contact atlk is n./(4) with n; the
between grains, they succeeded in measuring the particle veiean contact number per unit voluimé may be inferred
locity and granular temperature at the sidewall. They thusrom Eqgs. (6) and (7) that (i) there are no normal stress

revealed regions where the granular temperature was fairljifferences(ii) the normal stress ien:ncndRN/S, and(iii)

high and mean velocitigs were not well cor(elated an.d othethe shear7) and normal §,,) stresses are linearly linkdd]:
regions where correlation in the mean particle velocity was

significantly enhanced and granular temperature was de- T=n0,, (15
creased. Here we shall try to describe some dynamic features . . o o
of these particle networks using mainly heuristic argumentsherez is a constant. This relation is known in soil mechan-
This network of particles in close contact evolves continu-icS @s Coulomb’s law, ang is generally written in the form
ously: at any instant, new branches are created, while som@=tane, whereg is called the internal friction angle. Natu-
links are destroyed. The first categagometimes called the rally, in most cases, the contact distribution undergoes a
strong orcompetent fractionthus includes the particles be- Strong shear-induced anisotropy during flow as a result of the
longing to these instantaneous networks. If the relaxatiohoss and gain of contacts in privileged directions of deforma-
time (t,) for a particle experiencing a foreis of the order ~ tion [11,24. But even in this case, it is expected that the
of the mean life duration of an instantaneous force networtehear and normal bulk stresses are linearly linfdeee to the
(t,), then the network acts as a rigid, “load-bearing,” per- linearity of S andN). The linearity coefficient; cannot cur-
colating structure and transmits the gravitational force fronrently be computed due to the poor knowledge of the form of
upper to lower layers. The characteristic tintg)(may be  the contact distribution and its dependence on the shear rate.
evaluated by considering the motion of a partitdé mass Indeed, various approaches have been attempted to deter-
m and surfaceS undergoing a typical stres&: mo mine the pair distribution functiof?,: experimental data
=—f3S, wheref is the friction coefficient. This leads to an [31], numerical simulation resul{d1,26], empirical approxi-

estimate oft, for a spherical particle: mations[32], analogies drawn from the Fokker-Planck equa-
tion [33], etc. But they have so far provided only incomplete
R results. Here, in the absence of a more accurate theory on
ey Pes™ (12) " friction and in accordance with most soil mechanics theories,

a practical way of evaluating the frictional contribution due
The timet, is computed as the typical time required for ato the competent fraction consists of using the phenomeno-
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logical Coulomb law(15). We also admit that the parameter number, since both the contact duration and composition of
¢ is intrinsic to the materialit does not depend on the solid the bimodal population are functions of this dimensionless
fraction) [34]. As the particles belonging to a “load- number. To justify this assertion, we can propose the follow-
bearing” network carry large force$arger than the average ing physical schemeSuch a reasoning is not new; it has
force), contact is sticking in most cases. This implies thatbeen proposed in plasticif®], thixotropy[6], etc) Taking
particle dissipate little energy. into account the bimodal nature of the particle arrangement,
A second populatiorisometimes called theveakor frail we can define a structure state param@feas the number of
fraction) includes clusters of particles which do not take partparticles in the weak fraction with respect to the total number
in an instantaneous percolating network. As they do not unef particles. The collisional contribution depends on this pa-
dergo large forces, the typical contact duration is brief andameter: o.,= o({). At leading order, we can estimate
the contact force mainly reflects a momentum exchange, that the rate of change qof is the difference between the
number(per unit time of network chains destroyed during
shear and the number of particles captured by the network.
The first term is proportional to a numbEr(undetermineg
of particles available for the weak fraction and to the relax-
since, over a short timg (typically for an elastic collision of ~ ation time of particled,,. Likewise, the second term is the
two spherical particles.= %~ 9, other volume or surface product of the network lifetime, and the numbe@ of par-
forces may be neglected. If we use the bulk stress definitioticles which can be included in the network. The balance
(6) and assume that the momentum exchanged during @quation may be written
single collision is proportional tmRy and the collision rate

d(mv)
T

(16)

proportional toy 1, we may expect the order of magnitude dZ F(§) G(9)

of the collisional contribution to bulk stress to be dt T_ t, (19
Ef:’;ffx—ppRz' 2 (17) Assuming thatF and G are monotonous functions df

we obtain the following relation for a steady state:

which is consistent with Bagnold’'s arguments and predic-

tions of kinetic theories(As a sign convention, we use posi- F(O t,

tive stress to represent tensile stressA more accurate cal- G0 E:% =H(Ngo). (20

culation of the collisional contribution requires specifying

the pair-distribution functiorP,(r) fully and must include This demonstrates that the coefficiertsnust depend on

the granular temperature. This is achieved by kinetic theorieg,e coulomb number. Particles belonging to the weak frac-
for dilute particle suspensioiig]. For higher concentrations, ion carry forces much lower than the average force trans-
several major phenomena preclude simply extrapolating thg,itted by the network. Contact between particles is most

results obtained for dilute suspensions. Typical examples insfien slipping. Due to inelastic and frictional dissipation, en-
clude the development of a layered structure for simple sheaérgy loss is significant within the weak fraction.

flows and the modifications to the contact law. When the Finally, we find that for a simple shear flow in a steady

particles organize themselves into layers oriented in the digiate the bulk shear stress can be written rask(¢)p
rection 01_‘ mean flow,_th|s causes a strong anisotropy in _the+ppR2K2(NC0) %2, wherep still denotes the granular pres-
pair distribution function, which in turn provokes a signifi- gre namely, the mean normal stress carried by the compe-
cant drop in viscosity35]. Apart from the contribution by  ten fraction. We introduce the friction coefficiektwhich is
Campbell and Gon{g36] for two-dimensional shear flows of o4 5| 10 tany in most casefbut other values are possible as
disks, little work has been done on the formation of a layered,,\vn in paper |, where we demonstrated that (1

microstructure in the collisional regime and its effect on the 5 tarf ¢) L is possible in some circumstandek a man-
bulk stress. When two elastic isolated bodies encounter, the, . cimilar to the fluid pressure for a Newtonian incompress-

contact is followed by a rebound. .For f.““'“bo‘?‘y collisions, ji, o fluid, we have considered that the granular pressuae is
such a rebound does not necessarily exist. For instance, Whelk o i indetermined. Indeed owing to the long-range char-
Lhrowcling a %Iass bdeaﬂ_fga!nst anhassembbly dOf bltleadds, NO T8ter of friction, the frictional stress state depends on the
boun II'S 0 se:jve ' |fe_W|se, w gnbadea_ ro Sb ovr\:n %oundary conditions. Owing to the difference in energy dis-
umpy line made up of juxtaposed beads, It can be s (_)ngpation within each population of particles, the coefficient
that a collisional process without rebound is the main monoq<2 must adjust so that shear can dissipate the energy sup-
me:'hamsn[sg]." . detail he f lied to the system by external forces. In the following we
ere we sha not att.empt to give more e“"!‘ s onthe formp investigate a particular class of flqugochoric steady
of the collisional contribution and we shall simply assume ravity-driven flow down inclined planggo examine how
:hﬁt the C]?"'S'Fmal stress components may be written in the,is nrinciple of adjustment due to energy balance constraints
oflowing form: allows us to infer the variation df, with N¢,.

—Ks K

aiP)=p R?y? K, —Ky' (18) IV. APPLICATION TO FLOW DOWN AN INCLINED

PLANE

where K; are dimensionless parameters to be determined. In this section, we focus our attention on gravity-driven
These parameters are necessarily functions of the Coulonfeee-surface flows of granular suspension down an inclined
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y A free surface

A ) y=h
v | g)lhsﬁl:lal _boundary layer CO,,Z>1

@nal—coﬂjsional regime ng =0

/

1)

frictional boundary layer Co «1

» u(y)

FIG. 3. Sketch for the collisional boundary layer at the free
surface.

number is very large. At the bottom wall, the particle stress
is large and the particle velocity close to zdfor a suffi-
FIG. 2. Definition sketch for steady uniform flow. ciently rough plang so that the Coulomb number comes
close to zero. Thus we can deduce from these considerations
plane. It is assumed théi) a steady uniform regime occurs that two boundary layers exist: the first one near the free
at an inclinationd to the horizontal(ii) the bulk undergoes a surface is characterized by the predominance of collision
simple shear, andii ) the flow is isochoric. The last assump- (purely collisional regimg while the second one close to the
tion may be criticized since it is well known that granular bottom is governed by frictioffrictional regime as shown
flows are dilatant materials. But for dense granular flows, thén Fig. 3. Due to the complexity of the subject, we have
variations are usually very loa few percent Moreover, assumed as a first approximation that the flow is deep
experiments on channe[88], numerical simulation$27], enough for the thickness of each boundary layer to be ne-
and arguments stemming from soil mechaniptasticity  glected.(In the Appendix, we present an approximate treat-
theories for large deformationfd] have shown that the den- ment of the free surface layer for the particular case of dry
sity tends towards a constant value, called ¢hiical den-  granular flow) Thereby, we assume that there is no slip at
sity. the bottom: u(y)=0. Furthermore, we assume that there is
We use the Cartesian coordinate system of origin 0 and afio interaction between the free surface and the ambient fluid
basise, e, ,e, as depicted in Fig. 2. The kinematic field de- above (except the fluid pressurelt should be pointed out
pends on the coordinatg alone and takes the following that for shallow flows, the no-slip assumption no longer
form: holds true. Due to various phenomefmich as depletion,
particle size effect, torque transmission, asymmetry of stress
ve=uy), vy=0, »,=0. (21)  tensor, and so onthe flow is influenced by the roughness
. N . . ) (see the numerical tests performed by Camph&d] on
The strain-rate field is entirely described by the shearyate ,,ngary interactionsin thisp case, as po%nted OFI)Jt by Brunn
defined as a function of the coordingtand implicitly of the et al. [40], we can expect a slip velocity in the form(0)

inclination ¢: =(h/R)*f(7,), wherea is a parameter tending toward zero
au whenh>R andf is a function of the bottom shear str
'y(y)=(—) : (220 Due to the agitation of particles and the weakness of the
]y normal stress, the Coulomb number is large and the regime is

Sj h iation in densi he deoifi | d probably collisional. We shall not pursue the matter further
ince the variation in densitacross the depjhis neglected, oo bt in practice the reader must bear in mind that, in the

we deduce from the momentum balance equation that  aqe of a rough plane, for increasing mass flow rate, the
h regime is probably first collisional, then frictional-
T=0,=gsin 9f p(y)dy=pgsind(h—y), (23) collisional; this change must be reflected in the discharge
y equation.
. Now we can write the momentum equations for a granular
= Tyy=—0 cos&f p(y)dy~—pg cosb(h—y), flow in a steady statededuced from Eqg.15) and(18)]:
y
(24) |3l =P+ ppRZK1(Nco) ¥,

where p=¢p,+(1— ¢)p; and g, respectively, denote the )

mean r?1ater€apl density §|f’1d the gravitational acceleration. We = k(‘P)p+PpR2K2(NCo) ¥, (25
need to specify the boundary conditions for stress and veloc-

ity fields at the free surface and at the bottom wall. In ourwhere o, is the normal effective stregsotal stress minus
particular case, a difficulty arises due to the combination ofluid stresg. o,=p’'g(h—y)cosf, where p'=p—p;

two coupled interactions. Let us imagine a granular suspen= ¢(p,—p¢) is the buoyant density. In E¢25 we have
sion flow down a rough plane with a sufficiently large flow expressed coefficients; as functions of the Coulomb num-
depth. At the free surface, it is expected that the particléer only. In the present context of gravity-driven flows down
contribution to the normal stress, is weak and conversely channel, the normal stress and shear rate vary significantly
the particle velocity is large. Accordingly, the local Coulomb across the flow depth. Accordingly, we use a local Coulomb
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numberNCq/, whose value is a function of the flow depth. key ingredient in stress generation. The weak fraction mainly

; ; i dissipates energy through collisional contacts. Equai2én
As typical amounts in Eq(2), we use3 =pg(h andT’ ; ; .
_ g/ﬁ; a2) >=pg(h—y) means that the shear rate must be adjusted to obtain an equi-

To close the equations, we need to specify the variation Okbrlum between stress generation and energy dissipation. As

the coefficientK; with respect to the Coulomb number. We dhedshsa;rr] strﬁss IS gzlv.en by E@3), Eq. (26) allows us to
shall use the energy balance equatid@®) or its integral educe the shear rate.

form (11) for that purpose. First, in the flow geometry con- T1(9) T1(9)
sidered hergsteady uniform flows advection of granular y= == —, (27
temperature is vanishing. In a molecular system, shear work T p9(h—y)sing

s dissipa_ted_into heat, in the form Of. an increasg of the At the free surface, the shear rate should tend towards
random Kinetic energy of molecules. This local heat 'ncreas?nfinity In fact. at the 7same time. the Coulomb number is

?S bala_m(_:ed by a _th_ermal diffusion. In a gran_ular suspensio%uch larger than unity in this zone and the flow regime must
in a frictional-collisional regime, the generation of granular

i i is hindered b | oh i . .tbe collisional. A collisional boundary layer must be consid-
emperaturé 1S hindered by Several pheénomena. — proximity, .o ¢ properly treat the boundary condition at the free sur-
of neighboring particlegsteric hindrance nonoverlapping

condition due to particle rigidity, and the effect of normal face (see the Appendix For thick enough flows, the colli-

¢ ially ticles belonging to th i ional layer at the free surface may be neglected. To be
stress, especially for particles belonging to the competent, \qiqiang Eq(27) must match the expression deduced from
fraction. Thus it may be expected that the granular tempera-

Fhomentum equations by eliminating the granular pressure:
ture does not vary in a sufficiently efficient way to be the key q y 9 9 P

parameter of dissipation and its magnitude is approximately —Ko'|

JT=RI'/10. Using Eq(11), we can evaluate the ratio of the y= \/w. (28
energy dissipated at the channel bottom to the energy sup- PpRA(K v

plied by shear. We find [,/Q-ndSYfyo:ddV A simple comparison of Eq$27) and(28) leads to
=0(X(RI'/10)/(=hI'))=0(R/(10h))<1. A third mecha-
nism for energy dissipatiore] concerns inelastic loss during I1(6) = Apg sin 6yRgcos6(tan6—kp /p),
collisions, but it is unlikely to play a significant role here.

Indeed, if we keep the magnitude othat we can find using (K,—KkK,)=B Pp 21 (29
kinetic theories, we can evaluate the ratio of the energy 2 1 P/ N’
dissipated by inelasticity to the energy supplied %Y

by shear: EI(E:d_).=O(pp(RF/10)3/R/(21“))=(_)((R_F)Z/. where A and B are two constants. These expressions hold
(10°%gh))<1 for thick flows. Another mechanism is fric- only for the frictional-collisional regime: Ncq,=O(1). For

tional dissipation during slipping contaptn-Jeu[) in Eq.  yery arge Coulomb numbers, the coefficieitstend toward

. S - %he expression found in the Bagnold theory or kinetic theo-
weak fraction and can dissipate onl.y a I|m|t§d -amount Offjes. For vanishing Coulomb numbers, they tend toward zero.
energy. Indeed, the energy loss by frictional dissipation is oirp,4 velocity profile is deduced by integration of Eg8):
the order of{p,(I' + Q)Rg, whereR(Q2+1') is the relative

slipping velocity at the point of contact, for particles belong-
ing to adjacent layers angp,QRg for particles of the same u(y)=—AyRgcosdtand—Kkp'/p)In
layer. For loose systems of particleé< ¢.), the velocity

spin generally equals half the shear rate, but for very conThjs expression holds everywhere except near the free sur-
centr_ated systems, there is no general r_elatlonshlp beme?”face(see the Appendix It is worth noticing that the velocity
and y due to the absence of correlation between particlg,ofile is self-similar and convex in contrast with predictions
spins(frustration) [36]. of other modelggiving a linear or a concave profjleThis is
Thus, from the above arguments, we deduce thafy agreement with experimental data published by Savage
Eq. (10) reduces too.d=7y~—(n-Jou[)=0({p,Q2RQ) [41] on dry granular flow or Lanzoni and Tubino on water-
+0({ppl'RQ). This leads to the paradoxical result that, onsaturated granular flowg2]. The discharge is found to be a
the whole, we should haveX(— {p,Rg)I'={p,Q0Rg. That linear function of the flow depth:
means that energy dissipation is both correlated to the shear
rate and uncorrelated. A reasonable assumption can be ad- q=Ah\Rgcosé(tand—Kp’/p). (31
vanced to overcome this difficulty: for a gravity-driven free
surface flow of a granular suspension in a frictional- This result has many practical consequences. Among others,
collisional regime, the mean energy dissipatipar unit vol- it entails that the mean velocity is independent of the mass
ume is constant at every depth, whose valii®) depends flow rate. This is in agreement with experimental data ob-
only on external forces applied to the flogravity, in this  tained on rough bottom chanrjél9,41,43. Furthermore, we
casg. In other words, we may write energy dissipation as C€an assume that in a way similarkg —kKj, the coefficient
- K; satisfiesKl=C(pp/E)2/Nf’:q/ (where C is a constant
o.d=1y=I1(6). (260 since the simplest way to hawe,— kK, Ngoe; is thatK , and

_3 . .
This expression may be also interpreted as follows. Thd<1 vary asNgq. Then we find that the granular pressure is a
strong fraction enduring frictional sustained contacts is thdinear function of the flow depth:

Y
1- ﬁ) . (30
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p=g(h—y)cosd(p’ —A2C(ptand—kp’)). (32)  son and Jacksofi2] also found a significant change in the
discharge curve ascribed to the transition from a collisional
An examination of Eqs32) and(30) reveals that a steady regime to a frictional-collisional regime. The main finding of

uniform flow takes place provided the slope ranges betweefur model concerns the linearity of the relation between flow
two critical angles: rate and flow depth. This point and others are in agreement

with experimental data published in the literature.

X The present theory is a very crude mean-field approxima-
=tang=tand;==tane. (33  tjon, which tries to capture the expected features of particle
P networks in granular flows and the chief mechanisms of en-
ergy dissipation. Improvements or counterarguments should
be raised by experiments and numerical simulations in the
coming months. Notably, such tests should pay attention to
tnp dynamic characteristics of populatioftypical times,
%volution, dissipation rate in each populatioRurthermore,
numerical simulations must be able to specify the pair distri-
bution functions for each population and provide clues about
the relationship between these functions and the flow fea-
tures. Last, the role of the granular temperature both in stress
generation and energy dissipation should be better specified.
An interesting problem is granular temperature diffusion
within clusters of the weak fraction and its influence on the
strong fraction.

1
=—| ——+
tané, p(AZC k

For a steady uniform flow to occur, the slope must be in
excess of a critical slopef) so that the shear stress out-
weighs the Coulomb yield stress. When the slope is in
creased, the increase in shear rate implies a decrease
granular pressure and eventually, for slopes in excess of
second critical angl®,, the granular pressure vanishes; the
flow regime is thus collisional again. Such flow partitioning
is in agreement with experimental observatidri®,27.
Slopes belowd; correspond tammature sliding flowsand
slopes in excess of,, correspond tosplashing flowsThe
numerical value found fo#; is in agreement with our ex-
perimental datadry granular flows [19] and the one ob-
tained by Tubino and Lanzonfwater-saturated granular

flows) [42].
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pressible fluids by introducing a pressure term, which must

be determined by solving the motion equations. For colli- At the free surface, the frictional-collisional regime trans-
sions, we ascribe a significant role to energy dissipationforms into a collisional regime. Here, in a similar way to
Their effects are strongly dependent on the local balancgghnson and Jacksofi4], we assume that a collisional
between competent and weak fractions. As for the thicknesgoundary layer is superposed on the remaining flawa

of the viscous boundary layer in a turbulent flow, we havefrictional-collisional regimg This boundary layer is charac-
considered that the collisional contribution only depends oRerized by the rapid decrease in the solid concentration. We
a dimensionless numbefthe collisional number Their  want to find its thicknesss) for a given mass flow ratég).
variations are governed by the kinetic energy balance. Conyyithin this collisional boundary layer, the constitutive equa-

trary to simple fluids, several mechanisms are involved injon is given by the following generic expression:
energy dissipation. Due to high concentrations, the classical

mechanism of transformation from mechanical energy into Egg?z—(er,qu-u)lJr 2,ud_, (A1)
heat (thermal motion probably has limited effects in the
energy dissipation. Here we have considered an extreme agmerep, u,, andu are, respectively, the pressure, the bulk
proximation: the assumption of a constant energy dissipaviscosity, and the effective shear viscosity. These parameters
tion rate(per unit volumg. This corresponds to the case of depend on the granular temperature of parti€@sthe solid
gravity-driven flow down an inclined channel. concentration(¢), the coefficient of restitutiorie), and the

For shallow granular flowgnamely, forh/R=0(1)], the  particle density fp) and its diameter = 2R):
normal stress due to the particle weight is low and accord-
ingly it is expected that the regime is collisional. For thick p=pyfi(d,€)T, u=p,Dfs(s,€) VT,
enough flows K/R>20), the collisional regime transforms
into a frictional-collisional one. In this paper, this is justified Q=—p,Df3(¢,e)\NTVT+p,Dfs(,0) T¥V ¢,
by considering the dimensionless Coulomb number: for the
collisional regime,N¢, decreases a#i~*? and thus the
frictional-collisional is achieved for large flow depth. Ander-

APPENDIX

= % fo(,e)TH2 (A2)
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where Q denotes the thermal energy flux aédhe energy the influence of the thermal energy fli§Q) in the energy
sink. As usual, we shall assume that=0. We assume that, balance equation. Finally, we obtaigy,=£,—o, where the
due to the rapid decrease in the solid concentration, the meaubscript 0 refers to the wall positiog€ 0). The coefficient
solid concentration is low in the boundary layer. Accord-of restitution(at wall), e,,, implicitly used is normally dif-
ingly, the kinetic contribution outweighs the collisional part ferent from the one used in motion equations. Using Eg.
in the constitutive equation. For low solid concentrations, thgA2), we finally obtain

kinetic model developed by Luet al.[44] is suitable. Keep-

ing only the kinetic part, we can express the functions used D _ 213

in Eq. (2) as T(yo)=To=| —— $SINOYSYec| - (A11)

fs(
fl(¢re):¢1 (A3)

As the solid concentration is low, let us introduce a small

\/; 1 & parameters = §/h (much smaller than)land let us express
fa( €)= 14— 6e\ go( @) + Z(1+e)(3e— O the solid concentration and granular temperature as
(Ad)
d=sp+eS;+e°s,+0(e?), (A12)
2\
f3(¢,e)=m T=to+et;+&%t,+0(e?), (A13)
1 3 ) 1 wheres; andt; are functions ofy to be determined. Then,
8 Jo( @) "2 $(1+e)7| 2e+ S (AS) " using Eqs(A12) and(A13) in Egs.(A8)—(A10), we obtain a
system of differential equations with powers ©fs param-
3\/;e(e— 1) 1 d eters. Collecting terms of the same order produces a se-
fa(p, €)= 2(19-15) $gq(d) @[(ﬁzgo((ﬁ)], guence of equations. For order 0, we have
- 0
(AG) d2t3? . gcosh tg
=0, Sp=Sqg - =, (A14)
4(1—82) ) dy t to
fs(p,e)= TgoqS : (A7)
o

and making allowance for boundary conditions, we obtain
Using EQgs.(10), (23), and(24), we directly deduce

to=To, So=cpe 95y ~Y0l/To, (A15)
do gcosd T’
d_y: T T/ (A8) To order 1, one obtains
_fatano 8 [5.3 e Nirgs -
),ZET T, (A9) Se(1-&?) 2+ 2(1+e) 2e+ 5 t;+9s.=0,
ST R ty
tarf 6 f3 d dT dT S| = 5——gcosfsya, (A16)
Y €¢2T3/2+ @[—fsﬁd—y+f4¢\ﬁ<g— d_y” Ty O O °th
fs oo with no trivial solutions. In order to obtain analytical results,
+p2T7=0. (A10)  we limit the expansion to terms of order 0. Due to the expo-

nential decrease in the solid concentration, the approximate

At the free surface, the boundary conditions argh)  solution does not provide the position of the free surface. To
=0 and¥-n=0 with n=¢g, the normal to the free surface. 9et around this difficulty, we suggest defining the boundary
At the interface with the frictional-collisional zone, we have layer thickness as

U(Yo)=Urc(Yo), #(Yo)=¢. A complete and clearly vali-
dated formulation of boundary conditiofat a solid wal) is
still lacking: complicated and coupled phenomeésach as b
torque transmission, depletion, propagation of elastic waves

through the bumpy bottom surfaceertainly affect the en- . T .
ergy balance, but the question of how they interact is quiteUSIng Eq. (A9), we deduce the velocity fieldto leading

1 (= To
o=—| ¢(y)dy=——. (A17)
Yo g cosé

confused. In most available theoretical treatments, the energ?/rde')

balance is deduced from heuristic considerations and thus a2

involves a series of empiricalindeterminatg parameters. U(Y)=Upc+ 14-6 tane 0 (1— e~ 90s0y~Y0)/To)
Here we simply assume that the energy balance given by Eq. FC J g coséD '
(10) still holds true, but in accordance with studies on the (A18)

motion of a single particle down a bump$7], it is thought
that inelastic dissipation acts as the main sink for granulaihe contribution of the collisional zone to the total discharge
temperature. Therefore, as a first approximation, we neglechay be expressed as
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7—3e o
—tanea\/'lT0 .

9= f Opp¢u<y)dy=pp$5 Urct — =
(A19)

y

The shear rate is given by Eq&8) and (29) and the
velocity profile by Eq.(30). At the interface, these expres-
sions may be written as

1
Yec=1(0) 3 (A20)

and

h
Urc=1(0)In, (A21)

where the total depth iB=yy+ & andj(68)=I1/(pg siné).
The contribution to the total discharge is

FRICTIONAL-COLLISIONAL REGIME FOR GRANULAR . ..

8359

Yo _ 5 6 6
QFc:Pp¢JO U(Y)dy:Pp¢J(9)h(1+ AnE—h
(A22)

Using Egs.(A10) and (A15) together with the definition of

the total flow depth and the mass balance leads to a system
of four nonlinear equations of variabld@g, y,, 6, andh. It

is worth noticing that the boundary layer thickness is inde-
pendent of the mass flow ratas a first approximation

(Dj(0))% (psinolfs)?
0= 3g cosé

It follows that the influence of the boundary layer is par-
ticularly marked for low-mass flow ratés accordance with
experimental observations such as the ones performed by
Johnson and Jacks§id4]). For sufficiently large discharges,
the error caused by ignoring the boundary layer is negligible.

(A23)
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