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Flow between two sites on a percolation cluster
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We study the flow of fluid in porous media in dimensionsd52 and 3. The medium is modeled by bond
percolation on a lattice ofLd sites, while the flow front is modeled by tracer particles driven by a pressure
difference between two fixed sites~‘‘wells’’ ! separated by Euclidean distancer. We investigate the distribution
function of the shortest path connecting the two sites, and propose a scaling ansatz that accounts for the
dependence of this distribution~i! on the size of the systemL and~ii ! on the bond occupancy probabilityp. We
confirm by extensive simulations that the ansatz holds ford52 and 3. Further, we study two dynamical
quantities:~i! the minimal traveling time of a tracer particle between the wells when the total flux is constant
and ~ii ! the minimal traveling time when the pressure difference is constant. A scaling ansatz for these
dynamical quantities also includes the effect of finite system sizeL and off-critical bond occupation probability
p. We find that the scaling form for the distribution functions for these dynamical quantities ford52 and 3 is
similar to that for the shortest path, but with different critical exponents. Our results include estimates for all
parameters that characterize the scaling form for the shortest path and the minimal traveling time in two and
three dimensions; these parameters are the fractal dimension, the power law exponent, and the constants and
exponents that characterize the exponential cutoff functions.

PACS number~s!: 47.55.Mh, 05.60.Cd, 64.60.Ak
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I. INTRODUCTION

Percolation theory is a paradigmatic model for connec
ity, originally introduced as a mathematical subject in t
late 1950s. Thereafter, percolation theory has been fo
useful to characterize many disordered systems@1–13#. The
aim of the present paper is to discuss the potential app
tion of percolation theory as a convenient geometrical mo
for understanding numerous aspects of flow through por
rocks@14,15#. Special emphasis will be given to the study
oil displacement, i.e., how hydrocarbons propagate thro
geological formations between a pair of wells in the oil fie
This work could also be applied to the breakthrough time
contamination of a water supply, or the time for releas
radioactive material to get from a leaking nuclear reposit
into the biosphere.

Oil fields are extremely complex, containing geologic
heterogeneities on a wide range of length scales from ce
meters to kilometers@16#. These heterogeneities, caused
the sedimentary processes that deposited the rocks an
subsequent actions on the rock, such as fracturing by tect
forces and mineral deposition from aquifer flow, have a s
nificant impact on hydrocarbon recovery.

However, in many cases the rock can be separated
two types—high permeability~‘‘good’’ ! and low or zero per-
meability ~‘‘bad’’ !—and for all practical purposes we ca
assume that the flow takes place only in the good rock.

*Present address: School of Materials, Mechanical & Automa
Engineering, Yanbian University of Science & Technology, Be
han St., Yanji City, Jilin Province, 133000, China.
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spatial distribution of the rock types is often close to rando
in which case the classical percolation problem is a go
approximation. The place of the occupancy probabilityp is
taken by the volume fraction of the good rock, called t
net-to-gross ratio in the petroleum literature. Thus it is re
sonable to model the oil reservoir as a percolation cluste

The most common method of oil recovery is by displac
ment. Either water or a miscible gas~carbon dioxide or
methane! is injected in a well~or wells! to displace the oil to
other wells. Ultimately the injected fluid will break throug
into a production well where it must be separated from
oil, which is a very costly process. Once the injected flu
has broken through, the rate of oil production declines
more injected fluid is produced. For economic purposes
important to know when the injected fluid will brea
through.

As a first-order approximation, we will model the flow
between injector and producer wells using Darcy’s la
~analogous to Ohm’s law in electrical current!, which implies
that the invading and displacing fluids are miscible and h
equal viscosity. Preliminary studies of the breakthrough ti
for this model@15# limited the analysis to two dimension
and p5pc , with no finite size effects. This paper exten
that work to three dimensions and treats the effects of
off-critical bond occupation probabilityp and finite system
size. The problem of the flow of two immiscible fluids o
differing viscosities is analogous to diffusion-limited aggr
gation ~DLA ! in percolation and was studied in@17#.

This paper also examines the correlation between ove
system conductivity and breakthrough time, informati
highly relevant to the accurate prediction of oil well effi
ciency. We study this breakthrough time at two distin
boundary conditions:~i! at fixed total flux and~ii ! at fixed
pressure difference between the wells.
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In Sec. II, we summarize the scaling properties of
simple geometrical property—the shortest path—and tes
scaling ansatz in the limit ofp@pc and strong finite size
effects. In Sec. III we apply the same ansatz to the minim
traveling time~the breakthrough time! at two distinct bound-
ary conditions and determine its correlation with overall co
ductivity.

II. SHORTEST PATH

This section deals with the distribution of the shorte
path between two sites on a percolation cluster. Becaus
the qualitative resemblance between the shortest path an
minimal traveling time of a tracer particle, the first step
understanding fluid transport between two sites in a perc
tion system is to characterize the geometrical propertie
the shortest connecting path. For example, if we assume
the traveling time along a path is proportional to the p
length ~i.e., all velocities are equal!, then we can obtain a
rough estimate for the traveling time from purely geome
cal arguments.

A. Basic distribution functions

The shortest pathor chemical distancel between two
sites on a percolation cluster is defined as the shortest
connecting the two sites@18,19#. The typical valuel * of the
shortest path between two sites on a cluster scales with
geometrical distancer between these points as

l * ;r dmin, ~1!

where

dmin5H 1.1360.02 ~d52!

1.37460.005 ~d53!
~2!

is the fractal dimension of the shortest path@20,21#.
Consider a hypercubic lattice ofLd sites. All information

about the distribution of shortest paths is contained in
joint probability density functionP(r ,l ), i.e., the probability
that two sites on the same spanning cluster are separate
geometrical distancer and chemical pathl . We sum over all
chemical pathsl to calculate the probability distribution tha
the Euclidean distance between two sites isr,

P~r ![E P~r ,l !dl . ~3!

Similarly, we obtain the probability distribution that tw
sites are separated by the chemical distancel by summing
over all possible geometrical distances,

P~ l ![E P~r ,l !dr. ~4!

Given that the shortest distance between these sites isl , the
conditional probability that the geometrical distance betwe
two sites isr is @3#

P~r ul !5
P~r ,l !

P~ l !
. ~5!
ts
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For isotropic media this function has been studied ext
sively andP(r ul ) is of the form@2,3,22–24#

P~r ul !;
1

l S r

l ñD gr

expF2aS r

l ñD d̃G , ~6!

where

d̃5
1

12 ñ
5

dmin

dmin21
~7!

and

ñ[1/dmin . ~8!

For d52, Ziff recently argued@25# that

gr21525/24 ~d52!. ~9!

The function of interest to us is the conditional probabil
for two sites to be separated by the shortest pathl , given
that the geometrical distance between these sites isr:

P~ l ur !5
P~r ,l !

P~r !
. ~10!

From Eqs.~10! and~5!, we see thatP(r ul ) andP(l ur ) are
related as

P~ l ur !5P~r ul !
P~ l !

P~r !
. ~11!

At the percolation threshold, it has been shown@14# that,
in analogy with Eq.~6!,

P~ l ur !;
1

r dmin
S l

r dmin
D 2gl

expF2aS l

r dmin
D 2f l G , ~12!

where

gl 215
~gr21!1~22df !

dmin
, ~13!

f l 5 d̃ ñ5 ñ/~12 ñ !5
1

dmin21
, ~14!

and

df5H 91/48 ~d52!

2.52460.008 ~d53!
~15!

is the fractal dimension of the incipient infinite cluster@1,3#.
Substituting Eq.~9! into Eq. ~13!, we find ford52

gl 52.0160.02 ~d52!. ~16!

The probability distribution of more practical interest
P8(l ur ), defined in the same way asP(l ur ) but for any two
randomly chosen points separated by geometrical distanr
and on the same cluster, but not necessarily on the incip
infinite cluster@14#. P8(l ur ) has the same scaling form as
Eq. ~12!, but with gl replaced by@14#
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gl8 5gl 1
d2df

dmin
. ~17!

B. Scaling ansatz for shortest path

The complete scaling form ofP8(l ur ), which accounts
also for finite size effects and off-critical behavior, has be
studied ford52 and reported in@14#. Specifically, the fol-
lowing ansatz has been proposed@14#:

P8~ l ur !;
1

r dmin
S l

r dmin
D 2gl8

f 1S l

r dmin
D f 2S l

Ldmin
D f 3S l

jdmin
D ,

~18!

where j;up2pcu2n is the pair connectedness length, a
the scaling functions have the forms

f 1~x![exp~2ax2f!, ~19!

f 2~x![exp~2bxc!, ~20!

and

f 3~x![exp~2cx!. ~21!

The function f 1 accounts for the lower cutoff due to th
constraintl .r , while f 2 and f 3 account for the upper cut
offs due to the finite size effect and the finite correlati
length, respectively. Eitherf 2 or f 3 becomes irrelevant, de
pending on the magnitudes ofL and j: for L,j, f 2 domi-
nates the upper cutoff, otherwisef 3 dominates. We assum
that the finite size effect and the effect of the concentrat
of the occupied sites are independent of each other, so
Eq. ~18! can be represented as a product of the terms tha
responsible for the finite size effect (f 2) and the effect of the
concentration (f 3). Simulations ford52 have been per
formed in @14# and support this assumption.

C. Behavior at criticality

Here we extend the study ofP8(l ur ) to d53. We nu-
merically test the scaling conjecture~18! exactly at the per-
colation thresholdp5pc—in which casej5` so f 35 f (0)
51. We build clusters using the Leath algorithm@18,19,26#.
Since the Leath algorithm corresponds to the process o
lecting a random point on the lattice, the probabilityP8(l ur )
is equal to the probability that a pair of randomly selec
points has chemical distancel and geometrical distancer,
given that they belong to the same cluster, a cluster tha
not necessarily the infinite cluster. Hence Eq.~18! reduces to

P8~ l ur !;
1

r dmin
S l

r dmin
D 2gl8

f 1S l

r dmin
D f 2S l

Ldmin
D ~p5pc!.

~22!

Figure 1~a! shows that, in the ranger dmin,l ,Ldmin,
P8(l ur ) has power law behavior with slope

gl8 52.360.1 ~d53! ~23!
n

n
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and rapidly vanishes forl ,r dmin and for l .Ldmin. To de-
termine the functionsf 1 and f 2, we compute the rescale
probability distribution

FS l

r dmin
D [P8~ l ur ! l gl8 r 2dmin(gl8 21), ~24!

and plot it against the scaling variablex[l /r dmin @see Fig.
1~b!# using the valuedmin51.374. According to Eq.~22!

FIG. 1. Ford53, ~a! log-log plot of P8(l ur ) at criticality (p
5pc'0.2488) and for different sets of parameters: (r ,L)
5(2,32),(4,64),(8,128). The straight line regime has slopegl8
52.3. ~b! Log-log plot of rescaled probability F(x)

[P8(l ur ) xgl8 r dmin against rescaled lengthx[l /r dmin using the
valuesgl8 52.3 anddmin51.39. The curves are flat in the cent
becausef 2(x) is a stretched exponential@see Eq.~25!#. ~c! Log-log
plot of transformed probabilityP(x)5 log10@A/F(x)# versus x
5l /r dmin. The slopes of the solid lines give the power of th
stretched exponential functionf 1 and f 2 in Eq. ~25!. Using the
parameterA50.08, the slopes givef'2.1 for the lower cutoff and
c'2.5 for the upper cutoff.
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F~x!5A f1~x! f 2FxS r

L D dminG . ~25!

Therefore,F(x) should depend only onx and the ratior /L.
Indeed, Fig. 1~b! shows excellent data collapse forL/r 58,
with sharp cutoffs governed forx,1 by f 1(x) and for x
.(L/r )dmin by f 2@x(r /L)dmin#.

In order to test the assumption that the functionsf 1 and f 2
are stretched exponentials with exponentsf l and c l , we
plot

P~x![ log10@A/F~x!# ~26!

versusx in double logarithmic scale for various values
normalization constantA @see Fig. 1~c!#. If the stretched ex-
ponential conjecture is correct,P(x) should have two
straight line asymptotes for log10 x→1` with the slopec l

and for log10 x→2` with the slope2f l . We find that the
slopesf l andc l of the straight line fits depend weakly o
the value ofA. UsingA50.08, we obtain the longest regime
of straight line behavior. For this value ofA, we find f l

'2.1 andc l '2.5. Equation~14! yields a predicted value o
f l 52.67 in agreement with our simulation result.

D. Off-critical behavior

For pÞpc , we identify three regimes determined by th
value of the connectedness lengthj in relation to the values
of r andL.

~i! j.L.r . In this regime, the fact thatpÞpc cannot be
detected because the connectedness length is larger tha
other relevant variables.

~ii ! L.j.r . In this case, the upper cutoff of the distrib
tion Eq.~18! is governed byf 3 and the functional form of the
rescaled probabilityF is given by

F~ l /r dmin!; f 1S l

r dmin
D f 3S l

jdmin
D . ~27!

For largel , we suggest an exponential decay@27# of F,

F~ l /r dmin!;expS 2c
l

jdmin
D . ~28!

Indeed, forp,pc , semilogarithmic plots of logF(l /r dmin)
versusl shown in Fig. 2~a! can be approximated by straigh
lines with slopes that approach zero asp→pc . According to
Eq. ~28!, these slopesk(p) should be proportional to
j2dmin;up2pcudminn'up2pcu1.19. Figure 2~b! shows a double
logarithmic plot of uk(p)u versusup2pcu for p,pc . This
curve can be well approximated by a straight line with slo
1.22 in good agreement with the scaling conjecture~22!. For
p.pc a similar analysis should hold. However, limitation
on the size of the system we can simulate make the ana
problematic. Figure 2~c! showsP8(l ) for various values of
p.pc . Note that it is only for values ofp>pc10.03 that the
distributions ‘‘cut off’’ at smallerl than the distribution for
p5pc . Thus it is only for values ofp2pc>0.03 that the
large l behavior of Eq.~18! is determined by the fact tha
the system is not at criticality~i.e., by f 3) as opposed to
being determined by the finite size of the system~i.e., by f 2).
the

e

sis

Below p5pc10.03, j is still greater thanL. On the other
hand, ifp is not close topc , the scaling form is not expecte
to hold. Thus, the results are inconclusive based on the s
of the systems we can generate—we cannot determine
parameters that govern the largel behavior of Eq.~18!
abovepc .

~iii ! L.r .j. When the connectedness lengthj is smaller
than the distancer between the wells, the system can
considered homogeneous@1,3,5#. This can be seen in Fig
3~a! in which we plot P(l ur ) for various values ofr at p
50.7 for two-dimensional site percolation (pc50.593). Asr
increases from below to above the connectedness length
form of the distribution changes from the power law dist
bution of Eq. ~18! to a Gaussian distribution with a pro

FIG. 2. Ford53, ~a! semilogarithmic plot of transformed prob
ability F(l ) @see Eq.~25!# versusl shows pure exponential be
havior of f 3. ~b! The slope of the log-log plot of the coefficient i
exponential functionf 3 as a function ofup2pcu gives the value
ndmin'1.22 for p,pc . ~c! P8(l ) for p.pc . Note that it is only
for p>0.2788 that the largel behavior is determined by the fac
that the system is not at criticality.
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nounced peak, a characteristic of homogeneous systems.
thermore, as shown in Fig. 3~b!, the fractal dimension of the
shortest length crosses over fromdmin51.13 to dmin51.0,
characteristic of a homogeneous system@29,28#. The conver-
gence to a Gaussian can be expected due to the follow
considerations. The minimal path connecting the wells se
rated by distancer passes throughr /j independent blobs

FIG. 3. For d52, ~a! distributions of P(l ur ) for
r 54,8,16,32,64,128,256,512 and forp50.7. To reduce the lattice
effects, data are obtained for the pairs of wells on thex axis. @Note
that for this case, wherer .j, the distributionsP8(l ur ) andP(l ur )
are essentially the same since all the clusters span the lattice.# The
distributions converge for larger to a Gaussian with mean̂l &
shown in parts~b!,~c! and variances25^l 2&2^l &2 shown in part
~d! as functions ofr for p50.65 (s) andp50.7 (h). ~b! Log-log
plot of ^l & versusr. Note the crossover from power law behavi
with exponentdmin51.13 to linear behavior with exponent 1.0.~c!
Same as~b! on linear scale. The slopes of the linear fitsk(p) are
1.45 for p50.65 and 1.30 forp50.7. This yields k(p);(p
2pc)

20.17 in good agreement with equation Eq.~30!. ~d! The de-
pendence ofs2 versusr. According to Eq.~29!, the dependence
becomes linear only forr .j;(p2pc)

2n, indicated on the graph
The slopes of linear fitsk(p) are 0.33 forp50.65 and 0.12 forp
50.7. This givesk(p);(p2pc)

21.6 in good agreement with Eq
~31!.
ur-

ng
a-

For each of these blobs, the probability distribution for t
shortest path across the blobl b is still given by Eq.~18!, but
with r and L replaced byj and l replaced byl b . This
distribution is characterized bŷl b&;jdmin and variance
sb

2[^l b
2&2^l b&

2;j2dmin. The total minimal path is the sum
of n5r /j independent variablesl b ; hence it converges to a
Gaussian with

^l &;r jdmin21 and s2;r j2dmin21. ~29!

Thus the slope of the graph,k(p), of ^l & vs r in Fig. 3~c!
should decay as

k~p!;up2pcu2n(dmin21)5up2pcu20.17 ~30!

and the slope ofs2 versusr should decay as

up2pcu2n(2dmin21)5up2pcu21.7. ~31!

Indeed@see Fig. 3~d!#, we see that the slope ofs2 versusr
decays withp more strongly than that of̂l & versusr. The
numerical values of slopes from Figs. 3~c! and 3~d! are in
good agreement with the theoretical predictions Eqs.~30!
and ~31!. For d53 we expect similar behavior.

III. MINIMAL TRAVELING TIME AND FASTEST PATH

We turn next to dynamics, the study of flow on perco
tion clusters, which has close ties to such applications
hydrocarbon recovery and ground-water pollution@3,30–33#.
In this section, we discuss the properties of the flow ond
52 andd53 bond percolation clusters. Specifically, we i
vestigate the scaling properties of the distributions ofmini-
mal traveling timeand the length of the path correspondin
to the minimal traveling time~fastest path! of the tracer par-
ticles. Some of the results ind52 were reported previously
@15#. Here we extend the work tod53, and study the effects
of finite system size and off-criticality ford52 andd53.

A. The model

We study incompressible flow between two sitesA andB
separated by Euclidean distancer. To model the flow front,
we use passive tracers—particles that are not absorbed b
surroundings, and move only by convection, ignoring m
lecular diffusion~which is slow on the time scales of inte
est!. The convection is governed by the flow field due to t
pressure difference between sites connected by the bo
We simulate the flow of a tracer particle starting from t
injection pointA traveling through the medium along a pa
connected to the recovery pointB. The dynamics of flow at a
macroscopic level on the percolation cluster is determined
the local flow~local currents! on the individual bonds in the
backbone of the cluster. The velocity of a tracer at each b
is determined by the pressure difference across that b
~Darcy’s law @34#!:

v i j 5T~Pj2Pi !, ~32!

wherePi and Pj are the values of pressure at sitesi and j.
The coefficientT, which is a function of permeabilityk, vis-
cosityh, and the length of a bondLb @T5k/(hLb)#, is set to
1. We normalize the velocities, assuming that the total flowJ
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betweenA and B is fixed, independent of the distance b
tweenA andB, and the realization of the porous media. Th
more closely resembles oil recovery processes where
stant flow, as opposed to constant pressure, is maintaine

We obtain the pressure difference across each bond
solving Kirchhoff’s law

(
j

v i j 50, ~33!

for each nodei in the cluster where the summation is over
bonds connected to that node. We define thetraveling time t˜

of a pathC as the sum of the tracer’s traveling timest i j at
each bond (i j ) joining sitesi and j which are on the path,

t̃ 5 (
( i j )PC

t i j . ~34!

The traveling length l̃ , in turn, is the number of bond
present in pathC. Among the ensemble of all paths$C%, we
select the pathC* that has theminimal traveling time tmin ,

tmin~C* !5min
$C%

t̃ ~C! ~35!

and we define thelengthof the fastest pathl min , correspond-
ing to the minimal traveling time, as the number of bon
present in pathC* . The first quantitytmin is the breakthrough
time of the gas/liquid that displaces the oil during recove
and has fundamental importance to the oil industry. T
quantity t̃ determines postbreakthrough behavior. We a
define the exponentsdx , wherex denotesl min , tmin , l̃ , or t̃
by

x* ;r dx, ~36!

and wherex* is the characteristic~most probable! length or
time of the corresponding distribution.

Using a ‘‘burning’’ algorithm@37#, we then find the mini-
mal time and the fastest path for the particle to travel
tween pointsA andB. At t5tmin , the tracer particles sprea
over t5Jtmin bonds. These bonds constitute a subset of
backbone with fractal dimensiondtm , which is larger than
the fractal dimension of the minimal path but smaller th
the fractal dimension of the entire backbonedB . Hence

dmin,dtm,dB . ~37!

B. Minimal traveling time

We first study the minimal traveling time ford52. In Fig.
4, a scatter plot of the minimal traveling time versus short
path, we see that the minimal times are strongly correla
with the shortest paths in the realizations simulated,tmin
;l z, wherez'1.17. Sincel scales asr dmin we propose that
tmin scales asr dtm with dtm5zdmin51.33. This suggests tha
the same scaling form that applies to the distribution
shortest paths can also be applied to the distribution of m
mal times, but with different exponents and amplitud
Thus, we expect an ansatz similar to Eq.~18! to hold:
n-
.
by

l

s

y
e
o

-

e

st
d

f
i-
.

P8~ tminur !;
1

r dtm
S tmin

r dtm
D 2gtm8

f 1S tmin

r dtm
D f 2S tmin

Ldtm
D f 3S tmin

jdtm
D ,

~38!

where the scaling functions aref 1(x)5exp(2atmx2f tm),
f 2(x)5exp(2btmxc tm), and f 3(x)5exp(2ctmxp tm). Herej is
a characteristic length of the pair connectedness function
has a power law dependence on the occupancy probabilp
as

j;up2pcu2n. ~39!

The first functionf 1 accounts for the lower cutoff due to th
constraintl .r , while f 2 and f 3 account for the upper cut
offs due to the finite size effect and the finite connectedn
length, respectively. Eitherf 2 and f 3 becomes irrelevant, de
pending on which of the two valuesL or j is greater. For
L,j, f 2 dominates the upper cutoff, otherwisef 3 domi-
nates. Since we have assumed independence of the finite
effect and off-criticality effect, Eq.~38! can be represente
as a product of the terms that are responsible for the fi
size effect (f 2) and the effect of the concentration (f 3).

We sample over 106 different realizations with the two
sitesA andB fixed. For each realization, we calculate exac
the minimal traveling time and the path that corresponds
the minimal traveling time to obtainP(tmin) andP(l min).

1. Behavior at criticality

We first test numerically the scaling conjecture Eq.~38! at
the percolation thresholdp5pc . In this case,j5` and f 3 is
a constant. Hence Eq.~38! reduces to

P8~ tminur !;
1

r dtm
S tmin

r dtm
D 2gtm8

f 1S tmin

r dtm
D f 2S tmin

Ldtm
D ~p5pc!.

~40!

Figure 5~a! shows thatP8(tminur) has a power law regime
with slope

gtm8 52.060.1. ~41!

FIG. 4. Ford52, scatter plot of the minimal traveling timetmin

versus shortest pathl for a fixed well separationr 51. Note the
strong correlation betweentmin and l . The slope of the tail of the
scatter plot is 1.17, yielding a values ofdtm51.17 anddmin51.32,
consistent with our result in Table I below.
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To determine the functionsf 1 and f 2, we compute the
rescaled probability distribution

FS tmin

r dtm
D [P8~ tminur !~ tmin!

gtm8 r 2dtm(gtm21), ~42!

and plot it against the scaling variablex5tmin /r dtm @see Fig.
5~b!#. According to Eq.~40!

FIG. 5. Ford52, ~a! log-log plot ofP8(tur ) for p5pc50.5 and
for different sets of parameters (r ,L)5(16,250),(32,500),
(64,1000). The straight line regime has slopegt852.0. ~b! Log-log

plot of rescaled probabilityF(x)[P8(tminur)xgt8r dtm against res-
caled lengthx5tmin /r dtm using the valuesgt852.0 anddt51.33.
The curves are flat in the center becausef 2(x) is a stretched expo
nential @see Eq.~25!#. ~c! Log-log plot of transformed probability
P(x)5 log10@A/F(x)# versusx5tmin /r dtm. The slopes of the solid
lines give the power of the stretched exponential functionf 1 and f 2

in Eq. ~25!. Using the parameterA50.14, the slopes givef'3.0
for the lower cutoff andc'3.0 for the upper cutoff.
F~x!5A f1~x! f 2FxS r

L D dtmG . ~43!

Therefore,F(x) should depend only onx and the ratior /L.
Unlike the fractal dimension of the shortest path,dmin , there
have been no calculations of the fractal dimension of
minimal traveling time,dtm . We estimatedtm by finding the
value that yields the best data collapse for Eq.~43!. For
dtm51.33, Fig. 5~b! shows data collapse with sharp cutof
governed for small x,1 by f 1(x) and for large x
.(L/r )dtm by f 2@x(r /L)dtm#.

In order to test the assumption that the functionsf 1 and f 2
are stretched exponentials with exponentsf tm andc tm , we
make a log-log plot ofP(x)[ log10@A/F(x)# versusx for
various values of the normalization constantA @see Fig.
5~c!#. If the stretched exponential conjecture is correct,P(x)
should have two straight line asymptotes for log10 x→1`
with the slopec tm and for log10 x→2` with the slope
2f tm . The slopesf tm and c tm of the straight line fits de-
pend weakly on the value ofA. UsingA50.14, we obtain the
longest regimes of straight line behavior. For thisA we ob-
tain f tm'3.0 andc tm'3.0. With the same assumptions us
derive Eq.~14!, we can derive a similar expression forf tm ,

f tm5
1

dtm21
, ~44!

which yields a predicted value off tm of 3.0 in agreement
with our simulation result.

2. Off-critical behavior

Finally, in order to test the dependence ofP8(tminur) on p
we obtain data for a large system sizeL (L51000,d52)
and for several values ofpÞpc . As we do for the shortes
length, we analyze the behavior oftmin in three regimes de-
termined by the relation of the value of the connectedn
lengthj to the values ofr andL.

~i! j.L.r . In this regime, the fact thatpÞpc cannot be
detected because the connectedness length is larger tha
other relevant variables.

~ii ! L.j.r . In this case, the upper cutoff of the distribu
tion Eq.~38! is governed byf 3 and the functional form of the
rescaled probabilityF is given by

FS tmin

r dtm
D ; f 1S tmin

r dtm
D f 3S tmin

jdtm
D . ~45!

For largetmin , we suggest an exponential decay@27# of F

FS tmin

r dtm
D ;expS 2c

tmin

jdtm
D . ~46!

Semilogarithmic plots ofF(tmin /r dtm) versustmin for p.pc
andp,pc shown in Fig. 6~a! and 6~b!, respectively, can be
approximated by straight lines with slopes that approach z
as p→pc . According to Eq.~46!, this slopek(p) should
follow

k~p!;j2dtm5up2pcudtmn'up2pcu1.77. ~47!
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Figure 6~c! shows double logarithmic plots ofuk(p)u versus
up2pcu for p,pc and p.pc , which can be well approxi-
mated by straight lines with slopes 1.81 and 1.77, resp
tively, in good agreement with the scaling conjecture, E
~47!. As was the case with the analysis ofP8(l ur ) for
p.pc for d53 @see Sec. II D 2, point~ii !#, we cannot deter-
mine the parameters that govern the largetmin behavior of
P8(tmin) because of limitations on the size of the system
can simulate.

~iii ! L.r .j. When the connectedness length is sma
than the distance between the wells, the behavior of the
tem is the same as a homogeneous system@1,3,5#. This can
be seen in Fig. 7~a! in which we plotP(tminur) for various
values ofr at p50.6 (d52). As r increases from below to
above the connectedness length, the form of the distribu

FIG. 6. Ford52, ~a! semilogarithmic plot of transformed prob
ability F(tmin /r dtm) versustmin for f 3 for p50.42,0.43,0.44,0.45
0.46,0.47,0.48 below criticality. ~b! Same for
p50.52,0.53,0.54,0.55,0.56 above criticality.~c! The slope of the
log-log plot of the coefficient in the exponential functionf 3 as a
function of up2pcu gives the valuendtm'1.77 for p.pc and 1.81
for p,pc .
c-
.

e

r
s-

n

changes from the power law distribution of Eq.~40! to a
distribution with a pronounced peak, a characteristic of h
mogeneous systems. In Fig. 7~b!, in order to eliminate the
finite size effect, we selectL5r 12 so that the distribution
P(tur ) does not have a power law regime, even for smalr.
In this case, as shown in Fig. 7~c!, the fractal dimension of
the minimal traveling time crosses over fromdtm51.33 to
dtm52.0, characteristic of a homogeneous system@28,29#.
The same considerations that we use to derive the beha
of the mean and variance of the shortest path can be app
to the mean and variance of the minimal time. At the m
ment of breakthrough, i.e., when the first tracer parti
reaches the second well, the part of the system filled w
tracer particles consists ofnb5(r /j)d independent blobs
each having a certain number of bonds (tmin)b with an aver-
age^(tmin)b&5jdtm and a variancesb

25j2dtm. Thus the aver-
age minimal time for the entire system scales as

^tmin&5nbjdtm5r djdtm2d, ~48!

with a variance

s25nbj2dtm5r dj2dtm2d. ~49!

The scaling plot@Fig. 7~d!# of ^tmin& versusup2pcu shows
good agreement with the theoretical prediction of Eq.~48!,

^tmin&

r d
5~p2pc!

(d2dtm)n5~p2pc!
0.89 ~d52!. ~50!

The graph ofs versusr @see Fig. 7~e!# shows linear behav-
ior, in agreement with Eq.~49!. Equation~49! also predicts
that the slope of this linear dependence decays as

up2pcu2[dtm2(d/2)]n5up2pcu20.42 ~d52!. ~51!

However, the measured slope has a very small variation w
up2pcu that is beyond the accuracy of our data points.

As mentioned above, the minimal traveling time is t
sum of the inverse local velocities over the fastest path wh
the fastest path is statistically identical to the shortest p
While the velocity distribution has been studied extensiv
~see, e.g.,@38,39#!, because the velocities along the path a
correlated, the relation between the minimum traveling ti
distribution and the local velocity distribution is an ope
challenge for further research.

The analysis for three dimensions is completely ana
gous to that for two dimensions. Our results are shown
Figs. 8 and 9 and the scaling parameters found are inclu
in Table I.

Note that the exponentdtm is the fractal dimension of the
set of bonds reached by the tracer particles at the mome
breakthrough. A similar problem was studied in@17#, where
it was found that, when the invading fluid has a lower v
cosity than the defending fluid, the fractal dimension of t
cluster occupied by the invading fluid at the moment
breakthrough~in d52) is approximately 1.3. This case
analogous to diffusion-limited aggregation in a percolati
cluster.

Our case of passive tracer particles corresponds to
equal viscosity of invading and defending fluids. The fa
that both exponents in two dimensions are close to e
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FIG. 7. ~a! Log-log plot of
P(tminur) for p50.6 and for
r 54,8,16,32,64,128,256 andL
5258. The distributions for large
r converge to Gaussians wit
mean^tmin& and variances2. ~b!
Log-log plot of P(tminur) for
p50.6, r 54,8,16,32,64,128,256
and L5r 12. @Note that, for this
case, wherer .j, the distributions
P8(tminur) andP(tminur) are essen-
tially the same since all the clus
ters span the lattice.# ~c! Log-log
plots of ^tmin& versusr for p50.6
and L5r 12. ~d! Log-log plot of
the scaled average minimal trave
ing time ^tmin&/r

2 versusp2pc for
r 5128,192,256,384,512 an
L5r 12. Note that in all cases
r @j. The slope of the line, 0.84
is in good agreement with the the
oretical prediction 0.89.~e! The
behavior of the widths of the dis-
tributions of the traveling time
versusr for p50.53, 0.54, 0.55,
0.57, and 0.6. The graph show
approximately linear dependenc
of s on r. The variation of the
slope withp2pc is within the er-
ror bars of the data.
sa
a

no
ibu
is

s

s

c-
po-

ling
other suggests that both cases belong to the same univer
class. Our preliminary analysis of DLA in three-dimension
percolation clusters suggests that its fractal dimension
1.4160.05, in good agreement with our resultdtm51.45.

C. Fastest path

We observe that the path which takes minimal time is
always the shortest path. However, analysis of the distr
tions of l min yields parameters identical to those for the d
tribution of the shortest paths between points separated
distancer studied in detail in Ref.@14#. Thus, statistically,
the path that takes the shortest time is one of the path
shortest length.

In many transport problems, the characteristic timet*
scales with the characteristic lengthl * with a power law,

t* ;~ l * !z. ~52!

Sincet* scales asr dt and l * scales asr dmin,

z5
dt

dmin
. ~53!
lity
l
is

t
-

-
by

of

Sincetmin and l min are strongly correlated, the distribution
P(l min) andP(tmin) satisfy

P~ l min!dl min5P~ tmin!dtmin . ~54!

Combining Eqs.~52!–~54! and the equations for the respe
tive distributions, we obtain a scaling relation between ex
nents,

~gl min
21!dl min

5~gtm21!dtm . ~55!

These scaling relations are well satisfied by the set of sca
exponents given in Table I.

D. Dependence of minimal traveling time on resistance

The overall hydraulic resistanceR of a percolating system
between two sitesA and B with pressure differencePA
2PB is defined as

R5
PA2PB

J
, ~56!
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whereJ is the total flow defined as the sum of all the velo
ties outgoing from siteA, which is equal to the sum of ve
locities coming into siteB,

J5(
i

v iA5(
i

v iB . ~57!

It is known @1,3# that the typical resistanceR* scales with
the distance between sitesA andB as

R* ;r m, ~58!

FIG. 8. For d53, ~a! log-log plot of P8(tur ) for p5pc

50.2488 and for different sets of parameters (r ,L)5(4,32),
(8,64),(16,128). The power law regime has slopegt852.1.~b! Log-

log plot of rescaled probabilityF(x)[P8(tminur)xgt8r dtm against res-
caled lengthx5tmin /r dtm using the valuesgt852.1 anddt51.45.
The curves are flat in the center becausef 2(x) is a stretched expo
nential @see Eq.~25!#. ~c! Log-log plot of transformed probability
P(x)5 log10@A/F(x)# versusx5tmin /r dtm. The slopes of the solid
lines give the power of the stretched exponential functionsf 1 and f 2

in Eq. ~25!. Using the parameterA50.08, the slopes givef'1.6
for the lower cutoff andc'2.0 for the upper cutoff.
wherem50.98 @35#.
We find numerically that resistance strongly correla

with both minimal traveling length@36#

l min;Rdmin /m ~59!

and minimal traveling time

tmin;Rdtm /m. ~60!

Accordingly, the distribution of the resistance should ob
the same scaling ansatz as Eqs.~18! and ~38!,

FIG. 9. Ford53, ~a! semilogarithmic plot of transformed prob
ability F(tmin) versus tmin below critical point for p50.1988,
0.2088,0.2188,0.2288.0.2358,0.2388 shows pure exponential
havior of f 3. ~b! The slope of the log-log plot of the coefficient i
exponential functionf 3 as a function ofup2pcu gives the value
ndtm'1.30 for p,pc . ~c! P(tmin) for p.pc . Note that for the
values ofp simulated, the largetmin behavior is determined by the
finite size of the system—notf 3.
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TABLE I. Summary of exponents and coefficients in scaling formP(xur )
;(1/r dx)(x/r dx)2gxf 1(x/r dx) f 2(x/Ldx) f 3(x/jdx), where f 1(y)5exp(2axy

2fx), f 2(y)5exp(2bxy
cx), f 3(y)

5exp(2cxy). Herex denotes one of the quantitiesl or tmin . The notation N/A means not applicable~since
no theoretical value exists!, while the notation (1/2) indicates above or belowpc .

x l tmin

exponent Simulation Theory Simulation Theory

d52
dx 1.1360.01 N/A 1.3360.05 N/A
gx8 2.1460.02 2.11 2.060.1 N/A
ax 0.5 N/A 1.1 N/A
fx 7.360.5 1/(dx21)57.69 3.0 3.0
bx 3.5 N/A 5.0 N/A
cx 4.060.5 N/A 3.0 N/A
cx 2.4(2),3.7(1) N/A 1.6(2),2.6(1) N/A

d53
dx 1.3960.05 N/A 1.4560.10 N/A
gx8 2.360.1 2.23 2.160.1 N/A
ax 1.4 N/A 2.5 N/A
fx 2.160.5 1/(dx21)52.56 1.6 2.0
bx 2.0 N/A 2.3 N/A
cx 2.560.5 N/A 2.0 N/A
cx 3.1(2) N/A 2.9(2) N/A
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P8~Rur !;
1

r m S R

r mD 2gR8

f 1S R

r mD f 2S R

LmD f 3S R

jmD , ~61!

with the exponentm playing the role of the resistance fract
dimension and the exponentgR8'2.3 obeying the relation

m~gR821!5dmin~gl8 21!. ~62!

We tested the scaling ansatz~61! numerically and found
agreement with our theoretical predictions.

In industrial applications, it is very important to predi
the time of the breakthrough of the injected fluids into t
production well @28#. Since the pressure and the flow a
known immediately as the operation of the well begins, o
can predicttmin using the relationship~60!.

Up to now, we have considered the breakthrough ti
distribution for the case of a fixed injection rateJ5const.
Another practical application is related to the distribution
breakthrough time at a constant pressure differencePA
2PB5const. For each configuration of the porous medi
with resistanceR, the minimal traveling time at constan
pressure,t̂min , is related to the minimal traveling timetmin at
constant flow as

t̂min5Rtmin . ~63!

Using Eqs.~60! and~63! we conclude that the distribution o
t̂min should obey the same scaling ansatz~38! in which tmin is
replaced byt̂min and exponentsdtm andgtm8 are replaced by
exponents dtmp5dtm1m'2.3 and gtmp8 5(gtm8
21)(dtm /dtmp)11'1.57, respectively. We tested the sca
ing ansatz~38! for t̂min numerically and found agreemen
between the numerically determined values ofdtmp andgtmp8
and our theoretical predictions.
e

e

f

IV. CONCLUSIONS

By modeling porous media using bond percolation a
concepts of percolation theory, we study the flow of fluid
porous media in two and three dimensions between
‘‘wells’’ separated by Euclidean distancer. We investigate
the distribution function of the shortest path connecting
two sites, and propose a scaling ansatz that accounts fo
dependence of this distribution~i! on L, the size of the sys-
tem, and~ii ! on p, the bond occupancy probability. We con
firm by extensive simulations that the ansatz holds ford
52,3, and we calculate the relevant scaling parameters.

In order to understand the properties of the flow of
displaced by fluid or gas, we study the dynamics of flow
percolation clusters. We study two dynamical quantities:
minimal traveling time and the length of the path corr
sponding to the minimal traveling time. Because of the a
proximate parallel between the shortest path and the mini
traveling time of flow, the study of theshortestpath is the
first step in understanding the properties of oil fields. In p
ticular, a scaling ansatz for these dynamical quantities
cludes the effect of finite system size and off-critical bo
occupation probability. We find that the scaling form for th
distribution functions for these dynamical quantities ford
52,3 is similar to,but not identical to, that for the shortest
path. In addition to calculating the relevant distribution fun
tions and scaling relations, we determine the constants
exponents which characterize these relations~see Table I!.
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@39# M. Barthélémy, S.V. Buldyrev, S. Havlin, and H.E. Stanley

Phys. Rev. E61, 3283~2000!.


