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Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials
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A mean-field theory of macroscopic order of dipolar chromophores in a polymer matrix in the presence of
an external electric field is developed. The theory is applied to characterize the electro-optic coefficient of the
Pockel effect that forms the basis for a variety of polymeric nonlinear electro-optic materials. The coefficient
is studied as a function of chromophore concentration, polymer properties, and manufacturing conditions,
including temperature, strength of the applied electric field, and macroscopic shape of the sample. The model
reproduces the observed behavior of the electro-optic coefficient and explains the nonlinear concentration
dependence of the coefficient at high chromophore concentrations. Specific recommendations for system de-
sign are suggested from the analysis of the obtained data.

PACS numbgs): 78.30.Jw, 64.60.Cn, 77.84.Jd, 85.60.Bt

[. INTRODUCTION erable polarization density and the desired macroscopic
acentric order. The liquid solution of the chromophores in an
Polymeric materials with macroscopic optical nonlineari-inert polymer is then cooled down below the glass transition
ties are currently achieving numerous applicatiphs6]. To ~ temperature, still in the presence of the external field. Below
name just a few, electro-optic polymeric materials are usedhe glass transition temperature, the solution becomes frozen,
in fiber optic transmission lines and amplifiers, electrical-to-and the external electric field is lifted. Upon freezing, the
optical signal transductors for cable television, diode laserssample exists in a long-lived metastable state with a signifi-
high-density memories, flat panel displays, and biomedicatant asymmetry in many properties. In particular, the nonlin-
voltage sensing. The realization of the required high macroear optical parameters of such samples are comparable and
scopic electro-optical activity demands optimization of sev-often exceed those of the known solid state optical materials.
eral types of properties in these materials. These properties The nonlinear optical properties of polymeric materials
include molecular polarizabilities of the optically active with the acentric order depend on a number of parameters,
components, optical quality, and stability of the materials toincluding magnitudes of molecular dipole moments of chro-
thermal, mechanical, and electric fields applied during proimophores, molecular hyperpolarizabilities, strength of the
cessing and operation. external poling electric field, concentration of the chro-
The focus of this paper is on a class of optically nonlinearmophores molecules, and molecular ionization potentials
materials that are obtained by dissolving chromophore molf7—11]. Experimental and theoretical studies of such materi-
ecules in inert polymer matrices. The optical activity of suchals aim to analyze these factors in order to achieve optimal
materials relies on the macroscopic acentric order that chraptical nonlinearities of the required types.
mophore molecules attain in a liquid polymer that is subse- The change in the high-frequency refractive index in
quently frozen. A typical chromophore is an asymmetricthe presence of a low-frequency or constant electric field is
quasilinear conjugated molecule that carries a large dipoléhe relevant optical property in this study. A low-frequency
moment due to the presence of electron donor and acceptetectric field of small amplitud&’ is applied to a sample
groups at the ends. Such molecules are characterized bywdth the acentric chromophore order. The linear change in
highly nonlinear molecular polarizability. Combined with the the optical refractive index as a function of the fielh
acentric order, the nonlinear molecular polarizability results<rE’ is known as the Pockel effect. It must be noted that the
in a macroscopic electro-optic response. electric field of the Pockel effect is entirely different from the
The macroscopic acentric order in the polymeric electropoling field that is used to achieve the acentric order. The
optic materials can be achieved by application of a strongpoling field is much stronger than the Pockel field.
external electric field to a polymer with dissolved chro- The coefficientr that describes the proportionality be-
mophore molecules. The interaction between the externalveen the Pockel field and the high-frequency refractive in-
poling field and the dipole moments of the molecules resultglex depends on the concentration of chromophore mol-
in a thermodynamically preferred orientation for the chro-ecules. It is technologically easy to change the concentration
mophores. To speed up the equilibration, the poling field isand, therewith, to control and increase the nonlinear optical
applied to the sample at a temperature that is above the glaeffect under study. Recent experimehis-3] led to the ob-
transition temperature at which the polymer becomes rubservation that the optical coefficientattains a maximum as
bery. Under these conditions, the solution of the chro-a function of the concentration, and, in some cases, signifi-
mophore molecules in the polymer rapidly acquires a consideantly drops at higher chromophore concentrations. Refs.
[1-3] describe a theoretical approach that provides an ex-
planation of this highly undesirable behavior of the optical
*Permanent address: Institute of Low Temperature Physicscoefficient. A different theoretical model is proposed in
Kharkov 310164, Ukraine. this work. The present model treats the chromophore-

1063-651X/2000/6@)/832411)/$15.00 PRE 62 8324 ©2000 The American Physical Society



PRE 62 MEAN-FIELD THEORY OF ACENTRIC ORDER @ . .. 8325

chromophore interactions in a self-consistent way and is deRef. [18]. It follows from these models that dipole-less
rived from the basic electrostatic principles. The model isspherocylinders and prolate ellipsoids can exist in several
presented in the next section, followed by discussion of thetates, including the isotropic, nematic, smectic A and smec-
results and conclusions. tic B states, depending on temperature and density of mol-
ecules. The isotropic phase has no order. The nematic phase
Il. THEORY exhibits only the orientation order. In addition to the orien-

S . ion order, the smectic A and B ph f I h
Considering only the concentration dependence, the nortfato order, the smectic A and B phases form planes that

: : i o possess long-range position order. Inside each plane the mol-
malized expression for the optical coefficient, also called th 2cules are parallel to each other and perpendicular to the
loading parameterl—3|, can be written a§6] P Perp

plane. Smectic A is also characterized by a short-ranged in-

N plane order that extends over a few coordination shells. The
r= N—<MSZ>, 1) short-ranged in-plane order develops into a stronger position
0 order in the smectic B phase.
where g, is the projection of the molecule dipof&, of the The excluded volume force is the dominant interaction

chromophore located at the origin “0” on the direction of between the dipole-less liquid-crystal molecules. The main
the poling field. The concentration is defined by the numbetypes of the liquid crystalline phases are already formed due
of chromophore moleculds in a unit volume of the sample. to the excluded volume force. The anisotropic Gay-Berne
It is normalized to the reference chromophore denslty interaction potential gives further details in the structure of
defined below in Eq(5). The averagé(---))=Tr[p(---)]is  liquid crystals. For example, it produces the position ordered
calculated over the equilibrium density matrix of the systemstructure in the planes of nematic[B8]. Similar to the an-
isotropic repulsive force described by the Gay-Berne poten-
p=2"te M, (2)  tial, the attractive dipole-dipole force is secondary to the ex-
cluded volume interaction. Thus, Ref19] finds by the
Monte Carlo simulation that in “the system of hard sphero-
cylinders with point dipolse.. . . theliquid crystal phases are
Z=Tr[e H]. relatively insensitive to the presence of the dipoles.” Refer-
ence[17] presents a detailed study of the system of sphero-

The authors of Refq:l_s] point out that the observed Cy|indeI’S with the Iengtl’(L)-diameter(D) ratio L/D=5. It
anomalous behavior of the optical coefficient with increasindinds that the presence of the dipole-dipole interaction be-
chromophore concentration is due to the intermolecular intween the molecules slightly shifts the transition from the
teraction between the chromophores. They considered boiRotropic to the nematic phase towards higher molecular con-
the dipole-dipole and London intermolecular forces. Thecentrations. Referendé7] concludes that the shift to higher
complex many-body Hamiltonian describing the interactionconcentrations happens due to the dipole-dipole antiparallel
and entering Eq(2) was simplified to a one site Hamil- correlation between pairs of molecules that decreases the ef-
tonian. The simplification was carried out according to thefective L/D aspect ratio. Increase of the effective aspect ratio
theory of Piekarg 12,13, which is not self-consistent. A is observed in systems of molecules with terminal point di-
guestionable step in the Piekara based theory of the acentqoles interacting by the Gay-Berne potentiaD]. The in-
order involves substitution of the statistical mechanically av-crease comes due to the antiparaltel antiferroelectri¢ cor-
eraged energy of the interaction between two molecules inrelation between the ends of molecules. As the result, the
troduced by Piekara into a further statistical mechanical avrange of stability of the nematic phase is extended to lower
eraging by Eq(1). concentration§20]. The antiparallel correlation of such mol-

The model Hamiltonian that is used to compute the averecules is responsible for the bilayer structure where a slight
age in Eq(1) is chosen based on the similarity of the systemtilt in the molecular axes in the adjacent planes leads to a
under study with the liquid crystalline systems. As pointedweak ferroelectric ordel21].
out earlier, the chromophore molecules are quasilinear and Correlations between point dipoles centered inside prolate
are typically represented in simulations by prolate ellipsoidsnolecules are investigated in Rg22] in the presence of an
[1-3]. They belong to the class of molecules that formexisting nematic order. The calculated Kirkwood correlation
liquid-crystals, whose properties are under active investigafactor shows an antiparallel correlation for molecules with
tion. Many analytical and computational results are currentlongitudinal dipoles and a parallel correlation for molecules
available for liquid-crystal molecules. Spherical and disklikewith transverse dipole§22]. Reference[23] describes
particles are often used as idealizations of certain types dlipole-dipole correlations between molecules in isotropic
liguid-crystal molecules, see for instance, Rgfel-16. The  and smectic B phases for the dipolar Gay-Berne interaction
results obtained for systems of spherocylinders and prolatmodel. The data of Ref.23] are directly relevant for the
ellipsoids that are relevant for the present study are discussqutesent model. The following correlation is observed inside
below with no attempt for a complete list of citations. the planes of smectic B in the simulatif23]. The first near-

If spherocylinders and prolate ellipsoids carry no dipoleest neighbor molecules are antiparallel, the second nearest
moment, their macroscopic thermodynamic state is detemeighbors are parallel, the third nearest neighbors are antipa-
mined, in the first approximation, by the excluded volumerallel, and so on. The antiparallel arrangement is formed only
forces, see, for example, Réfl7]. More advanced models between the first neighbors in the isotropic phase. The results
employ the anisotropic Gay-Berne interaction potential, e.g.of Ref.[23] confirm that the state of the spatially disordered

whereH is the Hamiltonian of the syster, is the absolute
temperature, and is the canonical partition function
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system of electric dipoles is paraelectric, while the state of In the nematic phas&<Ng implies that the average dis-
the spatially well ordered systefia8] is antiferroelectric. tance between the centers of the molecules is isotropic in all

Two conclusions that are important for the present studyirections. In this case the chromophore lattice is assumed to
can be made based on the references cited alfanst, to a  be simple cubic with the lattice constaat Ny Y33, It
very good approximation, orientation and position structurewill be shown below that in this concentration range the
of systems of prolate molecules is formed independent of thehromophore system of dipole exists in the paraelectric state
dipolar forces Secondthe established spatial structure mustwhere the exact spatial order of chromophore molecules is of
be taken into account in investigation of the electric properittle importance. As the chromophore concentration in-
ties of systems of dipolar molecules. The lowest energy elecereases, the distance between the molecules decreases. Still,
trically ordered state of the dipole systems will be antiferro-as long asN<N,, or, equivalentlyx<1, the average dis-
electric in character. tance is isotropic. However, as soon ld5 N, and x>1,

In view of the facts established above, the present worlonly the interchromophore distances in the plane perpendicu-
deals with the thermodynamic avera(@ by restricting at- |ar to the main molecular axis, denoted as thexis, can
tention to the dipole-dipole interaction. The electric proper-decrease any further. The distance between the centers of the
ties of the system of dipolar molecules are considered in thenolecules along the-axis remains fixed dt,. Therefore, for
presence of the nematic or smectic spatial order. Since thgigh concentrations we assume that chromophore molecules
molecular are quasilinear, the dipole-dipole interaction willare located on a simple tetrahedral lattice. The lattice con-
be described by the Ising Hamiltonian which forms a particu-stant in thez direction isb=Ngl’3. The lattice is square in
larly good approximation in the presence of the spatial ordefpe (x,y) plane with the lattice consta@at=N, By=12 | at-

tice approximations similar to those introduced above have
MizMjz been used before. For instance, R&6] assumes position
3 3 order inside smectic planes. The lattice approximation allows
! us to describe the antiferroelectric state using a finite number
of sublattices.

2 2
M 3rij;
Hd_zsgg (1 rﬁ

Here, u is the absolute magnitude of the molecular dipole
moment of the chromophore, is the dielectric permittivity
of the polymer solvent(j; is the radius vector between the A. Paraelectric state
dipoles located in positionsi™ and “j.” The Ising variable
i, takes only the two values of 1. To our knowledge, Ref.
[8] was the first to use the Ising type of dipolar states for th
calculation of the thermodynamic averagfe. More recent

Using the defined lattices we consider the self-consistent
mean-field approximation for the interacting dipoles. The
€mean-field approximation is often used in such problems, see

S ; . . for instance Ref[27]. The mean-field approach is expected
publications{ 24,29 employ the Ising model in order to in- to reproduce all qualitative features of the system and is

terpret the hierarchy of phase transitions in the smectic phas(%lid in a wide range of system’s parameters. First, we as-

in the presence OT an external electric f|eld. _In a unn‘ormsume that the system of dipoles exists in a paraelectric state
exter_nal .electrlc field, such as the poling .f|eld, the full at temperaturd, chromophore concentratiow and strength
Hamiltonian of the systems of chromophore dipoles takes th8f the poling fieldE. In this case, the Hamiltonian for an
form individual site is straightforwardly obtained from the total
E Hamiltonian (4). The Hamiltonian for the dipole located at
/_L . . “ 1 . - .
H=Hy— 2 Liy - (4) the origin “0” takes the following simple form:

Moz
H=— ; Eetr (6)

The following additional simplification based on the con-
clusions drawn above will be made for the calculation of the
average(1) with the Hamiltonian(4). In the nematic state, \ith the effective electric field given by the sum of the four
the chromophore molecules are located at random. It is the'iérms[zs]
modynamically rigorous to define only an average distance
between the molecules. The average distance is determined
by the chromophore concentration. In order to avoid an ad-
ditional averaging over positions of the chromophore mol-
ecules, we assume that the molecules are distributed on a The four contributions to the effective electric field are
lattice. Prior to the specification of the lattice type, the chro-defined as followsE is the applied poling fieldE, is the
mophore density is related to the longest dimensjpof the  self-consistent field experienced by the selected dipole due to
(quasilinear chromophore molecule. The reference densityall other dipoles located inside a macroscopically small
N is defined byNo=1,>. On the scale determined by the sphere around the selected dipole:
reference density, the true denshtyof the chromophores is
given by

Eeff: E+ Ed+ EL+ Eb .

r 1
Ed:,LLU'E 35 -1/, (7)
N=Ngx, x>0. (5) ! ri i

For example, for the 1ISX moleculég=23A [3] and Ny  whereo=(uo,) is statistically mechanically averaged with
=1,3=8.2-10"cm 3, the Hamiltonian(6). E, is the Lorentz field given by
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4 4ar E 4u?
EL:?NMUZ?NOXMU. (8) e= M?, n= T—'T?‘
0

Finally, E, is the depolarization field that depends on thegquation(14) is solved numerically for arbitrary values of
macroscopic shape of the sample. In our case, the sample igg parameters. In the high temperature-low poling field

the polymer solution of chromophores that is being poled. Agjnit. wEe4<eT, EqQ. (14) admits an approximate analytic
a rule, the poling is carried out between two planar elecyg|ytion

trodes. For this rectangular shape of the sample, assuming
-1

that it extends far in the plane of the electrodes, the depolar- e 27 X
ization field is given by the formula o=\t 5 (15
Ep=—47Npo=—4mNoxpo. (9 The corresponding equation for the optical coefficierig.
) ) (12), takes the following form
We note that the Piekara modédl—-3] does not consider
the macroscopic shape of the polymeric sample, while the X 27 x|t
current model does. The depolarization effect depends on the r= . 3 & e. (16)

boundary of the sample and renormalizes the external elec-

tric poling field. The presence of depolarization introducesThis expression determines the chromophore concentration
additional chromophore concentration dependence to the optependence of the optical coefficient for low concentrations.
tical coefficient! The expression shows that even for the cubic lattice the self-

Since the dipoles of the chromophore molecules areonsistent model produces a nonlinear dependenc®ok.
placed in a polymer matrix, all electric fields in E@) are

weakened by a factor af, the dielectric permittivity of the 2. Case (b). High chromophore concentrationsxL
polymer.

The Hamiltonian(6) has a simple form, and the statistical
mechanical averaging af =(uq,) with the density matrix
(2) is trivial. As the result, we obtain the following self-
consistent equation far.

In the presence of a large concentration of chromophores,
the sum in Eq(7) must be calculated for the tetragonal lat-
tice arrangement of the dipoles. Generally, the calculation
for each concentration of chromophores is performed only
numerically. It is not possible to obtain a simple analytic
E dependence of the self-consistent fiélg as a function of
o:tanh'u eff (100  concentratiorx. Still, if we include only the nearest neighbor

T interactions justified by the fact that the terms in the idin
decrease rapidly with the distance, Ed) reduces to

Note, that in the current model

Eq=—4uoNg(x¥?—1). (17)
<Mgz>:</~”02>:ov (11 ) ) ) _
Numerical calculations carried out for various chromophore
and, therefore, Eq(1) takes the following form concentrations show that the results of ELy) deviate from
the exact values of fiel&y, Eq. (7), by 15-20%. The self-
r=xo. (12 consistent equation that determine<an now be shown to

have the form
Consequently, the nonlinearity of the optical coefficiemis
a function of the chromophore concentratiorappears en- a=tanr{
tirely through the concentration dependencesofWe con-
sider the two cases of<1 andx>1 separately.

2m
e— 37 ox— 5 o(x¥?-1)

1]
—r. (18
€

The concentration dependence of the optical coefficient is
1. Case (a). Low and moderate chromophore determined by an iterative solution of E(QL8) for o and
concentrations, X1 substitution of the result into E¢12). Solutions for typical

At low and moderate chromophore concentrations the Iatyalues of the parameters that enter Etf) are presented in

. i . . Sec. lll.
tice is cubic. It is well knowr 28] that the mean field for the L . . i
cubic lattice is zeroEy=0. Therefore, the effective field Similarly to Eq.(15), we can derive an approximate ana

inside the sample is lytic solution to Eq.(18) for situations whemu E.4<eT. The
P result is substituted into Eq12) producing the following
expression for the chromophore concentration dependence of

Eey=E— 8_7TN0MXU_ (13)  the optical coefficient that is valid for high chromophore
3 concentrations in the high temperature-low field limit
Equation(11) for the parametetr takes the following self- ex 7 27 \]71
consistent form r=— |1+ | X =1+ —5x (19

2 1 i -
o ?77 - ax)g , (14) It follows from Eg. (19) that for high chromophore concen

trations, x>1, the optical coefficient is inversely propor-

o=tan}‘{
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tional to the square root of the concentration;x ¥2 This  chromophore concentrations;>1. While the phase transi-
implies that the optical coefficient has a maximum as a function may be possible even at low chromophore concentra-
tion of the chromophore concentration, E¢§6) and (19). tions, x<1 and the corresponding model can be easily de-
The concentratiorx,,,, at which the optical coefficient at- veloped, this possibility will not be presently considered.

tains the maximum can be found in the analytical form As before, at high concentrations> 1, chromophores are
assumed to form a tetrahedral lattice. The para-to antiferro-
P 23 electric second order phase transition in the tetrahedral lattice
Xmax [2<——1” (200 of dipoles will produce the following antiferroelectric state,

corresponding to the minimum of the dipole-dipole interac-
tion energy[30]. The order will be ferroelectric along the
chains of dipoles in the-direction. The chains will show the
antiferroelectric order with respect to each other. This type of
the antiferroelectric order not only corresponds to the mini-
mum of the dipole-dipole interaction energy, but also leaves
the liquid properties in the direction of polymer chains intact,
where a one-dimensional flow is allowed.
Similarly to antiferromagneticg27,31], the antiferroelec-

tric order will be described by two self-consistent fields. The
B. Antiferroelectric state field E; ¢ acts on the dipoles of the first sublattice, denoted

The model developed above remains valid only within thePY index 1. The fielcE, ¢ acts on the dipoles in the second
ublattice, denoted by index 2. The expressions for these

range of chromophore concentrations and thermodynamit
d P y gffectlve electric fields are derived similarly to the expres-

Since EQ.(20) is derived forx>1, it follows from Eq.(20)
that the maximum in the optical coefficient is present only if
the conditionyn/e <2/3 is satisfied. For example, for the ISX
(u=8Debye) chromophore at temperatiire 350 K imbed-
ded into a polymer with the dielectric permittivity =3,
nle=~1/7. Therefore, the optical coefficient is maximal at the
concentratiorn ,,~5.25.

parameters, including temperature and strength of the polin
field, where the paraelectric state of the chromophore lattic8O" for the effective electric field in the paraelectric state:

is stable. As has been shown in Rdf29] for a cubic Ising

. . . X : 8
lattice of dipoles, the paraelectric phase of the Ising dipole E;—E— _WN0MUX+4MNO(01_UZX3/2),
lattice becomes unstable with increasing dipole concentra- 3
tion and decreasing temperature, and an antiferroelectric (21)

phase appears. In contrast to the paraelectric state, the en-
semble averaged value of the dipole moment in any lattice
site does not vanish in the antiferroelectric state even in the
absence of the poling field. At the same time, in the absencehere
of the poling field, the macroscopic polarization of the whole
sample is zero in both para- and antiferroelectric states, since
the sublattices of the antiferroelectric state are polarized in o1=(p12),  72= (22,
the opposite directions.

The possibility of the antiferroelectric phase transition inThe averaging in Eqs(22) is carried out with the Hamil-
systems of chromophore dipoles in polymer matrices shoul@bnian (6) using the corresponding fields of E(R1). The

be investigated. While the paraelectric state exists indeperself-consistent equations for the parameteysand o, take
dently of the spatial order, the antiferroelectric state can behe form

more sensitive to the spatial structure of the chromophore
system. A system of chromophores in a polymer matrix is 1 3
clearly more complex than the cubic Ising lattice of dipoles. ~ @1=tanh=| €= = 7](01+ )X+ (o= ox7) ||,
Liquid properties of the chromophore-polymer system may
or may not inhibit formation of the spatial order that is 1
present in the cubic lattice and favors the electrostatic order. o'zztan}‘{ (e— = o+ o)X+ (op— 01X3/2)> i
For example, the spatial order may appear in the directions €

perpendicular to polymer chains due to the short-range repul-

sive interactions that lead to formation of the smectic B '€ System of equatiori@9) describes both the ordered an-
phase in liquid crystal§17]. The antiferroelectric state has tiferroelectric state and the paraelectric state considered
been recently discovered experimentally in dipolar smectlc@bove Indeed, EQ18) is recovered from Eqs23) by set-

and is currently under active investigation by both experi-i"9 91=02. The trivial solution of Eqs(23) with o, =0,
mental and theoretical methofts8—24. The smectic order Ca" be eliminated. In the antiferroelectric statg# o, and

in the inert polymer matrix may induce spatial order amongtl€ following relationships are satisfied

the dipolar chromophore molecules and create the antiferro-

77 312
— NouoX+4uNg(oy— a1X7%),

E2 ef‘f:E_ 3

1
0'=§(01+ oy). (22

(23

electric state within the chromophore subsystem. The results oe— Eu— \/ 1+ Eu —utanh g) _

presented here are derived from the microscopic molecular ) 4

model defined by the dipole-dipole Hamiltoniéf). (24)
Since typical poling temperatures are high, on the order of 2 - s, T e 1+o0y

350 K, and high temperatures destabilize order, it is reason-€+ 77‘71< 1- ?X X7+ pui X7 §X - Eln -0,

able to assume that the systems of chromophore dipoles can
undergo the antiferroelectric phase transition only at high =0,
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where
u
u=o,— 05, g=%(1+x3’2). 5
] 5
The region of the antiferroelectric state is separated in the 3 4
(x,8 plane from the region of the paraelectric state by the
. . 2
second-order phase transition curve. The equation for the 1
phase transition curve is obtained from E@®) in the limit
2 4 6 8 10 12

u—0

Electric Field, e
w o o =

[SS I e

Concentration, X

3f2 2 e l+o ) .
e=npo| x4+ —x—1|+zIn—, FIG. 1. Phase diagram of the macroscopic states of the chro-
3 2 1-0 mophore lattice for different values of the polymer dielectric con-
(25 stant. Curves 1, 2, 3, 4, 5 correspond to the dielectric constants of 2,
_ \/ € 3, 5, 7, and 10, respectively. The chromophore concentratenmd
o= 1- ,7(1+X372) . electric fielde are defined by Eq€5) and(14), correspondingly.

It follows from Eq.(25) that the phase transition curve inter- p i, regions, the phase transition curve separating the two
sects the concentration axisbut does not intersect the field regions should be found first. Figure 1 presents the phase

axis e. The point where the concentration axis is reached ig;5nsition curve calculated by EG25) for the ISX chro-

calculated for the value=0, corresponding tar=0. The  qhhare for different values of the dielectric constant of the
explicit expression for the concentration at this pointis  ,oymer. At low concentrations the macroscopic state of the
2/3 chromophore dipoles is paraelectric. As the concentration is
& . -
Z_ 1) increased, the second-order phase transition takes place, and
7 the macroscopic system of dipoles becomes antiferroelectric.
The phase transition happens at higher concentration as the
strength of the external electric poling field is increased. The
presence of a strong external electric field disrupts the anti-
ferroelectric order in the chromophore system. The disor-
fered paraelectric state can be always achieved by destroying
the antiferroelectric state with a strong poling field.

The external field-chromophore interaction dominates the
interchromophore coupling in strong electric fields. The in-
terchromophore coupling becomes more important with in-
3 i _ N . %reasing chromophore concentration at a fixed value of the
(moz) =0 in Eq.(12) for the optical coefficient is determined fio|q The dielectric constant of the polymer acts to decrease
in the antiferroelectric region by =1/2(c1+ 07). The val-  he effect of the external field and also changes the magni-
ues of this parameter can be found numerically from thg,qe of the dipole-dipole interaction. Higher concentrations
system of equationg24). of the chromophore are required to achieve the antiferroelec-

tric state inside polymer matrices with larger dielectric con-
ll. RESULTS stants: The phase transition curve in Fig. 1 shifts towards
higher chromophore concentrations for larger polymer di-

We apply the self-consistent field theory developed in theelectric constants.
previous section to study the dependence of the electro-optic When the poling field is weak and the chromophore con-
coefficient on the chromophore concentration and theentration is low, the magnitude of the electro-optic coeffi-
strength of the poling field. Our theory remains valid for cient grows linearly both with the chromophore concentra-
wide ranges of the field strength, chromophore concentration x and with the strength of the poling fiekl In strong
tion, polymer dielectric constant and molecular propertiesfields and at high chromophore concentrations significant de-
contained in parametey, Eq. (14). The results shown here viations from the linear behavior are observed. Consider first
are obtained for the fixed value gf=1/3, chosen to approxi- the concentration dependence of the electro-optic coefficient.
mate chromophore ISX. The ISX molecule dipole momentFigure 2 depicts the electro-optic coefficientq. (12), as a
m is about 8 Debye and the longest linear dimension ifunction of the concentration for different fixed values of the
roughly 25 A[1-3]. At the poling temperatur€=350 K, »  poling field and polymer dielectric constant. The expected
is about 1/3, according to E¢l4). behavior of the electro-optic coefficient always follows the

The plangx,e of the reduced chromophore concentrationlowest curve. Different curves in the figure correspond to
x and poling fielde, defined in Eqs(5) and (14), respec- different macroscopic states and different levels of approxi-
tively, is divided into the regions of the disordered paraelecimation for the coefficient. The long-dashed curve describes
tric and ordered antiferroelectric states. The expressions fdhe electro-optic coefficient of the antiferroelectric state. The
the electro-optic coefficient as functions of botlande are  other three curves describe the paraelectric state. The top-
different for the paraelectric and antiferroelectric statesmost short-dashed curve describes noninteracting chro-
Since the experimentally interesting valuesxande cover  mophores on a cubic lattice neglecting the Lorentz and de-

X:

In particular, the phase transition curve startsxatl, if
e/n=2. For the typical ISX chromophore at poling tempera-
ture T=350 K and polymer dielectric constast=3, the ratio
elnp~7. The phase transition curve starts at the concentratio
x~6%3, According to Eq(25), at high chromophore concen-
trations a linear increase in the fiekdcorresponds on the
phase transition curve to thé’? increase in the concentra-
tion x.
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FIG. 2. Electro-optic coefficient, Eg. (12), as a function of the chromophore concentratioiEq. (5), for the indicated values of the
polymer dielectric constant and the strength of the poling electric fisddlefined in Eq(14). The middle dashed line corresponds to the
paraelectric state, the long-dashed line gives the antiferroelectric state. The short dashed and solid lines are due to the simplified paraelectric
state models as described in the text.

polarization fields, Eqs(8) and (9). In this approximation, mophore molecules is greater than the linear dimension of
the statistical mechanically averaged value of the chroeach molecule. At such concentrations the shape of the mol-
mophore dipole moment does not depend on the chroecule is irrelevant. It should be noted that even in this sim-
mophore concentration and is calculated by @) with the  plest case the electro-optic coefficient changes nonlinearly
effective field equal to the poling field. In this simplest of the with the concentration due to the presence of the concentra-
approximations the electro-optic coefficient is always a lin-tion dependent Lorentz and depolarization field. This effect
ear function of the concentration, E(.2). has not been included in the earlier modgls-3]. The de-

The solid line shows the electro-optic coefficient calcu-polarization effect depends on the macroscopic shape of the
lated rigorously for the paraelectric cubic lattice of dipolessample and is calculated here for rectangular samples that are
including all effects, including the Lorentz and depolariza-commonly used in experimental setups. For spherical
tion contributions to the electric field. The average value ofsamples, the Lorentz and depolarization fields will identi-
the chromophore dipole moment depends on the effectiveally cancel and the linear dependence given by the short-
electric field, which, in turn, depends on the average value oflashed line will be recovered. As evidenced by the results in
the chromophore dipole moment, E@.3). Therefore, the Figs. 2, the electro-optic coefficient can strongly depend on
average value of the dipole moment has to be calculated in the macroscopic shape of the sample.
self-consistent manner, E(L4). The interaction between the At high chromophore concentrations when the average
chromophore dipoles is included in the mean-field approxi-distance between the chromophore molecules is less than the
mation. The mean-field dipole-dipole interaction vanishes olongest dimension of each molecule, the chromophore di-
the cubic lattice due to symmetry. The solid curve describepoles can no longer be placed on a cubic lattice. Since chro-
the electro-optic coefficient at low and moderate chro-mophore molecules are typically long and narrfdw3], at
mophore concentrations when the distance between chrdriigh concentrations they must remain a fixed distance apart
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in the longest dimension and can approach each other in tHeehavior of the electro-optic coefficient including all effects
other two dimensions. This arrangement leads to the tetrahéellows the lowest curve. The simpler models overestimate
dral lattice. The mean field experienced by a selected dipoléhe value of the coefficient at low fields.
due to all other dipoles around it does not vanish for the Figures 3a), 3(b), and 3d) show three data curves, while
tetrahedral lattice, Eq17), and contributes to the effective Figs. 3c), 3(e), and 3f) show four. The fourth curve describ-
electric field. The statistical mechanically averaged value ofng the antiferroelectric state is absent in Fig®) 33(b), and
the chromophore dipole is now calculated by HG7). 3(d) since the para- to antiferroelectric phase transition can
Plugged into Eq(12) for r, it produces the dashed curves in not take place at the chosen values for the chromophore con-
Figs. 2. The dashed curves exhibit maxima, whose locationsentration and the polymer matrix dielectric constant, ac-
are determined by Eq20). The experimental data for the cording to the phase transition line, Fig. 1. Figurés 33(e),
ISX chromophore systerfil—3] are best described by this and 3f) do show the antiferroelectric curve. The antiferro-
model (see discussion of Fig. 4 below electric curve is qualitatively different from all three para-

Liquid crystal-like order of chromophorg4 7] will favor ~ electric curves. This difference can be studied analytically
the antiferroelectric stat§18—24 that can become more for high concentrations and low electric fields. The average
stable than the paraelectric state of the dipoles as chro@lue of the dipole moment is proportional to the fiele in
mophore concentration is increased. The chromophore sy$he paraelectric state. The proportionality coefficient is a
tem may undergo a second order phase transition. The critpower function of the concentration as follows from Eq.
cal concentration where the transition takes place ig19). In the ordered antiferroelectric state only the s
determined by the phase transition curve, B9), Fig. 1.  + o0, and not the individual average dipole moments of the
Our mean-field model describes the antiferroelectric state otwo sublatticesr; ando, is directly proportional to the field
the microscopic level by two interacting sublattices, eache. Taking into account that the absolute magnitudes of the
with its own effective electric field and average value of theindividual values ofo; and o, are close to unit, it follows
chromophore dipole moment, Eq21). The average dipole from Eq.(23) thato; + o,%e- exp(—27?1¢). The propor-
moment of the total system is given by the sum of the dipoldionality coefficient is now an exponential function of the
moments in each sublattice, H§2). The dipole moments in chromophore concentration in contrast to the paraelectric
the sublattices are calculated self-consistently by E2@).  state, where the coefficient was a powexof he differences
The resulting electro-optic coefficient, EG.2), is plotted in  in the concentration dependence of the average dipole mo-
Figs. 2 by the long-dashed lines and gives the lowest of thenents in the para- and antiferroelectric states lead to the
four curves. The electro-optic coefficient suffers a sharp dedifferences in the electro-optic coefficients. These low field
cline due to the para- to antiferroelectric phase transition. results are best reflected in FigeB

As the strength of the poling field increases for the same Next, compare the experimentgl—3] and theoretical
chromophore-polymer system, Fig€aR 2(c), and 2e) and  data for the concentration dependence of the electro-optic
2(b), 2(d), and Zf) the electro-optic coefficient becomes coefficient(loading parametgmf the ISX chromophore sys-
larger. At the same time, the maximum value of the coeffi-tem, Fig. 4. The accurate values of the variables of our
cient is shifted slightly to higher chromophore concentra-model for the ISX system of Ref$1-3] are =0.409,e
tions. If the strength of the poling field is kept the same,=1.56, ande =2.5. The data are presented in Fig. 4 and are
while the dielectric constant of the polymer matrix is in- normalized to the maximum value of the electro-optic coef-
creased, Figs.(3) and Zb), 2(c) and Zd), and Ze) and Zf), ficient. The experimental data are given by the solid circles.
the effective field inside the polymer matrix felt by the chro- The theoretical curves in Fig. 4 correspond to the same ap-
mophore becomes smaller. As the result, the electro-optiproximations as before in Figs. 2 and 3. In contrast to Figs. 2
coefficient decreases, although the maximum is noticeablgnd 3, the concentration is now given by the number density
shifted to higher concentrations. While stronger poling fieldsof the chromophore molecules as in Réfs-3]. Comparing
always produce larger electro-optic coefficients, the effect othe experimental and theoretical data we conclude that the
the dielectric constant of the polymer matrix is twofold. Gen-system of chromophores in the chosen polymer mirb3]
erally, smaller dielectric constants are better, since they leatemains in the paraelectric state even at high chromophore
to larger effective poling fields inside the sample. Nevertheconcentrations. In the region of concentrations where forma-
less, at high chromophore concentrations, too low a value dfon of the antiferroelectric state becomes possible according
the dielectric constant may result in the undesirable phas® our model 4, Sec. 1l B, the phase transition does not take
transition. Optimal values of the dielectric constant of theplace experimentally. It is likely that liquidlike behavior of
polymer matrix should be selected to avoid the phase transthe polymer matrix dominates preventing formation of the
tion and, at the same time, to maximize the effective fieldordered state. It is also possible that on the time scale of the
inside the sample. experiment the paraelectric state remains metastable and

It is instructive to consider the electro-optic coefficient atdoes not convert to the antiferroelectric state. Similar to the
fixed chromophore concentrations as a function of the polinggxperimental data, the theoretical curve describing the para-
field, Figs. 3. The four curves representing the four modellectric state at high chromophore concentrations goes
remain the same as before. While in Figs. 2 the differencethrough a maximum as discussed at the end of Sec. Il A. At
between the models are apparent at high values of the aldgh chromophore concentrations the experimental data lie
scissa, the differences appear at low values of the abscissaldelow the paraelectric curve, indicating that the dipole-
Figs. 3. Strong electric fields saturate the electro-optic coefdipole interaction is stronger than predicted by the mean-
ficient independent of the approximation. The four modelsfield model. Extensions of the mean-field approximation that
differ only for weak poling fields. As in Figs. 2, the expected incorporate dipole-dipole correlation effects are expected to
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polymeric electro-optic materials. The model correctly de-
- scribes all qualitative features of the electro-optic coefficient
) observed in the experimental data and produces good quan-
titative agreement with the experimental data for a typical
electro-optical system. The model is fully self-consistent, is
derived from the basic electrostatic principles and contains
no adjustable parameters.
~ The properties of the electro-optic coefficient are deter-
2 4 6 8 mined by the interplay of the chromophore-poling field and
. 20, s chromophore-chromophore interactions. At low chro-
Chromophore Number Density (10" /em’) mophore concentrations, the chromophore-poling field inter-
FIG. 4. Normalized electro-optic coefficientas a function of  action dominates. At high chromophore concentrations, the
the chromophore number density for the ISX chromophore systerghromophore-chromophore coupling becomes very impor-

of Refs.[1-3]. The notation is the same as in Fig. 2. Circles indi- tant, while the effect of the poling field markedly depends on
cate experimental data. its strength.

improve the agreement between the experimental and theo- Maximization of the electro-optic coefficient is the pri-

retical data for the concentration dependence of the eIectrdspe?%c??r?;)l?mT; m?L?Z:ic(tjris—lc?nt.icT::ef?i)éFi):rzltn;igt?tiysﬁg:
optic coefficient in the paraelectric state. P

sequent decrease with increasing chromophore concentration
are shown to be due to both excluded volume and electro-
static interactions between the chromophore molecules. The

The paper presents the first self-consistent mean-fieléxcluded volume constraints originate from the short-ranged
model for the acentric order of dipolar chromophores inrepulsive forces between molecules and determine the spatial
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FIG. 3. Electro-optic coefficient, Eq. (12), as a function of the strength of the poling electric fieJdEq. (14), for the indicated values
of the polymer dielectric constastand chromophore concentratigrdefined in Eq.(5). The notation is the same as in Fig. 2.



PRE 62 MEAN-FIELD THEORY OF ACENTRIC ORDER @ . .. 8333

arrangement of chromophores. The long-ranged Coulomb irapproximation is by no means critical for the properties of
teraction between the chromophore dipoles controls the madhe paraelectric state of the dipole system. The lattice ap-
roscopic polarization. proximation simplifies the calculation of the macroscopic po-
The model developed here predicts that stronger polindarization allowing us to obtain analytic results. Numerical
fields are always preferred. Smaller values of the dielectri¢olution of the problem without the lattice approximation
constant of the polymer matrix are generally better, since thiill lead to similar results for the paraelectric phase. On the
effective poling field inside the sample is increased with a0ther hand, the presence of a spatial lattice appears important
decreasing dielectric constant. Nevertheless, at high chrdor observation of the antiferroelectric state. The lattice ap-

mophore concentrations, a low value of the dielectric conProximation is justifiable by the possibility of the liquid-
rystal behavior of the polymer under the poling conditions.

stant may result in the para- to antiferroelectric phase transf—rhe structure obtained during poling is preserved at later

tion, leading to a dramatic decrease of the electro-opti(%. by f ina th | below the A tion t
coefficient. Therefore, at high chromophore concentrations, €S DY fréezing the polymer below the giass transition tem-

an optimization of the polymer dielectric constant may beperature. The Iqttice approximation Is also justifiable by the
needed, so as to avoid the phase transition, while maximizin yste;]m deS|g|n, |r} particular, |n”the systgn;)s v(\;her(i thhe chro-l
the effective poling field inside the sample. For any chro- ophore molecules are equally spaced by direct chemica

mophore concentration, a sufficiently large poling field de_a;[tatlchmen:[[_ tol poflfymterthcha:ns.t Wh"t? the f?n_tlfetrroe(;e_ctrlct
stroys the antiferroelectric phase preserving the paraelectr ate negatively altects the electro-optic coetnicient and 1S no

phase. Lack of spatial order in the system of chromophoré) servgd for thg ISX chromophore system, it§ presence Is an
dipoles should also favor the paraelectric state. interesting physical phenomenon by itself. It is expected that

The current model predicts that the electro-optic coeffi-the antiferroelectric state can be found, for example, in sys-

cient may significantly depend on the macroscopic shape otfag]rz of chromophores dissolved in liquid crystalline poly-
the sample used in the poling process. The spherical shape : . . .
most favorable, provided that all other poling conditions re- The point dipole model of the chromophores constifutes

main fixed. At high chromophore concentrations significantanomer important approximation in the description of the

loss of electro-optic properties can be observed for rectang Ussrcﬁrrorrgopﬁo:e mttsra(;t;ront.i 'I;]hlssg?[prﬁxmr;tgorn 'i \éal:gnaitf
lar shaped samples. The effect of the macroscopic shape chromophore concentrations, but shou eak do

the sample on the effective poling field inside the sample cal M chromophor_e concentratipn Is sufficie_ntly high. The di-
be easily exploited in experimental designs. pole approximation works quite well for high chromophore

The experimental data for one typical material Cc)nsidereé:oncentrations, since the dipole-dipole Hamiltonian reflects

here are best described by the paraelectric model. The o%—]e main contribution to the interaction energy even when

served differences between the experimental and theoretic € c'hromc')phore molecu!es_are_ cIose.to. each other. Explicit
consideration of charge distributions within the chromophore

molecules can improve the agreement with the experiment

chromophore-chromophore interactions are treated withind will be f(:(t)gmdelr_ed. fF.)Ol:ja”Z?jt'oﬂ of eachh moltra]cule mhthe
the self-consistent mean-field approach. Dipole-dipole correP€S€Nce ol the poling hieid and chromophore-chromophore

lation effects increase the role of the interchromophore cou(—:oUpllng Is yet another avenue for improvement. As it is, the

pling and are expected to bring the theoretical curve in closepresent model in closed analytic form reflects the key fea-

agreement with the experimental data. Approximate treatUres Of the prOb'e"_‘ and provides good quantitative agree-
ment with the experimental data.

ment of the correlation effects within the present model will

data are due to various approximations involved in our mod
els. The following are the important ones. First, the

be investiggted further in a subseguent puplication. E\{en on ACKNOWLEDGMENTS
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