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Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials

Yuriy V. Pereverzev* and Oleg V. Prezhdo
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700

~Received 28 February 2000!

A mean-field theory of macroscopic order of dipolar chromophores in a polymer matrix in the presence of
an external electric field is developed. The theory is applied to characterize the electro-optic coefficient of the
Pockel effect that forms the basis for a variety of polymeric nonlinear electro-optic materials. The coefficient
is studied as a function of chromophore concentration, polymer properties, and manufacturing conditions,
including temperature, strength of the applied electric field, and macroscopic shape of the sample. The model
reproduces the observed behavior of the electro-optic coefficient and explains the nonlinear concentration
dependence of the coefficient at high chromophore concentrations. Specific recommendations for system de-
sign are suggested from the analysis of the obtained data.

PACS number~s!: 78.30.Jw, 64.60.Cn, 77.84.Jd, 85.60.Bt
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I. INTRODUCTION

Polymeric materials with macroscopic optical nonlinea
ties are currently achieving numerous applications@1–6#. To
name just a few, electro-optic polymeric materials are u
in fiber optic transmission lines and amplifiers, electrical-
optical signal transductors for cable television, diode las
high-density memories, flat panel displays, and biomed
voltage sensing. The realization of the required high mac
scopic electro-optical activity demands optimization of se
eral types of properties in these materials. These prope
include molecular polarizabilities of the optically activ
components, optical quality, and stability of the materials
thermal, mechanical, and electric fields applied during p
cessing and operation.

The focus of this paper is on a class of optically nonline
materials that are obtained by dissolving chromophore m
ecules in inert polymer matrices. The optical activity of su
materials relies on the macroscopic acentric order that c
mophore molecules attain in a liquid polymer that is sub
quently frozen. A typical chromophore is an asymmet
quasilinear conjugated molecule that carries a large dip
moment due to the presence of electron donor and acce
groups at the ends. Such molecules are characterized
highly nonlinear molecular polarizability. Combined with th
acentric order, the nonlinear molecular polarizability resu
in a macroscopic electro-optic response.

The macroscopic acentric order in the polymeric elect
optic materials can be achieved by application of a stro
external electric field to a polymer with dissolved chr
mophore molecules. The interaction between the exte
poling field and the dipole moments of the molecules res
in a thermodynamically preferred orientation for the ch
mophores. To speed up the equilibration, the poling field
applied to the sample at a temperature that is above the g
transition temperature at which the polymer becomes r
bery. Under these conditions, the solution of the ch
mophore molecules in the polymer rapidly acquires a con
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erable polarization density and the desired macrosco
acentric order. The liquid solution of the chromophores in
inert polymer is then cooled down below the glass transit
temperature, still in the presence of the external field. Be
the glass transition temperature, the solution becomes fro
and the external electric field is lifted. Upon freezing, t
sample exists in a long-lived metastable state with a sign
cant asymmetry in many properties. In particular, the non
ear optical parameters of such samples are comparable
often exceed those of the known solid state optical materi

The nonlinear optical properties of polymeric materia
with the acentric order depend on a number of paramet
including magnitudes of molecular dipole moments of ch
mophores, molecular hyperpolarizabilities, strength of
external poling electric field, concentration of the chr
mophores molecules, and molecular ionization potent
@7–11#. Experimental and theoretical studies of such mate
als aim to analyze these factors in order to achieve opti
optical nonlinearities of the required types.

The change in the high-frequency refractive indexDn in
the presence of a low-frequency or constant electric field
the relevant optical property in this study. A low-frequen
electric field of small amplitudeE8 is applied to a sample
with the acentric chromophore order. The linear change
the optical refractive index as a function of the fieldDn
}rE8 is known as the Pockel effect. It must be noted that
electric field of the Pockel effect is entirely different from th
poling field that is used to achieve the acentric order. T
poling field is much stronger than the Pockel field.

The coefficientr that describes the proportionality be
tween the Pockel field and the high-frequency refractive
dex depends on the concentration of chromophore m
ecules. It is technologically easy to change the concentra
and, therewith, to control and increase the nonlinear opt
effect under study. Recent experiments@1–3# led to the ob-
servation that the optical coefficientr attains a maximum as
a function of the concentration, and, in some cases, sig
cantly drops at higher chromophore concentrations. R
@1–3# describe a theoretical approach that provides an
planation of this highly undesirable behavior of the optic
coefficient. A different theoretical model is proposed
this work. The present model treats the chromopho

s,
8324 ©2000 The American Physical Society
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chromophore interactions in a self-consistent way and is
rived from the basic electrostatic principles. The model
presented in the next section, followed by discussion of
results and conclusions.

II. THEORY

Considering only the concentration dependence, the
malized expression for the optical coefficient, also called
loading parameter@1–3#, can be written as@6#

r 5
N

N0
^m0z

3 &, ~1!

wherem0z is the projection of the molecule dipolem0W of the
chromophore located at the origin ‘‘0’’ on the direction
the poling field. The concentration is defined by the num
of chromophore moleculesN in a unit volume of the sample
It is normalized to the reference chromophore densityN0
defined below in Eq.~5!. The averagê(¯)&5Tr@r(¯)# is
calculated over the equilibrium density matrix of the syst

r5Z21e2H/T, ~2!

whereH is the Hamiltonian of the system,T is the absolute
temperature, andZ is the canonical partition function

Z5Tr@e2H/T#.

The authors of Refs.@1–3# point out that the observe
anomalous behavior of the optical coefficient with increas
chromophore concentration is due to the intermolecular
teraction between the chromophores. They considered
the dipole-dipole and London intermolecular forces. T
complex many-body Hamiltonian describing the interact
and entering Eq.~2! was simplified to a one site Hamil
tonian. The simplification was carried out according to t
theory of Piekara@12,13#, which is not self-consistent. A
questionable step in the Piekara based theory of the ace
order involves substitution of the statistical mechanically
eraged energy of the interaction between two molecules
troduced by Piekara into a further statistical mechanical
eraging by Eq.~1!.

The model Hamiltonian that is used to compute the av
age in Eq.~1! is chosen based on the similarity of the syste
under study with the liquid crystalline systems. As point
out earlier, the chromophore molecules are quasilinear
are typically represented in simulations by prolate ellipso
@1–3#. They belong to the class of molecules that fo
liquid-crystals, whose properties are under active invest
tion. Many analytical and computational results are curren
available for liquid-crystal molecules. Spherical and diskli
particles are often used as idealizations of certain type
liquid-crystal molecules, see for instance, Refs.@14–16#. The
results obtained for systems of spherocylinders and pro
ellipsoids that are relevant for the present study are discu
below with no attempt for a complete list of citations.

If spherocylinders and prolate ellipsoids carry no dipo
moment, their macroscopic thermodynamic state is de
mined, in the first approximation, by the excluded volum
forces, see, for example, Ref.@17#. More advanced model
employ the anisotropic Gay-Berne interaction potential, e
e-
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Ref. @18#. It follows from these models that dipole-les
spherocylinders and prolate ellipsoids can exist in sev
states, including the isotropic, nematic, smectic A and sm
tic B states, depending on temperature and density of m
ecules. The isotropic phase has no order. The nematic p
exhibits only the orientation order. In addition to the orie
tation order, the smectic A and B phases form planes
possess long-range position order. Inside each plane the
ecules are parallel to each other and perpendicular to
plane. Smectic A is also characterized by a short-ranged
plane order that extends over a few coordination shells.
short-ranged in-plane order develops into a stronger posi
order in the smectic B phase.

The excluded volume force is the dominant interacti
between the dipole-less liquid-crystal molecules. The m
types of the liquid crystalline phases are already formed
to the excluded volume force. The anisotropic Gay-Be
interaction potential gives further details in the structure
liquid crystals. For example, it produces the position orde
structure in the planes of nematic B@18#. Similar to the an-
isotropic repulsive force described by the Gay-Berne pot
tial, the attractive dipole-dipole force is secondary to the
cluded volume interaction. Thus, Ref.@19# finds by the
Monte Carlo simulation that in ‘‘the system of hard spher
cylinders with point dipoles . . . theliquid crystal phases are
relatively insensitive to the presence of the dipoles.’’ Ref
ence@17# presents a detailed study of the system of sphe
cylinders with the length~L!-diameter~D! ratio L/D55. It
finds that the presence of the dipole-dipole interaction
tween the molecules slightly shifts the transition from t
isotropic to the nematic phase towards higher molecular c
centrations. Reference@17# concludes that the shift to highe
concentrations happens due to the dipole-dipole antipar
correlation between pairs of molecules that decreases th
fective L/D aspect ratio. Increase of the effective aspect ra
is observed in systems of molecules with terminal point
poles interacting by the Gay-Berne potential@20#. The in-
crease comes due to the antiparallel~or antiferroelectric! cor-
relation between the ends of molecules. As the result,
range of stability of the nematic phase is extended to low
concentrations@20#. The antiparallel correlation of such mo
ecules is responsible for the bilayer structure where a sl
tilt in the molecular axes in the adjacent planes leads t
weak ferroelectric order@21#.

Correlations between point dipoles centered inside pro
molecules are investigated in Ref.@22# in the presence of an
existing nematic order. The calculated Kirkwood correlati
factor shows an antiparallel correlation for molecules w
longitudinal dipoles and a parallel correlation for molecu
with transverse dipoles@22#. Reference @23# describes
dipole-dipole correlations between molecules in isotro
and smectic B phases for the dipolar Gay-Berne interac
model. The data of Ref.@23# are directly relevant for the
present model. The following correlation is observed ins
the planes of smectic B in the simulation@23#. The first near-
est neighbor molecules are antiparallel, the second nea
neighbors are parallel, the third nearest neighbors are an
rallel, and so on. The antiparallel arrangement is formed o
between the first neighbors in the isotropic phase. The res
of Ref. @23# confirm that the state of the spatially disorder
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8326 PRE 62YURIY V. PEREVERZEV AND OLEG V. PREZHDO
system of electric dipoles is paraelectric, while the state
the spatially well ordered system@18# is antiferroelectric.

Two conclusions that are important for the present stu
can be made based on the references cited above.First, to a
very good approximation, orientation and position struct
of systems of prolate molecules is formed independent of
dipolar forces.Second, the established spatial structure mu
be taken into account in investigation of the electric prop
ties of systems of dipolar molecules. The lowest energy e
trically ordered state of the dipole systems will be antifer
electric in character.

In view of the facts established above, the present w
deals with the thermodynamic average~1! by restricting at-
tention to the dipole-dipole interaction. The electric prop
ties of the system of dipolar molecules are considered in
presence of the nematic or smectic spatial order. Since
molecular are quasilinear, the dipole-dipole interaction w
be described by the Ising Hamiltonian which forms a parti
larly good approximation in the presence of the spatial or

Hd5
m2

2« (
iÞ j

S 12
3r i jz

2

r i j
2 D m izm jz

r i j
3

. ~3!

Here, m is the absolute magnitude of the molecular dipo
moment of the chromophore,« is the dielectric permittivity
of the polymer solvent,r i jW is the radius vector between th
dipoles located in positions ‘‘i’’ and ‘‘ j.’’ The Ising variable
m iz takes only the two values of61. To our knowledge, Ref
@8# was the first to use the Ising type of dipolar states for
calculation of the thermodynamic average~1!. More recent
publications@24,25# employ the Ising model in order to in
terpret the hierarchy of phase transitions in the smectic ph
in the presence of an external electric field. In a unifo
external electric field, such as the poling field, the f
Hamiltonian of the systems of chromophore dipoles takes
form

H5Hd2
Em

« (
i

m iz . ~4!

The following additional simplification based on the co
clusions drawn above will be made for the calculation of
average~1! with the Hamiltonian~4!. In the nematic state
the chromophore molecules are located at random. It is t
modynamically rigorous to define only an average dista
between the molecules. The average distance is determ
by the chromophore concentration. In order to avoid an
ditional averaging over positions of the chromophore m
ecules, we assume that the molecules are distributed
lattice. Prior to the specification of the lattice type, the ch
mophore density is related to the longest dimensionl 0 of the
~quasilinear! chromophore molecule. The reference dens
N0 is defined byN05 l 0

23. On the scale determined by th
reference density, the true densityN of the chromophores is
given by

N5N0x, x.0. ~5!

For example, for the ISX molecule,l 0523 Å @3# and N0

5 l 0
2358.2•1019cm23.
f
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In the nematic phase,N,N0 implies that the average dis
tance between the centers of the molecules is isotropic in
directions. In this case the chromophore lattice is assume
be simple cubic with the lattice constanta5N0

21/3x21/3. It
will be shown below that in this concentration range t
chromophore system of dipole exists in the paraelectric s
where the exact spatial order of chromophore molecules i
little importance. As the chromophore concentration
creases, the distance between the molecules decreases
as long asN,N0 , or, equivalently,x,1, the average dis-
tance is isotropic. However, as soon asN.N0 and x.1,
only the interchromophore distances in the plane perpend
lar to the main molecular axis, denoted as thez-axis, can
decrease any further. The distance between the centers o
molecules along thez-axis remains fixed atl 0 . Therefore, for
high concentrations we assume that chromophore molec
are located on a simple tetrahedral lattice. The lattice c
stant in thez direction isb5N0

21/3. The lattice is square in
the ~x,y! plane with the lattice constanta5N0

21/3x21/2. Lat-
tice approximations similar to those introduced above h
been used before. For instance, Ref.@26# assumes position
order inside smectic planes. The lattice approximation allo
us to describe the antiferroelectric state using a finite num
of sublattices.

A. Paraelectric state

Using the defined lattices we consider the self-consis
mean-field approximation for the interacting dipoles. T
mean-field approximation is often used in such problems,
for instance Ref.@27#. The mean-field approach is expecte
to reproduce all qualitative features of the system and
valid in a wide range of system’s parameters. First, we
sume that the system of dipoles exists in a paraelectric s
at temperatureT, chromophore concentrationN, and strength
of the poling fieldE. In this case, the Hamiltonian for a
individual site is straightforwardly obtained from the tot
Hamiltonian ~4!. The Hamiltonian for the dipole located a
the origin ‘‘0’’ takes the following simple form:

H52
m0zm

«
Eeff , ~6!

with the effective electric field given by the sum of the fo
terms@28#

Eeff5E1Ed1EL1Eb .

The four contributions to the effective electric field a
defined as follows.E is the applied poling field.Ed is the
self-consistent field experienced by the selected dipole du
all other dipoles located inside a macroscopically sm
sphere around the selected dipole:

Ed5ms(
i

S 3
r iz

2

r i
2

21D 1

r i
3

, ~7!

wheres5^m0z& is statistically mechanically averaged wit
the Hamiltonian~6!. EL is the Lorentz field given by
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EL5
4p

3
Nms5

4p

3
N0xms. ~8!

Finally, Eb is the depolarization field that depends on t
macroscopic shape of the sample. In our case, the samp
the polymer solution of chromophores that is being poled.
a rule, the poling is carried out between two planar el
trodes. For this rectangular shape of the sample, assum
that it extends far in the plane of the electrodes, the depo
ization field is given by the formula

Eb524pNms524pN0xms. ~9!

We note that the Piekara model@1–3# does not conside
the macroscopic shape of the polymeric sample, while
current model does. The depolarization effect depends on
boundary of the sample and renormalizes the external e
tric poling field. The presence of depolarization introduc
additional chromophore concentration dependence to the
tical coefficient!

Since the dipoles of the chromophore molecules
placed in a polymer matrix, all electric fields in Eq.~6! are
weakened by a factor of«, the dielectric permittivity of the
polymer.

The Hamiltonian~6! has a simple form, and the statistic
mechanical averaging ofs5^m0z& with the density matrix
~2! is trivial. As the result, we obtain the following sel
consistent equation fors.

s5tanh
mEeff

T
. ~10!

Note, that in the current model

^m0z
3 &5^m0z&5s, ~11!

and, therefore, Eq.~1! takes the following form

r 5xs. ~12!

Consequently, the nonlinearity of the optical coefficientr as
a function of the chromophore concentrationx appears en-
tirely through the concentration dependence ofs. We con-
sider the two cases ofx,1 andx.1 separately.

1. Case (a). Low and moderate chromophore
concentrations, xË1

At low and moderate chromophore concentrations the
tice is cubic. It is well known@28# that the mean field for the
cubic lattice is zero,Ed50. Therefore, the effective field
inside the sample is

Eeff5E2
8p

3
N0mxs. ~13!

Equation~11! for the parameters takes the following self-
consistent form

s5tanhF S e2
2p

3
h s xD 1

« G , ~14!
is
s
-
ng
r-

e
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c-
s
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e
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e5
mE

T
, h5

4m2

Tl0
3

.

Equation~14! is solved numerically for arbitrary values o
the parameters. In the high temperature-low poling fi
limit, mEeff,«T, Eq. ~14! admits an approximate analyti
solution

s5
e

« F11
2p

3

hx

« G21

. ~15!

The corresponding equation for the optical coefficientr, Eq.
~12!, takes the following form

r 5
x

« F11
2p

3

hx

« G21

e. ~16!

This expression determines the chromophore concentra
dependence of the optical coefficient for low concentratio
The expression shows that even for the cubic lattice the s
consistent model produces a nonlinear dependence ofr on x.

2. Case (b). High chromophore concentrations, xÌ1

In the presence of a large concentration of chromopho
the sum in Eq.~7! must be calculated for the tetragonal la
tice arrangement of the dipoles. Generally, the calculat
for each concentration of chromophores is performed o
numerically. It is not possible to obtain a simple analy
dependence of the self-consistent fieldEd as a function of
concentrationx. Still, if we include only the nearest neighbo
interactions justified by the fact that the terms in the sum~7!
decrease rapidly with the distance, Eq.~7! reduces to

Ed524msN0~x3/221!. ~17!

Numerical calculations carried out for various chromopho
concentrations show that the results of Eq.~17! deviate from
the exact values of fieldEd , Eq. ~7!, by 15–20%. The self-
consistent equation that determiness can now be shown to
have the form

s5tanhH Fe2
2p

3
h s x2h s~x3/221!G 1

« J . ~18!

The concentration dependence of the optical coefficien
determined by an iterative solution of Eq.~18! for s and
substitution of the result into Eq.~12!. Solutions for typical
values of the parameters that enter Eq.~18! are presented in
Sec. III.

Similarly to Eq.~15!, we can derive an approximate an
lytic solution to Eq.~18! for situations whenm Eeff,«T. The
result is substituted into Eq.~12! producing the following
expression for the chromophore concentration dependenc
the optical coefficientr that is valid for high chromophore
concentrations in the high temperature-low field limit

r 5
ex

« F11
h

« S x3/2211
2p

3
xD G21

. ~19!

It follows from Eq. ~19! that for high chromophore concen
trations, x@1, the optical coefficient is inversely propo
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tional to the square root of the concentration,r;x21/2. This
implies that the optical coefficient has a maximum as a fu
tion of the chromophore concentration, Eqs.~16! and ~19!.
The concentrationxmax at which the optical coefficient at
tains the maximum can be found in the analytical form

xmax5F2S «

h
21D G2/3

. ~20!

Since Eq.~20! is derived forx.1, it follows from Eq.~20!
that the maximum in the optical coefficient is present only
the conditionh/«,2/3 is satisfied. For example, for the IS
(m58Debye) chromophore at temperatureT5350 K imbed-
ded into a polymer with the dielectric permittivity«53,
h/«'1/7. Therefore, the optical coefficient is maximal at t
concentrationxmax'5.25.

B. Antiferroelectric state

The model developed above remains valid only within
range of chromophore concentrations and thermodyna
parameters, including temperature and strength of the po
field, where the paraelectric state of the chromophore lat
is stable. As has been shown in Refs.@29# for a cubic Ising
lattice of dipoles, the paraelectric phase of the Ising dip
lattice becomes unstable with increasing dipole concen
tion and decreasing temperature, and an antiferroele
phase appears. In contrast to the paraelectric state, the
semble averaged value of the dipole moment in any lat
site does not vanish in the antiferroelectric state even in
absence of the poling field. At the same time, in the abse
of the poling field, the macroscopic polarization of the who
sample is zero in both para- and antiferroelectric states, s
the sublattices of the antiferroelectric state are polarized
the opposite directions.

The possibility of the antiferroelectric phase transition
systems of chromophore dipoles in polymer matrices sho
be investigated. While the paraelectric state exists indep
dently of the spatial order, the antiferroelectric state can
more sensitive to the spatial structure of the chromoph
system. A system of chromophores in a polymer matrix
clearly more complex than the cubic Ising lattice of dipole
Liquid properties of the chromophore-polymer system m
or may not inhibit formation of the spatial order that
present in the cubic lattice and favors the electrostatic or
For example, the spatial order may appear in the directi
perpendicular to polymer chains due to the short-range re
sive interactions that lead to formation of the smectic
phase in liquid crystals@17#. The antiferroelectric state ha
been recently discovered experimentally in dipolar smec
and is currently under active investigation by both expe
mental and theoretical methods@18–24#. The smectic order
in the inert polymer matrix may induce spatial order amo
the dipolar chromophore molecules and create the antife
electric state within the chromophore subsystem. The res
presented here are derived from the microscopic molec
model defined by the dipole-dipole Hamiltonian~4!.

Since typical poling temperatures are high, on the orde
350 K, and high temperatures destabilize order, it is reas
able to assume that the systems of chromophore dipoles
undergo the antiferroelectric phase transition only at h
-
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chromophore concentrations,x.1. While the phase transi
tion may be possible even at low chromophore concen
tions, x,1 and the corresponding model can be easily
veloped, this possibility will not be presently considered.

As before, at high concentrations,x.1, chromophores are
assumed to form a tetrahedral lattice. The para-to antife
electric second order phase transition in the tetrahedral la
of dipoles will produce the following antiferroelectric stat
corresponding to the minimum of the dipole-dipole intera
tion energy@30#. The order will be ferroelectric along th
chains of dipoles in thez-direction. The chains will show the
antiferroelectric order with respect to each other. This type
the antiferroelectric order not only corresponds to the m
mum of the dipole-dipole interaction energy, but also leav
the liquid properties in the direction of polymer chains inta
where a one-dimensional flow is allowed.

Similarly to antiferromagnetics@27,31#, the antiferroelec-
tric order will be described by two self-consistent fields. T
field E1 eff acts on the dipoles of the first sublattice, denot
by index 1. The fieldE2 eff acts on the dipoles in the secon
sublattice, denoted by index 2. The expressions for th
effective electric fields are derived similarly to the expre
sion for the effective electric field in the paraelectric state

E1 eff5E2
8p

3
N0msx14mN0~s12s2x3/2!,

~21!

E2 eff5E2
8p

3
N0msx14mN0~s22s1x3/2!,

where

s15^m1z&, s25^m2z&, s5
1

2
~s11s2!. ~22!

The averaging in Eqs.~22! is carried out with the Hamil-
tonian ~6! using the corresponding fields of Eq.~21!. The
self-consistent equations for the parameterss1 and s2 take
the form

s15tanhF1

« S e2
p

3
h~s11s2!x1h~s12s2x3/2! D G ,

~23!

s25tanhF1

« S e2
p

3
h~s11s2!x1h~s22s1x3/2! D G .

The system of equations~29! describes both the ordered a
tiferroelectric state and the paraelectric state conside
above. Indeed, Eq.~18! is recovered from Eqs.~23! by set-
ting s15s2 . The trivial solution of Eqs.~23! with s15s2
can be eliminated. In the antiferroelectric states1Þs2 , and
the following relationships are satisfied

s12
1

2
u2AS 11

1

4
u22u tanh21 gD50,

~24!

e1h s1S 12
2p

3
x2x3/2D1huS x3/21

p

3
xD2

«

2
ln

11s1

12s1

50,
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where

u5s12s2 , g5
hu

«
~11x3/2!.

The region of the antiferroelectric state is separated in
~x,e! plane from the region of the paraelectric state by
second-order phase transition curve. The equation for
phase transition curve is obtained from Eqs.~24! in the limit
u→0

e5h sS x3/21
2p

3
x21D1

«

2
ln

11s

12s
,

~25!

s5AS 12
«

h~11x3/2! D .

It follows from Eq.~25! that the phase transition curve inte
sects the concentration axisx, but does not intersect the fiel
axis e. The point where the concentration axis is reached
calculated for the valuee50, corresponding tos50. The
explicit expression for the concentration at this point is

x5S «

h
21D 2/3

.

In particular, the phase transition curve starts atx51, if
«/h52. For the typical ISX chromophore at poling temper
tureT5350 K and polymer dielectric constant«53, the ratio
«/h'7. The phase transition curve starts at the concentra
x'62/3. According to Eq.~25!, at high chromophore concen
trations a linear increase in the fielde corresponds on the
phase transition curve to thex3/2 increase in the concentra
tion x.

The density of the macroscopic asymmetry in the aver
^m0

3
z&5s in Eq. ~12! for the optical coefficient is determine

in the antiferroelectric region bys51/2(s11s2). The val-
ues of this parameter can be found numerically from
system of equations~24!.

III. RESULTS

We apply the self-consistent field theory developed in
previous section to study the dependence of the electro-o
coefficient on the chromophore concentration and
strength of the poling field. Our theory remains valid f
wide ranges of the field strength, chromophore concen
tion, polymer dielectric constant and molecular properti
contained in parameterh, Eq. ~14!. The results shown her
are obtained for the fixed value ofh51/3, chosen to approxi
mate chromophore ISX. The ISX molecule dipole mome
m is about 8 Debye and the longest linear dimension
roughly 25 A@1–3#. At the poling temperatureT5350 K, h
is about 1/3, according to Eq.~14!.

The plane~x,e! of the reduced chromophore concentrati
x and poling fielde, defined in Eqs.~5! and ~14!, respec-
tively, is divided into the regions of the disordered parael
tric and ordered antiferroelectric states. The expressions
the electro-optic coefficient as functions of bothx ande are
different for the paraelectric and antiferroelectric stat
Since the experimentally interesting values ofx ande cover
e
e
e

is

-

n

e

e

e
tic
e

a-
,

t
s

-
or

.

both regions, the phase transition curve separating the
regions should be found first. Figure 1 presents the ph
transition curve calculated by Eq.~25! for the ISX chro-
mophore for different values of the dielectric constant of t
polymer. At low concentrations the macroscopic state of
chromophore dipoles is paraelectric. As the concentratio
increased, the second-order phase transition takes place
the macroscopic system of dipoles becomes antiferroelec
The phase transition happens at higher concentration as
strength of the external electric poling field is increased. T
presence of a strong external electric field disrupts the a
ferroelectric order in the chromophore system. The dis
dered paraelectric state can be always achieved by destro
the antiferroelectric state with a strong poling field.

The external field-chromophore interaction dominates
interchromophore coupling in strong electric fields. The
terchromophore coupling becomes more important with
creasing chromophore concentration at a fixed value of
field. The dielectric constant of the polymer acts to decre
the effect of the external field and also changes the ma
tude of the dipole-dipole interaction. Higher concentratio
of the chromophore are required to achieve the antiferroe
tric state inside polymer matrices with larger dielectric co
stants: The phase transition curve in Fig. 1 shifts towa
higher chromophore concentrations for larger polymer
electric constants.

When the poling field is weak and the chromophore co
centration is low, the magnitude of the electro-optic coe
cient grows linearly both with the chromophore concent
tion x and with the strength of the poling fielde. In strong
fields and at high chromophore concentrations significant
viations from the linear behavior are observed. Consider fi
the concentration dependence of the electro-optic coeffici
Figure 2 depicts the electro-optic coefficientr, Eq. ~12!, as a
function of the concentration for different fixed values of t
poling field and polymer dielectric constant. The expec
behavior of the electro-optic coefficient always follows t
lowest curve. Different curves in the figure correspond
different macroscopic states and different levels of appro
mation for the coefficient. The long-dashed curve descri
the electro-optic coefficient of the antiferroelectric state. T
other three curves describe the paraelectric state. The
most short-dashed curve describes noninteracting c
mophores on a cubic lattice neglecting the Lorentz and

FIG. 1. Phase diagram of the macroscopic states of the c
mophore lattice for different values of the polymer dielectric co
stant. Curves 1, 2, 3, 4, 5 correspond to the dielectric constants
3, 5, 7, and 10, respectively. The chromophore concentrationx and
electric fielde are defined by Eqs.~5! and ~14!, correspondingly.
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FIG. 2. Electro-optic coefficientr, Eq. ~12!, as a function of the chromophore concentrationx, Eq. ~5!, for the indicated values of the
polymer dielectric constant« and the strength of the poling electric fielde defined in Eq.~14!. The middle dashed line corresponds to t
paraelectric state, the long-dashed line gives the antiferroelectric state. The short dashed and solid lines are due to the simplified p
state models as described in the text.
ro
r

e
in

u
es
a
o

tiv
e

in
e
x
o

be
ro
hr

of
ol-

im-
arly
tra-

ect

the
t are
ical
ti-
ort-
s in
on

ge
n the
di-

hro-

part
polarization fields, Eqs.~8! and ~9!. In this approximation,
the statistical mechanically averaged value of the ch
mophore dipole moment does not depend on the ch
mophore concentration and is calculated by Eq.~10! with the
effective field equal to the poling field. In this simplest of th
approximations the electro-optic coefficient is always a l
ear function of the concentration, Eq.~12!.

The solid line shows the electro-optic coefficient calc
lated rigorously for the paraelectric cubic lattice of dipol
including all effects, including the Lorentz and depolariz
tion contributions to the electric field. The average value
the chromophore dipole moment depends on the effec
electric field, which, in turn, depends on the average valu
the chromophore dipole moment, Eq.~13!. Therefore, the
average value of the dipole moment has to be calculated
self-consistent manner, Eq.~14!. The interaction between th
chromophore dipoles is included in the mean-field appro
mation. The mean-field dipole-dipole interaction vanishes
the cubic lattice due to symmetry. The solid curve descri
the electro-optic coefficient at low and moderate ch
mophore concentrations when the distance between c
-
o-

-

-

-
f
e

of

a

i-
n
s
-
o-

mophore molecules is greater than the linear dimension
each molecule. At such concentrations the shape of the m
ecule is irrelevant. It should be noted that even in this s
plest case the electro-optic coefficient changes nonline
with the concentration due to the presence of the concen
tion dependent Lorentz and depolarization field. This eff
has not been included in the earlier models@1–3#. The de-
polarization effect depends on the macroscopic shape of
sample and is calculated here for rectangular samples tha
commonly used in experimental setups. For spher
samples, the Lorentz and depolarization fields will iden
cally cancel and the linear dependence given by the sh
dashed line will be recovered. As evidenced by the result
Figs. 2, the electro-optic coefficient can strongly depend
the macroscopic shape of the sample.

At high chromophore concentrations when the avera
distance between the chromophore molecules is less tha
longest dimension of each molecule, the chromophore
poles can no longer be placed on a cubic lattice. Since c
mophore molecules are typically long and narrow@1–3#, at
high concentrations they must remain a fixed distance a
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in the longest dimension and can approach each other in
other two dimensions. This arrangement leads to the tetr
dral lattice. The mean field experienced by a selected dip
due to all other dipoles around it does not vanish for
tetrahedral lattice, Eq.~17!, and contributes to the effectiv
electric field. The statistical mechanically averaged value
the chromophore dipole is now calculated by Eq.~17!.
Plugged into Eq.~12! for r, it produces the dashed curves
Figs. 2. The dashed curves exhibit maxima, whose locat
are determined by Eq.~20!. The experimental data for th
ISX chromophore system@1–3# are best described by thi
model ~see discussion of Fig. 4 below!.

Liquid crystal-like order of chromophores@17# will favor
the antiferroelectric state@18–24# that can become mor
stable than the paraelectric state of the dipoles as c
mophore concentration is increased. The chromophore
tem may undergo a second order phase transition. The c
cal concentration where the transition takes place
determined by the phase transition curve, Eq.~25!, Fig. 1.
Our mean-field model describes the antiferroelectric state
the microscopic level by two interacting sublattices, ea
with its own effective electric field and average value of t
chromophore dipole moment, Eqs.~21!. The average dipole
moment of the total system is given by the sum of the dip
moments in each sublattice, Eq.~22!. The dipole moments in
the sublattices are calculated self-consistently by Eqs.~23!.
The resulting electro-optic coefficient, Eq.~12!, is plotted in
Figs. 2 by the long-dashed lines and gives the lowest of
four curves. The electro-optic coefficient suffers a sharp
cline due to the para- to antiferroelectric phase transition

As the strength of the poling field increases for the sa
chromophore-polymer system, Figs. 2~a!, 2~c!, and 2~e! and
2~b!, 2~d!, and 2~f! the electro-optic coefficient become
larger. At the same time, the maximum value of the coe
cient is shifted slightly to higher chromophore concent
tions. If the strength of the poling field is kept the sam
while the dielectric constant of the polymer matrix is i
creased, Figs. 2~a! and 2~b!, 2~c! and 2~d!, and 2~e! and 2~f!,
the effective field inside the polymer matrix felt by the chr
mophore becomes smaller. As the result, the electro-o
coefficient decreases, although the maximum is noticea
shifted to higher concentrations. While stronger poling fie
always produce larger electro-optic coefficients, the effec
the dielectric constant of the polymer matrix is twofold. Ge
erally, smaller dielectric constants are better, since they
to larger effective poling fields inside the sample. Nevert
less, at high chromophore concentrations, too low a valu
the dielectric constant may result in the undesirable ph
transition. Optimal values of the dielectric constant of t
polymer matrix should be selected to avoid the phase tra
tion and, at the same time, to maximize the effective fi
inside the sample.

It is instructive to consider the electro-optic coefficient
fixed chromophore concentrations as a function of the po
field, Figs. 3. The four curves representing the four mod
remain the same as before. While in Figs. 2 the differen
between the models are apparent at high values of the
scissa, the differences appear at low values of the abscis
Figs. 3. Strong electric fields saturate the electro-optic co
ficient independent of the approximation. The four mod
differ only for weak poling fields. As in Figs. 2, the expecte
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behavior of the electro-optic coefficient including all effec
follows the lowest curve. The simpler models overestim
the value of the coefficient at low fields.

Figures 3~a!, 3~b!, and 3~d! show three data curves, whil
Figs. 3~c!, 3~e!, and 3~f! show four. The fourth curve describ
ing the antiferroelectric state is absent in Figs. 3~a!, 3~b!, and
3~d! since the para- to antiferroelectric phase transition
not take place at the chosen values for the chromophore
centration and the polymer matrix dielectric constant,
cording to the phase transition line, Fig. 1. Figures 3~c!, 3~e!,
and 3~f! do show the antiferroelectric curve. The antiferr
electric curve is qualitatively different from all three par
electric curves. This difference can be studied analytica
for high concentrations and low electric fields. The avera
value of the dipole moments is proportional to the fielde in
the paraelectric state. The proportionality coefficient is
power function of the concentrationx, as follows from Eq.
~19!. In the ordered antiferroelectric state only the sums1
1s2 and not the individual average dipole moments of t
two sublatticess1 ands2 is directly proportional to the field
e. Taking into account that the absolute magnitudes of
individual values ofs1 and s2 are close to unit, it follows
from Eq.~23! thats11s2}e• exp(22hx3/2 /«). The propor-
tionality coefficient is now an exponential function of th
chromophore concentrationx, in contrast to the paraelectri
state, where the coefficient was a power ofx. The differences
in the concentration dependence of the average dipole
ments in the para- and antiferroelectric states lead to
differences in the electro-optic coefficients. These low fie
results are best reflected in Fig. 3~e!.

Next, compare the experimental@1–3# and theoretical
data for the concentration dependence of the electro-o
coefficient~loading parameter! of the ISX chromophore sys
tem, Fig. 4. The accurate values of the variables of
model for the ISX system of Refs.@1–3# are h50.409, e
51.56, and«52.5. The data are presented in Fig. 4 and
normalized to the maximum value of the electro-optic co
ficient. The experimental data are given by the solid circl
The theoretical curves in Fig. 4 correspond to the same
proximations as before in Figs. 2 and 3. In contrast to Figs
and 3, the concentration is now given by the number den
of the chromophore molecules as in Refs.@1–3#. Comparing
the experimental and theoretical data we conclude that
system of chromophores in the chosen polymer matrix@1–3#
remains in the paraelectric state even at high chromoph
concentrations. In the region of concentrations where form
tion of the antiferroelectric state becomes possible accord
to our model 4, Sec. II B, the phase transition does not t
place experimentally. It is likely that liquidlike behavior o
the polymer matrix dominates preventing formation of t
ordered state. It is also possible that on the time scale of
experiment the paraelectric state remains metastable
does not convert to the antiferroelectric state. Similar to
experimental data, the theoretical curve describing the p
electric state at high chromophore concentrations g
through a maximum as discussed at the end of Sec. II A
high chromophore concentrations the experimental data
below the paraelectric curve, indicating that the dipo
dipole interaction is stronger than predicted by the me
field model. Extensions of the mean-field approximation t
incorporate dipole-dipole correlation effects are expected
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improve the agreement between the experimental and t
retical data for the concentration dependence of the elec
optic coefficient in the paraelectric state.

IV. CONCLUSIONS

The paper presents the first self-consistent mean-fi
model for the acentric order of dipolar chromophores

FIG. 4. Normalized electro-optic coefficientr as a function of
the chromophore number density for the ISX chromophore sys
of Refs.@1–3#. The notation is the same as in Fig. 2. Circles in
cate experimental data.
o-
o-

ld

polymeric electro-optic materials. The model correctly d
scribes all qualitative features of the electro-optic coeffici
observed in the experimental data and produces good q
titative agreement with the experimental data for a typi
electro-optical system. The model is fully self-consistent,
derived from the basic electrostatic principles and conta
no adjustable parameters.

The properties of the electro-optic coefficient are det
mined by the interplay of the chromophore-poling field a
chromophore-chromophore interactions. At low chr
mophore concentrations, the chromophore-poling field in
action dominates. At high chromophore concentrations,
chromophore-chromophore coupling becomes very imp
tant, while the effect of the poling field markedly depends
its strength.

Maximization of the electro-optic coefficient is the pr
mary goal in the materials design. The experimentally o
served maximum in the electro-optic coefficient and its s
sequent decrease with increasing chromophore concentr
are shown to be due to both excluded volume and elec
static interactions between the chromophore molecules.
excluded volume constraints originate from the short-ran
repulsive forces between molecules and determine the sp

m

FIG. 3. Electro-optic coefficientr, Eq. ~12!, as a function of the strength of the poling electric fielde, Eq. ~14!, for the indicated values
of the polymer dielectric constant« and chromophore concentrationx defined in Eq.~5!. The notation is the same as in Fig. 2.
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arrangement of chromophores. The long-ranged Coulomb
teraction between the chromophore dipoles controls the m
roscopic polarization.

The model developed here predicts that stronger po
fields are always preferred. Smaller values of the dielec
constant of the polymer matrix are generally better, since
effective poling field inside the sample is increased with
decreasing dielectric constant. Nevertheless, at high c
mophore concentrations, a low value of the dielectric c
stant may result in the para- to antiferroelectric phase tra
tion, leading to a dramatic decrease of the electro-o
coefficient. Therefore, at high chromophore concentratio
an optimization of the polymer dielectric constant may
needed, so as to avoid the phase transition, while maximi
the effective poling field inside the sample. For any ch
mophore concentration, a sufficiently large poling field d
stroys the antiferroelectric phase preserving the paraele
phase. Lack of spatial order in the system of chromoph
dipoles should also favor the paraelectric state.

The current model predicts that the electro-optic coe
cient may significantly depend on the macroscopic shap
the sample used in the poling process. The spherical sha
most favorable, provided that all other poling conditions
main fixed. At high chromophore concentrations significa
loss of electro-optic properties can be observed for rectan
lar shaped samples. The effect of the macroscopic shap
the sample on the effective poling field inside the sample
be easily exploited in experimental designs.

The experimental data for one typical material conside
here are best described by the paraelectric model. The
served differences between the experimental and theore
data are due to various approximations involved in our m
els. The following are the important ones. First, t
chromophore-chromophore interactions are treated wi
the self-consistent mean-field approach. Dipole-dipole co
lation effects increase the role of the interchromophore c
pling and are expected to bring the theoretical curve in clo
agreement with the experimental data. Approximate tre
ment of the correlation effects within the present model w
be investigated further in a subsequent publication. Even
the mean-field level, our model gives a reliable descript
of the observed phenomenon.

The system of chromophores with interacting dipoles
considered on a lattice, discounting the possibility of liqu
like behavior of chromophore molecules in a polymer m
trix. Liquid properties result in fluctuations and disorder
positions of the molecules. We emphasize that the lat
S
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approximation is by no means critical for the properties
the paraelectric state of the dipole system. The lattice
proximation simplifies the calculation of the macroscopic p
larization allowing us to obtain analytic results. Numeric
solution of the problem without the lattice approximatio
will lead to similar results for the paraelectric phase. On
other hand, the presence of a spatial lattice appears impo
for observation of the antiferroelectric state. The lattice a
proximation is justifiable by the possibility of the liquid
crystal behavior of the polymer under the poling condition
The structure obtained during poling is preserved at la
times by freezing the polymer below the glass transition te
perature. The lattice approximation is also justifiable by
system design, in particular, in the systems where the c
mophore molecules are equally spaced by direct chem
attachment to polymer chains. While the antiferroelect
state negatively affects the electro-optic coefficient and is
observed for the ISX chromophore system, its presence i
interesting physical phenomenon by itself. It is expected t
the antiferroelectric state can be found, for example, in s
tems of chromophores dissolved in liquid crystalline po
mers.

The point dipole model of the chromophores constitu
another important approximation in the description of t
interchromophore interaction. This approximation is valid
low chromophore concentrations, but should break down
the chromophore concentration is sufficiently high. The
pole approximation works quite well for high chromopho
concentrations, since the dipole-dipole Hamiltonian refle
the main contribution to the interaction energy even wh
the chromophore molecules are close to each other. Exp
consideration of charge distributions within the chromoph
molecules can improve the agreement with the experim
and will be considered. Polarization of each molecule in
presence of the poling field and chromophore-chromoph
coupling is yet another avenue for improvement. As it is,
present model in closed analytic form reflects the key f
tures of the problem and provides good quantitative agr
ment with the experimental data.
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