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Liquid-solid transition of hard spheres under gravity
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We investigate the liquid-solid transition of two-dimensional hard spheres in the presence of gravity. We
determine the transition temperature and the fraction of particles in the solid regime as a function of tempera-
ture via event-driven molecular-dynamics simulations and compare them with the theoretical predictions. We
then examine the configurational statistics of a vibrating bed from the viewpoint of the liquid-solid transition
by explicitly determining the transition temperature and the effective temperatof¢he bed, and present a
relation betweerm and the vibration strength.

PACS numbse(s): 64.70.Dv, 05.20.Dd, 51.18y

The hard-sphere model has been quite successful in ex rectangle. If we gradually increase the temperature, fluidi-
plaining the macroscopic properties of dense fluids, or gasegation starts from the surface, and the boundary layers ap-
from the microscopic point of vieyl]. At the molecular pear. One may estimate the thickness of the boundary kayer
level, the potential energy of the hard spheres due to gravitpy a simple energy balance between the kinetic and potential
is small in comparison to the thermal fluctuations and it hasnergy:mgDh~3m(v?)~T. From this, one may obtain the
usually been ignored. However, when the mass of the corsize of the solidlike regime, or equivalently, its dimension-
stituent particle is macroscopic in quantity, as in the case oless height, say(T),
granular material$2], gravity cannot be ignored. The pur-
pose of this paper is to demonstrate the existence of a _ _ T
gravity-induced liquid-solid phase transition of hard spheres. Gr(M=p—h=p- mgD’ @

This transition is an intrinsic transition associated with any

system where the excluded volume interaction is dominantwhereu is the number of layers of the original rectangle and
Such a system cannot be compressed indefinitely, and mubtis the layer thickness in units &. Equation(1) predicts
exhibit a coherent low-energy state. In the hard-sphere syshe existence of a critical temperatufe at which point a
tem, gravity introduces a potential energy, and each availablphase transition from a one-phad#uid) to a two-phase
site is associated with an energy state. Then, the formation a&gime(liquid-solid) occurs. By setting{s(T.)=0, we find

a solid at the bottom below the transition point is nothing butthe mean-field resultT¥-F=xmgD. Since the boundary

a massive occupation of the low-energy state at the low temayer exists only when both phases coexigt,must be the
perature, which is the Fermi gas in metals, the Bose condenemperature at which point the system becomes fully fluid-
sate in the two-dimensional quantum Hall systgi®k the  ized. One may equally define the critical temperature as a
energy storage mechanism into a single state for biologicgboint at which the density at the bottom layér, becomes
systems[4], a mechanism to produce coherent light in thethe closed-packed densit., i.e., ¢o(To)= .. We now
context of laser$5], and the liquid-solid transition in a hard- rewrite Eq.(1) in terms of the critical temperature, and recast
sphere system under gravity, which is the subject of the curthe size of the solid region, in term @7 T, as

rent work. We will determine via the even-driven molecular-

dynamics simulation the transition point and the thickness of

the boundary layers as a function of external parameters, and r(Mip=
make a careful comparison with the theoretical predictions

[6]. Next, a nontrivial by-product of our investigation is to A more precise estimate of the transition temperature was
view the configurational statistics of the vibrating H&d8]  given in Ref.[6] within the framework of the Enskog theory
from the viewpoint of the liquid-solid transition of hard [9]. In particular, the following expression for the density
spheres. This will certainly help one to compare the configuprofile ¢({) was obtained as a function of the dimensionless
rational statistics and other thermodynamic properties of vivariablel=z/D,

brating beds with those equilibrium properties of hard-sphere

1 T
-7

2

systems. —B({—p)=Inp+cip+cyIn(1—ap)+ca/(1—ad)
Transition temperature and the thickness of boundary lay- ’
ers. Consider a collection of elastic hard spheres of nmass +C4l(1-ad) (33

and diameteD, confined in a two-dimensionak(z) con- )
tainer with an open boundary at the top. Gravity acts along"!
the negativez direction. The system is in contact with the —
thermal reservoir at a temperatufen such a way that the Bu=In¢otCi¢otCaIN(1-ado)

avezrage !(inetic energy of each harq sphefes m(v +Cal(1—agdy) +Cal(1— ady)?, (3b)
+v3)/2 with (---) being the configurational average. We

now start fromT=0, at which point all the particles are where S=mgD/T, and c1=2a,/a?(wl2)~0.0855, c,=
essentially in a solid regime, and the density profile is simply— (7/2) (@ —2a,/a)l a?~—0.710 c3=—C,, C4=(m/2)

th the constanBu given by
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X(1—ayla+ayla®)la~1.278, with «=0.48935%k/2
~0.768 67. Note that the relation between the volume frac-
tion v and ¢ is given by v=m(D/2)’N/V=m¢/4. If one
integrates the density profile, and imposes the sum rule,
Jo#(Q)d= ¢op, then one finds that this sum rule breaks
down at the temperaturg.,

Tc=mgDud,/uq. (4)

The departure from the mean-field theory is the appearance
of a factor ¢,/u, in Eq. (4), where ¢,=(4/a)(/2/3)
=1.15470058 ... andu,=111.5224 ... . Equation(2)
remains unchanged. We now present MD data to test Eqs
(2) and (4).

Molecular-dynamics simulations of gravity-induced
liquid-solid transition.We have used the event-drivéED)
molecular-dynamics code, and refer the readers to [Réf.
for details of the algorithm regarding the collision dynamics
that take into account the rotation of hard spheres, and a way
to handle the inelastic collapse. The thermal reservoir of our
system was modeled using white-noise drividd], which
kicks each particle so that the average kinetic temperature of
each particle is the same as that of the reservoir, and hence
the kinetic temperature of the system. Note that wererte
driving the system by connecting the bottom wall to the tem-  0.020
perature reservoir, which was often used as a model for a
vibrating bed. Z 0015 -

We present in Figl a typical configuration below the
transition temperatureT(<T,), at which about 17 layers of
particles condense and form a crystal near the bofteig.
1(a)]. More precisely, the particles first form a loose hexago-
nal crystal and progressively evolve into a compact hexago- 0005 1
nal lattice structure. The solid line in the density profifég.
1(b)] is the Enskog profile given by Ed3a), which was 0.000 : : ‘
shiftedto fit the data beyond the crystal regime. We point out (b) el e Gt O'SI)
here that(i) this shift is not an arbitrary parameter, but
should be uniquely chosen to fit the data, aih_hthis shift in FIG. 1. () Snap shot aT<T,, where about 17 layerélack
ff”‘Ct determmeg th.eneasure.dsme.of the SOI'd, by S|mulq- graing form a crystal and two layers at the top are fluidizéxl.The
t_lons. The dens_lty in the solid regime is 'Fhen _flt by a Stfa'ghtﬁtting of the density profile is the combination of the Enskog profile
line as shown in the figure. The oscillations in the solid regq (3)] and the rectangléstraight ling. The vertical axis is the
gime are real, but it is simply the finite-size effect, i.e., thepositionzfrom the bottom, and the horizontal axis is tibe
hexagonal packing in a finite lattice has two more particles in
alternative layers. This oscillation must disappear in the therim Fig. 2(a) is the prediction Eq(2). The excellent agreement
modynamic limit. between the theory and simulations is a confirmatiortiof

The critical temperatur@_ is determined as the tempera- the existence of the gravity-induced liquid-solid transition of
ture at which point ecompacthexagonal crystal is formed hard spheres, andi) the validity of the suggested mecha-
from the bottom layer, beyond which point the density at thenjsm of this transition via the disappearance of particles from
bottom layer remains constant@t=1.15, and this hexago- the liquid and their settlement into the solid regime as pre-
nal structure is permanently retained. We point out that &jicted by Enskog theor}6]. We point out that the transition
loosely hexagonal crystal forms at a temperaflife which  here is sharp, but because of the discrete nature of the hard
is somewhat larger thaf.. BetweenT. and T;, particles spheres, it is somewhat difficult to measure the layer thick-
squeeze themselves, expelling holes, and progressively formess of the solidified regime ne@g, when the layer thick-
ing a compact hexagonal crystal. Note that a few vacanciegess is less thaanelayer. This is the reason why the mea-
created during this crystallization do not anneal but stay irsurement was a little far away the transition temperature.
the systen{Fig. 1(a)]. Now, in order to carry out the quan- Next, we present our analysis of the vibrating bed from
titative analysis of the formation of a crystal beyond the tranthe viewpoint of the liquid-solid transition discussed above.
sition temperature, we haveeasuredhe size of the solid as See Fig. 3. It has been fairly well established that the con-
mentioned above, namely by shifting the Enskog prdfiee,  figurational statistics of the vibrating beds seem identical to
Fig. 1(b)], and plotted it at different temperatufe<T, as a  the equilibrium statistics of a molecular gas at an equal pack-
function of the scaled variabl&/T. for 1000 particles of ing fraction [8], yet the relation between the vibrational
m=2.090x10 %, D=0.001 m, andu=20. The solid line strength,I', and the corresponding equilibrium kinetic tem-
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g/ vs. T/T, the system, and then measure the size of the solid region and
0.90 compare it with the prediction made by E&). The control
parameters are given in Réf/], namely the particle diam-
eterD=2.99 mm, and the dimensionless initial layer thick-
ness u=10.2, from which we determine the normalized
critical temperature of the vibrating bedT./mg
070 L =uD ¢,/ u,=0.607 mm. The effective temperature of the
o system is then determined by fitting the tail region and shift-
ing the Enskog profile by,. We find T/mg=0.36 mm,
0.60 and {,=4.41 layers from which we measure the size of the
solid asz,= ¢,{,/D=12 mm~=4.0 layers, while the pre-
° dicted dimensionless height of the solid regidn,, is (¢
0.50 |- =u(1-T/T;)~4.15 layers. The previous fitting of the den-
sity profile by the Fermi profile was also satisfactory, but
was found to be most difficult near the rounded region,
%0 10 50 050 00 0.50 which the Enskog profile fits quite welFig. 3). One advan-
/T, tage of the present method of analyzing the configurational
statistics of the vibrating bed might be that the glokiaktic
FIG. 2. The fraction qf the hard spheres in the condensed regim?emperature can now be associated with the vibrating bed,
as a function Ofosrc with N=1000, u=20, g=981 Cm,/seé and hence comparison can be made between the experimen-
and m=1.047x10 * (square. The data points are obtained by o)1y determined configurational statistics of the vibrating
uniquely determining the shifting position of the Enskog profile, bed and those of the hard spheres in thermal contact with the
and the solid line is the prediction E(R). heat reservoir. The s if lation betw the tw b
. pecific relation between the two can be

perature has remained largely undetermined. There has begHtalned by comparing the the_rmal expansion of the hard
a previous attempt to relafe to the Fermi temperatufd.2], Spheres and the kinetic expansion of the vibrating bed. The

which is not the same as the kinetic temperature, but esseh}hgggfl t_arxpans_lgrr: C'znsggpg)r;he tlggrsa?ﬁelE;ZEocenrtgfr'I:f
tially the compactivity[13]. In the present work, we will Z(T), whi pu y g proft

establish a specific relation between the vibration strengtrqeaIr the tail, and the solid rectangle. We find

0.80 |- ®

Cin

and the kinetic temperature, and test its validity via simula- Du | 2|Aq| b T)\2
tions. Az(T)= > —2—1 (T—> , (5)
At a low vibration strength, experimental ddfg seems Mo ¢

to clearly indicate two distinctive regimes: the solid regime

. . where the constant
near the bottom where there are very little particle move-
ments, and the liquid regime near the surface where particles |A 1= oS S f(pdo)— F(do) [ pbof’ (pdo)dp]
are dynamically active exchanging their positions via colli-
sions. Hence, the system presented in IREf.is belowthe =5503.531806
liquid-solid transition temperature. We will determine both

the transition temperatufe. and the effective temperature of with f(x) given in Eq.(3a). Note that the correction is sec-

ond order inT. Let Hy(I") be the single ball jump height on
the surfacg16]. Then, by equatingsz(T) andH,(I")g/ w?,
we find the desired relation
2
Mo

T \/2H0<F)g

Te Do?u? | 2| Ayl o= pd
where w is the vibration frequency. Putting all the values,
Eq. (6) predictsT/T.=0.663, which is close to the measured
value of 0.593 above.

In conclusion, two points are in order. First, we have
demonstrated in this paper that the point at which the Enskog
description of hard spheres fails indeed signals the liquid-
solid transition, and such a failure arises via the breakdown
in the particle conservation. The missing particles form a
condensate at the bottom, which essentially determine the
fraction of particles in the solid regime, and in turn the thick-
ness of boundary layers. Since only a fraction of grains are
mobilized under shedi 4], and avalanches and many inter-
esting dynamics occur in these thin boundary lay&tssuch

FIG. 3. Experimental density profile of the granular materials in@ determination should be of technological importance. Sec-
a vibrating bedRef.[7]). The fit was by the Enskog profile near the ond, since Enskog theory is a truncation of Bogoliubov-
surface and the rectangle beldw. Born-Green-Kirkwood, and YvofiBBGKY) [15] hierarchy

D vs.z
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at the third order, the existence of gravity-induced liquid-different approximationg16—18 or may try a different form
solid transitions of hard spheres must have some interestinigr the pressure, such as the form suggested by Percus-
consequences to higher-order kinetic theory, in particularevick [19], and/or in higher-order truncation. It only disap-
with regard to the dynamic behaviors. Unlike particles in thepears in the limit when the closed volume packing density
liquid regime, those particles in the solid regime are largelyphecomes one, which is possible only in the case of an ideal
confined in cages and fluct_uate _arou_nd fixed positions. _TheiAppoIonian packing20]. Finally, we point out that the pres-
motions resemble the lattice vibrations rather than binarynce of dissipation does not alter the condensation picture at
collisions, and it may be a little peculiar, albeit not unphysi- 5| [21], if the velocity distribution remains Gaussian. Recent
cal, to attempt to describe the [attlce wbrgtlons by the k'”et'cexperiment$22] have demonstrated the non-Gaussian nature
theory. If so, such a description must include much morey the velocity distribution, but if the dissipation is small,
than binary collisions. Hence, it is not unphysical to see thafyhich is the case for the simulations carried out in this work,
these particles disappear from the kinetic equasorthe the deviation from Gaussian should be small. We also point
levelof the Enskog approximation. However, as discussed iyt that for hard-sphere systems without gravity, there exists
the beginning and demonstrated in this paper, this gravitypg typical energy scale, and thus any transition must be en-
induced liquid-solid transition is not a peculiar phenomenonyqpy driven, i.e., there exists no critical temperature, and the
associated with the Enskog equation, but rather an intrinsiﬁhase transition occurs at a critical volume fracti@8].
transition inherent in a system where an excluded volumeyowever, for the system considered in this paper, there ex-
interaction is dominant. The formaupn of a so_I|d at the bot-igts g typical energy associated with the potential energy due
tom is the appearance of a massive occupied low-energy, gravity, and thus this transition is not entropy driven, but

state due to the Pauli exclusion principle. 'Therefore, th_"energy driven, and there exists a critical temperaliyre
breakdown in the sum rule, the necessary shift of the density

profile due to the formation, and its upward spread of the We wish to thank Stefan Luding for providing us with his
closed-packed regimghouldpersist because the Pauli exclu- MD code and many helpful discussions over the course of
sion principle is in action in real space, even if one may usehis work.
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