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Simulation of natural convection effects on succinonitrile crystals
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Department of Mechanics, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
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A numerical study of the effect of natural convection on the growth of succinonitrile crystals has been
performed. All simulations are two-dimensional phase-field computations using an adaptive finite element
method. The undercooling has been varied between 1.92 to 0.12 K, which is within the range used in experi-
ments. The thermal natural convection has minor effects at 1.92 K, but the influence increases with decreasing
undercooling, due to the fact that the size of the crystal increases. The simulation results show a decrease of the
growth Peclet number with decreasing undercooling that is very similar to that observed in terrestrial experi-
ments. Also, the simulation results for the orientation effect of the gravity vector agree qualitatively with
experiments.

PACS numbgs): 44.25+f, 02.60.Cb, 02.70.Dh, 47.15.Cb

[. INTRODUCTION field. The side branches close to the tip of the dendrite and
the operation point of the tip change depending on the
When a nucleus solidifies in an undercooled melt, th@rOWth direction relative to gravity. Also, it has been found
size, morphology, growth rate, etc. may be strongly affectedhat the operating point of the tip of a dendrite is different in
by any motion in the melt. This motion will thus be impor- terrestrial and microgravity experiments. It has also been

tant for the properties of the finished material. Such me'ﬁvm?xnrézzatltéhiﬁ ;"g?{;‘;&cxﬁ‘]ﬁgﬁa‘;‘toﬂe asm{c','?léﬁe'cqtgg?ﬁ:
flows may be due, for instance, to imposed external stirring y

flow induced by solidification shrinkage, or a large ScaIeOperatlng point of the tip11,12.

tion in the bulk melt due to i dt ; In a microgravity environment it was observggi8] that
convection in the bulk meit dué 10 Imposed temperaturé grag, e nondiffusive phenomena may affect the growth at high
dients. Another cause, that will be investigated here, is th

i ®indercooling, which is probably a result of the kinetic effects
natural convection that may result from the release of latenf; the phase-interface. Ananth and GilB3] suggested that

heat from the growing crystal. Considering an undercooleghe reason for the overprediction of the growth velocity of
melt with dendritic solidification from an isolated nucleus, the isothermal dendrite theory, for undercooling above 0.23
the adjacent melt is heated by the released latent heat, and is due to a Stefan wind and the Gibbs-Thompson effect.
the corresponding change in density may cause gravitation@llso, at lower undercooling, the experimental results deviate
convection. The ensuing melt flow may alter the local heafrom Ivantsov’s transport theorfyi0].
transfer around the tip, and this may have large effects on the A modification by Pineset al. [11] is attributed to the
growth of the dendrite. finite size of the experimental chamber. The proximity of the
In the last decades there has been some interest in natusadlls is included by looking at the distance between the tip
convection effects on the morphology and growth of indi-and the closest chamber wall. It was concluiéd, 14 that
vidual dendrites. A recent review is available in REE].  the finite size of the container may be of importance in
One reason for this interest is that natural convection is fremicro-gravity. Both of these new theories agree with Glicks-
quently suspected to influence experimental resits]. man’s isothermal dendritic growth experimentDGE).
For pure succinonitriléSCN) there are quantitative measure- Tennenhouset al.[15] also compared the new theories with
ments[2—4,7,§ of the velocities and radii of the tips of the the IDGE experimental results, and it seems that the wall
main stems. Experimental and theoretical work has showproximity effect is the main reason for the discrepancy be-
that the effects of natural convection increase at low undertween the theory and the microgravity experiments at low
cooling, due to the increasing size of the dendrf@s One  undercooling. It should be noted that the use of Ivantsov's
indication of this is that when terrestrial measurements aréransport solution is a weakness, and partly responsible for
compared to theories that disregard convection, such as ttifferences between theory and experiments.
classical lvantsov theofyL0], the agreement is good only for ~ The case of immediate interest in this paper, natural con-
a small interval of undercooling. For undercooling abovevection, was studied theoretically primarily by asymptotic
4-5 K, there seems to be interface kinetic effects. Fomethods. Gill and co-workers investigated the effects of
growth below this undercooling, but above 2 K, the Ivantsovforced and natural convection on dendrite growth in a series
solution agrees well with experiments. Moreover, theof paperd7,9,13,16,17, using an approximation that is valid
Ivantsov solution, in combination with a constant value ofclose to the dendrite tip. Ananth and GjiB] used this to
the stability parameter, gives a theoretical tip velocity and tipsolve the Navier-Stokes equations with thermal buoyancy for
radius that are almost the same as those measured in terr@sshape preserving paraboloidal dendrite tip, and computed,
trial experiments. Belw 2 K the terrestrial growth again for instance, the growth Peclet number as a function of un-
deviates from this theoretical operation point of the tip. Un-dercooling. They showed, somewhat unexpectedly, that natu-
der terrestrial conditions it has also been observed that theal convection becomes important for sufficiently small un-
dendritic growth depends on the direction of the gravitationadercooling, and that the tip radius of the dendrite is the
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characteristic length scale for the thermal convection. Can- u=0,v=0,0pldy=0,0=-1,¢=-1
right and Davig[18] used a different approximation, which
assumes, a small buoyancy, but is valid in a larger region |
around the tip. They studied, among other things, the influ-
ence of the Prandtl number. Sekerigal. [19] introduced

the natural convection fluid flow by replacing the dendrite
array by an isothermal sphere that encloses the dendrites, and
then treating the case of the sphere surrounded by cold melt.
The stagnant thermal boundary layer around the sphere is

ou/ox = 0 u=0

then used to modify the Nusselt number for the tip of a v=0 v=0
dendrite. op/ox = 0 dplox = 0
In this paper the phase-field method proposed by Karma gzg:fg fj

and Rappe]20,21] is used to track the solid-liquid interface.

In this method the parameters can be adjusted to give arbi-

trary interface kinetics. Moreover, the interface can be rather

wide, and the method still gives accurate results. This

method was used by many researchg@2-24. Provatas

et al. [23], and Braun and Murraj25], used the finite ele-

ment method(FEM) with adaptivity. Provataset al. [23]

have performed, among other things, a long time computa- U=0,v="0,3ply=0,0=-1,¢=—1

tion of thermal growth of a free two-dimension@D) den-

drite for the dimensionless undercooling of 0.1. Provotas FIG. 1. A sketch of the domain of computation with boundary

et al. [26] computed 2D dendrites down to an undercoolingconditions. The contour represents the solid-liquid interface of the

of 0.05, and investigated time dependent growth at low uncrystal. The angle/, denotes the angle between the direction of

dercooling. gravity and the preferred growth directiamandv are the velocity
Phase-field simulations with convection were performedtomponents in the andy directions respectively, and, is the tip

only very recently. Tongt al.[22] made computations with SPeed-

forced fluid flow toward a free thermal dendrite. Convection e o

effects on a dendrite growing into a shear flow were studied€’erence lengttw, and the thermal diffusion tim&V/«,

by the author$27,28. However, to our knowledge there are respectively, Wherex. is the t.herr_nal diffus.ivity. Velocities
no published phase-field simulations of natural convectiod!@ve been scaled with the d|ffu5|02n velocityW. The pres-
effects on dendritic growth. sure has been scaled wipga vy /W<, wherep, and vq are

The purpose of the present paper is to study how naturdD® reference density and viscosity &t Tr,, respectively.
convection affects the evolution of a crystal. We have simu-'"€ nondimensional temperature has been introduced as
lated growth of a thermal dendrite of pure SCN in two di- = (T~ Tm)/(Tm=T.), whereT is the dimensional tempera-
mensions. In the following, the mathematical problem is for-ture-

mulated in Sec. II, the numerical aspects are discussed in All the material properties are assumed to be the same in
Sec. I, and the results are presented in Sec. IV. both the liquid and solid phases, except for the density. The

solid phase has a constant dengigy while the density of the
fluid, p, varies with temperature as

A rectangular chamber filled with a pure single- =Pl 1= AT To)]. @)
component melt is considered. The melting temperature ofiere 3 is the thermal expansion coefficient. The relevant
the material isT,,, and it is initially at a uniform temperature material parameters that were used ib this study are listed in
T.,. The melt is undercooled, i.€l,,>T, . The walls of the  Taple |I.
chamber are maintained at a constant temperatureln the In both the solid and liquid phases the energy equation is
center of the chamber a nucleus is placed, and it is assumegitten as
to be held fixed during the subsequent growth. Initially the
nucleus is assumed to be circular with a nondimensional ra- 90 — 19 _,
dius of 5, and to be at the melting temperatiifg. E+U'V0:ﬂ E”LV 0. @

A sketch of the computational domain is shown in Fig. 1.

It represents the right half of the chamber. On the left boundHere A= (T,,—T..)/(L/c;) is the dimensionless undercool-
ary of the domain, where the nucleus is positioned, symmeing. L is the latent heat, and, is the specific heat of the
try boundary conditions are applied, as indicated in the figimaterial. Hence Eq2) models the heat equation in the solid

ure. It is thus assumed in the simulations that the nUCleUg: 0) and ||qu|d phases_ It also models the release of latent

grows symmetrically with respect to the vertical centerline.neat at the solid-liquid interface. This equation was derived

On the right, top, and bottom boundaries, solid isothermahhenomenologically in Ref$22,27.

walls are assumed, as indicated. In formulating the equations for the melt flow, the Bouss-
The dimensionless time, spatial coordinates, temperaturgaesq approximation has been used, as is often done in heat

flow velocity, and pressure are denotedtbx,y), 6, u,and  transfer research. This amounts to neglecting the density

p, respectively. The length and time have been scaled with gariations with temperature everywhere except in the gravity

Il. MATHEMATICAL FORMULATION
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TABLE I. The material properties of SCN.

Symbols Meaning Value
Tm Melting temperature 331.23 K
Cp Specific heat 1.99 J/(chK)
L Latent heat of fusion 47.8 J/ém
a Diffusivity 1.12x10 % cn?/s
k Conductivity 2.2%10°% J/(cm s K)
Po Density 1.0 glcrh
B Thermal expansion coefficient &HNo 4 K1
oo Surface energy 8910 7 Jlcnt
2 Kinematic viscosity 0.026 chfs
€ Degree of anisotropy 0.015

force term in the momentum balance, and also neglecting the Dieperset al.[29], and Tonget al.[22] suggested another
temperature variations of other material properties. It carway to implement the no slip condition on the solidification
easily be shown that this is a consistent approximation that isiterface. They modified the Navier-Stokes equation by add-
valid for small relative density differences, which, using Eq.ing a volumetric shear dissipation term, which is switched on
(1), can be estimated here to péT,,— T..). With represen- in the solid region. They also made this more accurate than
tative numbers T,,,— T..<2 K), this is always less than 1.6 the method used here. However, since the mesh is extremely
x 1073 fine close to the interface, we have been satisfied with the
Due to the Boussinesq approximation, and the assumptioabove.
of equal densities of melt and solid, the continuity equation The solid-liquid interface is tracked by the phase-field
can be written as equation

V-u=0. 3 I
. . . W —-=[¢—ANO(1- ¢?)] (1~ %)+ V- (WV ¢)

The fluid flow is governed by the Navier-Stokes equa- ot
tions, in the following form, where the Boussinesq approxi- P ( oW &(}5) P ( oW I

mation has been used: — =
X

“awl T\ ©

ou — — - R
E+U~Vu)=Vp+V-(fV[Vu+(Vu)*])+Ra0y.

1

Pr

wherer and\ are constants chosen according to Karma and
4 Rappel[20,21], to impose the modified Gibbs-Thomson con-
dition. The solid-liquid interface has a dimensionless thick-
Here P,/ a is the Prandtl number, the asterisk denotesness of order unity, but the values sand\ depend on the
the transpose operator, and R@B8W3(T,,— T..)/(av,) is length scale W.
the Rayleigh number. The pure metal used in the simulations is assumed to have
With the assumption that the melt and solid have the samg body-centered cubic lattice, with a fourfold anisotropy of
density, the atoms are at rest in the solid, and there is nghe surface energy at the solidification interface. This enters
volume flow at the interface. Therefore, the fluid velocity the phase-field equatia®) via the functionw, which is cho-
must become zero when approaching the solid-liquid intersen here as
face, as with the no slip condition usually applied at a solid
surface. This boundary condition can not be applied directly, w=1+ecod4({— )], 7
since the solid-liquid interface is tracked implicitly through
the phase-field variable. Instead the no slip condition is
implemented by explicitly setting the velocity to zero in the where{ is the angle between the normal of the solid-liquid
nodes of the computational mesh, with a valie0.5, and interface and the vertical direction, ardis the degree of
by making the viscosity a rapidly increasing function of theanisotropy in the surface energy.
phase fielde. In the simulations it is assumed that the lattice of the
This viscosity increase is introduced via the functfgrof nucleus has an arbitrary orientation, and that this orientation

the phase-field variables that appears in Eq4). We have is controlled by the parametép. This results in the situation

used the following definition of ,: that, without any flow, one of the main branches would even-
tually grow in the direction given by,, as shown in Fig. 1,
1 $<—0.6 where {,=45°. The angle{ is calculated using the spatial

f (5 derivatives of¢, according to:

"7 |1+10(4+0.62 otherwise.

The simulation result is rather insensitive to variationf pf =arcta ¢ /¢ )
andf,=1 gives only a small decrease in accuracy. ay x|’
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IIl. NUMERICAL METHOD <0.001 anddt<5, whereV, is the maximum normal speed

.of the interface. These criteria result such that when the time

The numerical F“e”‘Od employed in the preser_lt paper Igtep is decreased by a factor of 10 for a case With0.08
the same as that in Reff27,28, where more details were the relative difference in position and velocity of the inter-

reported. The addition of the buoyancy term in the MOMENtace caused by the change in time step is never larger than

tum equations do not add any fundamentally new numericg o, (for time <4 10°). For a typical run, the time step is

difficulties. We will thus discuss numerical issues onlyinitially 10~% it then increases slowly, with less than

briefly. _ _ _ <0.05% per time step.

The main features of our numerical strategy is that we use Tg validate our code and adjust the error indicator we
a Galerkin formulation of the finite element method, with compared our simulations with published simulations. First
piecewise linear base functions and unstructured meshes ffe convection was turned off, and we made a comparison
triangular elements. The spatial resolution of the meskwith the results by Karma and Rapp&D] and Provatag32).
changes adaptively during the computation to obtain an ad~or A=0.25,0.45, and 0.55 our results agree, within a few
curate solution with a minimal number of elements. Thepercent relative error. We have concluded that the radius of
adaptivity in the present paper is accomplished by making #he tip, R, should be at least around seven length sceles
coarse initial mesh and then adaptively splitting or mergingand the resolution should be 0.44 or finer to obtain an accu-
the elements according to an error indicator. racy within a few percent. In the simulations presented be-

A rather large domain was used to reduce the influence dpw, the length scales were selected to g 12W.
the walls. The same dimensionless domain size was used for At undercooling below 0.25 we did not have access to
all cases. It extends between 0 to 60000 in xhdirection, reference solutions to compare with, but our experience from
and —60000 to 60000 in the direction, and the finest and Using different interface widths, meshes, etc. is consistent
coarsest resolutions are about 0.45 and 5000, respective|y_\/\/ith the rule that the radius of curvature should not be less

The reference |engtw was chosen in order to reflect the than approximately 12 interface widths. The requirement that
tip length scales, in such a way that the nondimensional tighe radius of curvature should be larger than the interface
radius should be around 12. Consequently it is taken differwidth also seems to be the most restrictive of the four con-
ently depending on the undercooling. In Sec. IV we will ditions given by Karma and Rappf20] for the validity of
discuss five different values of the nondimensional undertheir second order accurate version of the phase-field equa-
cooling, A=0.08, 0.04, 0.02, 0.01, and 0.005. The corre-tions.

sponding values for the reference length sVe= 140.81,, In the related Hele-Shaw cell problem, Folat al.
500d,, 100Gy, 1666.66l,, and 3333.38,, whered, is the  [33,34 found that the accuracy of the growth of linear insta-
capillary lengthdy=c,o(T /L2 bilities was affected by the capillary length scale, since the

A typical element distribution consists of about 150000SPoNtaneous wavelength scales with the capillary length. The
elements and 75000 nodes. Most of the elements resolve tifétical wavelength, however, also increases with decreasing
interface region; therefore, the number of elements angndercooling, so that, despite the seemingly very large ratios
nodes scale with the arclength of the solid-liquid interface, a¥V/do that are used here, the critical wavelengths are actually
all times. This mesh corresponds to the computation witfesolved. Indeed, the essence of the marginal stability theory
A=0.02, also shown in Fig.(8) and it took about 300 CPU s that the tip radius should be comparable to the critical
hours on a CRAY J932Z1 CPU. The corresponding case Wavelength;i.e., if the tip radius is resolved, then the critical
without convection needs about half of this CPU time. ~ wavelength is also resolved. .

To solve the Navier-Stokes system of equations, a scheme The implementation of the mathematical problem was
proposed by Greshet al.[30] was used. In accordance with done by using and developing code generation tools that au-
this we employ pressure splitting and a streamline-upwindomatically create a FEM code from a symbolic high level
Petrov-Galerkin treatment of convective terms. The disfepresentation of the partial differential equati¢gs]. This
cretized systems of equations were solved using conjugaf®akes it possible to handle the complicated mathematical

treated implicitly. For the low undercooling cased ( reduces the work required for implementing different models

<0.02), the convective terms were also implicit. and formulations.
The Navier-Stokes solver has been validated, among other
test cases, for flow past a circular cylinder, where the com- IV. RESULTS
puted wake length and position of wake center were com-
pared with those by Fornbefg1] for Re= 10— 200. In these Five different values of the dimensionless undercooling

tests the cylinder was represented by the use of a prescribed A, 0.08, 0.04, 0.02, 0.01, and 0.005 — have been inves-
phase field, in order to test the implementation of the no sligigated. This corresponds to values of the undercooling be-
condition on the crystal. The seemingly crude method oftween 1.92 and 0.12 K, which is in the range of experiments.
increasing viscosity, as given in E¢), was found to be Figure 2 shows the flow field around the crystal for
quite adequate. This is understandable, since the flow fields0.02, at a nondimensional time 1:640°. The reference
are quite viscous here, and thus vary over the length scale ¢éngth scale here ¥/=10001,. Note that only a small frac-
the size of the crystal, while the thin region around the in-tion of the nodal velocities are shown. Figur@Pshows the
terface is extremely well resolved. More details were giverflow field in the vicinity of the crystal. The flow is clearly an
in Refs.[27,28,. upward natural convection, driven by the release of latent
The time stepdt is controlled by the inequalitiedtV,  heat as the crystal grows. Figuré@Pshows the flow field in
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(a) to distances from the crystal that are significantly larger than
S the dendrite arm length.

10ty 2,;“::::: o The rising plume above the crystal eventually reaches the
' ZANNNNNN 20 ) top of the container, and will start to build up a stratification.
NNyl s ’ ‘*‘ However, this has not yet happened at the time shown in Fig.
2ER\ DV T 15 A\ N\ 2. The plume is still evolving, and the heated fluid has only
B - f Friaa T \ \ AR reached a certain height, roughly coinciding with the center
ol T\\iﬁ% s 1.0 % \S{% \ of the vortex seen in Fig.(B) (a_lround height 20000
(RS RE A 05 Tl\\ \ \ The fluid in the plume continues to accelerate above the
AN N \ crystal, giving a flow velocity which is maximal on the cen-
VA
\

Aﬁﬂ_ﬁ///////’&

,,,,,,,,,,, o.o,%\lf\‘v/ terline far above the crystal. In Fig(&@ the maximum fluid
Al e velocity is 0.055, while the growth velocity of the downward
Ce ] 05t/ 0] Y growing branch is 0.00029. This implies a fluid velocity that
. ; O # o 10 . H 1 is almost 190 times faster than the growth velocity, but it
0 2 4 104)(6 00 05 10 15 32.0 should be remembered that the fluid velocity is much lower
10% x

at the tip of the downward growing branch.

Figure 3 shows the thermal field corresponding to the
flow fields in Fig. 2. The temperature has returned to the
undisturbed initial value at a distance from the crystal which

) ) o is approximately the overall crystal size. This is consistent
the entire domain. The flow is directed toward the crystalyiih the small value of Ra but the isotherms also reveal

from below and from the sides. The fluid that is heated neag|ear convective effects. Above the crystal the beginning of
the crystal forms a plume, which rises vertically above thethe thermal plume is visible. Comparing with the flow field
crystal. in Fig. 2, it is evident that the velocity disturbance reaches
The nominal Rayleigh number Ra, based on the referencgiuch further from the crystal than the temperature distur-
length W, has the value 2.2410 ’. A more representative bance. This is to be expected in any high Prandtl number
Rayleigh number is obtained by basing it on the dendrite arnmatural convection flow.
length | (nondimensionalinstead. For this case this gives,  The isotherms reveal that the heat flux is increased at the
using the length of the downward growing atm 500, Ra  tip of the downward growing branch, while it is decreased at
=13Ra=27.8. This is consistent with the convective flow the upward growing branch. The growth Peclet number is
pattern that we see. With this low Ra, and also for the rathedefined aP=VR/2, whereV andR are the nondimensional
large Pr used here, the flow is quite viscous, and there is ntip growth velocity and radius, respectively. The value of the
distinct fluid flow boundary layer. The upward flow extends growth Peclet number is around 0.00172 for the tip of the

FIG. 2. Flow field around a growing crystdh) Entire domain.
(b) Close up around the crystal.

(a)
5.0 T . T

103y

40| ]

3.0+ 1

FIG. 3. Isotherms around a growing crystal.
(@ The vicinity of the crystal.(b) Close up
around the crystal.

2.0 4

1.0 } .

0.0 | 4

10 -05 00 05 1.0 -500 0 500
10% x
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a b
v (a) y (b)
400 /Iy X
200 200
0 0
-200 | ‘ -200
-400 _400
-500 -250 0 250 , 500 -400 -200 0 200, 400 FIG. 4. Solid-liquid interfaces at different val-
ues of undercooling{a) A=0.04, (b) A=0.02,
y © v (d) (c) A=0.01, and(d) A=0.005.
200
200
100
0 0
-100
-200 -200
-300
-400
—400
—-400 200 0 200 , 400 -200 0 200

downward growing branch. The convective effects that carThere is thus a clear influence on growth from convection.
be seen in the shape of the isotherms are thus not the condenr this case the Rayleigh number based on a dendrite arm
quence of the translation of the tip, but instead of the fluidiengthl =563, is Ra=13Ra=9.90.

motion. This observation is also supported by the fact that Figure 4b) shows the comparison between the crystal
the flow velocity below the crystal is larger than the tip shapes with and without convection far=0.02, at the same
growth velocity(a factor 6 higher at a distance 100 below thetime, 1.64<10f, as was shown in Figs. 2 and 3. The tip
downward growing tipp velocity and radius of the downward growing convective

In Fig. 4 the results for four different undercoolings are .o is 2.8%¥ 10 and 12 respectively. The overall size
shown. The dashed and solid lines represent the Sond'"qmg{ayleigh nl.meer was here’Ra27 8 The.comparison be-

interface without and with natural convection. The referenc - .
length W was chosen to reflect the tip radius of the downﬁween the convecting and nonconvecting cases now shows

ward growing branch, so that the nondimensional tip radiusthat convection has more than doubled the length of the

was around 12. In the four casés=0.04, 0.02, 0.01, and downwarq and horizontal branches, leaving the upward
0.005, W was taken as 5@fj, 100ai,, 1666.6@l,, and Pranch slightly shorter. , ,
3333.33l,, respectively. Each case was simulated in time to At A=0.01[Fig. 40)], taken at time 2.55 10°, this trend
produce a main downward branch that was approximately off €Ven more pronounced. The dendrite arm length Rayleigh
the same nondimensional length; 400—500. This choice, tg?uUmber here is R&52.3, based on the actual length of the
gether with the choice of reference length in terms of actualower arm|=467. This increased value of the Rayleugh
tip radius, means that even though the actual size and timeumber clearly reflects the increased convective effects on
for growth is very different between the different cases, allthe growth which are evident in Fig.(@). The downward
cases show dendrites that are of a similar geometric connd horizontal branches are even more enhanced, with the
plexity, in terms of the ratio between size and tip radii. downward branch the longest. The tip speed and radius of
A general trend is that the velocity of the tip of the down- the downward branch are 270" * and 12.3, respectively.
ward growing branch increases due to the flow. The increas&he upward growing branch almost coincides with the non-
becomes larger as the undercooling is reduced, due to th@@nvecting one.
fact that the size of the crystal becomes larger, and thereby The largest difference between the convective and non-
the natural convection is enhanced. The main flow in theconvective cases occurs for the lowest undercooling
vicinity of the crystal is directed upwards which results in =0.005, shown at time 3.2010° in Fig. 4(d). The tip ve-
that the flow enhances the heat transfer most at the dowrecity and radius are 1:210 % and 10, respectively. The
ward growing branch of the crystal, and it is always thisoverall size Rayleigh number is now Ral32, based on the
branch that grows the fastest. lower arm lengtH =400. This again confirms the increasing
The shapes in Fig.(d), for A=0.04, were obtained at a effect of natural convection as the undercooling is decreased.
time 1.28<1C°. The nondimensional velocity and tip radius ~ As an example of the other extreme, where convection
of the downward branch in the convecting case \re3.9  becomes unimportant, the case with=0.08 (not shown
X 10 * andR=14.75, respectively. It is seen that the down-was computed. The convection gives slightly different tip
ward and the horizontal branches have grown 20-30 %elocities for the branches, but the difference in relative tip
longer in the convecting case than in the nonconvectivevelocity is only 3.5% at time of & 10°. The downward
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growing branch has reached abgut 420, and the velocity 15
and radius of the tip are 4510~ and 26, respectively. The '°910°
overall size Rayleigh number is Ra0.185. Compared to 20
the case without convection, the relative difference in verti- 55|
cal position of the lower tip is less than 1%, and the convec-
tive and nonconvective shapes are indistiguishable. Hence e = -3.0}
this undercooling the effect of the thermal natural convection
on the crystal growth is negligible.

The time history for the growth velocity for the down-
ward growing branch is interesting. In all cases without con-
vection the growth does not reach a steady state. This is 45|
expected at these low undercoolings, since in the presence ¢
very slow growth, the convective effects due to the motion of 5.0}
the solidification front are largely absent. The thermal field

will then evolve in time as pure diffusion from a localized '5-5{25 Yy T T

351

4.0L

heat source. In two dimensions, as is well known, the far logpA
field is logarithmic, and a steady state is possible only after
the diffusion has reached the outer boundary. Provetas. FIG. 5. Growth Peclet number vs nondimensional undercooling.

[26] investigated the scaling of this time dependent growth afrhe solid line shows the present simulations; the dashed line shows
undercoolings as low ad=0.05. Both with and without @ 3D Ivantsov construction; squares are experimental results by
convection, there is an initial transient when the initial con-Glicksman[4]; and the dash-dotted line shows a 2D Ivantsov con-
dition for temperature is equilibrated over a length scalestruction.

comparable to the size of the initial nucleus.

However, with convection the growth velocity soon the overall crystal size. Here, however, the tip region is very
reaches a quasi-steady-state. With the natural convectigmall, and indeed there is no self similar boundary layer
flow the diffusion of heat is balanced by the convective re-region at all. A reasonable conceptual model for the heat
moval of heat, and the disturbance of the temperature field igansfer at the tip would rather be a small object in a forced
confined within a region which for the higher Rayleigh num- flow, where the flow is driven by the convection on the den-
bers starts to resemble a convective boundary layer of thicldrite size scale.
nessiRg V4. The flow also increases the growth of the horizontal

With convection the time history of the tip downward branch. This branch has grown 87%, 83%, 81%, and 77%
growth is typically that, after an initial rapid growth, the tip of the length of the downward growing branch far
speed drops to an almost constant value. This may typically=0.04,0.02,0.01, and 0.005, respectively. This difference in
increase slightly at later times. This is due to the fact that théength is observed to slowly increase as time elapses, be-
size of the crystal is continually increasing, and this causes eause the difference in velocities of these branches is still
continued increase of the natural convection, but this is &lowly increasing.
minor effect as the growth velocity of the tip is increasing The flow is viscous for all values of the undercooling and
very slowly. the main flow follows the solid-liquid interface, without

For A=0.04, the velocity is increasing at the time shownseparated flow regions. The vortex that was observed in the
in Fig. 4b). However, the increase in speed is very slight,caseA =0.02(Fig. 2) has, forA=0.01 and 0.05, reached the
during the last 100 length units of growth, the speed of theupper wall, and is developing into the overall circulation in
downward growing tip increased only by 1.2%. Similarly, the chamber. Still the temperature is undisturbed away from
for A=0.02 andA=0.01, at the times shown in Figs(c4 the plume and the crystal. Hence there are not yet any strong
and 4d), respectively, the tip speeds have been decreasingffects of the finite size of the chamber, and we do not expect
but have just started to increse slightly. Fe=0.005, at  the results to be sensitive to a change in chamber size.
time 3.10< 10° in Fig. 4(d), the tip velocity has increased by ~ With convection the stability(selection parametero
2% during the time required for growth over the last 100=1/(PR/(dy/W)) is 0.047-0.048, wherd, is the capillary
length units. The steady state tip velocity is not strictlylength andP=VR/2 is the growth Peclet number, wheve
reached, but the change is very slow and can practically bandR are the nondimensional tip growth velocity and radius,
interpreted as steady state. Po+=0.08, as discussed above, respectively. This value is more than twice the value of 3D
convection effects are negligible. Consequently no steadgxperiments with SCN, and some of this difference is prob-
state tip velocities were obtained for this undercooling. ably due to that here the value of the anisotropy parameter

The slow increase of growth velocity with crystal size is that was used is a bit high.
understandable as a consequence of an increasing flow speedFigure 5 shows the growth Peclet numberir the simu-
around the tip, as the crystal grows in size. With a largedations as a function of the undercooling. In the graph, the
crystal the velocity scale of the convective motion increasesdash-dotted and dashed lines are the growth Peclet numbers
The tip will thus experience an increased convective flowaccording to an Ivantsov solution without convection in two
which will give an enhanced heat transfer. Note that, if theand three dimensions, respectively. The squares are experi-
tip had been so large that there had been well resolvethental results for SCN in a terrestrial enviroment found by
boundary layers around it, the flow would be self-similar, Glicksman[4]. The most striking feature is that the growth
and the local heat transfer at the tip would be independent dPeclet number increases with the undercooling in very much



PRE 62 SIMULATION OF NATURAL CONVECTION EFFECTS O . .. 835

0.2 growth occurs for Ra=1. A fit of a power law to the points
log16[Nu g (VR)"?] where convection dominates gives the result that
Nug(l/R)Y?=0.555 R#*7°, in reasonable agreement with
the expected law. It is an attractive feature of this relation
that it involves both the tip radius and the overall length
scale; however, in view of the limited parameter range that
was covered, we do not wish to overemphasize the signifi-
cance of this.

The preferred growth direction was also changed 45° for
A=0.02 andA =0.005, i.e.,{; was set to 45° in these two
simulations. These cases were compared to the correspond-
ing cases with the same undercoolings dgeF 0. Without
flow the results were of course independent of this variation

0.3 : : in {g, as expected; thus the initial transient was the same.

-1 0 1 2 3 with flow the two/, values give different flow picture in the
logro Ray vicinity of the crystal. Wher?,=45° degrees there are two

FIG. 6. Relation between tip Nusselt number and overall Ray-downward branches that are growing with 45° angles rela-
leigh number. The solid line and squares show the present simuldlve to the gravity vector. Between these branches the melt is
tions; the dashed line is a fit to the data witk0.04, giving the ~warm, but it is prevented from flowing upward by the crys-
relation Nig(l/R)?=0.555 R#*°. tal, and as a result this is almost a stagnant region. Still, the

] ] ) change in the flow field has only small effects on the growth
the same way for our simulations and the experiments, deye|ocity of the downward branches. The tip velocity for
spite the fact that the simulations are 2D. these downward branches is only marginally smaller than the

The large difference between the 2D and 3D Ivantsovtip velocity for the downward growing branch wity=0°.

curves in Fig. 5 are due to the logarithmic far field singular-gor poth undercoolings the increase &f resulted in less
ity in a 2D diffusion problem, which is absent in three di- 430 19% relative change in tip velocity.

mensions. However, with convection a finite length scale for |, ine cases =0.005 and,=45°, the upward growing
the thermal field is established, and the heat transfer becomes,nches grow with 60% of the veiocity of the downward
independent of the state far from the crystal; this also hold rowing branches and their growth direction are 5° upstream

in the 2D case. There is a quantitative difference betweefy|aiive to the respective preferred growth direction. More-

simulation results and experimental results, but that is a congyer the tip shape of an upward growing branch is no longer
stant factor, the slope of the curves agree quite well. ThiEV |

> . , arabolic. The downstream side of the tip is less curved,
|nd|ca_1te's th_at the esser_mal features of the qonveqtlve effeci§,en though the main flow follows the solid-liquid interface
are similar in the experiments and the 2D simulation.

_ around the tip. Hence the flow has asymmetrically increased
Some of the difference could also be due to the fact thaf,o neat flux at this tip.

the assumed anisotropy valee0.015 is a bit high for SCN. All cases above are for the terrestrial value of the gravi-
Wheeleret al. [36] showed that the growth Peclet number (5iion byt two simulations were also done with reduced
for diffusion controlled growth increases with decreasmggravitation. ForA=0.005, gravitation was reduced by fac-

values ofe. tors of 16 and 16. The results were that the crystal is still

Figure 6 shows the relation between a Nusselt number fog ¢ taq by the natural convection in case of thd feuc-
the downward growing branch and the Rayleigh numbertion, but unaffected for the foreduction. Still, for the 10

The Nusselt number is based on the tip radius and the releaggy,, tion, the size of the envelope enclosing the crystal was
of latent heat, which should be the relevant scales governing.os than 200. and there might be some small convective

the heat transfer around the tip. This gives.an ex.pressic')n ffects that appear at larger times.
Nur=VR/A, whereV and R are the nondimensional tip
growth speed and radius, as above. Using the argument out-
lined above in connection with the discussion of the time V. CONCLUSION
dependence of the growth, we expect the heat transfer around Regjistic parameter values for SCN and undercoolings
the tip to be governed by the flow cause/czi by the overallown to 0.12 K were used to simulate effects of natural
natural convection. This would give NerPe{?, where PR convection on crystal growth. The natural convection be-
=URis a Peclet number based on the flow velotitynon-  comes stronger and affects the crystal growth more as the
dimensional and the tip radius. This flow velocity is as- yndercooling decreases, due to the increase in size of the
sumed to be driven by the overall convection, i.l, crystal with decreasing undercooling. For undercoolings
~Rg"/1. This gives a relation between Nand Raaccord-  |arger than 1.92 K the natural convection has only a small
ing to Nux(l/R) Y2~ Ra““. effect on the crystal growth, as expected from previous ex-
This relation has been tested in Fig. 6. It is seen thaperiments. When the growth Peclet number for the simula-
log;d Nug(I/R)¥?] varies linearly with logy(Rg), as ex- tions with natural convection are compared with results from
pected, except for the lowest value of Rarresponding to terrestrial experiments, a similar dependency on undercool-
A=0.08, where we do not expect convection to be impor4ng is observed, despite the fact that the simulations are 2D,
tant. With this choice of parameters it is also clear that theand the experiments are 3D.
switchover from convectively to diffusively controlled With one preferred growth direction aligned with gravity,

0.1 {

0.0 4
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the downward growing branch is always the fastest growinglirection exceeds a 110° angle with respect to the gravity
one. The growth of the horizontal branches are also increasedctor.

by the natural convection. The velocity of these branches are In simulations with convection, the growth velocity of the
more than 75% of the velocity of the downward growing downward growing tip becomes almost constant, over a
branch, and the difference in growth velocity increases witinodest range of crystal sizes. The growth was correlated to a
lower undercooling. This growth is faster than diffusion Rayleigh number based on overall crystal size. In this corre-
dominated growth. On the other hand, the upward growindation, the growth would depend both on the tip radius and

branch grows with a lower velocity than in the case of dif- the Size of the envelope of the crystal. _
fusion dominated growth. The stability parametear becomes about twice as large as

When the preferred growth direction was set at a 450N thg experiments for cases w_ith_ﬂow. With convec’gion, the
angle from the vertical direction, the growth velocity of the stapm.ty parameter has a variation of 2% and_ this_small
branches that grow downward was not affected; hence th arlathn does nqt correlate W'.th the undercpqlmg. There-
growth velocity was the same as for a downward growing ore, with convection, the stablll_ty parameter is independent
branch, with the preferred direction aligned with gravity. TheOf the u_ndercoollng and the fluid flow for the range of un-
branches that grow at 135° relative to gravity grow with 60%derCOOIIng used here.
of the velocity of the downward growing branches. This de-
pendency of the growth on the orientation relative to gravity
is also observed in experiments, where the growth velocity This work was supported by the Swedish Research Coun-
for moderate undercooling is rapidly decreased as the growtbil for Engineering Sciencé€TFR).
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