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We study the flow of fluid in porous media in dimensiahs 2 and 3. The medium is modeled by bond
percolation on a lattice of ¢ sites, while the flow front is modeled by tracer particles driven by a pressure
difference between two fixed sit€avells” ) separated by Euclidean distancéVe investigate the distribution
function of the shortest path connecting the two sites, and propose a scaling ansatz that accounts for the
dependence of this distributidi) on the size of the systetand(ii) on the bond occupancy probability We
confirm by extensive simulations that the ansatz holdsdfer2 and 3. Further, we study two dynamical
quantities:(i) the minimal traveling time of a tracer particle between the wells when the total flux is constant
and (i) the minimal traveling time when the pressure difference is constant. A scaling ansatz for these
dynamical quantities also includes the effect of finite systemlsied off-critical bond occupation probability
p. We find that the scaling form for the distribution functions for these dynamical quantities=f@rand 3 is
similar to that for the shortest path, but with different critical exponents. Our results include estimates for all
parameters that characterize the scaling form for the shortest path and the minimal traveling time in two and
three dimensions; these parameters are the fractal dimension, the power law exponent, and the constants and
exponents that characterize the exponential cutoff functions.

PACS numbgs): 47.55.Mh, 05.60.Cd, 64.60.Ak

[. INTRODUCTION spatial distribution of the rock types is often close to random,
in which case the classical percolation problem is a good
Percolation theory is a paradigmatic model for connectiv-2pproximation. The place of the occupancy probabititis
ity, originally introduced as a mathematical subject in thetaken by the volume fraction of the good rock, called the
late 1950s. Thereafter, percolation theory has been founB€tt0-gross ratio in the petroleum literature. Thus it is rea-
useful to characterize many disordered systgirsl3. The sonable to model the oil reservoir as a percolation cluster.

) . . - .. The most common method of oil recovery is by displace-
aim of the present paper is to discuss the potential appllcament_ Either water or a miscible gdsarbon dioxide or

tion of percolat_ion theory as a convenient geometrical mOdeJ‘nethan@is injected in a wellor wells) to displace the oil to
for understanding numerous aspects of flow through porouger \yelis, Ultimately the injected fluid will break through

rocks[14,1. Special emphasis will be given to the study of i1 3 production well where it must be separated from the
oil displacement, i.e., how hydrocarbons propagate througljj \which is a very costly process. Once the injected fluid
geological formations between a pair of wells in the oil field. has proken through, the rate of oil production declines as
This work could also be applied to the breakthrough time formore injected fluid is produced. For economic purposes it is
contamination of a water supply, or the time for releasedmportant to know when the injected fluid will break
radioactive material to get from a leaking nuclear repositorythrough.
into the biosphere. As a first-order approximation, we will model the flow
Oil fields are extremely complex, containing geologicalbetween injector and producer wells using Darcy’'s law
heterogeneities on a wide range of length scales from centfanalogous to Ohm’s law in electrical currgnthich implies
meters to kilometer§l6]. These heterogeneities, caused bythat the invading and displacing fluids are miscible and have
the sedimentary processes that deposited the rocks and tRgual viscosity. Preliminary studies of the breakthrough time
subsequent actions on the rock, such as fracturing by tectonfer this model[15] limited the analysis to two dimensions
forces and mineral deposition from aquifer flow, have a sig2nd P=Pc, with no finite size effects. This paper extends
nificant impact on hydrocarbon recovery. that work to three dimensions and treats the effects of the
However, in many cases the rock can be separated intff-critical bond occupation probabilitp and finite system
two types—high permeability‘good” ) and low or zero per- SIZ&- The problem of the flow of two immiscible fluids of
meability (“bad” )—and for all practical purposes we can differing viscosities is analogous to diffusion-limited aggre-

assume that the flow takes place only in the good rock. Th&2to" (DLA) in percolation and was studied ja7].
This paper also examines the correlation between overall

system conductivity and breakthrough time, information
. ) _ highly relevant to the accurate prediction of oil well effi-
*Present address: School of Materials, Mechanical &A“tomat'orbiency. We study this breakthrough time at two distinct
Engineering, Yanbian University of Science & Technology, Beis- boundary conditionsti) at fixed total flux and(i) at fixed
han St., Yanji Clty, Jilin PrOVince, 133000, China. pressure difference between the wells.
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In Sec. Il, we summarize the scaling properties of aFor isotropic media this function has been studied exten-
simple geometrical property—the shortest path—and test itsively andP(r|/) is of the form[2,3,22—24
scaling ansatz in the limit op>p. and strong finite size

effects. In Sec. Il we apply the same ansatz to the minimal 1{r\¥ r E
P(r|/)~? —| exg —a|l —=| |, (6)

traveling time(the breakthrough timeat two distinct bound-

ary conditions and determine its correlation with overall con- 4 4
ductivity. where
Il. SHORTEST PATH ~ 1 Armin @
o= ——== 7
This section deals with the distribution of the shortest 1-7 dmin—1
path between two sites on a percolation cluster. Because of
the qualitative resemblance between the shortest path and tRed
minimal traveling time of a tracer particle, the first step in ~
V= 1/dmin . (8)

understanding fluid transport between two sites in a percola-

tion system is to characterize the geometrical properties _ :

the shortest connecting path. For example, if we assume tk?gtor d=2, Ziff recently argued25] that

the traveling time along a path is proportional to the path g,—1=25/24 (d=2). (9)

length (i.e., all velocities are equglthen we can obtain a

rough estimate for the traveling time from purely geometri- The function of interest to us is the conditional probability

cal arguments. for two sites to be separated by the shortest patlgiven
that the geometrical distance between these sites is

A. Basic distribution functions

The shortest pathor chemical distance” between two P(/|r)= B (10
sites on a percolation cluster is defined as the shortest path
connecting the two sitdd.8,19. The typical value”™* of the  From Eqs.(10) and(5), we see thaP(r|/) andP(/|r) are
shortest path between two sites on a cluster scales with th@|ated as
geometrical distance between these points as

oy P(/|r)=P(r]/) PL) (1D)
/% ~ 1 Ymin (1) / = By
where At the percolation threshold, it has been shdi4] that,
| 113002  (d=2) in analogy with Eq(6),
min™ 1.374+0.005 (d=3) @ 1 {7\ s\
P(/IN~——| o= expg —a| - , (12
is the fractal dimension of the shortest pa2®,21]. Frmin e rem
Consider a hypercubic lattice &f sites. All information where
about the distribution of shortest paths is contained in the
joint probability density functiodP(r,/), i.e., the probability (g,—1)+(2—dy)
that two sites on the same spanning cluster are separated by g,~1= q_ - (13
geometrical distanceand chemical path’. We sum over all mn
chemical pathg’to calculate the probability distribution that . ~ 1
the Euclidean distance between two sites, is ¢,=6v=vl(l—v)= a1 (14
min—
P(r)zf P(r,/)d/. (3 and
o . - o 91/48 (d=2)
Similarly, we obtain the probability distribution that two (15

df: _
sites are separated by the chemical distaribg summing 2.524-0.008 (d=3)

over all possible geometrical distances, is the fractal dimension of the incipient infinite clustés3].

Substituting Eq(9) into Eq. (13), we find ford=2

P() f P(r./)dr. @ g,=2.01+0.02 (d=2). (16)
Given that the shortest distance between these sitéstise The probability distribution of more practical interest is
conditional probability that the geometrical distance betweerp’(/|r), defined in the same way & /|r) but for any two
two sites isr is [3] randomly chosen points separated by geometrical distance
, and on the same cluster, but not necessarily on the incipient
P(r|/)= P(r.”) 5) infinite cluster{14]. P'(/|r) has the same scaling form as in
’ P(/) "~ Eq. (12), but with g, replaced by 14]
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, d—d; 10°
9,=9,+ do (17
min _2
10
B. Scaling ansatz for shortest path — 10

The complete scaling form o®’(/|r), which accounts

ra,,

also for finite size effects and off-critical behavior, has been 10
studied ford=2 and reported if14]. Specifically, the fol- . — ::g:';:gﬁ
lowing ansatz has been propogdd]: 107 o—or=tbL=128
1 (/Y s / / T T T T
B/ (/1) ~ / N aar 0 P
rdmin rdmin ! rdmin 2 Ldmin 3 gdmin ' lmin
(18) 10°
where é~|p—p.| 7 is the pair connectedness length, and R
the scaling functions have the forms 107 ¢ '
fi(x)=exp—ax"?), (19 g/ 107
—o r=4,L=32
—>0 r=8,L=64
fo(x)=exp —bx?), (20) 10 o 116128
and (b)
10° L - 5 1
f4(X)=exp —cx). (21) 10 10 . 10 10
;
The functionf, accounts for the lower cutoff due to the 10 o
constraint””>r, while f, andf5 account for the upper cut- o—ar-8,L-64
offs due to the finite size effect and the finite correlation D o reel=12s
length, respectively. Eithefr, or f5 becomes irrelevant, de-
pending on the magnitudes bfand &: for L<¢, f, domi- ",
nates the upper cutoff, otherwise dominates. We assume = 10

that the finite size effect and the effect of the concentration
of the occupied sites are independent of each other, so that
Eq. (18) can be represented as a product of the terms that are
responsible for the finite size effedt,) and the effect of the
concent_ration (OF Simulatior_ws ford=2_ have been per- 10 107 10'—1 160 10"
formed in[14] and support this assumption.

FIG. 1. Ford=3, (a) log-log plot of P’(/|r) at criticality (p

C. Behavior at criticalit .
y =p.~0.2488) and for different sets of parameters:,L(

Here we extend the study ¢f'(/|r) to d=3. We nu-  =(2,32,(4,69,(8,128). The straight line regime has slogé
merically test the scaling conjectu¢&8) exactly at the per- =2.3. (b) Log-log plot of rescaled probability ®(x)
colation thresholgp= p.—in which casef=« so f3=f(0)  =p’(/|r) x¢ r%n against rescaled lengtk=//r%in using the

=1. We build clusters using the Leath algoritfi#8,19,26.  valuesg,=2.3 andd,;,=1.39. The curves are flat in the center
Since the Leath algorithm corresponds to the process of s&ecausd,(x) is a stretched exponentigdee Eq(25)]. (c) Log-log
lecting a random point on the lattice, the probabifty(/|r) plot of transformed probabilitylI(x)=log,;d A/®(x)] versusx

is equal to the probability that a pair of randomly selected=//r%in. The slopes of the solid lines give the power of the
points has chemical distaneé and geometrical distanae  stretched exponential functiofy, and f, in Eq. (25. Using the
given that they belong to the same cluster, a cluster that isarameteA=0.08, the slopes giveé~2.1 for the lower cutoff and
not necessarily the infinite cluster. Hence ELP) reduces to  ¥~2.5 for the upper cutoff.

/ -9, / / and rapidly vanishes for'<r9min and for />L%in. To de-
P (/|r)~ g fi| — — | (p=po). termine the functiond; and f,, we compute the rescaled
Amin Amin 1 dmin 2 Ldmin ¢ ili H i H
r r r probability distribution
(22)
4 Vi 9, ¢ —dmin(g,—1)
Figure Xa) shows that, in the range%min</<| 9min @ T =P'(/|r) /9 r~Cminl9/74), (24)

P’(/|r) has power law behavior with slope

) and plot it against the scaling variabte= //r%min [see Fig.
9,=2.3x0.1 (d=3) (23)  1(b)] using the value,;,=1.374. According to Eq(22)
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Amin

L

D (x)=Af(x)f,| X (25

Therefore,®(x) should depend only or and the ratia/L.
Indeed, Fig. 1b) shows excellent data collapse fofr=8,
with sharp cutoffs governed fax<<1 by f,(x) and for x
> (L/r)%in by f,[x(r/L)%min].

In order to test the assumption that the functibpandf,
are stretched exponentials with exponegis and ¢, , we
plot

IT(x)=log; A/D(x)] (26)
versusx in double logarithmic scale for various values of
normalization constarA [see Fig. {c)]. If the stretched ex-
ponential conjecture is correcI(x) should have two
straight line asymptotes for lggx— + < with the slopey,
and for logy Xx— — o with the slope— ¢, . We find that the
slopes¢ , and ¢, of the straight line fits depend weakly on
the value ofA. UsingA=0.08, we obtain the longest regimes
of straight line behavior. For this value & we find ¢,
~2.1 andy,~2.5. Equation14) yields a predicted value of
¢,=2.67 in agreement with our simulation result.

D. Off-critical behavior

For p#p., we identify three regimes determined by the
value of the connectedness lengtln relation to the values
of r andL.

(i) €&>L>r. In this regime, the fact thgi# p, cannot be
detected because the connectedness length is larger than
other relevant variables.

(i) L>&>r. In this case, the upper cutoff of the distribu-
tion Eq.(18) is governed byf ; and the functional form of the
rescaled probabilityb is given by

fs
r mi
For large/, we suggest an exponential ded&y] of ®,

—C% .

Indeed, forp<p., semilogarithmic plots of log(//r%min)
versus/ shown in Fig. 2a) can be approximated by straight
lines with slopes that approach zeroms p.. According to
Eq. (28), these slopesk(p) should be proportional to
& min~|p—pg|9min’~|p—p**°. Figure Zb) shows a double
logarithmic plot of |k(p)| versus|p—p.| for p<p.. This

/

gdmin

d)(/'/rdmin)~fl< (27)

® (/[ 9min) ~ exp( (29)
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FIG. 2. Ford=3, (a) semilogarithmic plot of transformed prob-
ability (/) [see Eq.(25)] versus/ shows pure exponential be-
havior of f5. (b) The slope of the log-log plot of the coefficient in
exponential functionf; as a function ofp—p¢| gives the value
vdmin=1.22 forp<p. (c) P'(/) for p>p.. Note that it is only
for p=0.2788 that the large’ behavior is determined by the fact
that the system is not at criticality.

Below p=p.+0.03, ¢ is still greater tharL. On the other

hand, ifp is not close tq., the scaling form is not expected
to hold. Thus, the results are inconclusive based on the sizes

curve can be well approximated by a straight line with slopeof the systems we can generate—we cannot determine the

1.22 in good agreement with the scaling conjeci{@®. For
p>p. a similar analysis should hold. However, limitations

parameters that govern the large behavior of Eq.(18)
abovep, .

on the size of the system we can simulate make the analysis (iii) L>r> ¢&. When the connectedness lengtis smaller

problematic. Figure @) showsP’(/) for various values of

p>p.. Note that it is only for values gi=p.+ 0.03 that the

distributions “cut off” at smaller/” than the distribution for

p=p.. Thus it is only for values op—p.=0.03 that the

large /~ behavior of Eq.(18) is determined by the fact that
the system is not at criticalityi.e., by f3) as opposed to
being determined by the finite size of the syst@m., byf,).

than the distance between the wells, the system can be
considered homogeneo(i$,3,5]. This can be seen in Fig.
3(a) in which we plotP(/|r) for various values of at p

=0.7 for two-dimensional site percolatiop{=0.593). Asr
increases from below to above the connectedness length, the
form of the distribution changes from the power law distri-
bution of Eqg.(18) to a Gaussian distribution with a pro-
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FIG. 3. For d=2, (a distributions of P(/|r) for
r=4,8,16,32,64,128,256,512 and fpr=0.7. To reduce the lattice
effects, data are obtained for the pairs of wells onxlais.[Note
that for this case, wherre> £, the distributiond’ (/|r) andP(/|r)
are essentially the same since all the clusters span the [hffite.
distributions converge for large to a Gaussian with mea(v")
shown in partgb),(c) and variancer®=(/2)— (/)2 shown in part
(d) as functions of for p=0.65 (O) andp=0.7 (d). (b) Log-log

plot of (/) versusr. Note the crossover from power law behavior

with exponentd,,;,=1.13 to linear behavior with exponent 1(@)
Same agb) on linear scale. The slopes of the linear f(p) are
1.45 for p=0.65 and 1.30 forp=0.7. This yieldsk(p)~(p
—po) %% in good agreement with equation EQ0). (d) The de-
pendence ofr? versusr. According to Eq.(29), the dependence
becomes linear only for>é&~(p—p.) ~ 7, indicated on the graph.
The slopes of linear fit&(p) are 0.33 forp=0.65 and 0.12 fop
=0.7. This givesk(p)~(p—p.) "% in good agreement with Eq.
(3D).
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For each of these blobs, the probability distribution for the
shortest path across the blgh is still given by Eq.(18), but
with r and L replaced by¢ and / replaced by/,. This
distribution is characterized by/p)~ ¢9min and variance
o2=(/2)—(/,)?~ &29min, The total minimal path is the sum
of n=r/¢ independent variables, ; hence it converges to a
Gaussian with

</> ~r gdmin7 1

and  ¢g?~r&2min 1 (29
Thus the slope of the grapk(p), of (/) vsr in Fig. 3(c)

should decay as

K(p)~|p=pe| " min"D=[p—p =" (30
and the slope o#? versusr should decay as
|p—pg| ~*Pdmin~ D= |p—p |17, (31)

Indeed[see Fig. &)], we see that the slope of* versusr
decays withp more strongly than that of/") versusr. The
numerical values of slopes from FigsicBand 3d) are in
good agreement with the theoretical predictions ES)
and(31). Ford=3 we expect similar behavior.

IIl. MINIMAL TRAVELING TIME AND FASTEST PATH

We turn next to dynamics, the study of flow on percola-
tion clusters, which has close ties to such applications as
hydrocarbon recovery and ground-water polluti8rf80-33.

In this section, we discuss the properties of the flowdon
=2 andd=3 bond percolation clusters. Specifically, we in-
vestigate the scaling properties of the distributionsmri-
mal traveling timeandthe length of the path corresponding
to the minimal traveling timéfastest pathof the tracer par-
ticles. Some of the results ith=2 were reported previously
[15]. Here we extend the work =3, and study the effects
of finite system size and off-criticality fad=2 andd=3.

A. The model

We study incompressible flow between two sifeandB
separated by Euclidean distancelTo model the flow front,
we use passive tracers—particles that are not absorbed by the
surroundings, and move only by convection, ignoring mo-
lecular diffusion(which is slow on the time scales of inter-
es). The convection is governed by the flow field due to the
pressure difference between sites connected by the bonds.
We simulate the flow of a tracer particle starting from the
injection pointA traveling through the medium along a path
connected to the recovery poit The dynamics of flow at a
macroscopic level on the percolation cluster is determined by
the local flow(local current$ on the individual bonds in the
backbone of the cluster. The velocity of a tracer at each bond
is determined by the pressure difference across that bond

- Darcy’s law[34]):
nounced peak, a characteristic of homogeneous systems. thr- y (34D

thermore, as shown in Fig(l3, the fractal dimension of the
shortest length crosses over froty,,=1.13 to d,,;,=1.0,
characteristic of a homogeneous sys{@®,28. The conver-

v =T(P;—P)), (32

whereP; and P; are the values of pressure at sitesnd].

gence to a Gaussian can be expected due to the followinghe coefficientT, which is a function of permeabilitl, vis-
considerations. The minimal path connecting the wells sepaeosity 7, and the length of a bonid, [ T=k/(7L)], is set to
rated by distance passes through/¢ independent blobs. 1. We normalize the velocities, assuming that the total flow
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betweenA and B is fixed, independent of the distance be- 10*
tweenA andB, and the realization of the porous media. This
more closely resembles oil recovery processes where con- 10°
stant flow, as opposed to constant pressure, is maintained.
We obtain the pressure difference across each bond by .
solving Kirchhoff's law §10
A Y
10'
> v;j =0, (33
]
. . 10° Q 3 ") 3 4
for each nodeé in the cluster where the summation is over all 10 10 1(1’ 10 10
bonds connected to that node. We definettheeling time t
of a pathC as the sum of the tracer’s traveling timgs at FIG. 4. Ford=2, scatter plot of the minimal traveling tintg,,

each bondif) joining sitesi andj which are on the path,  versus shortest pat for a fixed well separatiom=1. Note the
strong correlation between,, and /. The slope of the tail of the
scatter plot is 1.17, yielding a values @f,=1.17 andd,,;,=1.32,

1= (i; . tij . (34  consistent with our result in Table | below.
The traveling Iength?, in turn, is the number of bonds , 1 [ thin ~9m Timin Timin Timin
present in pati. Among the ensemble of all pati€}, we P (tmin“)wrm s U pdn/ 2| L] 3 % '
select the patlt* that has theminimal traveling time 4., (39)
tmin(C*) =mint(C) (39  where the scaling functions arg;(x)=exp(—azx_ %m),
c f5(X) = exp(—byx¥m), andf4(x) = exp(— cyXx™m). Hereé is

and we define thiengthof the fastest path ,,;,, correspond-
ing to the minimal traveling time, as the number of bonds
present in patl®* . The first quantityt i, is the breakthrough
time of the gas/liquid that displaces the oil during recovery é~Ip—pd " (39)
and has fundamental importance to the oil industry. The o

qua_lntityt determines postbreakthrough behavior. We alsorpg first functionf, accounts for the lower cutoff due to the
define the exponents, , wherex denotes i, tmin, 7, Or't  constraint/>r, while f, and f5 account for the upper cut-

has a power law dependence on the occupancy probapility

a characteristic length of the pair connectedness function and

by offs due to the finite size effect and the finite connectedness

g length, respectively. Eithdr, andf; becomes irrelevant, de-
X*~r%, (36)  pending on which of the two valuds or ¢ is greater. For
L<¢, f, dominates the upper cutoff, otherwidg domi-

and wherex* is the characteristiGmost probablelength or  pates. Since we have assumed independence of the finite size

time of the corresponding distribution. effect and off-criticality effect, Eq(38) can be represented
Using a “burning” algorithm[37], we then find the mini- a5 a product of the terms that are responsible for the finite

mal time and the fastest path for the partiC|e to travel be'size effect (2) and the effect of the Concentratiohsl_

tween pointsA andB. At t=t,, the tracer particles spread e sample over f0different realizations with the two

over t=Jty, bonds. These bonds constitute a subset of thgjtesA andB fixed. For each realization, we calculate exactly

backbone with fractal dimensiot,,, which is larger than  the minimal traveling time and the path that corresponds to
the fractal dimension of the minimal path but smaller thanthe minimal traveling time to obtaiR(t,;,) andP(/’

the fractal dimension of the entire backbag. Hence m

1. Behavior at criticality

dmin<dm<dg. 3 . . . .
min = Ftm = T8 S We first test numerically the scaling conjecture B38) at
o o the percolation threshold=p... In this case§=« andf; is
B. Minimal traveling time a constant. Hence E¢38) reduces to
We first study the minimal traveling time for=2. In Fig. ,
4, a scatter plot of the minimal traveling time versus shortest t o\ T%mo g t
.. . ’ min min min
path, we see that the minimal times are strongly correlated P’ (tq,|r)~ e 1| 5 T2l =4 (p=pe)-
with the shortest paths in the realizations simulatgg, rrmy e rm/ o\ Lo

~/? wherez~1.17. Since” scales as"min we propose that (40

tmin Scales as%m with d,,=zd,=1.33. This suggests that __ , .
the same scaling form that applies to the distribution of 19ure & shows thatP’(ty|r) has a power law regime
shortest paths can also be applied to the distribution of mini¥ith slope

mal times, but with different exponents and amplitudes.

Thus, we expect an ansatz similar to Etg) to hold: Oim=2.0£0.1. (41)
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FIG. 5. Ford=2, (a) log-log plot of P’ (t|r) for p=p.=0.5 and
for different sets of parametersr,()=(16,25Q,(32,500),
(64,1000). The straight line regime has slaje=2.0. (b) Log-log
plot of rescaled probabilityb(x)zP’(tmin|r)x9t/r dm against res-
caled lengthx=t,/r % using the valueg), =2.0 andd,=1.33.
The curves are flat in the center becafigex) is a stretched expo-
nential[see Eq.(25)]. (c) Log-log plot of transformed probability
T1(x) =log,d A/®(x)] versusx=tyy,/r %m The slopes of the solid
lines give the power of the stretched exponential funcfipandf,
in EqQ. (25). Using the parameteh=0.14, the slopes givé)~3.0
for the lower cutoff andy~ 3.0 for the upper cutoff.

To determine the function$§; and f,, we compute the
rescaled probability distribution

ti ,
m) EP,(tmin|r)(tmin)gtmrﬂjm‘(gmrl)a (42

d
r dim

and plot it against the scaling variabte-t,,;,/r %m [see Fig.
5(b)]. According to Eq.(40)

D (x)=Af1(x)f; (43

r\ dim
Ao
Therefore, ®(x) should depend only or and the ratia /L.
Unlike the fractal dimension of the shortest padh;,, there
have been no calculations of the fractal dimension of the
minimal traveling timed,,,. We estimatel,,, by finding the
value that yields the best data collapse for E43). For
dy,=1.33, Fig. %b) shows data collapse with sharp cutoffs
governed for smallx<1 by f;(x) and for large x
> (L/r)%m by f,[x(r/L)%m].

In order to test the assumption that the functibpandf,
are stretched exponentials with exponegts and i,,, we
make a log-log plot ofl1(x)=log;d A/®(x)] versusx for
various values of the normalization constaht[see Fig.
5(c)]. If the stretched exponential conjecture is corrébfx)
should have two straight line asymptotes forlpg— +
with the slopey,, and for logy x— — with the slope
— ¢um- The slopesp,,, and ¢, of the straight line fits de-
pend weakly on the value & UsingA=0.14, we obtain the
longest regimes of straight line behavior. For thisve ob-
tain ¢y~ 3.0 andy,,~ 3.0. With the same assumptions us to
derive Eq.(14), we can derive a similar expression @y, ,

1
bm= A1’ (44

which yields a predicted value ab,,, of 3.0 in agreement
with our simulation result.

2. Off-critical behavior

Finally, in order to test the dependenceRSf(t ,[r) on p
we obtain data for a large system sizg(L=1000,d=2)
and for several values gf#p.. As we do for the shortest
length, we analyze the behavior g, in three regimes de-
termined by the relation of the value of the connectedness
length ¢ to the values of andL.

(i) £&>L>r. In this regime, the fact thai# p. cannot be
detected because the connectedness length is larger than the
other relevant variables.

(i) L>¢&>r. In this case, the upper cutoff of the distribu-
tion Eq.(38) is governed byf; and the functional form of the
rescaled probabilityp is given by

tmin tmin tmin
q’( rdrm) N“(rd?) f3( fdrm>' 9

For larget,,, we suggest an exponential ded&y] of ®

tmi tmi
d)(?)~exp(—c$>. (46)
r Ytm g tm
Semilogarithmic plots ofb (t,,i,/r %m) versust, for p>p.
andp<p, shown in Fig. 6a) and &b), respectively, can be
approximated by straight lines with slopes that approach zero

as p—p.. According to Eq.(46), this slopek(p) should
follow

k(p)~ ¢ %m=|p—p|%m"~|p—pc|*"". (47)
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changes from the power law distribution of E@0) to a

(@ distribution with a pronounced peak, a characteristic of ho-
mogeneous systems. In Figby, in order to eliminate the
finite size effect, we seledt=r+2 so that the distribution

o—op=042 P(t|r) does not have a power law regime, even for small
el e In this case, as shown in Fig(cj, the fractal dimension of
Ny the minimal traveling time crosses over frodg,=1.33 to
ey d;,= 2.0, characteristic of a homogeneous sys{@®,29.
The same considerations that we use to derive the behavior
R of the mean and variance of the shortest path can be applied
10 200 400 600 800 1000 to the mean and variance of the minimal time. At the mo-
L. ment of breakthrough, i.e., when the first tracer particle
0 reaches the second well, the part of the system filled with
10 : ‘ ‘ ‘ tracer particles consists af,=(r/£)? independent blobs,
each having a certain number of bonds;(), with an aver-
age((tminp)=£&"m and a varianceri= ¢2%m, Thus the aver-
_ age minimal time for the entire system scales as
“'510‘1 _
& o op0sa (tmin) = nbgdlm: rdgdlm q (48
(b) — p=0.54 ) )
3 o with a variance
, 0_2: nb§2dtm: rd§2dtm_d_ (49)
10° ' ' ' '
0 2000 4000 6000 8000 10000 . .
‘. The scaling plofFig. 7(d)] of {tm,) versus|p—p.| shows
1 e good agreement with the theoretical prediction of &),
107
* P<p, (tmin) —d)
- p>p, o = (P=pe) M= (p=pg® (d=2). (50
g 107 3
§ slope=1.81 The graph ofo versusr [see Fig. 7e)] shows linear behav-
E‘S ior, in agreement with Eq(49). Equation(49) also predicts
S 107 | that the slope of this linear dependence decays as
(© / e (@2 .
slope=1.77 [p—pg| [~ @2lr=|p—p |04 (d=2). (51
10_41 0® o However, the measured slope has a very small variation with
p—p.| |p—p¢| that is beyond the accuracy of our data points.

As mentioned above, the minimal traveling time is the

FIG. 6. Ford=2, (a) semilogarithmic plot of transformed prob- Sum of the inverse local velocities over the fastest path where
ability @ (t,,;,/r %m) versust,,, for f5 for p=0.42,0.43,0.44,0.45, the fastest path is statistically identical to the shortest path.
0.46,0.47,0.48 below criticality.  (b) Same for  While the velocity distribution has been studied extensively
p=0.52,0.53,0.54,0.55,0.56 above criticalifg) The slope of the (see, e.9.[38,39), because the velocities along the path are
log-log plot of the coefficient in the exponential functiép as a  correlated, the relation between the minimum traveling time
function of |p—p| gives the valuerd,,~1.77 forp>p. and 1.81  distribution and the local velocity distribution is an open
for p<pe. challenge for further research.

The analysis for three dimensions is completely analo-

Figure Gc) shows double logarithmic plots ¢k(p)| versus gous to that for two dimensions. Our results are shown in
|[p—p¢ for p<p. and p>p., which can be well approxi- Figs. 8 and 9 and the scaling parameters found are included
mated by straight lines with slopes 1.81 and 1.77, respedn Table I.
tively, in good agreement with the scaling conjecture, Eq. Note that the exponertt, is the fractal dimension of the
(47). As was the case with the analysis Bf (/|r) for  set of bonds reached by the tracer particles at the moment of
p>p. for d=3 [see Sec. 1D 2, pointii)], we cannot deter- breakthrough. A similar problem was studied[it¥], where
mine the parameters that govern the latgg behavior of it was found that, when the invading fluid has a lower vis-
P’ (tmin) because of limitations on the size of the system wecosity than the defending fluid, the fractal dimension of the
can simulate. cluster occupied by the invading fluid at the moment of

(iii) L>r>¢. When the connectedness length is smalletoreakthrough(in d=2) is approximately 1.3. This case is
than the distance between the wells, the behavior of the sysnalogous to diffusion-limited aggregation in a percolation
tem is the same as a homogeneous sy$teB15. This can  cluster.
be seen in Fig. (@ in which we plotP(t,,|r) for various Our case of passive tracer particles corresponds to the
values ofr at p=0.6 (d=2). Asr increases from below to equal viscosity of invading and defending fluids. The fact
above the connectedness length, the form of the distributiothat both exponents in two dimensions are close to each
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FIG. 7. (8 Log-log plot of
P(tminlr) for p=0.6 and for
r=4,8,16,32,64,128,256 and.
=258. The distributions for large
r converge to Gaussians with
mean(t,) and variances?. (b)
Log-log plot of P(tyqlr) for
p=0.6, r=4,8,16,32,64,128,256
andL=r+2. [Note that, for this
case, where> ¢, the distributions
P’ (tminlr) @and P(tn|r) are essen-
tially the same since all the clus-
ters span the lattick(c) Log-log
plots of (t,) versusr for p=0.6
andL=r+2. (d) Log-log plot of
the scaled average minimal travel-
ing time (tyin)/r? versusp— p, for
r=128,192,256,384,512 and
L=r+2. Note that in all cases
r>¢&. The slope of the line, 0.84,
is in good agreement with the the-
oretical prediction 0.89(e) The
behavior of the widthr of the dis-
tributions of the traveling time
versusr for p=0.53, 0.54, 0.55,
0.57, and 0.6. The graph shows
approximately linear dependence
of o on r. The variation of the
slope withp—p. is within the er-
ror bars of the data.

0 L 1 1 1 1
0O 100 200 300 400 500 600
r

other suggests that both cases belong to the same universaljncet,,, and/ i, are strongly correlated, the distributions
class. Our preliminary analysis of DLA in three-dimensional P(/ i) and P(t ) satisfy

percolation clusters suggests that its fractal dimension is
1.41+0.05, in good agreement with our resdjf,= 1.45. P(Z min) 47 min=P(tmir) A trmin - (54)
C. Fastest path Combining Eqs(52)—(54) and the equations for the respec-
We observe that the path which takes minimal time is notive distributions, we obtain a scaling relation between expo-
always the shortest path. However, analysis of the distribufents;
tions of /,,;, yields parameters identical to those for the dis-
tribution of the shortest paths between points separated by
distancer studied in detail in Ref[14]. Thus, statistically,

the path that takes the shortest time is one of the paths ofhese scaling relations are well satisfied by the set of scaling

shortest length. S exponents given in Table I.
In many transport problems, the characteristic tithe

scales with the characteristic lengttf with a power law,

(97 D),y = (O 1)l (55

D. Dependence of minimal traveling time on resistance

t*~ (/%) (52) The overall hydraulic resistanéof a percolating system
, N d » dos between two sitesA and B with pressure differencé®,
Sincet* scales as® and/* scales ag“%min, — Py is defined as
d _
7= (53) _PaPs

dmin. R J ’ (56)
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FIG. 8. For d=3, (a) log-log plot of P’(t|r) for p=p.
=0.2488 and for different sets of parametensL(=(4,32),
(8,64,(16,128). The power law regime has slagje=2.1.(b) Log-
log plot of rescaled probabilityp (x) = P’(tmin|r)x9{r %m against res-
caled lengthx=t;,/r % using the valueg{=2.1 andd,=1.45.
The curves are flat in the center becafige) is a stretched expo-
nential[see Eq.(25)]. (c) Log-log plot of transformed probability
T1(x) =log,d A/®(X)] versusx=ty,/r %m. The slopes of the solid
lines give the power of the stretched exponential functigrendf,
in Eq. (25). Using the parameteh=0.08, the slopes giveo~1.6
for the lower cutoff andy~2.0 for the upper cutoff.

whereld is the total flow defined as the sum of all the veloci-
ties outgoing from sited, which is equal to the sum of ve-
locities coming into siteB,

J:Ei UiAZEi Ui - (57

It is known [1,3] that the typical resistanc®* scales with
the distance between sitdsandB as

R* ~r*, (58

10' . .
@) oo pozoe
i 00 :e p:0.2188
T oz
- *—* p=0.2388
E10”
iy
S
107
10°° : s
0 100 200 300
tmin
10"

(b)

coefficient
>

slope=1.30

10
10 107"
lp-p
10° . .
o—o p=0.2518
—=a p=0.2588
2 o—0 p=0.2688
10 F »—x p=0.2788 |
*—x p=0.2888
10t} 1
&
107° (©
1 0_B 1 I 1
10° 10’ 10° 10° 10*

FIG. 9. Ford=3, (a) semilogarithmic plot of transformed prob-
ability ®(t,,,) versust,, below critical point for p=0.1988,
0.2088,0.2188,0.2288.0.2358,0.2388 shows pure exponential be-
havior of f5. (b) The slope of the log-log plot of the coefficient in
exponential functionf; as a function oflp—p.| gives the value
vdy=1.30 for p<p.. (¢) P(tynn) for p>p.. Note that for the
values ofp simulated, the largé,,, behavior is determined by the
finite size of the system—ndt.

where u=0.98[35].
We find numerically that resistance strongly correlates
with both minimal traveling lengtfi36]

/i~ RAmin/# (59
and minimal traveling time
tin~ R . (60)

Accordingly, the distribution of the resistance should obey
the same scaling ansatz as E@{) and(38),
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TABLE I. Summary of exponents and coefficients in scaling fornP(x|r)
~ (L% (x/r %) =9y (/T ) F(XIL ) F5(x/€%), where f1(y)=exp(—ay~ %), fi(y)=expby®), fs(y)
=exp(—cyy). Herex denotes one of the quantitiesor t,;,,. The notation N/A means not applical{ince
no theoretical value existswhile the notation {/—) indicates above or beloy, .

X / tmin
exponent Simulation Theory Simulation Theory
d=2
dy 1.13+0.01 N/A 1.33-0.05 N/A
Oy 2.14+0.02 2.11 2.60.1 N/A
ay 0.5 N/A 1.1 N/A
by 7.3+0.5 1/d,—1)=7.69 3.0 3.0
b, 3.5 N/A 5.0 N/A
Uy 4.0+0.5 N/A 3.0 N/A
Cy 2.4(—-),3.7(+) N/A 1.6(—),2.6(+) N/A
d=3
dy 1.39+0.05 N/A 1.45-0.10 N/A
Oy 2.3+0.1 2.23 2.1+0.1 N/A
ay 1.4 N/A 25 N/A
by 2.1+05 1/d,—1)=2.56 1.6 2.0
b, 2.0 N/A 2.3 N/A
by 2.5+0.5 N/A 2.0 N/A
Cy 3.1(—) N/A 2.9(-) N/A

1/R ~gh IV. CONCLUSIONS
P'(RIN~—|—| f

re\r#

G By modeling porous media using bond percolation and

R R R
R R
concepts of percolation theory, we study the flow of fluid in
with the exponeng. playing the role of the resistance fractal porous media in two and three dimensions between two

dimension and the exponegk~2.3 obeying the relation  “wells” separated by Euclidean distance We investigate
, _ , the distribution function of the shortest path connecting the
#(9r— 1) =dmin(g,—1). 62 o sites, and propose a scaling ansatz that accounts for the

dependence of this distributidin) on L, the size of the sys-
tem, and(ii) on p, the bond occupancy probability. We con-
firm by extensive simulations that the ansatz holds dor

the time of the breakthrough of the injected fluids into the:2|’3' agd v;/e caldculatte tcrjlethrelevant st.cahng]j( E)rz]irafTeter?. i
production well[28]. Since the pressure and the flow are . nI or derb oﬂu% erstan € tprc?p(tar: Ieosl of the 01}1\11:'0 ol
known immediately as the operation of the well begins, onedISp aced Dy Tuid or gas, we study the dynamics ot .OV‘_’ on
can predictt i, using the relationshig60). pgrqolatlon Clu_sters_. We study two dynamical quantities: the
Up to now, we have considered the breakthrough timem'n'm‘fJII traveling time and th? Iength of the path corre-
distribution for the case of a fixed injection rale= const. spon_dmg to the minimal traveling time. Because of th? ap-
Another practical application is related to the distribution Ofproxmate parallel between the shortest path and the minimal

breakthrough time at a constant pressure differeRge traveling time of flow, the study of thehortestpath is the

— Pg=const. For each configuration of the porous mediumﬂrSt step in understanding the properties of oil fields. In par-

, . L . . ticular, a scaling ansatz for these dynamical quantities in-
with resistanceR, the minimal traveling time at constant . : "
cludes the effect of finite system size and off-critical bond

pressuret iy, is related to the minimal traveling timg,, at  occupation probability. We find that the scaling form for the
constant flow as distribution functions for these dynamical quantities tbr
tin=Rtmin- (63 =2,3 is similar to,but not identical to that for the shortest
path. In addition to calculating the relevant distribution func-
Using Eqgs(60) and(63) we conclude that the distribution of tions and scaling relations, we determine the constants and
tmin Should obey the same scaling ang@8) in whicht,,,is  €xponents which characterize these relaties Table )l

replaced byfmin and exponentsl,,, and g;,, are replaced by

exponents dimp=dim+ n~2.3 and g{mp: (9tm

— 1) (dyn/dimp) + 1~1.57, respectively. We tested the scal- ACKNOWLEDGMENTS

ing ansatz(38) for t.;, numerically and found agreement  We thank BP Amoco and CNPq for financial support, and
between the numerically determined valuesigf, andgy,, M. Barthdémy, A. Coniglio, J. Koplik, S. Redner, and R. M.
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We tested the scaling ansat@l) numerically and found
agreement with our theoretical predictions.
In industrial applications, it is very important to predict
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