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Effective viscosity of dense colloidal crystals
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~Received 3 August 1999; revised manuscript received 22 June 2000!

An exact scheme is presented to determine the effective viscosity tensor for periodic arrays of hard spherical
particles suspended in a Newtonian fluid. In the highly symmetric case of cubic lattices this tensor is charac-
terized by only two parameters. These parameters are calculated numerically for the three cubic lattice types
and for the whole range of volume fractions. The correctness of the present method and its numerical imple-
mentation is confirmed by a comparison with the numerical and analytical results known from the literature.
Some regular terms are determined that enter singular perturbation expansions suitable for high concentrations.
Previous results for these terms are shown to be highly inaccurate. The modified expansions approach the exact
numerical results over a range of densities extending to relatively low concentrations. The effective viscosity
is examined for simple tetragonal~st! lattices and the results for various structures of the st type can be
qualitatively understood on the basis of the motion of the spheres in response to the ambient shear flow. The
angular velocity of the spheres—relative to the shear flow—is shown to be nonzero for certain orientations of
the st lattice with respect to the shear flow, in contrast to what has been known for cubic arrays. Finite
viscosities are found in most cases where the particles are in contact as they are allowed to move in either rigid
planar or linelike structures, or they can perform a smooth rolling motion. The only occurrence where the
viscosity diverges for a st structure, or equally any other Bravais lattice, is for the case of close packing.
Moreover, the concentration-dependent shear viscosity is determined for a variety of microstructures and the
results are compared with recent data obtained from experiments on ordered hard-sphere suspensions.

PACS number~s!: 83.70.Hq, 83.50.2v, 47.15.Gf, 47.35.1i
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I. INTRODUCTION

In the past few decades ordered suspensions of me
copic particles known as colloidal crystals have gained c
siderable interest as model systems to study a wide varie
physical phenomena, ranging from crystallization and m
ing @1–5# and Brownian motion@6–12# to sedimentation
@13,14# and optical and acoustic band gaps@15–17#. Long
range order in colloidal crystals can be due to various in
actions between the suspended particles, viz., electros
@6,7,18#, magnetostatic@19,20#, hydrodynamic@21,22#, or
depletion~entropic! interactions@1,3,4#, and in many cases
combinations of these effects, depending on the various c
acteristics of both particles and solvent fluid. These inter
tions are also subject to intensive investigation, generally
close connection with the above mentioned phenom
@6,7,2,23,24,12#. In most experimental studies colloidal cry
tals consist of identical spherical particles, or well defin
mixtures of spheres, which can be obtained through mod
processing techniques. Sphere diameters are typically in
range of 10 nm to 10mm, which is large compared to atom
sizes in ‘‘normal’’ crystals. In fact, by virtue of thermody
namic analogy, colloidal crystals are frequently used to
tain insight into fundamental processes of atomic cryst
because these systems provide easily accessible time
length scales and since interactions can often be manipu
@5,25#.

What makes colloidal crystals quite different from the
atomic counterparts, however, is the presence of fluid
rounding the particles. Thus, moving particles can int
change momentum through the mediation of the fluid. Ev
if a certain particle is not moving at all~relative to an ambi-
ent flow! its mere presence will generally disturb the flo
PRE 621063-651X/2000/62~6!/8212~22!/$15.00
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and thereby forces, torques, and higher moments of the f
distribution~e.g., stresslets! are exerted on other particles. I
order to determine suchhydrodynamic interactionsquantita-
tively, it is necessary to study particle motions as well as
flow of the solvent fluid, in detail. In a previous article@26#,
hereinafter referred to as I, we presented a rigorous met
to study hydrodynamic interactions in concentrated colloi
crystals based on a formalism introduced by Clercx@27–29#.
Fluid motion is described by the time-independent Sto
equations, which have been successfully used in many s
ies on low-Reynolds-number flow in suspensions of mes
copic particles~see, e.g., the books of Happel and Brenn
@30# and of Kim and Karrila@31#!. A short review of the
literature on theoretical and numerical methods for calcu
ing Stokes flow through spatially periodic arrays of partic
can be found in article I.

The purpose of this article is to consider the relations
between the effective stress and the average rate of strai
a colloidal crystal subject to a linear ambient flow~a uniform
shear flow!. This effective stress is the stress that can
observed on a macroscopic scale, e.g., by means of a Co
apparatus. The colloidal crystal consists of periodic ce
containingN rigid spherical particles immersed in a Newto
ian fluid. The flow of the suspending fluid is governed by t
Stokes equations. Additionally, it is assumed that the sph
are neutrally buoyant and free of forces and torques, wh
implies that they are carried along by the flow in such a w
that their configuration is distorted. It is important to appr
ciate that the effective stress considered here is a qua
that depends on the macroscopic strain rate and theinstan-
taneousparticle configuration, as can be measured in an
cillating Couette flow with small deformation~small shear
amplitude!. Moreover, the frequency of the oscillations
8212 ©2000 The American Physical Society
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PRE 62 8213EFFECTIVE VISCOSITY OF DENSE COLLOIDAL CRYSTALS
considered sufficiently high so that stress contributions
to Brownian motion can be neglected@32#.

Under the conditions mentioned above, the~deviatoric
part of the! effective stress is linearly related to the ambie
rate of strain, which has been well known since the work
Batchelor@33#. The effective viscosity is defined to be th
four-tensor in this relationship. With regard to the expe
mental situation, as mentioned above, this viscosity is o
referred to as thehigh-frequency effective viscosity. As will
be expounded below the viscosity can be calculated on
basis of the theory presented in article I, provided, obviou
that the configuration of particles is spatially periodic. Th
seems to preclude the possibility of studying finite crys
deformations. However, such a grave restriction is unne
sary since a periodic array of spheres in a uniform shear fl
will remain periodic. A cubic lattice of spheres, for instanc
may become triclinic, and this deformation can be det
mined from the grand mobility matrix, which gives the pa
ticle motions relative to a known ambient flow. For the sp
cial case of unidirectional flow, the lattice will become cub
again after a finite time, and this will be repeated perio
cally. In any case, the effective viscosity can be calcula
for each lattice through which the configuration passes.

Experimental studies have pointed out that the effec
viscosity of randomsuspensions shows a rapid increase
the volume fraction of solid particles,f, is rising. The same
qualitative behavior is found for cubic arrays of spheres,
was indicated by calculations of Kapral and Bedeaux@34#,
some 20 years ago. These authors concluded that the vis
ity of regular arrays goes to infinity before the closest pa
ing density is reached. For random suspensions a sim
divergence of the viscosity below the random-close-pack
concentration had previously been suggested by Moo
@35#. This singularity was supposed to be due to ‘‘se
crowding’’ of particles. Numerical computations and asym
totic expansions for cubic arrays by Nunan and Keller@36#
have shown that Kapral and Bedeaux’s high-density res
~for cubic lattices! are inaccurate. Moreover, these numeri
computations clearly indicate a singularity which corr
sponds to the close packing concentration for each of
three cubic lattice types. In the past 50 years a variety
formulas have also been proposed to predict the viscosit
random suspensions over the entire range of volume f
tions. For a short review thereof see the references m
tioned in Ref.@37#. Whether these formulas are derived
firm theoretical or semiempirical grounds, they all include
algebraic singularity at a certain volume fraction~in a physi-
cal or an unphysical regime!. Using these singular forms it i
possible to describe the steep rise of the viscosity at h
concentrations. It is not known to date, however, if the
exists a critical concentration at which the viscosity sho
diverge for random suspensions. Clercx and Schram h
recently presented an expression for the high-frequency
fective viscosity for random suspensions, thereby taking i
account hydrodynamic interactions between two partic
only @37#. Their expression is in good agreement with e
perimental data and a reasonable correspondence is f
with numerical data and numerical simulation results, up
concentrations off'0.6. This is remarkable, since for suc
high densities three- and more-particle hydrodynamic in
actions are expected to become important. For random
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pensions the effects of multiparticle hydrodynamic intera
tions are extremely difficult to calculate in an exact wa
inter alia due to the fact that these computations requ
evaluation of distribution functions for an arbitrarily larg
number of particles@37,38#. This difficulty is not encoun-
tered for the case of colloidal crystals where the microstr
ture is exactly known, not merely in a statistical sense. Mo
over, due to the inherent periodicity of colloidal crystals, t
problem of determining infinitely many-particle hydrody
namic interactions can be effectively reduced to that o
finite number of particles. This allows one to determine t
effective viscosity for these systems with great accuracy
will be shown in this paper by application of the theoretic
approach presented in article I. Except for the fact that
results yield some general insight into the mechanisms
determine the effective viscosity in particle suspensions,
accurate data represent an invaluable reference against w
the performance of numerical simulation schemes can
tested. These issues will be discussed below.

The organization of this article is as follows. Section
introduces the grand mobility matrix~as mentioned above!
for an isolated group of spherical particles. The theoreti
scheme for calculating the grand mobility matrix is e
pounded in Sec. III, which summarizes the analysis follow
in article I and introduces some additional ingredients nec
sary for the determination of the effective viscosity. Th
culminates in a set of linear equations by which the mobi
matrix can eventually be solved. In Sec. IV the set of line
equations is presented in a form that is suitable for calcu
tion of the viscosity appropriate for the case of regular
rays. The procedure for performing these calculations
given in Sec. V. Explicit numerical results for the effectiv
viscosity for cubic arrays are presented in Sec. VI. A detai
comparison with previous numerical data for a wide range
concentrations confirms the correctness of the pres
method and its numerical implementation. Using the num
cal results for extremely high volume fractions, a correcti
is presented of the asymptotic formulas as found previou
by Nunan and Keller. Next, Sec. VII is concerned wi
simple tetragonal arrays. The viscosity behavior for this ty
of structure is examined in connection with the motion of t
particles in response to the ambient shear flow. Moreove
is illustrated that finite viscosities are obtained for seve
configurations of touching particles. This finding also su
gests the unlikeliness that the high-frequency viscosity
random hard-sphere suspensions should be singular be
closest packing is reached. In Sec. VIII the viscosity resu
for a variety of regular arrays are compared to measurem
of the viscosity of ordered suspensions, as reported rece
by Gondret and Petit@21#. We end with a conclusion in Sec
IX.

II. THE GRAND MOBILITY MATRIX

The study of the effective viscosity is started by cons
ering a system ofN rigid spherical particles with radiian ,
nP$1,2,. . . ,N%, immersed in an incompressible, unbound
fluid. Their centers have position vectorsRn with respect to
the origin O. It is assumed that the ambient velocity fie
va(r) of the fluid in the absence of particles is linear,

va~r!5Va1va3r1ga•r, ~2.1!
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with constant velocityVa, angular velocityva, and traceless
and symmetrical rate of strain tensorga @39#. In the presence
of particlesva(r) is considered as the linear part of the to
velocity field. The position vectorr is defined with respect to
the originO. Due to the ambient flow and possibly extern
forces the particles may have velocitiesUn and rotational
velocitiesVn . Even if a certain particle is not moving at a
~relative to the ambient flow! its mere presence will gener
ally disturb the flow, and thereby forces and torques are
erted on other particles. In order to determine such hydro
namic interactions quantitatively, it is necessary to stu
particle motions as well as the flow of the solvent fluid,
detail. Under certain conditions, discussed in more detai
article I, the equations of motion of the continuous fluid a
given by the Stokes equations, which express conservatio
momentum and mass, as

h¹2v~r!2“p~r!50, ~2.2a!

“•v~r!50, ~2.2b!

with v(r) the fluid velocity at positionr and p(r) the pres-
sure @40#. The material propertyh is called thedynamic
viscosity, and in most instances is simply referred to as
viscosity. One of the conditions for the validity of the Stoke
equations is the smallness of the Reynolds number co
sponding to the disturbance of fluid motion caused by
presence of a representative spherical particle with radiua,
in the ambient flow. This Reynolds number is given by
5ġa2/n, whereġ is a representative magnitude of the a
bient rate of strain andn5h/r is the kinematic viscosity of
the suspending fluid. In addition to satisfying the Stok
equations~2.2! outside theN spheres, the flow is assumed
obey stick boundary conditions on the surfaces of all pa
ticles. This means forv(r) at the surfaceSn of particlen:

v~r!5Un1Vn3~r2Rn! with rPSn. ~2.3!

After calculation ofv(r) and p(r) as expounded in the fol
lowing section, the pressure tensorP(r) can be determined
defined by

P~r!5p~r!12h@“v~r!1@“v~r!#T#. ~2.4!

The pressure tensor is used to calculate the forceFn , the
torqueTn and the stressletSn exerted by the fluid on particle
n. The force and torque satisfy

Fn52E
Sn

P~r!•ndA, ~2.5a!

Tn52E
Sn

r3P~r!•ndA, ~2.5b!

wheren is the unit vector normal to the surface elementdA
and directed into the fluid. The stressletSn is the traceless
and symmetrical part of the first moment of the force dis
bution integrated over the surface of particlen,

Sn52E
Sn

rP~r!•ndA, ~2.6!
l
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whererP(r)•n denotes the traceless and symmetrical par
the dyadrP(r)•n. In order to define the grand mobility ma
trix it is useful to introduce theN-particle velocity and rota-
tional velocity vectors

U5~U1 , . . . ,UN!, V5~V1 , . . . ,VN! ~2.7!

and similar notations for the quantities related to the amb
velocity field,

Ua5~Ua1, . . . ,UaN!, ~2.8a!

Va5~va1, . . . ,vaN!, ~2.8b!

Ga5~ga1, . . . ,gaN!. ~2.8c!

Here

Uan5va~Rn!5Va1va3Rn1ga•Rn , ~2.9a!

van5va, ~2.9b!

gan5ga. ~2.9c!

Analogous to the kinematic quantities in Eq.~2.7!, the
forces, torques, and stresslets can be combined into the
rays

F5~F1 , . . . ,FN!, ~2.10a!

T5~T1 , . . . ,TN!, ~2.10b!

S5~S1 , . . . ,SN!. ~2.10c!

Because of the linearity of the ambient flow~2.1!, the Stokes
equations~2.2!, and the boundary conditions~2.3!, there ex-
ists a linear relationship between theN-particle velocity dif-
ferenceU2Ua and the given quantitiesF, T, andGa. Analo-
gously, the rotational velocity differenceV2Va and the
stressletS depend linearly onF, T, andGa. These relations
can be expressed in condensed form as

S U2Ua

V2Va

2S
D 52S mtt mtr mtd

mrt mrr mrd

mdt mdr mddD •S F

T

Ga

D . ~2.11!

The submatricesmtt, etc., are composed of mobility tenso
mi j

tt , etc., where the superscripts t, r, and d refer totransla-
tional, rotational, and dipole, respectively. The dot in Eq
~2.11! stands for a contraction of tensors. It should be m
tioned that in this notation for the mobility tensors no d
tinction has been made between tensors of different ra
e.g.,mi j

tt is a second rank tensor,mi j
dd is a fourth rank tensor.

The mobility tensors obey certain symmetry properties a
consequence of the Lorentz reciprocal theorem~see, e.g. Ref.
@31#!. For the tensormdd this yields

m i j ,abgd
dd 5m j i ,gdab

dd , ~2.12!

which will be used hereafter.
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III. THE SET OF LINEAR EQUATIONS

In order to calculate the grand mobility matrix for an e
semble of spherical particles it is necessary to solve the e
tions of motion of the continuous fluid~2.2! thereby satisfy-
ing the stick boundary condition~2.3! on each sphere. Thi
subject has been discussed in the past by several author
nowadays various methods are at our disposal to tackle
problem ~see, e.g., Refs.@31,30# for a review!. The set of
basis solutions presented by Schmitz and Felderhof@41# pro-
vides an elegant and powerful method that has been app
successfully by Clercx and Schram in calculating the effe
of two- and three-particle hydrodynamic interactions in s
pensions@27,28,37#. This method relies on the linearity o
the Stokes equations~2.2! to express the disturbance veloci
field v2va caused by theN moving spheres as a sum o
velocity fieldsvn :

v~r!2va~r!5 (
n51

N

vn~r2Rn!, ~3.1!

whereRn is the position vector of thenth sphere with respec
to the originO. All the N velocity fields can be expanded i
terms of basis solutions of the Stokes equationsv lma , v lmb ,
v lmg as follows:

vn~r!5(
l ,m

@a lm
n v lma~r!1b lm

n v lmb~r!1g lm
n v lmg~r!#,

~3.2!

with expansion coefficientsa lm
n ,b lm

n ,g lm
n and l>1, 2 l<m

< l in the summation. These basis solutions are, in sphe
coordinatesr ,u,f,

v lma~r!5
l

~ l 11!~2l 11!
r 2( l 12)Blm~u,f!, ~3.3a!

v lmb~r!5
1

l ~ l 11!
r 2( l 11)Clm~u,f!, ~3.3b!

v lmg~r!5
1

~2l 11!
r 2 l@~ l 11!Alm~u,f!

2 1
2 l ~2l 21!Blm~u,f!#, ~3.3c!

where the vector spherical harmonicsAlm , Blm , andClm can
be expressed in terms of the spherical harmonicsYlm and the
unit vectorser , eu , ef :

Alm~u,f!5 lYlm~u,f!er1
]Ylm~u,f!

]u
eu

1
1

sinu

]Ylm~u,f!

]f
ef , ~3.4a!

Blm~u,f!5Alm~u,f!2~2l 11!Ylm~u,f!er , ~3.4b!

Clm~u,f!5
1

sinu

]Ylm~u,f!

]f
eu2

]Ylm~u,f!

]u
ef

5Alm~u,f!3er . ~3.4c!
a-
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For completeness it should be noted that we use the foll
ing convention for the spherical harmonics in connect
with the associated Legendre functionsPl

m ~see, e.g., Ref.
@42#!:

Ylm~u,f!5
~21!m

nlm
Pl

m~cosu!eimf ~3.5!

for m>0, with the normalization constants

nlm5F 4p

~2l 11!

~ l 1m!!

~ l 2m!! G
1/2

. ~3.6!

The definition form,0 is given by

Ylm* ~u,f!5~21!mYl ,2m~u,f!. ~3.7!

With regard to the decomposition of the velocity field
Eq. ~3.1!, it is evident that each of theN moving spheres also
causes a pressure disturbancepn . Analogously tovn in Eq.
~3.2!, thesepn can be expanded in terms of a set of ba
functions as

pn~r!5(
l ,m

@a lm
n plma~r!1b lm

n plmb~r!1g lm
n plmg~r!#.

~3.8!

The pressure functionsplma , plmb , plmg are chosen such
that the Stokes equations

h¹2v lms~r!2“plms~r!50, “•v lms50 ~3.9!

are satisfied for alll>1, umu< l , andsP$a,b,g%. Consid-
ering Eqs.~3.3!,~3.4!, and~3.9! and the fact that the pressur
is harmonic in consequence of the Stokes equations,
pressure functions are found to be

plma~r!50, ~3.10a!

plmb~r!50, ~3.10b!

plmg~r!5h l ~2l 21!r 2( l 11)Ylm~u,f!. ~3.10c!

It is found convenient to introduce the new expansion co
ficients

Alm
n65

~21! l 1m

nlman
l 12 @a lm

n 6~21!ma l ,2m
n #, ~3.11a!

Blm
n652 i

~21! l 1m

nlman
l 11 @b lm

n 6~21!mb l ,2m
n #, ~3.11b!

Clm
n65

~21! l 1m

nlman
l

@g lm
n 6~21!mg l ,2m

n #. ~3.11c!

As can be seen from these definitions it is sufficient to u
the coefficientsAlm

n1 , Blm
n1 , Clm

n1 with m>0 and the coeffi-
cients Alm

n2 , Blm
n2 , Clm

n2 with m>1. Some of these coeffi
cients determine the forceFn , torque Tn and stressletSn
exerted by the fluid on particlen. These relations follow by
substitution of the expansions of the velocity and the pr
sure in the definitions~2.4!–~2.6!; the calculations are de
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tailed in Ref.@27# for the force and torque, and in Ref.@37#
for the stresslet. The resulting expressions are

Fn52phan~2C1,1
n1ex12iC1,1

n2ey1C1,0
n1ez!, ~3.12a!

Tn52p ihan
2~2B1,1

n1ex12iB1,1
n2ey1B1,0

n1ez!, ~3.12b!

Sn52 1
2 han

2S (
m50

2

xmC2m
n1tm1 (

m51

2

x2mC2m
n2t2mD .

~3.12c!

Here the constant factorsxq for qP$22,21,0,1,2% are given
by

x052 4
3 A6p, x158A2p, x2158A2p i ,

~3.13a!

x2516A2p, x22516A2p i . ~3.13b!

The five tensorstq form a basis for the traceless and sym
metrical two-tensors, defined by

t05 1
6 A6~exex1eyey22ezez!,

t15 1
2 A2~exez1ezex!,

t215 1
2 A2~eyez1ezey!,

t25 1
2 A2~exex2eyey!,

t225 1
2 A2~exey1eyex!. ~3.14!

For instance, the traceless and symmetric strain ratega can
be expanded in terms of the above basis tensors as

ga5 (
q522

2

Ãqtq , ~3.15!

introducing the expansion coefficientsÃq . Moreover, it is
worthwhile to mention that the above basis is orthonorm

tq : tq85dqq8 . ~3.16!

This orthonormality will turn out to be convenient in futur
applications.

The unknown coefficients in Eq.~3.11! can be determined
by application of the stick boundary conditions on the sph
surfaces. Following the procedure outlined in article I th
eventually leads to a set of linear equations relating the
known coefficients to the coefficientsÃq that determine the
strain ratega, and the components of the particle velociti
relative to the ambient flowŨn and Ṽn . These relative ve-
locities are defined by

Ũn5Un2Uan , Ṽn5Vn2va, ~3.17!

with Uan as given by Eq.~2.9!. On the basis of the abov
mentioned linear equations it is possible to determine
components of the grand mobility matrix defined by E
~2.11!. It is noted that the set of equations comprises
infinite number of equations for an infinite number of coe
ficients Alm

n6 , Blm
n6 , and Clm

n6 because the indexl is un-
:

e

n-

e
.
n

bounded. In order to solve the set of linear equations
define an upper limitL of this index, i.e.,l<L, assuming all
coefficients with l .L to vanish. Thereby the number o
equations is 3L(L12)N with the same number of unknow
coefficients. The choice of the truncation levelL depends on
various factors, e.g., the desired numerical accuracy. I
recalled thatN denotes a~finite! number of particles, so tha
there is a finite number of equations that can be solved
straightforward way.

IV. THE QUASI- N-PARTICLE APPROACH

Our aim is to determine the effective viscosity for the ca
of a regular array of spherical particles. The array consist
identical cells that containN particles with radii an ,n
P$0,1, . . . ,N21%. It is assumed that this colloidal crystal
unbounded in all directions of three-dimensional space. T
positions of the particles in the array, with respect to so
origin O, are specified by the vectors

Rln5Ll1Rn8 . ~4.1!

HereRn8 indicates the position of thenth particle relative to a
lattice point, which is indicated by the lattice vectorLl . The
lattice points form a regular array of points in space: a crys
lattice, orBravais latticeas it is usually called.

The description of hydrodynamic interactions betwe
particles in the array is based on the set of coupled lin
equations discussed in the previous section. Direct appl
tion of these equations is not feasible however, because
number of equations is proportional to the number of int
acting particles, which is assumed to be infinite in the pres
case. However, it is possible to exploit the translational
variance of the array, thereby obtaining a finite set of eq
tions resembling that for an isolated system ofN particles.
This quasi-N-particle approach, expounded in detail in ar-
ticle I, relies on the fact that the mobility matrix for all~in-
finitely many! particles is solely determined by the geome
of the system: the periodic configuration of particle positio
and particle sizes.

As shown in article I the quasi-N-particle approach en
ables one to study crystal waves, i.e., a lattice of partic
executing translational and rotational motions that vary h
monically over the lattice. The set of linear equations deriv
in article I is also suitable to determine the effective visco
ity, apart from a few minor modifications. These modific
tions concern the presence of the ambient flow~which was
considered absent in article I! and the fact that the presen
problem yields a further simplification of the set of line
equations. In order to explain this simplification it is note
that the stresslets are linearly related to the strain rate,
cording to Eq.~2.11!, and for forceless and torqueless pa
ticles these relations read

Sn5(
j

mn j
dd : ga. ~4.2!

Here summation is over all particles in the infinite array. B
virtue of this equation, the translational symmetry of the l
tice, and the fact thatga is constant, it follows thatSn must be
translationally symmetric also, i.e., the stresslet is the sa
for all particles at certain positions in the array that diff
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exactly by one lattice vector. Thus, for cells containingN
particles there are~at most! N different stressletsSn which
can be written as

Sn5 (
j 50

N21

m̂n j
dd~0! : ga ~4.3!

for nP$0,1, . . . ,N21%. The Fourier transform used above
defined as

m̂n j
dd~k!5(

l
mn,(l j )

dd e2 ik•Ll. ~4.4!

Here (l j ) denotes thej th particle in the cell indicated by th
lattice vectorLl and the summation runs over all lattice ve
tors of the infinite lattice. Notice that the Fourier transform
mobility tensor in Eq.~4.3! is evaluated atk50. At this point
it is found worthwhile to mention that the same translatio
symmetry applies to the relative velocitiesŨn and angular
velocitiesṼn defined by Eq.~3.17!, and by analogy with Eq
~4.3! the N different Ũn andṼn are given by

Ũn52 (
j 50

N21

m̂n j
td ~0! : ga, Ṽn52 (

j 50

N21

m̂n j
rd ~0! : ga.

~4.5!
l

Here m̂n j
td and m̂n j

rd are Fourier transformed mobility tenso
defined analogously tom̂n j

dd in Eq. ~4.4!. The relations~4.5!
will be useful later to determine particle motions in respon
to the ambient shear flow with strain rate tensorga, whereas
Eq. ~4.3! can be used to determine the effective viscosity,
will be explained in the next section. Moreover, the trans
tional invariance of the quantitiesŨn and Ṽn yields a sim-
plification of the set of linear equations, as mentioned befo
By introducing new labels (l j ) instead of n, with j
P$0,1, . . . ,N21% and l labeling the cell indicated by the
lattice vectorLl , this invariance can be expressed as

Ũ(l j )5Ũ(0 j ) , Ṽ(l j )5Ṽ(0 j ) . ~4.6!

By virtue of these identities and the stick boundary con
tions it can be straightforwardly shown~see Ref.@43#! that
all expansion coefficients entering the set of linear equati
are translationally symmetric, that is,

Alm
(l j )65Alm

(0 j )6 , Blm
(l j )65Blm

(0 j )6 ,

Clm
(l j )65Clm

(0 j )6 . ~4.7!

Following the procedure outlined in article I and taking n
tice of the translational symmetries expressed by Eqs.~4.6!
and ~4.7!, a set of linear equations can be derived for t
expansion coefficients in Eq.~4.7!. These equations are
2
3

2
dp1@dq1Ũnx12dq0Ũnz#2

40p

9
andp2xq

21Ãq5Cpq
n11

2p11

p11 (
j 50

N21

(
l ,m

F l

~ l 11!~2l 11!
Xlm;pq

Rn j1 ~0!Alm
j 1

1
i l

~ l 11!~2l 11!
Xlm;pq

In j 2 ~0!Alm
j 21

i

pl~ l 11!
Ylm;pq

In j 1 ~0!Blm
j 1

1
1

pl~ l 11!
Ylm;pq

Rn j2 ~0!Blm
j 21Zlm;pq

Rn j1 ~0!Clm
j 11 iZlm;pq

In j 2 ~0!Clm
j 2G , ~4.8!

3

2
idp1dq1Ũny2

40p

9
andp2x2q

21Ã2q5Cpq
n21

2p11

p11 (
j 50

N21

(
l ,m

F i l

~ l 11!~2l 11!
Xlm;pq

In j 1 ~0!Alm
j 11

l

~ l 11!~2l 11!
Xlm;pq

Rn j2 ~0!Alm
j 2

1
1

pl~ l 11!
Ylm;pq

Rn j1 ~0!Blm
j 11

i

pl~ l 11!
Ylm;pq

In j 2 ~0!Blm
j 21 iZlm;pq

In j 1 ~0!Clm
j 11Zlm;pq

Rn j2 ~0!Clm
j 2G ,
~4.9!

Apq
n65 1

2 ~p11!~2p21!Cpq
n62

1

2p13 (
j 50

N21

(
l ,m

l ~2l 21!@Xlm;pq
Rn j6 ~0!Clm

j 61 iXlm;pq
In j 7 ~0!Clm

j 7#, ~4.10!

2iandp1@dq1Ṽnx12dq0Ṽnz#5Bpq
n12 (

j 50

N21

(
l ,m

F p

l 11
Xlm;pq

Rn j1 ~0!Blm
j 11

ip

l 11
Xlm;pq

In j 2 ~0!Blm
j 2

1 i ~2l 21!Ylm;pq
In j 1 ~0!Clm

j 11~2l 21!Ylm;pq
Rn j2 ~0!Clm

j 2G , ~4.11!

2andp1dq1Ṽny5Bpq
n22 (

j 50

N21

(
l ,m

F ip

l 11
Xlm;pq

In j 1 ~0!Blm
j 11

p

l 11
Xlm;pq

Rn j2 ~0!Blm
j 21~2l 21!Ylm;pq

Rn j1 ~0!Clm
j 11 i ~2l 21!Ylm;pq

In j 2 ~0!Clm
j 2G ,

~4.12!
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with l>1, 0<m< l in the summations. Moreoverp>1, 0
<q<p, and nP$0,1, . . . ,N21%. Notice that the functions
Xlm;pq

Rn j6 (k), Xlm;pq
In j 6 (k), Ylm;pq

Rn j6 (k), Ylm;pq
In j 6 (k), Zlm;pq

Rn j6 (k), and
Zlm;pq

In j 6 (k), as defined in article I, are evaluated atk50.
For a given truncation levelL Eqs.~4.8!–~4.12! represent

3L(L12)N equations, with the same number of coefficien
Alm

n6 , Blm
n6 , andClm

n6 . The number of equations can be r
duced by expressing the coefficientsAlm

n6 in terms ofClm
n6 ,

through Eq.~4.10!, getting 2L(L12)N equations for the co-
efficientsBlm

n6 andClm
n6 . At this point it should be noted tha

the equations forp>3 are homogeneous, so that the coe
cients withl>3 can be expressed in terms of the coefficie
with l<2, exactly those coefficients determining the forc
torques, and stresslets according to Eq.~3.12! @44#. Due to
vanishing forces and torques, this eventually leads to so
linear relations between the five coefficientsC2m

n6 determin-

ing the stresslets and the five coefficientsÃq that determine
ga as given by Eq.~3.15!. From these linear relations one ca
eventually obtain the effective viscosity, as discussed furt
in the next section. Additionally a set of linear relations

obtained between the coefficientsÃq and the components o

the relative velocitiesŨn andṼn . In fact, these linear rela
tions are precisely the mobility relations as given by E
~4.3! and~4.5!. It goes without saying that the procedure ju
described involves an enormous amount of effort, especi
when we require an accurate solution of the mobilities
many-particle cells, that is, ifL andN are large. Evidently, in
these cases the help of the computer must be called u
This numerical step comes down to solving a set of lin
equations, for which efficient codes can be written.

It is important to note that some of the functions intr
duced in Eqs.~4.8!–~4.12! are singular atk50. This holds in
particular for the functionsZ2m;2q

Rn j6 (k) and Z2m;2q
In j 6 (k) that

enter the evaluation of the effective viscosity. These fu
tions are found to have a discontinuity for vanishing wa

vector. Moreover, if the relative velocitiesŨn are determined
according to the relation~4.5! one is confronted with a di-

vergence in the expression form̂n j
td (k) which behaves ask21.

The various types of singularities are directly related to
long range dipolar interactions in the infinite regular array
spheres. In fact, for infinite arrays of particles, it is know
that the disturbance velocity field can have a linear part. T
point has been discussed by several authors in the conte
polymer solutions@45#, hard-sphere suspensions@46#, and
suspensions with periodic boundary conditions@47#. In this
study we restrict ourselves to special cases where there
unique way of taking the limitk→0. This is the case, for
example, when cubic, tetragonal, or hexagonal arrays
subject to certain shear flows, i.e., where the plane of sh
coincides with a symmetry plane of the lattice. In these ca
one can obtain convergent expressions for the relative

locities Ũn if k→0 is taken in the direction perpendicular
the plane of shear. Any other direction yields infinite velo
ties. The correctness of the proposed approach is suppo
by the analytical and numerical results presented in the
lowing sections, which clearly show excellent agreem
with data from the literature concerning this issue@34,36,48#.
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This procedure is followed in the rest of this article in ord
to determine the effective viscosity for a number of latti
types.

V. CALCULATION OF THE EFFECTIVE VISCOSITY

The effective stressse for a suspension consisting of pa
ticles immersed in a fluid under slow flow conditions can
defined, according to Ref.@33#, as the volume average of th
local stresss(r) over a representative~macroscopic! region
V, with volumeV, that contains both particles and fluid:

se5
1

VEV
s~r!dr. ~5.1!

For colloidal crystals as described in the Introduction t
region V can be identified with a lattice cell containingN
spheres. One can formally decomposeV into a region occu-
pied by ambient fluidVf and the interior region of allN
particlesVp , thereby writing Eq.~5.1! in the form

se5
1

VEVf

s~r!dr1
1

VEVp

s~r!dr. ~5.2!

As the suspending fluid is considered to be Newtonian
stress inVf is given by

s~r!52P~r!, ~5.3!

whereP(r) is the pressure tensor defined by Eq.~2.4!. Thus
for rigid particles the first integral in Eq.~5.2! can be written
~see, e.g., Ref.@31#! as

1

VEVf

s~r!dr52pe11
2h

V E
V
“v~r!dr. ~5.4!

Here the effective pressurepe , defined by

pe5
1

VEVf

p~r!dr, ~5.5!

provides the purely isotropic part of the stress, which is of
particular interest. The integral on the right-hand side of E
~5.4! ~where the overbar denotes projection onto the sy
metrical part! is proportional to the rate of strain average
over V ~which contains both fluid and particles! @49#. Thus,
by definition,

2h

V E
V
“v~r!dr52hga. ~5.6!

The contribution to the stress due to the presence of
particles,sp , is given by the second integral in Eq.~5.2!.
Following the analysis in Refs.@33,31# and restricting our-
selves to forceless and torqueless particles, it is found
this particle stress is directly related to the stressletsSi of the
N spheres contained in a cell:

sp5
1

V (
i 50

N21

Si . ~5.7!



e-

n

ra

-
e
q

ve

e

al

a
s.
it

at
B

ns

d

o-

-
d to

-
of

the

-
s
on.

in

our
n

oit-

PRE 62 8219EFFECTIVE VISCOSITY OF DENSE COLLOIDAL CRYSTALS
In order to define the effective viscosity it is found conv
nient to decompose the effective stressse into the isotropic
pressure term2pe1 and the deviatoric stress contributio
sd ; thus

se52pe11sd . ~5.8!

According to Eqs.~5.1!, ~5.2!, ~5.4!, and~5.6! this deviatoric
stress satisfies

sd52hga1sp . ~5.9!

Combining this identity with Eqs.~4.3! and ~5.7! yields

sd52hga1
1

V (
i j

m̂i j
dd~0! : ga. ~5.10!

This linear relation between the deviatoric stress and the
of strain can be written in condensed form as

sd52he : ga. ~5.11!

The four-tensorhe in this relationship will be called the ef
fective viscosity. This effective viscosity can be determin
by solving the components of the mobility tensors in E
~5.10! from the set of linear equations~4.8!–~4.12!. In order
to explain how this can be accomplished it is found con
nient to introduce the four-tensor

md 5
1

2hV (
i j

m̂i j
dd~0!. ~5.12!

This tensor satisfies certain symmetries which can be
ploited to simplify the calculations. Combining Eqs.~5.12!,
~2.12!, and ~4.4! and using the symmetries of the cryst
lattice ~translational and inversion invariance!, it follows that

mabgd
d 5mgdab

d . ~5.13!

Furthermore, it is noted that the stresslets, the strain rate,
therefore alsosd in Eq. ~5.10! are symmetrical and traceles
As a direct inference from these properties, combined w
the symmetry in Eq.~5.13!, it follows that md is symmetric
and traceless in both its first and second pair of indices:

mabgd
d 5mbagd

d , mabgd
d 5mabdg

d ,

maagd
d 50, mabgg

d 50. ~5.14!

In the last two equations the trace is denoted by repe
indices, according to the Einstein summation convention.
virtue of the symmetry relations~5.13! and ~5.14! it follows
that md can be characterized by 25 numbersMmn , for m,n
P$22,21,0,1,2%, that are defined by

Mmn5tm : md : tn . ~5.15!

The coefficientsMmn can be determined using the relatio
between the coefficientsC2q

n6 and Ã6q , with qP$0,1,2%.
These relations are given by the set of linear equations~4.8!–
~4.12!. For that purpose it is recalled that the tensorstm , as
te

d
.

-

x-

nd

h

ed
y

defined by Eq.~3.14!, form a basis for the symmetrical an
traceless two-tensors, so that the stressletsSi can be ex-
panded as

Si5 (
m522

2

C̃m
i tm . ~5.16!

The coefficientsC̃m
i are related to the previously defined c

efficientsC2q
i 6 in Eq. ~3.11! as

C̃0
i 52 3

2 hai
2x0C20

i 1 , C̃6q
i 52 3

2 hai
2x6qC2q

i 6 .
~5.17!

Here the subscriptsqP$1,2%, and the constantsxm for m
P$22,21,0,1,2% are defined by Eq.~3.13!. As is inferred
from Eq. ~4.3! the coefficientsC̃m

i and Ãn are linearly re-
lated, which can be expressed as

C̃m
i 5 (

n522

2

Dmn
i Ãn . ~5.18!

The proportionality constantsDmn
i are determined by the ge

ometry of the array of spheres, as they are directly relate
the mobilities in Eq.~4.3!. In effect, it follows straightfor-
wardly from Eqs.~4.3!, ~3.15!, and~5.16! and the orthonor-
mality relations for the tensorstm in Eq. ~3.16!, that

Dmn
i 5tm : F(

j
m̂i j

dd~0!G : tn . ~5.19!

Combining this identity with the definitions~5.12! and~5.15!
yields

Mmn5
1

2hV (
i

Dmn
i . ~5.20!

Moreover, by combination of Eqs.~3.15!, ~3.16!, ~5.11!,
~5.10!, ~5.12!, and~5.15! it is found that the effective viscos
ity tensor has 25 components with respect to the basis
tensorstm and these components are directly related to
matrix elementsMmn according to the identity

tm : he : tn5h~dmn1Mmn!. ~5.21!

The 25 numbersMmn can be determined by solving the co
efficientsDmn

i in Eq. ~5.20! from the set of linear equation
~4.8!–~4.12! as described at the end of the previous secti
In the next sections these numbers will be determined
order to examine the effective viscosity for simpleN51
arrays.

VI. CUBIC LATTICES

It is the purpose of the present section to compare
results for the effective viscosity for cubic lattices to know
results for these systems found in the literature. By expl
ing the symmetries of cubic lattices Nunan and Keller@36#
have shown that the effective viscosity tensorhe for these
arrays is of the following form:
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~he! i jkl 5
1
2 h~11b!~d ikd j l 1d i l d jk2 2

3 d i j dkl!

1h~a2b!~d i jkl 2
1
3 d i j dkl!. ~6.1!

Here the indicesi, j, k, and l denote the components wit
respect to the Cartesian coordinate axesx,y,z, which coin-
cide with the principal axes of the cubic lattice@50#. More-
over,d i jkl is unity if all indices are equal and zero otherwis
Thus the effective viscosity tensorhe for cubic lattices is
determined by only two parametersa andb, which depend
on the type of cubic lattice, i.e., sc, bcc, or fcc, and on
volume fractionf. These separate parameters are dire
related to the~scalar! viscosities corresponding to impose
linear flows that are oriented in a special way with respec
the cubic axes, as is discussed below. The physical mea
of the parameterb can be interpreted by considering th
Couette flow~simple shear flow! specified by the velocity
field

va~r!5ġyex , ~6.2!

whereġ is called the strain rate coefficient. By definition th
rate of strain tensor for this Couette flow satisfies

ga5
1
2 ġ~exey1eyex! ~6.3!

and by combining this expression with Eqs.~5.11! and~6.1!
it follows that the deviatoric stress is given by

sd52h~11b!ga. ~6.4!

Thus the stress has only two nonzero components, (sd)xy
and (sd)yx5(sd)xy , that can be accessed experimentally
measuring the tangential force on a bounding wall~in a Cou-
ette apparatus! which is parallel to the shear flow. Accordin
to convention the relative shear viscosityh r that corresponds
to the shear flow in Eq.~6.2! is defined by

h r 5
~sd!xy

hġ
, ~6.5!

and it is found from Eqs.~6.3! and ~6.4! that the relative
viscosity is related to the parameterb by the simple formula

h r 511b. ~6.6!

The parametera corresponds tonormal stressesthat are gen-
erated, for instance, in a uniaxial straining flow given
va(r)5ga•r with the rate of strain tensor

ga5 «̇~ezez2
1
2 exex2 1

2 eyey!. ~6.7!

Here «̇ is called theextensional velocity. It can be seen tha
the velocity fieldva(r) corresponds to an irrotational she
flow that is axisymmetric~uniaxial! with respect to thez
axis. Also, for this special flow it follows, analogously to E
~6.4!, that the relation between the deviatoric stress and
rate of strain is given by a scalar, as

sd52h~11a!ga. ~6.8!

It is seen that this stress tensor has only normal~diagonal!
components (sd)xx , (sd)yy5(sd)xx , and (sd)zz. With re-
.

e
ly

o
ng

y

e

gard to experiments it is relevant to consider the first and
second normal stress differences,@(sd)zz2(sd)xx# and
@(sd)xx2(sd)yy#, respectively. Clearly, the second norm
stress difference is vanishing by virtue of symmetry, wh
the first is proportional to the extensional velocity«̇, accord-
ing to Eqs.~6.7! and~6.8!. The~dimensionless! coefficient in
this relation is called theextensional viscosityhext , and is
defined by

hext5
~sd!zz2~sd!xx

h«̇
. ~6.9!

It follows by combination of the above identity with Eqs
~5.11!, ~6.1!, ~6.7!, and~6.8! that the extensional viscosity i
directly related to the viscosity parametera as

hext53~11a!. ~6.10!

More generally, it can be inferred by inspection of the effe
tive viscosity tensor that the viscosity parameter~corre-
sponding to a certain stress component, or stress differe
analogous toh r and hext ) is proportional to (11a) for a
shear flow whose principal axes@51# are parallel to the axes
of the cubic lattice, while it is proportional to (11b) when
the principal axes are at 45° to the cube axes. For any o
type of shear the corresponding viscosity parameter is a
ear combination ofa andb, which follows by application of
the viscosity tensorhe.

In order to determinea andb it is noted that

a5M0,05M2,2, ~6.11a!

b5M 22,225M 21,215M1,1, ~6.11b!

where the matrix elementsMmn for m,nP$22,21,0,1,2%
are defined by Eq.~5.15!. The above relations can b
straightforwardly derived by substitution of Eq.~6.1! for he
into Eq. ~5.21!. It is furthermore found that all off-diagona
elementsMmn are vanishing. The nonzero elements in E
~6.11!, and therebya andb, can be determined for the thre
cubic lattice types by solving the set of linear equations
expounded at the end of the previous section. Restric
ourselves to the equations for truncation levelL52 and per-
forming elementary algebraic manipulations we g
asymptotic expansions of the form

a5 5
2 f@11Aaf1Baf5/31O~f10/3!#21, ~6.12a!

b5 5
2 f@11Abf1Bbf5/31O~f10/3!#21. ~6.12b!

Here the coefficientsAa , Ba , Ab , andBb can be expressed
in terms of lattice sums that can be computed numeric
following the method expounded in article I. Expansio
similar to those in Eq.~6.12! were previously derived by
Zuzovskyet al. @48,52#, by a generalization of the periodi
Green’s function method of Hasimoto@53#. In their expres-
sions the unknown higher-order terms are ofO(f7/3), in-
stead of theO(f10/3) given in Eq.~6.12!. It is noted, how-
ever, that this discrepancy can be removed by increasing
truncation level. The coefficientsAa , Ba , Ab , andBb are
compared in Table I to the corresponding coefficients in
expansions of Zuzovskyet al. and also with those found by
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Kapral and Bedeaux@34#. The latter authors have calculate
the coefficientsAa and Ab as an application of the schem
developed by Bedeauxet al. @54#, and their results agre
with ours to all decimal places quoted. There is a small d
crepancy with some of the coefficients provided
Zuzovsky. The origin of these differences is not clear,
they are numerically insignificant, on the order of a few pa
in one thousand. Nevertheless, the validity of the claim
Zuzovskyet al. that their coefficients are exact while tho
reported by Kapral and Bedeaux are only approximate m
be disputed on the basis of the comparison with our c
verged computations. The suitability of the asymptotic e
pansions~6.12! is obviously restricted to dilute arrays. Nu
nan and Keller@36# reported numerical results fora andb
appropriate for the complete range of volume fractions. Th
computations are based on a Galerkin technique previo
introduced by Zick and Homsy@55# in a study of the drag
coefficient for cubic arrays~a detailed discussion of dra
coefficients can be found in Ref.@56#!. On basis of their data
for the three cubic lattice types Nunan and Keller conclu
that the low-f expansions found by Zuzovskyet al. are ac-
curate to within 0.2% for concentrations up to approximat
25% that of close packing, and to within 5% for concent
tions up to approximately 50% that of close packing. The
accuracies also hold for our expansions, which show o
insignificant differences from those of Zuzovskyet al., as
can be checked by substitution of the coefficients given
Table I into the expansions~6.12!. The viscosity parameter
for sc arrays were also calculated by Ladd@57# on the basis
of a numerical implementation of the theory of Mazur a
van Saarloos to describe many-body hydrodynamic inte
tions in suspensions@58#. In order to examine the correctne
and accuracy of our method to determine the viscosities
spatially periodic arrays in general, we have calculateda and
b for cubic lattices at various concentrationsf. In Table II
the results, indicated by the letter H for each concentrat
are compared to those of Ladd~L! and of Nunan and Keller
~N!. Data that have been measured from Fig. 2 in Ref.@36#
are indicated by boldface. All these results are found

TABLE I. Coefficients in the asymptotic expansions~6.12! ap-
propriate for the viscosity parametersa and b for dilute cubic
arrays of spheres, compared to the previous results of Zuzo
@52# and of Kapral and Bedeaux@34#.

Kapral
Present Zuzovsky and

calculations Bedeaux

sc Aa -3.78699 -3.793 -3.787
Ba 3.42673 3.428
Ab 0.85800 0.8620 0.858
Bb -2.28448 -2.286

bcc Aa -0.14079 -0.141 -0.141
Ba -1.07874 -1.08
Ab -1.57281 -1.573 -1.573
Bb 0.71916 0.718

fcc Aa -0.23611 -0.237 -0.236
Ba -0.82315 -0.822
Ab -1.50926 -1.508 -1.509
Bb 0.54877 0.548
-
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compare excellently, with differences of at most a few pa
in ten thousand if concentrations are belowf50.46 ~except
for the b value atf50.40 that has been determined grap
cally!. As the concentration approaches that of close pack
(fcp'0.524) the accuracy of the data of Nunan and Kel
and of Ladd is seen to decrease rapidly. This is mai
caused by the inadequacy of a necessarily finite numbe
basis functions~as in our method! to describe the flow
through the array of spheres. For high concentrations Nu
and Keller indicate that their computed estimates are so
times too low. Moreover it can be seen in Table 1 of th
paper@36# that the numerical result fora at f50.49 shows
oscillation as the number of basis polynomials~analogous to
our L) is increased. It is likely, therefore, that the value of
as quoted in Table II is not converged and should actually
higher, which also explains the relatively large differen
with our ~fully converged! result. An additional error in the
calculations of Nunan and Keller is introduced by the tru
cation in the lattice sums~these sums are different from our!
which can be significant at large concentrations, as m
tioned in their article. It seems that they did not use an e
cient technique to calculate the lattice sums, such as
Ewald-like summation expounded in article I, because th
computations consumed the preponderance of CPU t
needed to determine the viscosity parameters. In our case
lattice sums~which are calculated only once for each of th
three cubic lattices! take an insignificant amount of CPU
time in comparison to the time needed to solve the se
linear equations. Moreover, it is important to appreciate t
accurate computations for higher concentrations req

ky

TABLE II. Viscosity parametersa and b as functions of vol-
ume fractionf for a sc lattice. Converged numerical results o
tained by our method~H! are compared to the numerical data
Ladd @57# ~L! and of Nunan and Keller@36# ~N!. Bold data are
measured from Fig. 2 in Ref.@36#.

f Methods a b

0.01 H 0.025 941 0.024 813
L 0.025 942 0.024 814
N 0.025 941 0.024 813

0.12 H 0.465 796 0.290 025
L 0.465 80 0.290 03
N 0.465 80 0.289 95

0.24 H 1.522 857 0.613 821
L 1.522 8 0.613 81
N 1.522 8 0.613 06

0.32 H 3.025 744 0.896 926
L 3.025 7 0.896 9
N 3.026

0.40 H 6.457 823 1.312 428
L 6.453 1.312 3
N 6.454 1 1.32Á0.02

0.44 H 10.487 711 1.634 516
L 10.43 1.634 3

0.46 H 14.292 654 1.858 631
N 14.0 1.86Á0.02

0.49 H 28.038 95 2.378 24
N 24
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higher-order lattice sums, and in our case it has been ver
that these sums converged to the correct values by com
ing the results of our Ewald-like technique with the resu
that follow by direct summation of the lattice sums~these
sums are defined in article I!. Having established the mai
reasons for the major discrepancies between our results
those of Nunan and Keller, and given the excellent cor
spondence with their data as well as with those of Ladd
concentrations up to approximately 85% that of close pa
ing, it can be concluded that the present method to determ
the effective viscosities indeed works correctly and yie
accurate results.

To examine the performance of our numerical scheme
computations of viscosities at very high concentrations i
found worthwhile to compare our data to the asymptotic
pansions for cubic lattices as derived by Nunan and Ke
on the basis of lubrication theory. These formulas, in ter
of the small parametere defined bye512(f/fcp)1/3, are as
follows.

For sc lattices,

a5 3
16 pe211 27

80 p ln e211C̃a1D̃ae ln e211O~e!,
~6.13a!

b5 1
4 p ln e211C̃b1D̃be ln e211O~e!. ~6.13b!

For bcc lattices,

a5 1
4 A3p ln e211C̃a1D̃ae ln e211O~e!, ~6.14a!

b5 1
8 A3pe211 37

120A3p ln e211C̃b1D̃be ln e211O~e!.
~6.14b!

For fcc lattices,

a5 3
32A2pe211 87

160A2p ln e211C̃a1D̃ae ln e211O~e!,
~6.15a!

b5 3
16A2pe211 47

80A2p ln e211C̃b1D̃be ln e211O~e!.
~6.15b!

In the above equations the coefficientsC̃a , D̃a , C̃b , andD̃b
are different for sc, bcc, and fcc lattices. In order to det
mine, for example,C̃a and D̃a for sc lattices Nunan and
Keller wrote

a2~ 3
16 pe211 27

80 p ln e21!5C̃a1D̃ae ln e211O~e!,
~6.16!

and by plotting the computed value of the left side of th
equation againste ln e21 the coefficients of interest could b
found from the intercept and slope of a line drawn throu
the plotted data for smalle ~high concentrations!.

In the following discussionã will be written as a short-
hand notation for the singular terms ofa appropriate for the
particular cubic lattice type under consideration. The no
tion b̃ is defined in an analogous way. Thus for the sc ar
ã indicates the singular terms between parentheses in
~6.16!.

Following the above procedure we have fitted the u
known coefficients to our numerical data. For the sc ar
ed
ar-

nd
-
r
-

ne
s

r
s
-
r
s

-

h

-
y
q.

-
y

Fig. 1 shows the residuals (a2ã) ~a! and (b2b̃) ~b! versus
e ln e21. Curves represent the results calculated forL540
~dashed curve!, L550 ~dotted curve!, and L560 ~solid
curve!. For the smallest values ofe the results have clearly
not converged, whereas for the largere the terms ofO(e)
are becoming prominent@see Eq.~6.16!#, but in an interme-
diate range it is possible to resolve a distinct linear behav
of the curves. In this intermediate range the straight solid l
is fitted to the curve, within an error that is indicated by t
two dotted lines. In an analogous way the residuals (a2ã)
and (b2b̃) for the bcc lattice are shown in Fig. 2, and fo
the fcc lattice in Fig. 3. In Table III the coefficients corre
sponding to our fitting lines, denoted asCa , Da , Cb , Db ,
are compared to the fitting constants of Nunan and Kel
C̃a , D̃a , C̃b , D̃b , respectively. It is immediately seen i
this table that the sign of Nunan and Keller’s coefficients
systematically opposite to the sign of our coefficients. B
cause we are certain that the sign of our coefficients is c
rect the conclusion follows that Nunan and Keller must ha
mistakenly fitted the line for (ã2a) instead of (a2ã). The
sign of the other coefficients reported by Nunan and Kelle
incorrect for the same reason. For the bcc or fcc lattice N
nan and Keller find that their graphs of (a2ã) exhibit defi-
nite linear behavior ase becomes small, so that the coeffi
cientsC̃a andD̃a can be determined with confidence. But
the other cases their estimates of the coefficients are no

FIG. 1. Differences (a2ã) ~a! and (b2b̃) ~b! versuse ln e21

for a sc lattice. Computations are shown forL540 ~dashed curve!,
L550 ~dotted curve!, andL560 ~solid curve!. Dotted straight lines
give an indication of the deviations around the best fit~solid straight
line!.
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reliable, and in the case ofb for a fcc lattice no estimate
could be made. It is found by inspection of Table III that o
results are strikingly different~apart from the trivial minus
sign! precisely in the cases where they question the accu
of their data, with the exception of the coefficientsC̃a and
C̃b for a sc lattice, which show reasonable agreement w
our corresponding coefficientsCa and Cb . It is noted that
these coefficients are somewhat larger in magnitude than
Ca andCb for the sc lattice~again disregarding signs! as can
be expected, because for these high concentrationsf
'0.48 for e ln e2150.1) Nunan and Keller’s numerical re
sults have not fully converged and, as mentioned bef
there was strong evidence of a downward bias in these c
putations for all cubic lattices. Although Nunan and Kell
have not presented curves for (a2ã) and (b2b̃) it seems,
on the basis of our findings, that they overestimated the
curacy of their numerical results and therefore also of th
fitting parameters.

Having determined the constant ande ln e21 terms in the
expansions~6.13!–~6.15! with a reasonable accuracy, it
interesting to observe that terms ofO(1) ~that is, constant
and higher-order terms! are not negligible as compared to th
singular terms, even for the rather high concentrations co
sponding to Figs. 1–3~for all cubic lattices 0.78&f/fcp
&0.97 for 0.05,e ln e21,0.2). This can be seen in Fig. 4
where (a2ã)/ã ~thick curves! and (b2b̃)/b̃ ~thin curves!
are plotted as functions ofe ln e21, for sc~a!, bcc~b!, and fcc
~c! lattices. As in Figs. 1–3 the data are given for truncat

FIG. 2. Differences (a2ã) ~a! and (b2b̃) ~b! versuse ln e21

for a bcc lattice. The various lines and curves are as for the sc
shown in Fig. 1.
r

cy

h

ur

(

e,
-

c-
ir

e-

n

levels L540 ~dashed curves!, L550 ~dotted!, and L560
~solid!. Note that curves for different truncation levels cann
be distinguished in~a! and for (a2ã)/ã as given in~b!. For
all cubic lattice types the relative magnitude of theO(1)
terms varies from 10% to 30% for 0.05,e ln e21,0.2 and,
as follows from Figs. 1–3, the predominant part of the
higher-order terms is represented by the constant terms
the terms proportional toe ln e21 that have been determine
by fitting. Obviously, when concentrations are decreasing
terms of O(e) will become important, but the lubrication
theory expansions up to thee ln e21 terms ~including our

se
FIG. 3. Differences (a2ã) ~a! and (b2b̃) ~b! versuse ln e21

for a fcc lattice. The different lines and curves are explained in F
1.

TABLE III. Fitting coefficientsCa , Da , Cb , andDb appropri-
ate for the lubrication formulas~6.13!–~6.15! for sc, bcc, and fcc
lattices. Previous results by Nunan and Keller@36# are denoted as

C̃a , D̃a , C̃b , andD̃b .

sc bcc fcc

Ca 22.8560.02 1.8360.02 29.5460.05

C̃a
3.1 -1.73 9.7

Da 21.360.2 212.060.3 1461

D̃a
0.25 12.3 -15.5

Cb 20.60460.001 27.560.1 27.4060.05

C̃b
0.63 12.8

Db 20.3060.03 661 2961

D̃b
0.0 -35
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fitting coefficients! are reasonably accurate even at moder
volume fractions, as is shown for the sc case in Fig. 5. O
converged numerical results fora ~a! andb ~c!, as a function
of the volume fractionf, are given by the solid curves. Th
thick dotted curves indicated by 0 represent the singu
termsã andb̃, respectively, while those indicated by1 and
� show the expansions~6.13! up to and including the
e ln e21 terms with coefficients as provided by Nunan a
Keller ~1! and with coefficients taken with opposite sig
~�!. As has been mentioned before, the signs of all fitt
coefficients of Nunan and Keller should be changed, wh
indeed yields a definite improvement to the plain lubricat
results ~0!. Their modified fitting results~�! seem to be
somewhat better than the curves that correspond to our fi
coefficients~dashed curves! but this is only for low to inter-
mediate concentrations, and in that range the low-f expan-
sions~6.12! ~dotted curves! provide a much greater accurac
as can be seen in Fig. 5~a! ~for a) and Fig. 5~c! ~for b).
These low-f expansions have been plotted here using
coefficientsAa , Ba , Ab , Bb as determined in this work~see
Table I! but the curves would not be visibly different for th
coefficients reported by Zuzovsky@52#. Numerical data of
Nunan and Keller are shown as diamonds (L). Their results

FIG. 4. Relative differences (a2ã)/ã ~thick curves! and (b

2b̃)/b̃ ~thin curves! versuse ln e21 for sc ~a!, bcc ~b!, and fcc~c!
lattices. Truncation levels areL540 ~dashed curves!, L550 ~dot-
ted!, and L560 ~solid!. Note that curves for different truncatio

levels are indistinguishable in~a! and for (a2ã)/ã in ~b!.
te
r

r

g
h

g

e

for a are as given in Table II whereas the results forb have
been measured from Fig. 2 in Ref.@36# @with measuring
errors smaller than the size of theL symbols in Figs. 5~c!
and 5~d!#. These data are all on our curves, except fora at
f50.49 which is somewhat below our result, as can be s
in Fig. 5~b!. The circles show some results obtained by t
Stokesian dynamics approach~Brady et al. @59#! which is
devised so as to be accurate in the limits of very small a
extremely high concentrations. At intermediate concen
tions the Stokesian dynamics computations overpredict
viscosity parameters, as was already mentioned in Ref.@59#.
Note that the viscosity parameters diverge as close packin
approached, as is clearly seen in Fig. 5~b! and Fig. 5~d!. The
close packing concentration isfcp'0.524, as indicated by
the vertical dotted line.

In a similar way results for a bcc lattice are plotted in F
6, where the dashed curves show the lubrication formu
~6.14! corresponding to our fitting coefficients. The fittin
error for b is indicated by the deviations between the thr
dashed curves in~b!. As for the sc case these modified lubr
cation formulas yield a considerable improvement on
pure singular part of Eqs.~6.14! ~0!, and fora ~a! our lowest
fitting results are close to those of Nunan and Keller, wh
are shown by the thick dotted curves indicated by the sym
�. Note that the sign of their coefficients has been alter
For the viscosity parameterb, as shown in Fig. 6~b!, there is
a marked discrepancy between our numerical results
those of Nunan and Keller at higher concentrations. This
caused by the fact that their data have not converged, w
also explains the negative bias of their fitting results~�! as
compared to our converged numerical data given by the s
curve in~b!. Even larger discrepancies between our nume
cal computations and those of Nunan and Keller are fou
for b corresponding to fcc lattices, as shown in Fig. 7~b!. In
that case they were not able to determine the fitting coe
cients with a reasonable accuracy. It is also noticed that
fitting result, as given by the dashed curve in Fig. 7~b!, yields
only a very poor approximation in a wide range of interm
diate to high volume fractions.

Observing the results shown in this section, it can be c
cluded that the present method is effective in calculating v
cosity parameters for cubic arrays, and good accuracy ca
retained even for relatively high concentrations. This effe
tiveness is not limited to cubic arrays, as the lattice su
appropriate for various other types of array can be straig
forwardly ~and rapidly! computed. The use of rapidly con
verging expressions for these lattice sums~like those pre-
sented in article I! is advocated, as it seems that negle
thereof has unnecessarily affected the calculations of Nu
and Keller in an adverse way. In the next section the eff
tive viscosity is examined for simple tetragonal~st! lattices
and the results are interpreted in relation to various poss
structures of the st type.

VII. SIMPLE TETRAGONAL LATTICES

Simple tetragonal lattices may be characterized as sc
tices that are compressed or elongated along one of t
axes. As in the previous section the three orthogonal axes
chosen so as to coincide with the coordinate systemxyz,
with z the direction of elongation. The st lattice paramete
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FIG. 5. Viscosity parametersa andb for sc arrays, plotted against the volume fractionf. Various results shown in~a!–~d! are indicated
as follows. Solid curves, our converged numerical data; circles, Stokesian dynamics@59#; diamonds (L), numerical data from Nunan an

Keller @36#. The thick dotted curves indicated by 0 representã @~a!,~b!# and b̃ @~c!,~d!# while those marked with1 and� show the
expansions~6.13! up to and including thee ln e21 terms with coefficients given in Ref.@36# ~1! and with coefficients taken with opposit
sign ~�!. Low-f expansions~6.12! are indicated by the thin dotted lines fora ~a! andb ~c! including our coefficients given in Table I
dashed curves in~a! and~c! represent the lubrication formulas~6.13! including our fitting coefficients in Table III. Notice the different scal
in ~a!–~d!.
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along these respective axes are given byhx , hy5hx , and
hz . Obviously this type of array possesses less symm
than cubic arrays, and it is not possible, therefore, to red
the computational effort to the same degree~see article I for
details!. However, by changing the aspect ratiof 5hz /hx of
a st lattice, a wide range of different structures can be c
sidered. For these simple structures the effective visco
can be interpreted in a straightforward way, as is shown
low, and this can be useful in understanding the rheolog
behavior of ordered hard-sphere suspensions~see, e.g., Refs
@21,60,61,22,62,63#!. In the next section some of our numer
cal results are compared to recent experimental data.

The present section focuses on the interpretation of
effective viscosity as calculated for st lattices submitted
ry
ce

n-
ty
e-
al

e
o

Couette flow~simple shear flow! as depicted in Fig. 8~a!
where the arrows indicate the ambient velocity field~6.2!
which is parallel to thex axis @the Cartesian axes are plotte
in ~b!#. Under the influence of this shear flow the sphe
rotate as indicated by the curved arrows in~b! and ~c!. The
effective shear viscosity corresponding to this orientation
the flow is given byh r in Eq. ~6.5!. Analogously to the sc
case it is found convenient to writeh r 511bz where the
parameterbz5M 22,22 can be determined from the set o
linear equations suitable for the st lattice under consid
ation. The viscosity parameterbz is shown in Fig. 9 agains
the aspect ratiof 5hz /hx for a volume fraction off50.3.
This moderate concentration is sufficient to explain the ch
acteristic structural dependence of the viscosity in a qua
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tive way. This behavior has been shown to be roughly
same for all possible volume fractions. When the spheres
touching in thez direction, as depicted in Fig. 8~b!, the as-
pect ratio reaches a minimal valuef 5 f min as indicated by
the left vertical dashed line in Fig. 9, and for this situati
the viscosity rapidly converges~as a function ofL) to a finite
value. For a given volume fractionf the minimal aspect
ratio is given by

f min 5A6f

p
~7.1!

and for f50.3, as considered here, it follows thatf min
'0.76. We have also calculated the velocities and ang
velocities of the particlesrelative to the ambient flow, as
given by Ũn and Ṽn in Eq. ~4.5! ~where n50 as we are
consideringN51) and these are found to be vanishing,
dependent of the aspect ratiof. It is worthwhile to appreciate
that theabsolutemotions given byUn andVn are nonzero.
Thus, all spheres move along with the shear flow in exa
the same way as can be derived for a single isolated sph
Moreover, our numerical computations show that this a
applies if the spheres are arranged on a cubic lattice. In
for cubic lattices this property was explained by Nunan a
Keller @36# and it appears that this property is retained for
lattices which are oriented with respect to the shear flow
considered here@64#.

As the aspect ratio is increased the structure beco
simple cubic atf 51 wherebz in Fig. 9 indeed reaches th
correct value, which has also been computed following

FIG. 6. Viscosity parametersa ~a! andb ~b! versus the volume
fractionf for bcc lattices. The three dashed curves in~b! show the
lubrication formula forb in ~6.14! including our fitting coefficients,
where the fitting error is indicated by the deviations between th
three curves. Other symbols and lines are as in Fig. 5.
e
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numerical scheme that is optimized by exploiting cubic sy
metry. By further increasingf the separation between spher
becomes larger in thez direction, whereas distances are d
creasing in thexOy plane, as can be seen in Fig. 8. Lar
stresses are produced in the regions between spheres th
neighbors in thexOy plane, and this explains the monoton
cally increasing behavior of the viscosity parameter as
function of the aspect ratio, as shown in Fig. 9. Finally, t
viscosity diverges atf 5 f max ~as indicated by the right ver
tical dashed line in Fig. 9! which corresponds to sphere
touching in thexOy plane@see Fig. 8~c!#. Heref max depends
on the concentrationf according to

f max5
p

6f
, ~7.2!

which yields f max'1.75 forf50.3.
For the same tetragonal structures the shear viscosity

rameter has been computed that corresponds to a plan
shear coinciding withyOz, as depicted in Fig. 10. This vis
cosity parameter will be denotedbx and is plotted versus
aspect ratiof in Fig. 11~a!. Relative to the shear flow al
spheres exhibit the same angular velocity in thex direction,
Ṽx . As is inferred by virtue of symmetry, their translation
velocity with respect to the ambient flow is found to be ze
as in all other cases mentioned above. The dimension
fraction Ṽx /ġ is plotted in Fig. 11~b! versus the aspect rati
f. Here ġ is the shear rate parameter that represents
strength of the shear flow. For the extreme values of

FIG. 7. Viscosity parametersa ~a! andb ~b! versus the volume
fraction f for fcc lattices. The three dashed curves in~a! show the
lubrication formula~6.15! corresponding to our fitting coefficients
where the fitting error is indicated by the deviations between th
three curves. Other symbols and lines are as in Fig. 5.
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aspect ratiof 5 f min and f 5 f max the spheres are touching, a
shown in Figs. 10~b! and 10~c!; however, the viscosity pa
rameterbx is found to converge~slowly! to a finite value.
This behavior is closely related to the observation that p
ticles tend to a rolling motion atf 5 f min @corresponding to
Fig. 10~b!# whereas in the case off 5 f max @Fig. 10~c!# the
rotation stops as the spheres form rigid planes that are m
ing past each other in they direction. It should be noted tha

for nonrotating spheresṼx52 1
2 ġ whereas for rolling

spheresṼx51 1
2 ġ. These extreme values (6 1

2 ) have not
been reached in the graph in Fig. 11~b! because the result
for touching spheres have not fully converged.

FIG. 8. st arrays of spheres~b! and~c!, subject to a Couette flow
in thexOy plane, as depicted in~a!. The spheres rotate as indicate
by the curved arrows in~b! and ~c!.
r-

v-

FIG. 9. Viscosity parameterbz for st lattice atf50.3.

FIG. 10. st arrays of spheres~b! and ~c!, subject to a Couette
flow in theyOzplane, as depicted in~a!. In ~b! the spheres rotate a
indicated by the curved arrows, while in~c! the rotation has stopped
and the spheres form close packed planar structures that move
each other in they direction.
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VIII. COMPARISON WITH RHEOLOGICAL
EXPERIMENTS

In the past few decades the rheological behavior of c
loidal suspensions has been increasingly studied in close
lation to the microstructure, and many works report vario
ordered structures that arise when these systems are su
to different kinds of shear flow~see, e.g.,@60,61,63#!. As has
been indicated in the previous section, a changing mic
structure can be responsible for large variations in the ef
tive viscosity.

In recent experiments by Gondret and Petit@21# the vis-
cosity of a hard-sphere suspension is measured by subm
the suspension to an oscillating shear flow. In their exp
mental setup the suspension consists of glass beads~with
diameters in the range 4565 mm and mass densityrp
52.5 g cm23) that are immersed in a viscous fluid (h
55 Pa s,r50.97 g cm23). This suspension is confined be
tween two parallel solid plates separated by a small gap
sizeh5200 mm. It should be noted that this gap distanceh
is only about four times as large as the mean diameter of
beads. The lower plate is fixed and the upper one oscill
in one direction, creating a simple shear flow that satis
the following specifications: frequencyns5200 Hz; ampli-
tude of displacement of the upper platexm '20 mm; strain
rate amplitudeġm 52pnsxm /h. Considering the small size
of the particles, the high viscosity of the suspending flu
and the properties of the shear flow, the particle Reyno
number is very small (Re'1025). Moreover, Brownian
forces as well as van der Waals and electrostatic forces
tween the particles can be neglected, and consequently
particle interactions can be considered as of hydrodyna
origin only. It is observed that, after many oscillations, t
initially random suspension reaches an ordered struct
This phenomenon was first reported by Petit and Noetin
and can be ascribed to a secondary flow due to inertial
fects induced by the alternating rotation of the particles
the oscillating shear flow@22#. As indicated by the smallnes
of the Reynolds number these inertial effects are weak,

FIG. 11. Viscosity parameterbx ~a! and corresponding relative

angular velocityṼx /ġ ~b! for st lattice atf50.3.
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not completely vanishing, and this causes the particles
migrate over distances of their own size in a characteri
time of roughly 100 s~as discussed in Ref.@21#!; this is
effectively the typical time in which the formation of th
regular structure has been observed. As was shown in
@21#, the viscosity measurements by Gondret and Petit co
pare reasonably well with the numerical results for sc latti
as reported by Nunan and Keller, for volume fractions up
about 0.5. The main difference between the structures see
the experiment and the pure sc structure is that the parti
in the former are in contact in the direction that is perpe
dicular to the plane of shear. Although Gondret and P
were not able to determine the structure with great det
they assume that it closely resembles a tetragonal lat
This tetragonal structure, which will be referred to as st1
depicted in Fig. 12~c! and is oriented with respect to th
Couette flow as indicated in~a!.

The viscosity parameterb corresponding to this situation
was calculated using the method introduced in Sec. V.
Fig. 13 the results~dotted curve! are plotted against the con
centrationf, on a linear scale~a! and on a logarithmic scale
~b!. Circles indicate the experimental data corresponding
the disordered suspension as the shear flow has just sta
The experimental accuracy is610% as shown by the erro
bars. After a few minutes of shearing the structure is orde
and the viscosity has reached a final value that is consi
ably lower than in the disordered state~by a factor of'2).
The final viscosity values, shown by the diamond symb
(L) in Fig. 13, are very close to the solid line that represe
our calculations for a sc lattice, but the viscosity parame
for the st1 structure~dotted line! shows less correspondenc
with the experiment. Another candidate for the regular str
ture observed in the experiment is the st2 array, which is
structure where particles are touching in thexOy plane, as
depicted in Fig. 12~d!. When viewed from above, this struc
ture shows a close resemblance to the st1 array depicte
Fig. 12~c!. The viscosity parameterb for this st2 structure is
shown by the dashed line in Fig. 13, which is below all oth
results forf&0.25 but is found to be closer to the expe
mental data than the results for sc at high concentrations
compared to the viscosity results for st1 and st2, the res
for the sc array best fit the experimental data over the wh
range of volume fractions up to sc close packing (fcp
'0.52). As mentioned above, the sc structure is not wha
observed in the experiments, at least not when concentrat
are in the range of 0.2 to 0.3 for which clear photographs
available~see Refs.@21,22#!. It may be worthwhile to visu-
alize these ordered suspensions at higher concentrations
and in all three directions, so as to verify the existence of
st2-like structures that are suggested by our findings.

Viscosities have also been measured at concentrations
ceeding that for the sc closely packed arrangement. No c
observations are available for these high concentrations,
it is obvious that the corresponding structure cannot be
of those shown in Fig. 12. There are many different arrays
spheres that have concentrations above that for sc c
packing, and for some of them we have computed the
cosity parameters corresponding to various directions of
shear. For reasons of brevity only three of the structu
considered are depicted in Fig. 14, viz., the bcc~b!, bct1~c!,
and hexa2~d! lattices. The hexa2 array consists of~infinite!
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FIG. 12. sc~b!, st1 ~c!, and st2~d! arrays subject to a Couette flow as depicted in~a!.
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planes of close packed spheres, which are perpendicula
the direction of the Couette flow shown in~a!. For the close
packing case@fcp5p/(3A3)'0.60# this hexagonal ar-
rangement was considered by Gondret and Petit@65# as a
candidate structure where the spheres are allowed to mo
the direction of the flow, whereas for concentrations bel
close packing the structure is planar, as is also vaguely
served in the experimental case@66#.

In Fig. 15 the convergedb parameters obtained numer
cally for the three structures in Fig. 14 are shown on lin
~a! and logarithmic~b! scales, as a function of the conce
tration f. Results for the various structures are represen
by the thin dotted curve~hexa2!, the thick dotted curve
~bct1!, and the dashed curve~bcc!. Moreover, the calcula-
tions for the sc lattice are shown by the solid curve, a
vertical lines~the same line types! indicate close packing fo
all four lattices. The close packing concentration correspo
ing to bcc is somewhat below that of bct1~for bcc fcp

5pA3/8'0.68 and for bctfcp52p/9'0.70). The data
measured by Gondret and Petit@66# are indicated as in Fig
13. For increasing concentrations the experimental data s
a distinctly different behavior when the volume fraction h
passed that of sc close packing, and this is likely due to la
changes in the microstructure. The numerical data for
to

in

b-

r

d

d

d-

w

e
e

previously proposed hexa2 structure show a large downw
discrepancy with the measurements for the~allegedly! or-
dered structure for all volume fractions, while the curves
bct1 and bcc lattices also reveal a very different concen
tion dependence. However, the results for bct1 and bcc
seen to compare reasonably well for some of the higher c
centrations, and this correspondence is better than was
served for all other structures that were considered~results
for these other structures are not given here!, with the excep-
tion of the fcc lattice for which results are comparable w
those for bct1. It is noted that the viscosity for the fcc arr
was evaluated here for a Couette flow withyOz as the plane
of shear and oriented with respect to the principal axes of
fcc lattice (x, y, z) as depicted in Fig. 16. On the basis of th
findings discussed in this section it is proposed that the s
pension microstructure in the experiments by Gondret
Petit changes from a st type of arrangement to a bct-
fcc-like arrangement when the volume fraction is rais
above that of sc close packing. This proposition may be
cided on by experimental verification.

There are several aspects of the experimental situa
that have not been taken into account in our calculatio
e.g., the fact that only a small number of layers of sphe
were contained between the parallel walls in the experim
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tal apparatus. Depending on the concentration, this num
varies from 3 to 4. Moreover, the structures that are obser
after many oscillations of the shear flow still show a defin
degree of disorder@21#.

IX. CONCLUSION

An exact scheme is presented to determine the 25 in
pendent components of the effective viscosity tensor. In
highly symmetric case of cubic lattices this tensor is char
terized by only two viscosity parametersa andb. For these
parameters asymptotic expansions have been derived tha
appropriate for small volume fractions. These expansions
of the same form as previously found by Zuzovskyet al.
@48,52# but with slightly different coefficients~differences
are below 1%!. Although the origin of this discrepancy i
unclear we are confident about the correctness of our co
cients, which have fully converged. Moreover, some of
coefficients were previously calculated by Kapral and B
deaux @34# and these agree with our results~but not with
those of Zuzovskyet al.! to all decimal places. The viscosit
parametersa andb are calculated numerically for the thre
cubic lattice types and for the whole range of concentratio
For low to intermediate concentrations these results com
excellently with computations of Nunan and Keller@36# and

FIG. 13. Viscosity parameterb for various structures plotted o
a linear scale~a! and on a logarithmic scale~b! versus the concen
tration f. Curves show the numerical data for arrays of type
~solid!, st1 ~dotted!, and st2~dashed!. These structures are oriente
relative to the Couette flow as depicted in Fig. 12. The verti
dotted line indicates the close packing concentration for these s
tures (fcp5

1
6 p). Experimental data provided by Gondret and Pe

@21,66# are shown for disordered~circles! and ordered (L) suspen-
sions where error bars indicate the measuring inaccuracy of610%.
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re FIG. 14. bcc~b!, bct1 ~c!, and hexa2~d! arrays submitted to a
Couette flow as depicted in~a!.
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also with the data provided by Ladd@57# for the case of a sc
lattice. Discrepancies with the data of Nunan and Keller
dense cubic arrays are attributed to the fact that their d
have not fully converged.

Asymptotic expansions appropriate for very dense cu
arrays were previously derived by Nunan and Keller on
basis of lubrication theory. Singular terms in these exp
sions are exactly known, and coefficients of some nonsin
lar higher-order terms were determined by fitting the exp
sions to the numerical data for high concentrations.
repeating this fitting procedure on the basis of our conver
numerical data we have determined the coefficients of in
est. It is shown first that the coefficients reported by Nun
and Keller have the wrong sign, which can be ascribed t
trivial mistake, and second that the accuracy of their coe
cients has been overestimated by underestimation of num
cal errors. Even at relatively low volume fractions the lub
cation theory expansions fora and b ~including our
numerically obtained coefficients! have proved to be reason
ably accurate. Moreover, a combination of these high-den
results with the expansions for dilute cubic arrays descri
the viscosity parameters rather well over the whole range
volume fractions. Such combined descriptions can be p
vided by our method for various other lattices~with possibly
multiple particles per cell that may have different sizes! and
these results may be used to increase the accuracy of

FIG. 15. Shear viscosityb for various structures plotted o
linear ~a! and logarithmic~b! scales as a function of concentratio
f. Curves show the numerical data for arrays of type bcc~dashed!,
bct1 ~big dots!, sc ~solid!, and hexa2~small dots!. Vertical lines
~same line types! indicate the corresponding close packing conc
trations for these structures. Experimental data provided by Gon
and Petit@21,66# are shown for disordered~circles! and ordered
(L) suspensions where error bars indicate the measuring ina
racy of 610%.
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numerical simulation schemes, such as, e.g., the metho
Stokesian dynamics@67,59#. The main ingredient for the
evaluation of various structures is represented by lat
sums that can be efficiently computed using the method
pounded in article I. The use of such a method is advoca
as it appears that neglect thereof has unnecessarily affe
the calculations of Nunan and Keller in an adverse way.

The effective viscosity has been examined for simple
tragonal~st! lattices and the results for various structures
the st type can be qualitatively understood on the basis of
motion of the spheres in response to the ambient shear fl
The angular velocity of the spheres, relative to the sh
flow, is shown to be nonzero for certain orientations of the
lattice with respect to the shear flow, in contrast to wha
known for cubic arrays~see Ref.@36#!. Finite viscosities are
found in most cases where particle surfaces are in con
where, for instance, the particles are allowed to perform
smooth rolling motion. The only example where the visco
ity diverges for a st structure, or equally any other Brav
lattice, is for the case of close packing. The same is expe
to hold for random hard-sphere suspensions. Our visco
results for st lattices have been compared to the experime
data for an ordered suspension of hard spheres in an o

-
et

u-

FIG. 16. fcc array of spheres~b! subject to a Couette flow in the
yOz plane, as depicted in~a!.
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lating shear flow, as reported by Gondret and Petit@66#. In
Ref. @21# the experimental results were found to be describ
rather well by the known results for a sc lattice, although
moderate concentrations the structure observed in the ex
ments was characterized by parallel chains of close touc
spheres. These chains were aligned in planes parallel to
direction of the shear flow and the chains were perpendic
to the plane of shear. On the basis of these observat
Gondret and Petit proposed that the structure resemble
arrangement that we designated as st1. However, our num
cal calculations for the shear viscosity for these st1 arr
show less correspondence with the experimental data tha
the results for sc lattices. Another st lattice~st2! shows better
agreement, but only in the range of high volume fractio
For increasing concentrations the experimental data sho
distinctly different behavior when the volume fraction h
passed that of sc close packing, and this is likely due to la
changes in the microstructure. The numerical data for
previously proposed hexa2 structure@65# at high concentra-
tions show a large discrepancy with the measurements
the complete range of volume fractions, while the curves
bct1 and bcc lattices also reveal a very different concen
tion dependence. However, the results for bct1 and bcc
seen to compare reasonably well for some of the higher c
centrations, and this correspondence is better than was
served for all other structures that were considered~results
for these other structures are not presented in this artic!,
y
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with the exception of the fcc, lattice for which results a
comparable with those for bct1. On the basis of our findin
it is proposed that the suspension microstructure in the
periments by Gondret and Petit changes from a st type
arrangement to a bct- or fcc-like arrangement when the v
ume fraction is raised above that of sc close packing. T
proposition may be decided by experimental verification. W
are looking forward to further experiments on samples t
contain a large number of particle layers, thereby reduc
the effect of the solid walls on the apparent viscosity.
addition, it would be worthwhile to visualize the ordere
suspension also at the highest possible concentrations, a
all three directions, so as to verify the existence of the s
like structures that are suggested by our computations
0.3&f&0.5 and the arrangements of type bct or fcc at ev
higher volume fractions. It should be possible to examine
viscosity for colloidal crystals of finite thickness by a mod
fication of the principal set of linear equations from whic
the components of the grand mobility matrix can be solv
Disordered structures can be treated by application of
quasi-N-particle approach that was formulated for colloid
crystals that are infinite in all three directions. Despite t
fact that all computations presented in this article are
perfect lattices~with N51) the results are found to describ
the empirical data rather well, and it is expected, therefo
that this will stimulate further experimental investigation.
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