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Effective viscosity of dense colloidal crystals

J. M. A. Hofman, H. J. H. Clercx, and P. P. J. M. Schram
Department of Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(Received 3 August 1999; revised manuscript received 22 June 2000

An exact scheme is presented to determine the effective viscosity tensor for periodic arrays of hard spherical
particles suspended in a Newtonian fluid. In the highly symmetric case of cubic lattices this tensor is charac-
terized by only two parameters. These parameters are calculated numerically for the three cubic lattice types
and for the whole range of volume fractions. The correctness of the present method and its numerical imple-
mentation is confirmed by a comparison with the numerical and analytical results known from the literature.
Some regular terms are determined that enter singular perturbation expansions suitable for high concentrations.
Previous results for these terms are shown to be highly inaccurate. The modified expansions approach the exact
numerical results over a range of densities extending to relatively low concentrations. The effective viscosity
is examined for simple tetragongt) lattices and the results for various structures of the st type can be
qualitatively understood on the basis of the motion of the spheres in response to the ambient shear flow. The
angular velocity of the spheres—relative to the shear flow—is shown to be nonzero for certain orientations of
the st lattice with respect to the shear flow, in contrast to what has been known for cubic arrays. Finite
viscosities are found in most cases where the particles are in contact as they are allowed to move in either rigid
planar or linelike structures, or they can perform a smooth rolling motion. The only occurrence where the
viscosity diverges for a st structure, or equally any other Bravais lattice, is for the case of close packing.
Moreover, the concentration-dependent shear viscosity is determined for a variety of microstructures and the
results are compared with recent data obtained from experiments on ordered hard-sphere suspensions.

PACS numbe(s): 83.70.Hq, 83.50-v, 47.15.Gf, 47.35ti

I. INTRODUCTION and thereby forces, torques, and higher moments of the force
distribution(e.qg., stresslefsare exerted on other particles. In
In the past few decades ordered suspensions of mesogrder to determine sudmydrodynamic interactionquantita-
copic particles known as colloidal crystals have gained contively, it is necessary to study particle motions as well as the
siderable interest as model systems to study a wide variety dfow of the solvent fluid, in detail. In a previous artidl26],
physical phenomena, ranging from crystallization and melthereinafter referred to as |, we presented a rigorous method
ing [1-5] and Brownian motion[6—12] to sedimentation to study hydrodynamic interactions in concentrated colloidal
[13,14 and optical and acoustic band gdd$—-17. Long  crystals based on a formalism introduced by Cld&%—29.
range order in colloidal crystals can be due to various interFluid motion is described by the time-independent Stokes
actions between the suspended particles, viz., electrostatagrjuations, which have been successfully used in many stud-
[6,7,18, magnetostatid19,20, hydrodynamic[21,22, or ies on low-Reynolds-number flow in suspensions of mesos-
depletion(entropig interactions[1,3,4], and in many cases copic particles(see, e.g., the books of Happel and Brenner
combinations of these effects, depending on the various chaf30] and of Kim and Karrila[31]). A short review of the
acteristics of both particles and solvent fluid. These interacliterature on theoretical and numerical methods for calculat-
tions are also subject to intensive investigation, generally iring Stokes flow through spatially periodic arrays of particles
close connection with the above mentioned phenomenaan be found in article I.
[6,7,2,23,24,1P In most experimental studies colloidal crys-  The purpose of this article is to consider the relationship
tals consist of identical spherical particles, or well definedbetween the effective stress and the average rate of strain for
mixtures of spheres, which can be obtained through modera colloidal crystal subject to a linear ambient flgavuniform
processing techniques. Sphere diameters are typically in thehear flow. This effective stress is the stress that can be
range of 10 nm to 1Q.m, which is large compared to atomic observed on a macroscopic scale, e.g., by means of a Couette
sizes in “normal” crystals. In fact, by virtue of thermody- apparatus. The colloidal crystal consists of periodic cells
namic analogy, colloidal crystals are frequently used to ob-containingN rigid spherical particles immersed in a Newton-
tain insight into fundamental processes of atomic crystalsian fluid. The flow of the suspending fluid is governed by the
because these systems provide easily accessible time aBtbkes equations. Additionally, it is assumed that the spheres
length scales and since interactions can often be manipulatede neutrally buoyant and free of forces and torques, which
[5,25]. implies that they are carried along by the flow in such a way
What makes colloidal crystals quite different from their that their configuration is distorted. It is important to appre-
atomic counterparts, however, is the presence of fluid sureiate that the effective stress considered here is a quantity
rounding the particles. Thus, moving particles can interthat depends on the macroscopic strain rate andntan-
change momentum through the mediation of the fluid. Evenaneousparticle configuration, as can be measured in an os-
if a certain particle is not moving at alielative to an ambi- cillating Couette flow with small deformatiofsmall shear
ent flow its mere presence will generally disturb the flow, amplitudg. Moreover, the frequency of the oscillations is
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considered sufficiently high so that stress contributions dugensions the effects of multiparticle hydrodynamic interac-
to Brownian motion can be neglect€g?]. tions are extremely difficult to calculate in an exact way,
Under the conditions mentioned above, tfdeviatoric inter alia due to the fact that these computations require
part of the effective stress is linearly related to the ambientévaluation of distribution functions for an arbitrarily large
rate of strain, which has been well known since the work oftumber of particle§37,38. This difficulty is not encoun-
Batchelor[33]. The effective viscosity is defined to be the tered for the case of colloidal crystals where the microstruc-
four-tensor in this relationship. With regard to the experi-ture is exactly known, not merely in a statistical sense. More-
mental situation, as mentioned above, this viscosity is ofte@Ver; due to the inherent periodicity of colloidal crystals, the
referred to as théigh-frequency effective viscositys will ~ Problem of determining infinitely many-particle hydrody-
be expounded below the viscosity can be calculated on th amic interactions can be effectlvely reduced 1o th_at of a
basis of the theory presented in article I, provided, obviously,Inlte _numk_)er Of_ particles. This allows one to determine the
that the configuration of particles is spatially periodic. Thisef.feCt'Ve viscosity for these systems W.'th great accuracy, as
seems to preclude the possibility of studying finite crystaIW'II be shown in this paper by application of the theoretical
deformations. However, such a grave restriction is unneceélpproach presented in article I. Except for the fact that our

sary since a periodic array of spheres in a uniform shear ﬂowesults _yleld some g_ener_al |ns_|gh_t into _the mechanl_sms that
will remain periodic. A cubic lattice of spheres, for instance,determIne the effective viscosity in particle SUSpensions, th_e
may become triclinic, and this deformation can be deteraccurate data represent an invaluable reference against which

mined from the grand mobility matrix, which gives the par- the performance of numerical simulation schemes can be

ticle motions relative to a known ambient flow. For the spe-teSted' Thesg ISSues will _be d|§cu§sed below. .

cial case of unidirectional flow, the lattice will become cubic . The organization of th|§ 'art|cle IS as fOHO.WS' Section |l
again after a finite time, and this will be repeated periodi-ntroduces the grand mobility matriéas mentioned aboye
cally. In any case, the effective viscosity can be calculate(iOr an isolated group of spherical part|c|_e_s. The t_heprencal
for each lattice through which the configuration passes. ~ Scneme for calculating the grand mobility matrix is ex-

Experimental studies have pointed out that the effectivé’ounded in Sec. lll, which summarizes the analysis followed

viscosity of random suspensions shows a rapid increase adn article | and introduces some additional ingredients neces-

the volume fraction of solid particleg, is rising. The same sary for the determination of the effective viscosity. This

qualitative behavior is found for cubic arrays of spheres, agulm_inates in a set of linear equations by which the mo_bility
was indicated by calculations of Kapral and Bede&s#, matrix can eventually be solved. In Sec. IV the set of linear

some 20 years ago. These authors concluded that the ViSCOesquations is presented in a form that is suitable for calcula-

ity of regular arrays goes to infinity before the closest pack-tIon of the viscosity appropriate fqr the case of regqlar ar-
ys. The procedure for performing these calculations is

ing density is reached. For random suspensions a simildf* _ - : .
divergence of the viscosity below the random-close-packin Iven in Sec. V‘_ Explicit numerical resglts for the effectlye

concentration had previously been suggested by Moone |scosny for CL.JbIC arrays are pre;ented in Sec. V_I. A detailed
[35]. This singularity was supposed to be due to “self- omparison with previous numerical data for a wide range of
crowding” of particles. Numerical computations and asymp-(x)r“:er‘tr""t"J'.1S conflrms .the correct.ness 9f the prese.nt
totic expansions for cubic arrays by Nunan and Kel&s] method and its numerical implementation. Using the numeri-
have shown that Kapral and Bedeaux's high-density resultgal results for extremely hlgh_ volume fractions, a corre_ctlon

(for cubic lattice$ are inaccurate. Moreover, these numerical'> presented of the asymptotic formulas as found previously

computations clearly indicate a singularity which corre-b.y Nlur][a? and I|<eller. N_?;](t’ Sec- '\t/”blshcqncimiﬁ' V\t”th
sponds to the close packing concentration for each of thé'fmfe te ragona ar_rayj._ € V|scct)_3| y .?h ?r:nor Otf 'Sf {ﬁe
three cubic lattice types. In the past 50 years a variety of ! Structure Is examined in connection wi € motion ot e

formulas have also been proposed to predict the viscosity cﬁ)artlcles in response to the ambient shear flow. Moreover, it

random suspensions over the entire range of volume fradS illustrated that finite viscosities are obtained for several

tions. For a short review thereof see the references meﬁ:_onfigurations_ of_touching particlgs. This finding .also Sug-
tioned in Ref.[37]. Whether these formulas are derived on gests the unlikeliness that the high-frequency viscosity of

firm theoretical or semiempirical grounds, they all include anrandom harq-sphere suspensions should be_ smg'ular before
algebraic singularity at a certain volume fraction a physi- closest packlng is reached. In Sec. VIII the viscosity results
cal or an unphysical regimeUsing these singular forms it is for a variety of regular arrays are compared to measurements

possible to describe the steep rise of the viscosity at hig@f tge v(;scosm:jcg orgire\c/ivsuspéans_ur)]ns, as rlep(_)rteq rgcently
concentrations. It is not known to date, however, if there y Gondret and Pet[21]. We end with a conclusion in Sec.

exists a critical concentration at which the viscosity should ™
diverge for random suspensions. Clercx and Schram have
recently presented an expression for the high-frequency ef- IIl. THE GRAND MOBILITY MATRIX

fective viscosity for random suspensions, thereby taking into e study of the effective viscosity is started by consid-
account hydrodynamic interactions between two particle%ring a system oN rigid spherical particles with radi,,
only [37]. Their expression is in good agreement with ex- .17 > "~ N1, immersed in an incompressible, unbounded
perimental data and a reasonable correspondence is fouRdliy Their centers have position vectdRs with respect to

with numerical data and numerical simulation results, up Qe origin O. It is assumed that the ambient velocity field
concentrations ofp~0.6. This is remarkable, since for such v,(r) of the fluid in the absence of particles is linear,

high densities three- and more-particle hydrodynamic inter-
actions are expected to become important. For random sus- v =Vat @ Xr+g,r, (2.7
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with constant velocity/,, angular velocityw,, and traceless whererII(r) - n denotes the traceless and symmetrical part of
and symmetrical rate of strain tensgy[39]. In the presence the dyadrII(r) - n. In order to define the grand mobility ma-
of particlesv 4(r) is considered as the linear part of the total trix it is useful to introduce théN-particle velocity and rota-
velocity field. The position vectaris defined with respect to tional velocity vectors

the originO. Due to the ambient flow and possibly external

forces the particles may have velocitiel and rotational U=(Uq,... .Uy, Q=(Q4,..., Q) (2.7
velocities), . Even if a certain particle is not moving at all

(relative to the ambient flowits mere presence will gener- and similar notations for the quantities related to the ambient
ally disturb the flow, and thereby forces and torques are exvelocity field,

erted on other particles. In order to determine such hydrody-

namic interactions quantitatively, it is necessary to study Ua=(Uaz, - - Uan), (2.8a
particle motions as well as the flow of the solvent fluid, in
detail. Under certain conditions, discussed in more detail in Qo= (g, - . . o), (2.8b
article 1, the equations of motion of the continuous fluid are
given by the Stokes equations, which express conservation of Ga=(Ga1, - - - Gan)- (2.89
momentum and mass, as
Here
7V2u(r)—Vp(r)=0, (2.29
U =04 Ry) =Vat @ X R+ 02 Ry, (2.9a
V-v(r)=0, (2.2b
W= W, (2.9b

with v (r) the fluid velocity at position and p(r) the pres-

sure [40]. The material propertyy is called thedynamic Oan=0a. (2.90
viscosity and in most instances is simply referred to as the

viscosity One of the conditions for the validity of the Stokes Analogous to the kinematic quantities in E¢R.7), the
equations is the smallness of the Reynolds number corrderces, torques, and stresslets can be combined into the ar-
sponding to the disturbance of fluid motion caused by theaays

presence of a representative spherical particle with raalius

in the ambient flow. This Reynolds number is given by Re F=(F4,....Fn), (2.109
=ya®/v, wherey is a representative magnitude of the am-
bient rate of strain ana= 7/p is the kinematic viscosity of T=(Ty, ..., Tn), (2.10h
the suspending fluid. In addition to satisfying the Stokes
equations2.2) outside theN spheres, the flow is assumed to S=(S1, .S (2.100
obey stick boundary conditions on the surfaces of all par-
ticles. This means foo (r) at the surfaces, of particlen: Because of the linearity of the ambient fl¢2:1), the Stokes
equationg2.2), and the boundary conditior{2.3), there ex-
v(nN=U,+Q,X(r—R, with reS,. (2.3 ists a linear relationship between tNeparticle velocity dif-

_ . ferenceU— U, and the given quantities, T, andG,. Analo-
After calculation ofv(r) andp(r) as expounded in the fol- gously, the rotational velocity differenc®—€, and the
lowing section, the pressure tendd(r) can be determined, stressletS depend linearly o, T, andG,. These relations

defined by can be expressed in condensed form as
_ 1 T
I(r)=p(n1=7[Vo(r)+[Vo()]']. (2.9 U-u, ptout g F
The pressure tensor is used to calculate the féige the Q-Q, | =- ptopt e T]. (211
torqueT, and the stressled, exerted by the fluid on particle _s pdt gl pydd G
a

n. The force and torque satisfy

The submatriceg!, etc., are composed of mobility tensors
Fn=— Lﬁﬂ(r)mdA, (2.59 Mmi; , etc., where the superscripts t, r, and d refetrémsla-

tional, rotational and dipole respectively. The dot in Eq.

(2.11) stands for a contraction of tensors. It should be men-
Tn:—J rXTI(r)-ndA, (2.5b  tioned that in this notation for the mobility tensors no dis-

Sn tinction has been made between tensors of different rank:

e.g.,m is a second rank tensqay}” is a fourth rank tensor.
The mobility tensors obey certain symmetry properties as a
consequence of the Lorentz reciprocal theofseg, e.g. Ref.
[31]). For the tensop.% this yields

wheren is the unit vector normal to the surface elemdit
and directed into the fluid. The stresskgt is the traceless
and symmetrical part of the first moment of the force distri-
bution integrated over the surface of partiole

dd _dd
Hij,aBys— Miji,ysap (212

Snz—f rII(r)-ndA, (2.6
Sh which will be used hereafter.
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lll. THE SET OF LINEAR EQUATIONS For completeness it should be noted that we use the follow-
ing convention for the spherical harmonics in connection

In order to calculate the grand mobility matrix for an en- ith the associated Legendre functioR& (see, e.g., Ref.

semble of spherical particles it is necessary to solve the equ

tions of motion of the continuous flui.2) thereby satisfy- 42])):

ing the stick boundary conditiof®.3) on each sphere. This (—1)m _

subject has been discussed in the past by several authors and Yim(6,¢)= P"(cosh)e'™¢ (3.5
nowadays various methods are at our disposal to tackle the Im

problem (see, e.g., Refd.31,3Q for a review. The set of
basis solutions presented by Schmitz and Feldgdhtifpro-
vides an elegant and powerful method that has been applied

successfully by Clercx and Schram in calculating the effects Nim=
of two- and three-particle hydrodynamic interactions in sus-

pensions[27,28,37. This method relies on the linearity of The definition form<0 is given by

the Stokes equatior(2.2) to express the disturbance velocity

field v —v, caused by theN moving spheres as a sum of m(0,0)=(=1)"Y, _(6,¢). (3.7
velocity fieldsv,:

for m=0, with the normalization constants

47 (I+m)1]22

(21+1) (I—m)!

(3.6

With regard to the decomposition of the velocity field in
N Eqg.(3.1), it is evident that each of thd moving spheres also
v(N—vr=2 vy(r—Ry), (3.)  causes a pressure disturbamge Analogously tov, in Eq.
-1 (3.2, thesep, can be expanded in terms of a set of basis
functions as

whereR, is the position vector of theth sphere with respect
to the originO. All the N velocity fields can be expanded in
terms of basis solutions of the Stokes equatiops, , vimg PN =2, [ 21Pima(") + BimPims(r) + YimPimy(N)].

Uim, as follows: fm 38

)= n NOOEY:H )+ " N1, The pressure functionpm,, Pimg: Pim, are chosen such
vy(r) ;n [a1mVima(1) + BimUimp(r) + YimUimy(1)] that the Stokes equations Y
(3.2

7]V2v|m0'(r)_vp|mo'(r):01 V'U|m0.:0 (39)
with expansion coefficienta |y, , Bim, ¥im andl=1, —l<m

<1 in the summation. These basis solutions are, in spheric&ie satisfied for all=1, |m[<I, ando{e,B,7}. Consid-
coordinates , 6, ¢, ering Egs(3.3),(3.4), and(3.9) and the fact that the pressure

is harmonic in consequence of the Stokes equations, the
I i) pressure functions are found to be
U|ma(f)=mr Bim(6,¢), (3.33

p|ma(r)zol (3103
1 = 1
Vimp(r) = TN +9¢,.(6,9), (3.3b Pimp(r) =0, (3.10b
Pimy(N=71(21=1r=*Vy, (6,4).  (3.109
1
Uimy(N) = ——— 1 [(1+1)A (0, ¢) It is found convenient to introduce the new expansion coef-
(2+1) ficients
—31(21-1)Bn( 6, 9)1, (3.39 (1)
Al =——[a,*(—1)"a A1
where the vector spherical harmonisg,, B, andC, can ™ a2 [aim*= (=D ], (3113
be expressed in terms of the spherical harmo¥igsand the
unit vectorse, , €, €4: - (=1)ltm | -
Bim =—1 ﬁ[ﬁlmi(_l) BI,—m]r (3.11b
&Ylm( 01¢) nlman
A0, 8)=1Y (0, )& +— e oy
ClE= — [y0 = (—1)™" ] (3.11
1 &Ylm(aa(b)n (.48 Im nlmaln [7Im ( ) ", m] ( 0

sing a¢ o .
As can be seen from these definitions it is sufficient to use
n+ n+

Bim(0,)=Am(6,d)— (21 +1)Y,n(6,d)e, (3.4  the coefficientsAl", B, CfiT with m=0 and the coeffi-

cientsAj, , B/, , Cl, with m=1. Some of these coeffi-
1 Yim(6.¢)  Yim(0.6) cients determine the forcg,, torqueT, and stressles,
C'm(0’¢):sin0 0% &~ g exerted by the fluid on particle. These relations follow by

substitution of the expansions of the velocity and the pres-
=An(0,0)Xe . (3.409 sure in the definitiong2.4)—(2.6); the calculations are de-
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tailed in Ref.[27] for the force and torque, and in R¢87]  bounded. In order to solve the set of linear equations we
for the stresslet. The resulting expressions are define an upper limit of this index, i.e.] <L, assuming all
- o - coefficients withl>L to vanish. Thereby the number of
Fn=2mnan(2Cy16+2iCy 6+Cyoe,), (3.128  gquations is B(L+2)N with the same number of unknown
ok e - coefficients. The choice of the truncation levetiepends on
Tn=2minay(2By 16+ 2iBy 6+ Bjge,), (3.120  various factors, e.g., the desired numerical accuracy. It is
) recalled thalN denotes dfinite) number of particles, so that
_ there is a finite number of equations that can be solved in a
Si= 373y ,Z’O XmCom Tm+m§::1 X-nCamT-m|- straightforward way. !

(3.120

2

) IV. THE QUASI- N-PARTICLE APPROACH
Here the constant factoyg, for ge{—2,—1,0,1,2 are given
by Our aim is to determine the effective viscosity for the case

of a regular array of spherical particles. The array consists of
Yo=— 26w, x1=8\2m, x_,=82mi, identical cells that contaiN particles with radii a,,n
(3.133 €{0,1,... N—1}. Itis assumed that this colloidal crystal is
unbounded in all directions of three-dimensional space. The
X2=16\2m, x_,=16y27i. (3.130  positions of the particles in the array, with respect to some

origin O, are specified by the vectors
The five tensorsr, form a basis for the traceless and sym- g P y

metrical two-tensors, defined by Rin=Ly+R}. 4.1
7'02%\/6(%(@)(4r 6,6~ 26,6,), HereR/, indicates the position of theth particle relative to a
. lattice point, which is indicated by the lattice vectgr. The
=32 \/E(exez+ €8), lattice points form a regular array of points in space: a crystal
. lattice, orBravais latticeas it is usually called.
T-1532 \/E(eyefr e8), The description of hydrodynamic interactions between
) particles in the array is based on the set of coupled linear
7225\/§(exex_eyey)r equations discussed in the previous section. Direct applica-
L tion of these equations is not feasible however, because the
7= 3\2(eg8,t 8. (314  number of equations is proportional to the number of inter-

acting particles, which is assumed to be infinite in the present
case. However, it is possible to exploit the translational in-
variance of the array, thereby obtaining a finite set of equa-

For instance, the traceless and symmetric strain gatsan
be expanded in terms of the above basis tensors as

2 tions resembling that for an isolated systemNoparticles.
U= E AT, (3.19 This quasi-N-particle approachexpounded in detail in ar-
PR ticle 1, relies on the fact that the mobility matrix for glh-

g finitely many) particles is solely determined by the geometry
introducing the expansion coefficientg,. Moreover, it is  of the system: the periodic configuration of particle positions
worthwhile to mention that the above basis is orthonormal: and particle sizes.

As shown in article | the quasi-particle approach en-
Tq ¢ Tq=Oqq - (316  ables one to study crystal waves, i.e., a lattice of particles
executing translational and rotational motions that vary har-
monically over the lattice. The set of linear equations derived

applications. in article | is also suitable to determine the effective viscos-
The unknown coefficients in E¢3.11) can be determined ity, apart from a few minor modifications. These modifica-

by application of _the stick boundary condition_s on t.he Sphe.r‘?ions concern the presence of the ambient flevhich was
surfaces. Following the proqedure outhned n art_lcle | th'Sconsidered absent in article &nd the fact that the present
eventually Ie_a_ds to a set of Ime_:gr equations relatlrlg the un;')roblem yields a further simplification of the set of linear
known coefficients to the coefficients, that determine the  equations. In order to explain this simplification it is noted
strain rateg,, and the components of the particle velocitiesthat the stresslets are linearly related to the strain rate, ac-
relative to the ambient flowJ,, and ,,. These relative ve- cording to Eq.(2.11), and for forceless and torqueless par-

locities are defined by ticles these relations read

This orthonormality will turn out to be convenient in future

U,=U,— Uz, Q,=Q,— w,, (3.17 Snzz Mg? C g, 4.2
with U,, as given by Eq(2.9). On the basis of the above :

mentioned linear equations it is possible to determine thédere summation is over all particles in the infinite array. By
components of the grand mobility matrix defined by Eg.virtue of this equation, the translational symmetry of the lat-
(2.11. It is noted that the set of equations comprises artice, and the fact that, is constant, it follows tha®, must be
infinite number of equations for an infinite number of coef- translationally symmetric also, i.e., the stresslet is the same
ficients Al , Bj, , and Cj, because the indek is un-  for all particles at certain positions in the array that differ
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exactly by one lattice vector. Thus, for cells containiNg  Here i and u;, are Fourier transformed mobility tensors
particles there aréat mos} N different stresslets, which defined analogously t&g? in Eq. (4.4). The relationg(4.5)

can be written as will be useful later to determine particle motions in response
N-1 to the ambient shear flow with strain rate tenggr whereas

_ ~ dd . Eq. (4.3 can be used to determine the effective viscosity, as
= (0) : 4.3 : . : ; i

S JZO #nj (0) : Ga “3 will be explained in the next section. Moreover, the transla-

_ _ tional invariance of the quantitids, and &, yields a sim-
forne{0,1,... N—1}. The Fourier transform used above is pification of the set of linear equations, as mentioned before.

defined as By introducing new labels Xj) instead of n, with |
€{0,1,...N—1} and\ labeling the cell indicated by the
[Lﬂ?(k)=2 P NCRAY (4.4 lattice vectorL, , this invariance can be expressed as
Uon=Uoi: Q0= (4.6

Here (\j) denotes thgth particle in the cell indicated by the ) ) » . .
lattice vectorL, and the summation runs over all lattice vec- BY Virtue of these identities and the stick boundary condi-
tors of the infinite lattice. Notice that the Fourier transformedtions it can be straightforwardly showisee Ref[43]) that

mobility tensor in Eq(4.3) is evaluated ak= 0. At this point all expansion coefficients entering the set of linear equations
it is found worthwhile to mention that the same translationa/@'® ranslationally symmetric, that is,

5ymmetry~applies to the relative velocitiek, and angular A== a0D= = gM)= = g(0D)=

velocities(),, defined by Eq(3.17), and by analogy with Eq.

0 G ()= — (o) +

(4.3 the N differentU,, and Q, are given by Cim’ =Cim" - 4.7)
N—1 N—1 Following the procedure outlined in article | and taking no-

U.=— W40 g, O.=— 240y - q.. tice of the translational symmetries expressed by E4$)
" jgo #nj(0)  Ga . jZO #nj(0) - G and (4.7), a set of linear equations can be derived for the

(4.5  expansion coefficients in E@4.7). These equations are

N—-1
3 ~ ~ 40 _~ 2p+1 . .
A= + Rnj+ +
— §5p1[5qlunx+25qounz]_ Tan5p2Xq Aq—CBq + p-{-—]_ P m)(ﬁ]pq(O)A{m
' ; [ , ,
Inj— - Inj+ +
D@D <med OAm 51y Yimeo 0Bl

+ mvmqu(msf,; +ZRb (0)Cl + iz,'{;{;q(O)Cfn;} , 4.8

§i(s 54,0 —40—7Ta5 “IA =c“*+ﬂh§2 éx'““(0)Ai++—xR“J*(0)Ai*
2 OpLOa1tnyT TgmSnOpaX—q-aT pa T T piT e A (T 1) (201 1) mipd S Rim TSy (2 1) Mimipgt S Rim
i i I 1= i— . 1 i i— i—
ot Ymed OBlm + iy Yimed(0)Blm +iZink5g(O)Chn +zf§n”;;,q(0)cfm},
(4.9
1 N—1
=1 x Rnj* j* 1 iyInjF B
Apg=3(p+1)(2p—1)Cy, ~2p+3 ,Zo 2 1(21 = 1)[ Xjmipg(0) Cly + X pg(0) Cln 1, (4.10
- p ip
. B - . ‘ - -
2ianSpal 3q1Qnx+ 28500, =Bpg — JEO IZm 7 Ximpa(0Blm + 157 Xinm pa( 9Bl
+i(20=1) YL (0 Cly + (21 =) YR (0l |, (4.11)
N—1 .
0O n— P Inj+ jt+ P Rnj— j— Rnj+ it Inj— j—
2an5p15qlﬂny:qu_j:0 % mxlm;pq(o)Blm—'_mxlm;pq(o)Blm+(2|_1)Y|m;pq(o)clm+|(2|_1)Y|m;pq(0)clm ,

(4.12
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with =1, 0=m=lI in the summations. Moreovgr=1, 0  This procedure is followed in the rest of this article in order
<gsp, andne{0,1,... N—1}. Notice that the functions to determine the effective viscosity for a number of lattice

XU (K), X (K), YRIE(K), VIl (K), ZRnbe(k), and  types.

Im:pa Im:pg’ Imipq Im;pq Im:pq
Zin pq(K), as defined in article 1, are evaluatedkat 0.

For a given truncation level Egs.(4.8)—(4.12 represent V. CALCULATION OF THE EFFECTIVE VISCOSITY
3L(L+2)N equations, with the same number of coefficients The effective streser, for a suspension consisting of par-

Al + B . andCji; . The number of equations can be re- ticjes immersed in a fluid under slow flow conditions can be
duced by expressing the coefficient§, in terms of Ci7,  defined, according to Refi33], as the volume average of the
through Eq(4.10, getting 4 (L +2)N equations for the co- |ocal stresso(r) over a representativenacroscopig region
efficientsB|,, andCf,, . At this point it should be noted that V, with volumeV, that contains both particles and fluid:

the equations fop=3 are homogeneous, so that the coeffi-
cients withl =3 can be expressed in terms of the coefficients
with =<2, exactly those coefficients determining the forces,
torques, and stresslets according to E3112 [44]. Due to
vanishing forces and torques, this eventually leads to somkor colloidal crystals as described in the Introduction the

linear relations between the five coefficie@$,, determin- ~ regionV can be identified with a lattice cell containiry

ing the stresslets and the five coefficieﬁtqsthat determine spheres. Ong canﬂfqrmally decg) mpdsqqto a rgg|onfoc|$\|u—

ga as given by Eq(3.15. From these linear relations one can pled_ by ambient u'dvf. .and the interior region of a
eventually obtain the effective viscosity, as discussed furthe?art'desv » thereby writing Eq(5.1) in the form

in the next section. Additionally a set of linear relations is 1 1

obtained between the coefficierg and the components of UGZVJV o(r)dr+ vL o(r)dr. (5.2

the relative velocitied), andQ,,. In fact, these linear rela- f P

tions are precisely the mobility relations as given by EqgsAs the suspending fluid is considered to be Newtonian the
(4.3 and(4.5). It goes without saying that the procedure juststress inV; is given by

described involves an enormous amount of effort, especially

when we require an accurate solution of the mobilities for o(r)=—1I(r), (5.3

many-particle cells, that is, If andN are large. Evidently, in . .
these cases the help of the computer must be called upolherell(r) is the pressure tensor defined by E24). Thus
This numerical step comes down to solving a set of “nealfor rigid particles the first integral in E@5.2) can be written
equations, for which efficient codes can be written. (see, e.g, Ref31)) as

It is important to note that some of the functions intro- 1 2
duced in Eqs(4.8)—(4.12 are singular ak= 0. This holds in —f o(r)dr=—p.l+ —f Vo(r)dr. (5.4
particular for the functionZ5n)5, (k) and Z5)5,(k) that Vv Vv
enter the evaluation of the effective viscosity. These func-H the effecti defined b
tions are found to have a discontinuity for vanishing wave ere the eflective pressufk, , defined by

vector. Moreover, if the relative velocitids;, are determined 1

according to the relatiof4.5) one is confronted with a di- peva p(r)dr, (5.9
vergence in the expression ffzf]dj(k) which behaves als 1. '

The various types of singularities are directly related to theyrovides the purely isotropic part of the stress, which is of no
long range dipolar interactions in the infinite regular array ofparticular interest. The integral on the right-hand side of Eq.
spheres. In fact, for infinite arrays of particles, it is known (5.4) (where the overbar denotes projection onto the sym-
that the disturbance velocity field can have a linear part. Thisnetrical part is proportional to the rate of strain averaged
point has been discussed by several authors in the context ofrer V (which contains both fluid and particlet9]. Thus,
polymer solutions[45], hard-sphere suspensiof®6], and by definition,
suspensions with periodic boundary conditigdg]. In this

study we restrict ourselves to special cases where there is a

unique way of taking the limik—0. This is the case, for

example, when cubic, tetragonal, or hexagonal arrays are

subject to certain shear flows, i.e., where the plane of shear The contribution to the stress due to the presence of the
coincides with a symmetry plane of the lattice. In these caseparticles, oy, is given by the second integral in E¢.2).

one can obtain convergent expressions for the relative vé=ollowing the analysis in Ref§33,31 and restricting our-
locities U, if k— 0 is taken in the direction perpendicular to Selves to forceless and torqueless particles, it is found that
the plane of shear. Any other direction yields infinite veloci- thiS particle stress is directly related to the stressietf the

ties. The correctness of the proposed approach is supportdyjSPheres contained in a cell:

by the analytical and numerical results presented in the fol- N—1

lowing sections, which clearly show excellent agreement . :i S. (5.7)

with data from the literature concerning this is$84,36,48. Y

1
oe—vao(r)dr. (5.1

29 [ ——
—f Vu(r)dr=275g,. (5.6
Vy
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In order to define the effective viscosity it is found conve-defined by Eq(3.14), form a basis for the symmetrical and
nient to decompose the effective stregsinto the isotropic  traceless two-tensors, so that the stressitgan be ex-
pressure term-p.l and the deviatoric stress contribution panded as

oy; thus

0= —Pcl+ay. (5.9 S= > Chmn. (5.16

According to Eqs(5.1), (5.2), (5.4), and(5.6) this deviatoric .
stress satisfies The coefficient<C,, are related to the previously defined co-

efficientsCl, in Eq. (3.11) as
04=2710,t 0. (5.9
Ch=—27a’xoChy, C.,=—27a’x+Che.
Combining this identity with Eqsi4.3) and (5.7) yields 0T TRMIAOTRy T TR RN g

1 - H i
_ - dd ) ere the subscriptg e{1,2, and the constantg,, for m
Td 277ga+V ; #ii(0) =+ Ga. (5.10 e{—2,-1,0,1,2 are defined by Eq(3.13. As is inferred
from Eq. (4.9 the coefficientsC', and A, are linearly re-
This linear relation between the deviatoric stress and the rat@ted, which can be expressed as
of strain can be written in condensed form as

2
0=27 : Ga. (5.12) Cl = 22 D! A,. (5.18
n

The four-tensor, in this relationship will be called the ef- .

fective viscosity. This effective viscosity can be determinedThe proportionality constan®,, are determined by the ge-
by solving the components of the mobility tensors in Eq.0metry of the array of spheres, as they are directly related to
(5.10 from the set of linear equatior(4.8—(4.12. In order ~ the mobilities in Eq.(4.9). In effect, it follows straightfor-

to explain how this can be accomplished it is found convewardly from Eqgs.(4.3), (3.19, and(5.16 and the orthonor-

nient to introduce the four-tensor mality relations for the tensors,, in Eq. (3.16), that
1 . ) -
pi==—"> p%(0). (5.12 Dinn=7m |2 #0(0) @ 7. (5.19
29V 7 Y i

This tensor satisfies certain symmetries which can be excombining this identity with the definition®.12 and(5.15
ploited to simplify the calculations. Combining Eg5.12,  Yields
(2.12, and (4.4 and using the symmetries of the crystal
lattice (translational and inversion invariancé follows that 1 i
an:277V zl Dmn- (5.20
Mgﬁy(?: ,U«(«jyaaﬁ . (5.13
o ) Moreover, by combination of Eq93.15, (3.16), (5.11),
Furthermore, it is noted that the stresslets, the strain rate, ar(g_m, (5.12, and(5.15 it is found that the effective viscos-
therefore alsary in Eq. (5.10 are symmetrical and traceless. ity tensor has 25 components with respect to the basis of
As a direct inference from these properties, combined withensorsz and these components are directly related to the
the symmetry in Eq(5.13), it follows that u® is symmetric | atrix elementd,,, according to the identity
and traceless in both its first and second pair of indices:
d _ d d _ d Tn o e ! Tn=N(Omnt Mpp). (5.2)
/"Laﬁyé_ /’L,Bayﬁ’ Iu‘a,Byﬁ_ Maﬁ&y'
g d The 25 numberd ,,, can be determined by solving the co-
Maays=01  Mapy,=0. (5.14  efficientsD!, , in Eq. (5.20 from the set of linear equations
] ) (4.89—(4.12 as described at the end of the previous section.
In the last two equations the trace is denoted by repeategh the next sections these numbers will be determined in

indices, according to the Einstein summation convention. Byyrder to examine the effective viscosity for simpie=1
virtue of the symmetry relation&.13 and(5.14) it follows arrays.

that u® can be characterized by 25 numbaéts,,, for m,n
e{—2,—-1,0,1,2, that are defined by VI. CUBIC LATTICES

Mmn=mm @ p 7. (5.19 It is the purpose of the present section to compare our

- . ) _ results for the effective viscosity for cubic lattices to known

The coefficientsM ,, can be determined using the relations results for these systems found in the literature. By exploit-
between the coeﬁicientﬁ:gqt and A.4, with qe{0,1,2.  ing the symmetries of cubic lattices Nunan and Ke[&8]
These relations are given by the set of linear equatiérf8—  have shown that the effective viscosity tensgyfor these
(4.12. For that purpose it is recalled that the tensggs as  arrays is of the following form:
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(Me)ij =3 7(1+ B) (51 + 8 Sjk— 5 8ij Sk1) gard to experiments it is relevant to consider the first and the
L second normal stress differenceldjoy),,— (og)xx] and
+ 7= B)(Siji — 3 6ij o). 6.0 [(09)xx—(09)yy], respectively. Clearly, the second normal

stress difference is vanishing by virtue of symmetry, while

the first is proportional to the extensional velocityaccord-
ing to Eqs.(6.7) and(6.8). The (dimensionlesscoefficient in
this relation is called thextensional viscositye,;, and is
defined by

Here the indices, j, k, and| denote the components with
respect to the Cartesian coordinate axggz, which coin-
cide with the principal axes of the cubic lattit&0]. More-
over, §jj is unity if all indices are equal and zero otherwise.
Thus the effective viscosity tensay, for cubic lattices is
determined by only two parametesisand 8, which depend
on the type of cubic lattice, i.e., sc, bcc, or fcc, and on the next:M-
volume fraction¢. These separate parameters are directly ne
related to the(scalay viscosities corresponding to imposed o ) ) )
linear flows that are oriented in a special way with respect tdt follows by combination of the above identity with Egs.
the cubic axes, as is discussed below. The physical meanir§-12. (6.1), (6.7), and(6.8) that the extensional viscosity is
of the paramete can be interpreted by considering the directly related to the viscosity parameteras

Couette flow(simple shear floy specified by the velocit
freld (simp wsp y Y Peq=3(1+ ). (6.10

(6.9

i More generally, it can be inferred by inspection of the effec-

vaN) = 7ye, 6.2 tive viscosity tensor that the viscosity parameteprre-

sponding to a certain stress component, or stress difference,

analogous top, and 7.y) is proportional to (& «) for a

shear flow whose principal ax¢S1] are parallel to the axes
g of the cubic lattice, while it is proportional to (13) when

9= 2 v(&& T €8) 6.3 the principal axes are at 45° to the cube axes. For any other

and by combining this expression with E¢S.11) and (6.1) type of shear the corresponding viscosity parameter is a lin-

wherey is called the strain rate coefficient. By definition the
rate of strain tensor for this Couette flow satisfies

it follows that the deviatoric stress is given by ear combination o and 3, which follows by application of
the viscosity tensoty,.
04=27(1+B)g,. (6.4 In order to determiner and 83 it is noted that
Thus the stress has only two nonzero components),(, a=Myo=Mjy,, (6.113
and (og)yx= (og)xy, that can be accessed experimentally by
measuring the tangential force on a bounding Wialla Cou- B=M_5 »=M_; =My, (6.11b

ette apparatyswvhich is parallel to the shear flow. According )
to convention the relative shear viscosijy that corresponds Where the matrix_elements!,, for mne{-2,-1,0,1,3

to the shear flow in Eq(6.2) is defined by are defined by Eq.5.15. The above relations can be
straightforwardly derived by substitution of E@.1) for 1,
(og)xy into Eq. (5.21). It is furthermore found that all off-diagonal
/] (6.9 elementsM ,,, are vanishing. The nonzero elements in Eq.
mY (6.11), and therebyr and 3, can be determined for the three

and it is found from Eqs(6.3 and (6.4) that the relative cubic lattice types by solving the set of linear equations as

viscosity is related to the parameferby the simple formula expounded at the end of the previous section. Restricting
ourselves to the equations for truncation lelvei 2 and per-

7, =1+pB. (6.6) forming elementary algebraic manipulations we get
asymptotic expansions of the form
The parametes corresponds toormal stressethat are gen-
erated, for instance, in a uniaxial straining flow given by a=3¢[1+A,4+B, >+ 04697, (6.123

v (r)=g, r with the rate of strain tensor
AN =¢ B=3¢[1+Azp+Bs"3+0(499] L. (6.12b

Here the coefficientd,, B, , Ag, andB; can be expressed
in terms of lattice sums that can be computed numerically
following the method expounded in article |. Expansions
similar to those in Eq(6.12 were previously derived by
Zuzovskyet al. [48,52), by a generalization of the periodic
g—)reen’s function method of Hasimo{63]. In their expres-
sions the unknown higher-order terms are@f¢’), in-
stead of theD(4*%3) given in Eq.(6.12. It is noted, how-
o=27(1+a)g,. (6.9 ever, that this discrepancy can be removed by increasing the
truncation level. The coefficien®s,, B,, Az, andBg are
It is seen that this stress tensor has only nortdagonal compared in Table | to the corresponding coefficients in the
components §g)xx, (Tg)yy=(0g)xx, and (@y),,. With re-  expansions of Zuzovskgt al. and also with those found by

ga—e(66,— 3 66— 3 €8). (6.7)

Heree is called theextensional velocitylt can be seen that
the velocity fieldv4(r) corresponds to an irrotational shear
flow that is axisymmetriquniaxia) with respect to thez
axis. Also, for this special flow it follows, analogously to Eg.
(6.4), that the relation between the deviatoric stress and th
rate of strain is given by a scalar, as
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TABLE |. Coefficients in the asymptotic expansiof&12 ap- TABLE IlI. Viscosity parametersy and 8 as functions of vol-
propriate for the viscosity parametets and 8 for dilute cubic  ume fraction¢ for a sc lattice. Converged numerical results ob-
arrays of spheres, compared to the previous results of Zuzovskigined by our methodH) are compared to the numerical data of
[52] and of Kapral and Bedeau84]. Ladd [57] (L) and of Nunan and Kellef36] (N). Bold data are
measured from Fig. 2 in Ref36].

Kapral
Present Zuzovsky and ¢ Methods a B
calculations Bedeaux 0.01 H 0.025 941 0.024813
sc A, -3.78699 -3.793 -3.787 L 0.025942 0.024 814
B, 3.42673 3.428 N 0.025941 0.024 813
Ag 0.85800 0.8620 0.858 0.12 H 0.465 796 0.290 025
Bs -2.28448 -2.286 L 0.465 80 0.29003
bcc A, -0.14079 -0.141 -0.141 N 0.465 80 0.289 95
B, -1.07874 -1.08 0.24 H 1.522 857 0.613821
Ag -1.57281 -1.573 -1.573 L 1.5228 0.61381
By 0.71916 0.718 N 1.5228 0.613 06
fcc A, -0.23611 -0.237 -0.236 0.32 H 3.025744 0.896 926
B, -0.82315 -0.822 L 3.0257 0.896 9
Ag -1.50926 -1.508 -1.509 N 3.026
Bs 0.54877 0.548 0.40 H 6.457 823 1.312 428
L 6.453 1.3123
Kapral and Bedeauj34]. The latter authors have calculated 0.44 T_l 1%4;2471711 113222.256
the coefficientsA, andA; as an application of the scheme ' L 10 '43 1 6343
developed by Bedeaugt al. [54], and their results agree : '
with ours to all decimal places quoted. There is a small dis- 0.46 H 14.292654 1.858631
crepancy with some of the coefficients provided by N 14.0 1.86£0.02
Zuzovsky. The origin of these differences is not clear, but 0-49 ':' 225-038 95 2.37824

they are numerically insignificant, on the order of a few parts
in one thousand. Nevertheless, the validity of the claim by
Zuzovskyet al. that their coefficients are exact while those
reported by Kapral and Bedeaux are only approximate magompare excellently, with differences of at most a few parts
be disputed on the basis of the comparison with our conin ten thousand if concentrations are belew: 0.46 (except
verged computations. The suitability of the asymptotic ex-for the 8 value at¢=0.40 that has been determined graphi-
pansions(6.12 is obviously restricted to dilute arrays. Nu- cally). As the concentration approaches that of close packing
nan and Kelle{36] reported numerical results far and 8 (¢cp~0.524) the accuracy of the data of Nunan and Keller
appropriate for the complete range of volume fractions. Theiend of Ladd is seen to decrease rapidly. This is mainly
computations are based on a Galerkin technique previouslgaused by the inadequacy of a necessarily finite number of
introduced by Zick and Homs}55] in a study of the drag basis functions(as in our method to describe the flow
coefficient for cubic arrayga detailed discussion of drag through the array of spheres. For high concentrations Nunan
coefficients can be found in Rg66]). On basis of their data and Keller indicate that their computed estimates are some-
for the three cubic lattice types Nunan and Keller concluddimes too low. Moreover it can be seen in Table 1 of their
that the low¢ expansions found by Zuzovslet al. are ac-  paper[36] that the numerical result far at ¢=0.49 shows
curate to within 0.2% for concentrations up to approximatelyoscillation as the number of basis polynomi@salogous to
25% that of close packing, and to within 5% for concentra-ourL) is increased. It is likely, therefore, that the value of 24
tions up to approximately 50% that of close packing. Theseas quoted in Table Il is not converged and should actually be
accuracies also hold for our expansions, which show onhhigher, which also explains the relatively large difference
insignificant differences from those of Zuzovsky al., as  with our (fully converged result. An additional error in the
can be checked by substitution of the coefficients given ircalculations of Nunan and Keller is introduced by the trun-
Table | into the expansion®.12. The viscosity parameters cation in the lattice sumghese sums are different from oprs
for sc arrays were also calculated by Ld@d] on the basis which can be significant at large concentrations, as men-
of a numerical implementation of the theory of Mazur andtioned in their article. It seems that they did not use an effi-
van Saarloos to describe many-body hydrodynamic interacsient technique to calculate the lattice sums, such as the
tions in suspensior{$8]. In order to examine the correctness Ewald-like summation expounded in article |, because these
and accuracy of our method to determine the viscosities ofomputations consumed the preponderance of CPU time
spatially periodic arrays in general, we have calculatethd  needed to determine the viscosity parameters. In our case the
B for cubic lattices at various concentratiogs In Table Il lattice sumswhich are calculated only once for each of the
the results, indicated by the letter H for each concentrationthree cubic latticestake an insignificant amount of CPU
are compared to those of Ladd) and of Nunan and Keller time in comparison to the time needed to solve the set of
(N). Data that have been measured from Fig. 2 in [R&8) linear equations. Moreover, it is important to appreciate that
are indicated by boldface. All these results are found tcaccurate computations for higher concentrations require
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higher-order lattice sums, and in our case it has been verified
that these sums converged to the correct values by compar-
ing the results of our Ewald-like technique with the results
that follow by direct summation of the lattice surfthese
sums are defined in articlg.IHaving established the main
reasons for the major discrepancies between our results and
those of Nunan and Keller, and given the excellent corre-
spondence with their data as well as with those of Ladd for
concentrations up to approximately 85% that of close pack-
ing, it can be concluded that the present method to determine
the effective viscosities indeed works correctly and yields
accurate results.

To examine the performance of our numerical scheme for
computations of viscosities at very high concentrations it is
found worthwhile to compare our data to the asymptotic ex-
pansions for cubic lattices as derived by Nunan and Keller
on the basis of lubrication theory. These formulas, in terms
of the small parameter defined bye=1—(¢/ ¢,) 3 are as
follows.

For sc lattices,

e "+ Zrine *+C,+D,elne 1+0(e),
(6.133

R
[
I

16

B=imIn 671+65+5B6|n e 1+0(e). (6.13b
For bcc lattices,

I%\/gﬂ'ln e '+ C,+D,elne 1+0(e), (6.143

1
- !
I
[
i

005 0.1

gln et

0.15 02

-0.61

-0.62

-0.63
(b)

0.05

elne!

0.1
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FIG. 1. Differences ¢—a) (@) and (83— B) (b) versuse In e !

i y = = . for a sc lattice. Computations are shown for 40 (dashed curve
a3me t+ F\B3mine 1+ Cst+Dgelne "+0O(e). L =50 (dotted curvg andL =60 (solid curve. Dotted straight lines
(6.140  give an indication of the deviations around the begsfilid straight

line).

For fcc lattices,

aZ%\/ETre_l-l—lGO\/—'n'lne 14+C, +D,elne *+0(e),

elne

Fig. 1 shows the residuals«C «) (a) and (83— B) (b) versus
1. Curves represent the results calculated lfer 40

(6.153 (dashed curve L=50 (dotted curvg¢ and L=60 (solid

B=\2me T+ £ 27 In 6714‘654‘5[;6“’1 e 1+0(e).

curve. For the smallest values f the results have clearly
not converged, whereas for the largethe terms ofO(e)

(6.150 are becoming prominerisee Eq.(6.16)], but in an interme-
In the above equations the coefficiefts, D, EB- andﬁﬁ diate range it is po_ss_lble to re_solve a distinct Iln_ear beha\{lor
are different for sc. bee. and fec lattices. In order to deter-Of the curves. In this intermediate range the straight solid line
; ' ' is fitted to the curve, within an error that is indicated by the

ine, f leC D, f lattices N : : =
Eeler]IZ,r V\cl)rrOteexamp eC. andD, for sc lattices Nunan and two dotted lines. In an analogous way the residuals )
and (38— B) for the bcce lattice are shown in Fig. 2, and for

a—(Zme *+&mine H)=C,+D,elne *+0(e),
(6.16

the fcc lattice in Fig. 3. In Table Il the coefficients corre-
sponding to our fitting lines, denoted &@s,, D,, Cjz, Dyg,
are compared to the fitting constants of Nunan and Keller,

and by plotting the computed value of the left side of thisC,, D, C D , respectively. It is immediately seen in

equation against In € * the coefficients of interest could be this table that the sign of Nunan and Keller's coefficients is
found from the intercept and slope of a line drawn throughsystematically opposite to the sign of our coefficients. Be-
the plotted data for smak (high concentrations cause we are certain that the sign of our coefficients is cor-
In the following discussiorw will be written as a short- rect the conclusion follows that Nunan and Keller must have
hand notation for the singular terms @fappropriate for the mistakenly fitted the line for¢ — «) instead of ¢— a). The
particular cubic lattice type under consideration. The notasign of the other coefficients reported by Nunan and Keller is

tion B is defined in an analogous way. Thus for the sc arrayncorrect for the same reason. For the bcc or fcc lattice Nu-

= indicates the singular terms between parentheses in E§an and Keller find that their graphs af ¢ @) exhibit defi-
(6.16. nite linear behavior ag becomes small, so that the coeffi-

Following the above procedure we have fitted the un<ientsC, andD, can be determined with confidence. But in
known coefficients to our numerical data. For the sc arraythe other cases their estimates of the coefficients are not as
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FIG. 2. Differences ¢—a) (a) and (38— B) (b) versuseln e ! FIG. 3. Differences ¢—a) (@) and (83— B) (b) versuse In e !
for a bcc lattice. The various lines and curves are as for the sc cager a fcc lattice. The different lines and curves are explained in Fig.
shown in Fig. 1. 1.

reliable, and in the case @& for a fcc lattice no estimate |evels L=40 (dashed curvés L=50 (dotted, and L =60

could be made. Itis found by inspection of Table Ill that our (solid). Note that curves for different truncation levels cannot

rgsults are str|!<|ngly differentapart from the .tr|V|aI minus o distinguished iffia) and for (@— @)/ as given in(b). For

sign) precisely in the cases where they question tﬁle accuracy) cubic lattice types the relative magnitude of tB%1)

of their data, with the exception of the coefficielg and  terms varies from 10% to 30% for 0.8% In € 1<0.2 and,

Cﬁ for a sc lattice, which show reasonable agreement wittas follows from Figs. 1-3, the predominant part of these

our corresponding coefficients, and Cg. It is noted that  higher-order terms is represented by the constant terms and

these coefficients are somewhat larger in magnitude than otine terms proportional teIn ¢ * that have been determined

C, andCy for the sc latticgagain disregarding sighas can by fitting. Obviously, when concentrations are decreasing the

be expected, because for these high concentratighs (terms of O(e) will become important, but the lubrication-

~0.48 for eIn € 1=0.1) Nunan and Keller's numerical re- theory expansions up to theln e ! terms (including our

sults have not fully converged and, as mentioned before,

there was strong evidence of a downward bias in these com- TABLE lll. Fitting coefficientsC,, D,, Cgz, andD ;z appropri-

putations for all cubic lattices. Although Nunan and Keller ate for the lubrication formula¢5.13—(6.15 for sc, bee, and fcc

have not presented curves fm{_a) and (ﬁ_ﬁ) it seems, Iftttlcgs. PNreV|ous rNesuIts by Nunan and Ke[l86] are denoted as

on the basis of our findings, that they overestimated the acca: Da» Cp, @ndDy.

curacy of their numerical results and therefore also of their

fitting parameters.
Having determined the constant aath e ! terms in the C, —285+0.02 1.83-0.02 —954+0.05

expansiong6.13—(6.15 with a reasonable accuracy, it is N 31 1.73 9.7

D

sc bcc fcc

interesting to observe that terms 6f(1) (that is, constant 13402 _120:03 1401

a

and higher-order termsre not negligible as compared to the

singular terms, even for the rather high concentrations corre- Da 0.25 12.3 -155
sponding to Figs. 1-3for all cubic lattices 0.78 ¢/ ¢y, Cg —0.604+0.001 —7.5x0.1 —7.40+0.05
=0.97 for 0.05<eln e '<0.2). This can be seen in Fig. 4, C, 0.63 12.8

where (@—a)/« (thick curves and (83— B)/B (thin curve$ Dg —0.30+0.03 6+1 -9+1
are plotted as functions afln € 1, for sc(a), bcc(b), and fce E)ﬁ 0.0 -35

(c) lattices. As in Figs. 1-3 the data are given for truncation
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0 T T | for @ are as given in Table Il whereas the results gohave
been measured from Fig. 2 in Rdf36] [with measuring
errors smaller than the size of the symbols in Figs. &)

and Hd)]. These data are all on our curves, exceptdoat
¢=0.49 which is somewhat below our result, as can be seen
in Fig. 5b). The circles show some results obtained by the
Stokesian dynamics approac¢Brady et al. [59]) which is
devised so as to be accurate in the limits of very small and
extremely high concentrations. At intermediate concentra-

(B-B)/B

0 005 01 015 02

(@ glng’! tions the Stokesian dynamics computations overpredict the
0.4 : : : viscosity parameters, as was already mentioned in [R6f.
Note that the viscosity parameters diverge as close packing is
0.2 p (-0 approached, as is clearly seen in Fi¢p)sand Fig. %d). The
or . close packing concentration is.,~0.524, as indicated by

the vertical dotted line.
B-F)/B In a similar way results for a bcc lattice are plotted in Fig.
] 6, where the dashed curves show the lubrication formulas
' ' L L (6.14 corresponding to our fitting coefficients. The fitting
0 005 01 015 02 error for B is indicated by the deviations between the three
(b) elne! dashed curves ith). As for the sc case these modified lubri-
cation formulas yield a considerable improvement on the
T T pure singular part of Eq$6.14) (0), and fora (a) our lowest
A fitting results are close to those of Nunan and Keller, which
B-pyp are shown by the thick dotted curves indicated by the symbol
H. Note that the sign of their coefficients has been altered.
For the viscosity parametégt, as shown in Fig. ®), there is
a marked discrepancy between our numerical results and
those of Nunan and Keller at higher concentrations. This is
caused by the fact that their data have not converged, which
also explains the negative bias of their fitting ress as
() glnel compared to our converged numerical data given by the solid
_ _ - curve in(b). Even larger discrepancies between our numeri-
_FIG. 4. Relative differencesa(—a)/a (thick curves and (8 c3| computations and those of Nunan and Keller are found
—B)/B (thin curves versuse In € * for sc (@), bee(b), and fee(c)  for B corresponding to fec lattices, as shown in Figh)71n
lattices. Truncation levels afe=40 (dashed curvsL =50 (dot-  that case they were not able to determine the fitting coeffi-
ted, and L =60 (solid). Note that curves for different truncation cjents with a reasonable accuracy. It is also noticed that our
levels are indistinguishable if@) and for (@~ a)/a in (b). fitting result, as given by the dashed curve in Figp)7yields
only a very poor approximation in a wide range of interme-
fitting coefficient$ are reasonably accurate even at moderateliate to high volume fractions.
volume fractions, as is shown for the sc case in Fig. 5. Our Observing the results shown in this section, it can be con-
converged numerical results far(a) andg (c), as a function  cluded that the present method is effective in calculating vis-
of the volume fractionp, are given by the solid curves. The cosity parameters for cubic arrays, and good accuracy can be
thick dotted curves indicated by O represent the singularetained even for relatively high concentrations. This effec-
termsa andb, respective|y, while those indicated b—yand tiveness is not limited to cubic arrays, as the lattice sums
B show the expansion$6.13 up to and including the appropriate for various other types of array can be straight-
eln e ! terms with coefficients as provided by Nunan andforwardly (and rapidly computed. The use of rapidly con-
Keller (+) and with coefficients taken with opposite sign Verging expressions for these lattice suttike those pre-
(8). As has been mentioned before, the signs of all fittingsented in article )l is advocated, as it seems that neglect
coefficients of Nunan and Keller should be changed, whicthereof has unnecessarily affected the calculations of Nunan
indeed yields a definite improvement to the plain lubrication@nd Keller in an adverse way. In the next section the effec-
results (0). Their modified fitting results=) seem to be tive viscosity is examined for simple tetragorial) lattices
somewhat better than the curves that correspond to our fittingnd the results are interpreted in relation to various possible
coefficients(dashed curvésbut this is only for low to inter- ~ Structures of the st type.
mediate concentrations, and in that range the {bwxpan-
sions(6.12 (dotted curvepprovide a much greater accuracy,
as can be seen in Fig(& (for ) and Fig. %c) (for B). VIl SIMPLE TETRAGONAL LATTICES
These lowep expansions have been plotted here using the Simple tetragonal lattices may be characterized as sc lat-
coefficientsA, , B, , Ag, Bg as determined in this worlsee  tices that are compressed or elongated along one of their
Table ) but the curves would not be visibly different for the axes. As in the previous section the three orthogonal axes are
coefficients reported by ZuzovsKp2]. Numerical data of chosen so as to coincide with the coordinate sysksm
Nunan and Keller are shown as diamonds)( Their results  with z the direction of elongation. The st lattice parameters

(o—a)/o

0 005 01 015 02
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FIG. 5. Viscosity parameters and 3 for sc arrays, plotted against the volume fractiprnVarious results shown ife)—(d) are indicated
as follows. Solid curves, our converged numerical data; circles, Stokesian dyri&8ijicdiamonds € ), numerical data from Nunan and
Keller [36]. The thick dotted curves indicated by O repres&nt(a),(b)] and",[%‘ [(©),(d)] while those marked with+ and B show the
expansiong6.13 up to and including the In e * terms with coefficients given in Reff36] (+) and with coefficients taken with opposite
sign (). Low-¢ expansiong6.12) are indicated by the thin dotted lines far(a) and 8 (c) including our coefficients given in Table I;
dashed curves ife) and(c) represent the lubrication formul#8.13 including our fitting coefficients in Table Ill. Notice the different scales

in (a)—(d).

along these respective axes are givenhgy hy=h,, and  Couette flow(simple shear flowas depicted in Fig. @)
h,. Obviously this type of array possesses less symmetrwhere the arrows indicate the ambient velocity fi¢6d2)
than cubic arrays, and it is not possible, therefore, to reducehich is parallel to thec axis[the Cartesian axes are plotted
the computational effort to the same deg(see article | for in (b)]. Under the influence of this shear flow the spheres
detaily. However, by changing the aspect ratish,/h, of  rotate as indicated by the curved arrows(lin and (c). The
a st lattice, a wide range of different structures can be coneffective shear viscosity corresponding to this orientation of
sidered. For these simple structures the effective viscositthe flow is given by, in Eq. (6.5. Analogously to the sc
can be interpreted in a straightforward way, as is shown besase it is found convenient to writg, =1+ 8, where the
low, and this can be useful in understanding the rheologicaparameter3,=M_, _, can be determined from the set of
behavior of ordered hard-sphere suspensises, e.g., Refs. linear equations suitable for the st lattice under consider-
[21,60,61,22,62,63. In the next section some of our numeri- ation. The viscosity paramet@, is shown in Fig. 9 against
cal results are compared to recent experimental data. the aspect ratid =h,/h, for a volume fraction of¢=0.3.
The present section focuses on the interpretation of th&his moderate concentration is sufficient to explain the char-
effective viscosity as calculated for st lattices submitted toacteristic structural dependence of the viscosity in a qualita-
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FIG. 6. Viscosity parameters (a) and 8 (b) versus the volume FIG. 7. Viscosity parameters (a) and 8 (b) versus the volume

fraction ¢ for bece lattices. The three dashed curvestinshow the  fraction ¢ for fcc lattices. The three dashed curveganshow the
lubrication formula forg in (6.14) including our fitting coefficients,  |uprication formula(6.15 corresponding to our fitting coefficients,
where the fitting error is indicated by the deviations between thesghere the fitting error is indicated by the deviations between these
three curves. Other symbols and lines are as in Fig. 5. three curves. Other symbols and lines are as in Fig. 5.

tive way. This behavior has been shown to be roughly thgyumerical scheme that is optimized by exploiting cubic sym-
same for all possible volume fractions. When the spheres ar@etry. By further increasinfjthe separation between spheres
touching in thez direction, as depicted in Fig.(8), the as-  pecomes larger in the direction, whereas distances are de-
pect ratio reaches a minimal valde- f, as indicated by creasing in thexOy plane, as can be seen in Fig. 8. Large
the Ieft Vertical dashed Iine in F|g 9, a.nd fOI‘ th|S Situation stresses are produced in the regions between Spheres that are
the viscosity rapidly convergdas a function ot) to a finite  pejghbors in thexOy plane, and this explains the monotoni-
value. For a given volume fractiogh the minimal aspect cally increasing behavior of the viscosity parameter as a

ratio is given by function of the aspect ratio, as shown in Fig. 9. Finally, the
viscosity diverges at=f ., (as indicated by the right ver-

fo— 6_¢ (7.) tical dashed line in Fig. ®which corresponds to spheres
min T ' touching in thexOy plane[see Fig. &)]. Heref ., depends

_ _ on the concentratiow according to
and for ¢=0.3, as considered here, it follows thét,,

~0.76. We have also calculated the velocities and angular -

velocities of the particleselative to the ambient flowas fmangy (7.2
given by U, and Q,, in Eq. (4.5 (wheren=0 as we are

consideringN=1) and these are found to be vanishing, in-, hich yieldsf ., ~1.75 for ¢=0.3.

dependent of the aspect rafidt is worthwhile to appreciate ™ o the same tetragonal structures the shear viscosity pa-
that theabsolutemotions given byU, and{2, aré nonzero. ameter has been computed that corresponds to a plane of
Thus, all spheres move along with the shear flow in exactly a4, coinciding wittyOz as depicted in Fig. 10. This vis-
the same way as can be derived for a single isolated Spher@osity parameter will be denotef, and is plotted versus
Moreover, our numerical computations show that this alsoaspect ratiof in Fig. 11(a). Relati\;(e to the shear flow all
applies if the spheres are arranged on a cubic lattice. In fac pheres exhibit the same angular velocity in thdirection,

for cubic lattices this property was explained by Nunan an 0. As is inferred by virt ¢ trv. their t lational
Keller [36] and it appears that this property is retained for st™“x- S IS Inferred by virtue of symmetry, their transiationa

lattices which are oriented with respect to the shear flow agelc_)cny with respect to the a_\mb|ent flow is found_to be 2810,
considered herf64]. as in all other cases mentioned above. The dimensionless

As the aspect ratio is increased the structure becomdgaction{l,/y is plotted in Fig. 11b) versus the aspect ratio
simple cubic atf =1 whereg, in Fig. 9 indeed reaches the f. Here y is the shear rate parameter that represents the
correct value, which has also been computed following astrength of the shear flow. For the extreme values of the



PRE 62 EFFECTIVE VISCOSITY OF DENSE COLLOIDAL CRYSTALS 8227

FIG. 9. Viscosity paramete8, for st lattice at¢p=0.3.

(a)

(b) (a)

(0

FIG. 8. st arrays of spherék) and(c), subject to a Couette flow
in thexOy plane, as depicted if@). The spheres rotate as indicated
by the curved arrows ifb) and(c). (b)

aspect ratid = f,;;, andf=f . the spheres are touching, as
shown in Figs. 1) and 1Qc); however, the viscosity pa-
rameterp, is found to convergdslowly) to a finite value.
This behavior is closely related to the observation that par-
ticles tend to a rolling motion aft=f,;, [corresponding to
Fig. 10b)] whereas in the case df=f . [Fig. 10c)] the
rotation stops as the spheres form rigid planes that are mov-
ing past each other in thedirection. It should be noted that

for nonrotating sphered),=—3y whereas for rolling FIG. 10. st arrays of spherdb) and (c), subject to a Couette

spheresQ),= + 1. These extreme valuest() have not flow in theyOzplane, as depicted if@. In (b) the spheres rotate as

been reached in the graph in Fig.(ilbecause the results indicated by the curved arrows, while (o) the rotation has stopped

for touching spheres have not fully converged. and the spheres form close packed planar structures that move past
each other in theg direction.

(c)
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not completely vanishing, and this causes the particles to
migrate over distances of their own size in a characteristic
time of roughly 100 s(as discussed in Ref21]); this is
effectively the typical time in which the formation of the
regular structure has been observed. As was shown in Ref.
[21], the viscosity measurements by Gondret and Petit com-
pare reasonably well with the numerical results for sc lattices
as reported by Nunan and Keller, for volume fractions up to
about 0.5. The main difference between the structures seen in
the experiment and the pure sc structure is that the particles
in the former are in contact in the direction that is perpen-
dicular to the plane of shear. Although Gondret and Petit
were not able to determine the structure with great detail,
they assume that it closely resembles a tetragonal lattice.
This tetragonal structure, which will be referred to as stl, is
depicted in Fig. 1&) and is oriented with respect to the
Couette flow as indicated i(a).

(b) f The viscosity parametes corresponding to this situation

] ] . ~was calculated using the method introduced in Sec. V. In
FIG. 11. Viscosity parameteB, (a) and corresponding relative Fig. 13 the result¢dotted curvé are plotted against the con-

angular velocity), /y (b) for st lattice at¢=0.3. centratione, on a linear scaléa) and on a logarithmic scale
(b). Circles indicate the experimental data corresponding to
VIIl. COMPARISON WITH RHEOLOGICAL the disordered suspension as the shear flow has just started.
EXPERIMENTS The experimental accuracy is10% as shown by the error

bars. After a few minutes of shearing the structure is ordered

In the past few decades the rheological behavior of coland the viscosity has reached a final value that is consider-
loidal suspensions has been increasingly studied in close rétbly lower than in the disordered stdtsy a factor of~2).
lation to the microstructure, and many works report variougrhe final viscosity values, shown by the diamond symbols
ordered structures that arise when these systems are subjgef ) in Fig. 13, are very close to the solid line that represents
to different kinds of shear floisee, .9./60,61,63). Ashas  our calculations for a sc lattice, but the viscosity parameter
been indicated in the previous section, a changing microfor the st1 structurédotted line shows less correspondence
structure can be responsible for large variations in the effecyith the experiment. Another candidate for the regular struc-
tive viscosity. _ _ . ture observed in the experiment is the st2 array, which is a st

In recent experiments by Gondret and PE2it] the vis-  structure where particles are touching in %@y plane, as
cosity of a hard-sphere suspension is measured by submittirubpicted in Fig. 1@). When viewed from above, this struc-
the suspension to an oscillating shear flow. In their experiyyre shows a close resemblance to the stl array depicted in
mental setup the suspension consists of glass besidls  Fig. 12c). The viscosity parametes for this st2 structure is
diameters in the range 4% um and mass density,  shown by the dashed line in Fig. 13, which is below all other
=259 cm?) that are immersed in a viscous fluidy( results for$=0.25 but is found to be closer to the experi-
=5 Pa s,0=0.97 g cm °). This suspension is confined be- mental data than the results for sc at high concentrations. As
tween two parallel solid plates separated by a small gap odompared to the viscosity results for st1 and st2, the results
sizeh=200 um. It should be noted that this gap distarice for the sc array best fit the experimental data over the whole
is only about four times as large as the mean diameter of thﬁange of volume fractions up to sc close packingef
beads. The lower plate is fixed and the upper one oscillates 9 52). As mentioned above, the sc structure is not what is
in one direction, creating a simple shear flow that satisfiephserved in the experiments, at least not when concentrations
the following specifications: frequenay; =200 Hz; ampli-  are in the range of 0.2 to 0.3 for which clear photographs are
tude of displacement of the upper platg~20 um; strain  avajlable(see Refs[21,22). It may be worthwhile to visu-
rate amplitudey,, = 27X, /h. Considering the small size alize these ordered suspensions at higher concentrations also,
of the particles, the high viscosity of the suspending fluid,and in all three directions, so as to verify the existence of the
and the properties of the shear flow, the particle Reynoldst2-like structures that are suggested by our findings.
number is very small (Rel10 °). Moreover, Brownian Viscosities have also been measured at concentrations ex-
forces as well as van der Waals and electrostatic forces beeeding that for the sc closely packed arrangement. No clear
tween the particles can be neglected, and consequently tldservations are available for these high concentrations, but
particle interactions can be considered as of hydrodynamitt is obvious that the corresponding structure cannot be one
origin only. It is observed that, after many oscillations, theof those shown in Fig. 12. There are many different arrays of
initially random suspension reaches an ordered structurespheres that have concentrations above that for sc close
This phenomenon was first reported by Petit and Noetingepacking, and for some of them we have computed the vis-
and can be ascribed to a secondary flow due to inertial efeosity parameters corresponding to various directions of the
fects induced by the alternating rotation of the particles inshear. For reasons of brevity only three of the structures
the oscillating shear floy22]. As indicated by the smallness considered are depicted in Fig. 14, viz., the fog bctl (c),
of the Reynolds number these inertial effects are weak, buiand hexa2d) lattices. The hexa2 array consists(offinite)
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(©)

(a)

(b) (d)

FIG. 12. sc(b), stl(c), and st2(d) arrays subject to a Couette flow as depictedan

planes of close packed spheres, which are perpendicular freviously proposed hexa2 structure show a large downward
the direction of the Couette flow shown (a). For the close discrepancy with the measurements for tadlegedly or-
packing case[ ¢cp= m/(3\/3)~0.60] this hexagonal ar- dered structure for all volume fractions, while the curves for
rangement was considered by Gondret and P68t as a bctl and bcc lattices also reveal a very different concentra-
candidate structure where the spheres are allowed to move {fon dependence. However, the results for bctl and bcc are
the direction of the flow, whereas for concentrations belowseen to compare reasonably well for some of the higher con-
close packing the structure is planar, as is also vaguely oleentrations, and this correspondence is better than was ob-
served in the experimental calg6]. served for all other structures that were considdgregults

In Fig. 15 the convergeg@ parameters obtained numeri- for these other structures are not given hendth the excep-
cally for the three structures in Fig. 14 are shown on lineation of the fcc lattice for which results are comparable with
(a) and logarithmic(b) scales, as a function of the concen- those for bctl. It is noted that the viscosity for the fcc array
tration ¢. Results for the various structures are representegias evaluated here for a Couette flow witBz as the plane
by the thin dotted curvehexad, the thick dotted curve of shear and oriented with respect to the principal axes of the
(bctl), and the dashed curvidcg). Moreover, the calcula-  fec lattice (, vy, Z) as depicted in Fig. 16. On the basis of the
tions for the sc lattice are shown by the solid curve, andindings discussed in this section it is proposed that the sus-
vertical lines(the same line typgsndicate close packing for pension microstructure in the experiments by Gondret and
all four lattices. The close packing concentration correspondpetit changes from a st type of arrangement to a bct- or
ing to bcc is somewhat below that of bctior bee ¢, fcc-like arrangement when the volume fraction is raised
=\/3/8~0.68 and for bcte, =2m/9~0.70). The data above that of sc close packing. This proposition may be de-
measured by Gondret and Pg8i6] are indicated as in Fig. cided on by experimental verification.
13. For increasing concentrations the experimental data show There are several aspects of the experimental situation
a distinctly different behavior when the volume fraction hasthat have not been taken into account in our calculations,
passed that of sc close packing, and this is likely due to large.g., the fact that only a small number of layers of spheres
changes in the microstructure. The numerical data for thevere contained between the parallel walls in the experimen-
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10 ¢ T ™

(a)

0.1

(b) 0

FIG. 13. Viscosity paramete# for various structures plotted on
a linear scalé€a) and on a logarithmic scal@) versus the concen-
tration ¢. Curves show the numerical data for arrays of type sc
(solid), st1 (dotted, and st2(dashedl These structures are oriented
relative to the Couette flow as depicted in Fig. 12. The vertical
dotted line indicates the close packing concentration for these struc- (b)
tures (e, = %w). Experimental data provided by Gondret and Petit
[21,66] are shown for disordere@ircles and ordered ¢ ) suspen-
sions where error bars indicate the measuring inaccuracyl@®o.

tal apparatus. Depending on the concentration, this number
varies from 3 to 4. Moreover, the structures that are observed
after many oscillations of the shear flow still show a definite
degree of disorder21].

IX. CONCLUSION

An exact scheme is presented to determine the 25 inde-
pendent components of the effective viscosity tensor. In the
highly symmetric case of cubic lattices this tensor is charac-
terized by only two viscosity parametesisand 8. For these
parameters asymptotic expansions have been derived that are
appropriate for small volume fractions. These expansions are
of the same form as previously found by Zuzovsityal.
[48,52 but with slightly different coefficientgdifferences
are below 1% Although the origin of this discrepancy is
unclear we are confident about the correctness of our coeffi-
cients, which have fully converged. Moreover, some of the Yy
coefficients were previously calculated by Kapral and Be-
deaux[34] and these agree with our resultsut not with )
those of Zuzovsket al.) to all decimal places. The viscosity
parametersy and 8 are calculated numerically for the three
cubic lattice types and for the whole range of concentrations.

For low to intermediate concentrations these results compare FiG. 14. bee(b), betl (c), and hexa2d) arrays submitted to a
excellently with computations of Nunan and Kel[&6] and  Couette flow as depicted if).
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0.8

(b) o

FIG. 15. Shear viscosity3 for various structures plotted on
linear (a) and logarithmic(b) scales as a function of concentration
¢. Curves show the numerical data for arrays of type (deshed,
bctl (big dot9, sc (solid), and hexaZsmall dot3. Vertical lines
(same line typesindicate the corresponding close packing concen-
trations for these structures. Experimental data provided by Gondret
and Petit[21,66 are shown for disorderettircles and ordered
(¢) suspensions where error bars indicate the measuring inaccu-
racy of =10%. (b)

alsp W'th.the data prowded by Lad@7] for the case of a sc FIG. 16. fcc array of spherdb) subject to a Couette flow in the
lattice. Discrepancies with the data of Nunan and Keller for. Oz plane, as depicted ite)
dense cubic arrays are attributed to the fact that their dath ' '
have not fully converged. numerical simulation schemes, such as, e.g., the method of
Asymptotic expansions appropriate for very dense cubicStokesian dynamic$67,59. The main ingredient for the
arrays were previously derived by Nunan and Keller on theevaluation of various structures is represented by lattice
basis of lubrication theory. Singular terms in these expansums that can be efficiently computed using the method ex-
sions are exactly known, and coefficients of some nonsingupounded in article I. The use of such a method is advocated,
lar higher-order terms were determined by fitting the expanas it appears that neglect thereof has unnecessarily affected
sions to the numerical data for high concentrations. Bythe calculations of Nunan and Keller in an adverse way.
repeating this fitting procedure on the basis of our converged The effective viscosity has been examined for simple te-
numerical data we have determined the coefficients of intertragonal(st) lattices and the results for various structures of
est. It is shown first that the coefficients reported by Nunarthe st type can be qualitatively understood on the basis of the
and Keller have the wrong sign, which can be ascribed to anotion of the spheres in response to the ambient shear flow.
trivial mistake, and second that the accuracy of their coeffi-The angular velocity of the spheres, relative to the shear
cients has been overestimated by underestimation of numefiilow, is shown to be nonzero for certain orientations of the st
cal errors. Even at relatively low volume fractions the lubri- lattice with respect to the shear flow, in contrast to what is
cation theory expansions for and B (including our known for cubic arrayssee Ref[36]). Finite viscosities are
numerically obtained coefficientbave proved to be reason- found in most cases where particle surfaces are in contact,
ably accurate. Moreover, a combination of these high-densitwhere, for instance, the particles are allowed to perform a
results with the expansions for dilute cubic arrays describesmooth rolling motion. The only example where the viscos-
the viscosity parameters rather well over the whole range oity diverges for a st structure, or equally any other Bravais
volume fractions. Such combined descriptions can be profattice, is for the case of close packing. The same is expected
vided by our method for various other latticggith possibly  to hold for random hard-sphere suspensions. Our viscosity
multiple particles per cell that may have different sjzasd  results for st lattices have been compared to the experimental
these results may be used to increase the accuracy of faghta for an ordered suspension of hard spheres in an oscil-
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lating shear flow, as reported by Gondret and Hé&. In  with the exception of the fcc, lattice for which results are

Ref.[21] the experimental results were found to be describedtomparable with those for bctl. On the basis of our findings
rather well by the known results for a sc lattice, although att is proposed that the suspension microstructure in the ex-
moderate concentrations the structure observed in the expefieriments by Gondret and Petit changes from a st type of
ments was characterized by parallel chains of close touchingrrangement to a bct- or fcc-like arrangement when the vol-
spheres. These chains were aligned in planes parallel to thgne fraction is raised above that of sc close packing. This
direction of the shear flow and the chains were perpendiculgsroposition may be decided by experimental verification. We
to the plane of shear. On the basis of these observationge |ooking forward to further experiments on samples that

Gondret and Eetit propqsed that the structure resembles @ntain a large number of particle layers, thereby reducing
arrangement that we designated as stl. However, our nUmet, oftect of the solid walls on the apparent viscosity. In

cal calculations for the shear viscosity for these stl array: ddition. it would be worthwhile to visualize the ordered

show less correspondence with the experimental data than do . . . . .
the results for sc lattices. Another st lattict2) shows better Uspension also at the highest possible concentrations, and in

agreement, but only in the range of high volume fractions"’}” three directions, so as to verify the existence of t.he st2-
For increasing concentrations the experimental data show] e structures that are suggested by our computations for
distinctly different behavior when the volume fraction has 9-3=¢=0.5 and the arrangements of type bct or fcc at even
passed that of sc close packing, and this is likely due to larg8igher volume fractions. It should be possible to examine the
changes in the microstructure. The numerical data for th&iScosity for colloidal crystals of finite thickness by a modi-
previously proposed hexa2 structys] at high concentra- fication of the principal set of linear equations from which
tions show a large discrepancy with the measurements ovéfe components of the grand mobility matrix can be solved.
the complete range of volume fractions, while the curves foDisordered structures can be treated by application of the
bctl and bec lattices also reveal a very different concentraquasiN-particle approach that was formulated for colloidal
tion dependence. However, the results for bctl and bcc ar@ystals that are infinite in all three directions. Despite the
seen to compare reasonably well for some of the higher corfact that all computations presented in this article are for
centrations, and this correspondence is better than was operfect latticegwith N=1) the results are found to describe
served for all other structures that were considgredults the empirical data rather well, and it is expected, therefore,
for these other structures are not presented in this articlethat this will stimulate further experimental investigation.
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