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Static and dynamic properties of the backbone network for the irreversible
kinetic gelation model
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We study by Monte Carlo simulations the fractal nature of the backbone network for the irreversible kinetic
gelation model in both two and three dimensions. The fractal dimension of the backbone network generated at
the gel point is measured by various methods, and results are found to be consistent with that of the standard
percolation backbone. Our observation is different from the previous work in three dimensions, where a
distinctly larger value was observed. We also measure the spectral dimdﬁsimml the fractal dimensiodﬁ
of random walks on a backbone, defined by, respectively, the probability of random walks returning to the
starting point and the rms displacements aftéme steps. Results are also found to be consistent with the
corresponding percolation values. We therefore conclude that the backbone network of the kinetic gelation
model exhibits the same static and dynamic properties as those of the standard percolation backbone.

PACS numbgs): 05.70.Fh, 05.26-y, 64.60.Ak, 64.60.Fr

I. INTRODUCTION counterparts[7], again suggesting different universality
classes. The fractal dimension of an infinite network was
Kinetic gelation is the irreversible growth model designedalso determined considerably larger than that of the percola-
to investigate formation of an infinite macromolecule. Thetion network[8], though it was later found by a more elabo-
initial study of the sol-gel transition was carried out by Flory rate technique to be similar to the percolation velag
and Stockmayef1,2] using a simple model, later known as ~ Considering these works, it appeared that, while the criti-
percolation on a Bethe lattice. A more realistic model of anc@l €xponents of the gelation model were similar to those of

additive copolymerization by radicals has been developed bff’® Percolation counterparts, the amplitude r&tioas still
Manneville and de SeZ&]. In such a model, all lattice sites different. Similar results were also reported for other perco-

are assumed to be initially in a sol phase, which consists Olp\tion models such as the off-lattice, randomly bonded per-

small monomers of multiple functionalities. The gelation is COIggigrird T_heeecgr?gnr:Jilsm::oplleargggg)[;Smicé@:gt_egivel
initiated by radicals which saturate, opening up a double Y, - y

bond of a monomer and leaving one bond of the monome?tUdied the amplitude ratio of percolation susceptibilities for
9 ~various off-lattice percolation models and the kinetic gela-
unsaturated. The unsaturated bond acts as a new radi

hich. i her double bond of th ioh n model. They found that the nonuniversal behaviors of
which, In turn, opens up another double bond of the neighy, e gmpjitude ratio reported earlier for various models had

boring monomer. As this process continues, an infinite Macpeen caused artificially by different sampling techniques for
romolecule occurs suddenly at a certain fraction of the polyyne percolation susceptibilities in the Monte Carlo procedure.
merized sites, known as the gel-pop. A typical example  After minimizing the errors, the amplitude ratio of percola-

of such a gelation phenomenon can be viewed from the fortion susceptibilities for various models was found to be con-
mation of the macromolecule by acrylamide initiated by am-sistent with the known lattice percolation value, implying a

moniumsulfate, as described in Rp4]. strong universality between lattice percolation and other
The universality of the kinetic gelation model has beenaforementioned models.
intensively studied, particularly in three dimensid8®), by However, it is still unclear whether or not the static and

Herrmannet al. [4,5]. They found that the critical exponents dynamic properties of thbackbonenetwork for the kinetic

v and v, which characterize, respectively, the percolationgelation model are also similar to those of the percolation

susceptibility and the correlation length, are roughly thebackbone. The fractal dimension of such a backbone was in

same as the corresponding lattice percolation values. Howact reported to be distinctly larger than that of the percola-

ever, the amplitude ratiR of percolation susceptibilities be- tion backbone[17]. Since the fractal dimensiod: of an

low and abovep,, which is supposed to be univers$él, has infinite percolation network at criticality is related to the

been found to be considerably smaller than that of the pereritical exponentsy and 3, characterizing, respectively, the

colation value. Based on this observation, they claimed thagorrelation length and the order parameter, via

the kinetic gelation model belongs to a different universality

class from that of the lattice percolation. In 2D, on the other de=d—B/v, 1)

hand, both the exponenisand » and the amplitude rati®

were found to be considerably different from the percolationd being the spatial dimensionality, obtaining different fractal
dimensions implies that two models belong to different uni-
versality classes. A similar argument is valid for the back-

* Author to whom correspondence should be addressed. Electronlzone network as well, with the exponents characterizing
address: shlee@bh.knu.ac.kr those quantities of the backbone. The backbone is an infinite
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network obtained by eliminating all dangling loops and dead

ends which do not carry current when the electric potential is Dl E@:‘
applied between two opposite edges or faces. The backbone
at p. is known to exhibit a self-similar structure with its
fractal dimension different from that of the infinite network
and plays a crucial role in determining the dynamical prop-
erties such as the electrical conductivity, permeability, and
elastic properties. It is, thus, interesting to study the fractal
nature of the backbone network at criticality for the kinetic
gelation model.

In this work, we study the fractal nature of the backbone
network of an infinite cluster generated at the gel point for
the kinetic gelation model. We measure the fractal dimension
d2 from the mass distributions of monomers and from the
fraction of monomers on the backbone. We also estimate the
two indices regarding the random walks on a backbone, the
spectral dimensiod?, and the fractal dimensiotf charac-
terizing, respectively, the probability of returning to the start-
ing point and the rms displacements. With these estimates,
the fractal dimension of the backbone is also calculated using
the Alexander-Orbach scaling relatipb3].

Il. MONTE CARLO PROCEDURE

The Monte Carlo method of obtaining realizations for the
kinetic gelation model is basically the same as that described
in Ref. [16]. At the beginning of each simulation step, all
lattice sites on a system of a sileare assumed to be in the
sol phase, no solvent molecule being assumed to exist, with
the fractions of the tetrafunctional units and the bifunc-
tional unitscy,. The initiators of concentration, are ran-
domly distributed in a given system, assuming that each ini-
tiator acts as an active center for polymerization. Then, one
of those active centers and its neighboring bond are selected
randomly. If the new site connected by that bond is not yet
saturated, i.e., has fe".Ver thad m.CIdem bonds, the b(.)nd IS network and(b) a backbone network extracted frota) for the
completed and the active center is moved to a new site. If thﬁinetic gelation model on a 5050 square lattice.
bond cannot be completed by the neighboring sites being
saturated with @ bonds, a new attempt is made with differ-
ent active center.

Once the realization is obtained at the gel point, we searc
for an “incipient” infinite cluster which spans the cell along
all coordinate directions, using the cluster labeling algorithm
[19]. If such a cluster does not exist, we discard the current . RESULTS AND DISCUSSION
realization and attempt a new realization. If such an infinite o carry out simulations for the kinetic gelation &
cluster is found, we set all sites other than the sites on aq%

J—

FIG. 1. Computer-generated sample realizatiofapfin infinite

ments aftert time steps. These quantities enable us to esti-
Hwate the spectral dimensiatf and the fractal dimensiod
of random walks on a backbone.

P . ttice sites for various values @fand for selected values of
infinite cluster to be zero. The backbone is then extracte

: ) . . ; andc, for which the gel points were reported. The results
using the Roux-Hansen aIgor_nhEﬁO] for_two dimensions . averaged over at least 100 realizations.
(2D) and the so-called “burning” algorithnj21] for 3D.
The Roux-Hansen algorithm is much simpler and more effi-
cient than the burning algorithm, but it can only be applied
for a 2D model because of the spatial characteristics. A We calculate the number of monomers on a backbone
sample realization generated on ax<380) square lattice is inside the circle(sphere for 3D of radiusr, centered at the
shown in Fig. 1. randomly selected point. Assuming that each monomer has a
Once the desired backbone is extracted, we calculate thmass of unity, the mass of monomers on a backbone inside
monomer distributions on the backbone against the distand®e circle(sphere of radiusr is expected to increase as
from the randomly selected points and also the fraction of 5
monomers on it, i.e., the gel fraction. We also generate ran- M (r)~rdF 2
dom walks from the randomly selected starting points on the
backbone and calculate the number of events in which rarfor r>a, wherea is the lattice constant. Whenever each
dom walks return to the starting points and the rms displaceeenter of the circlgsphere is selected, we reconstruct the

A. Fractal dimension from the mass distribution
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FIG. 2. Plots ofM(r) against on a double logarithmic scale for FIG. 3. As in Fig. 2 for the 3D kinetic gelation model foy

the backbone network of the kinetic gelation model ép=0.05  =0.0003 andc;=1.0, using the periodic boundariésquares and

(circles and 0.2(squaresin 2D, obtained using the two different the free boundarieircles. The data for periodic boundaries are

boundary conditions. The upper set is the data for periodic boundmultiplied by a factor of 10.

aries and the lower set for free boundaries. Note that the data for

periodic boundaries were multiplied by a factor of 10 to avoid over-shifted by an amount 1.0, and the lower sets are from the free

crowding of the symbols. boundary condition. The linear regression fits yield estimates
of the fractal dimensiordEypzl.859t0.011 for periodic

backbone realization by translating the center of the circldooundaries anddE'f=1.857i 0.010 for free boundaries.

(sphere to the center of the system by periodic boundaryThese values are again close to the known lattice percolation

conditions. We then redetermine the connectivity and counvalue in 3DdE=1.855t 0.015[24].

the number of occupied sites inside the cir¢éphere by

varying the radiug from r=a up tor=_La/2. In this final

stage, we employ the two different boundary conditions, the ) ] )
free and the periodic boundaries. In general, the periodic Since the estimates of the fractal dimension from the mass

boundaries yield an estimate of the fractal dimension slighthyfistribution of the monomers on a backbone depend on the
larger than what the free boundaries would yield. boundary cond|t|or}s employed, it is still less clear whether
Plotted in Fig. 2 are the data for the 2D kinetic gelation©F Not the fractal dimension of the backbone network of the
model generated on a 1081001 square lattice for, klngtlc gelatlor! model is the same as t_hat of the ordinary
=0.05(circles and 0.2(square assuming that all sites are Ia_\tt|ce percolation value. In order to der_lve a more conclu-
occupied with monomers of the tetrafunctional units, ice., sive answer, we also measure the fraction of the monomers
—1. The upper sets are those obtained using the periodf®? the backbone network. _ _
boundaries and the lower sets using the free boundaries. The 1h€ g€l fractionG(p,L) of the backbone is the fraction of
upper data are shifted by an amount 1.0 to avoid overcrowd'® monomers on the backbone in a given system of Iside
ing of the data. As shown in the figure, the data for two@Nd is related to dthe_ number of monomev(p,L) as
different values ot, are not appreciably different, indicating G(P,L)=M(p,L)/L". Since the gel fraction for any finite-
that the fractal dimension of the backbone network is indeSiZ€ System is known to satisfy the scaling relafiaf]
pendent of the concentration of initiators. The estimates of | —Bglv _ i
the fractal dimension from the plot adg ,=1.65+0.01 for Glp.b)~L flp=pdL™), ®
periodic boundaries andEyle.GOt 0.01 for free bound- near the gel point, it can be written pt=p,, as
aries. It is generally known that the periodic boundaries yield
a fractal dimension that is slightly overestimated, while the G(pg,L)xL—#elv, 4)
free boundaries yield an underestimation of the fractal di-
mension. Thus, the true value of the fractal dimension isThe fractal dimensiond? can thus be obtained from
expected to lie between the two estimates. It should be noteg (p,,L)= LdG(pC,L)ochE as
that the known fractal dimension of the backbone network
for ordinary lattice percolationd?=1.647+0.004 22,23, dE=d—pBg/v. (5)
lies between the two values.
Plotted in Fig. 3 on a double logarithmic scale are the data herefore, the fractal dimension of the backbone network is
in 3D for L=181 andc,=0.0003 withc,=1.0. Again the obtained by estimatin@gz/v from the gel fraction for vari-
upper sets are from the periodic boundary condition and areus sized systems.

B. Fractal dimension from the gel fraction
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FIG. 4. Plots of the gel fraction on a backbone against the linear FIG. 5. Plots of the gel fraction on a backbone against the linear
size of the system for the kinetic gelation model épr=0.05(upper ~ sizeL of the system for the kinetic gelation model fgr=0.003 in
datg andc,=0.2 (lower data in 2D. The closed symbols are the 3D (closed symbols in comparison with the corresponding data for
data obtained from the periodic boundaries, the open symbols frorthe percolation backbon@pen symbols The upper sets are the
the free boundaries, and the solid lines are the regression fits. THéata obtained using the periodic boundaries, the lower sets from the
upper sets of data are shifted by an amount of 0.3 to improve th&ee boundaries, and the solid lines are the regression fits. Note that
readability. the upper sets of data are multiplied by 10.

Shown in Fig. 4 are the gel fractions, plotted on a doubletimate for lattice percolation i8g/v=1.142+0.004, which,
logarithmic scale against the size of systemanging from  accordingly, yieldsdg=1.858+0.008, which is consistent
30 to 1000, forc;=0.2 (circleg andc,=0.05 (squaresin  with the known valug24] and is also consistent with the
2D. The closed symbols are the data from the periodiestimates for the gelation model.
boundaries and the open symbols from the free boundaries. \We have so far measured the fractal dimension of the
(Note that the upper sets are shifted by 0.3 to improve reathackbone network for the kinetic gelation model both in 2D
ability.) The solid lines are the regression fits, which yieldand 3D. The fractal dimensions were found to be indepen-
the estimatesBg/»=0.354-0.002 for ¢,=0.2 and Bg/v  dent of the initiator concentration and were close to the lat-
=0.349-0.007 forc;=0.05. These values are the averagesice percolation values for both dimensions. This observation

of the estimates from the two different boundary conditionsassures us that the static properties of the backbone network
From these values, the fractal dimension of the backbongr the kinetic gelation model are similar to those of the

network is estimated, using E@5), as d2=1.646+0.004 ordinary lattice percolation.

and dE=1.651t 0.014 for ¢,=0.2 and 0.05, respectively.

These values are consistent, within statistical errors, with the

value obtained from the mass distribution using the periodic C. Random walks on a backbone network

boundary condition, and they are also consistent with the Although we obtained a fractal dimension of the back-
fractal dimension of the backbone of the ordinary percolahone network for the kinetic gelation model similar to that of
tion. the percolation backbone, we are still uncertain of the dy-
Shown in Fig. 5 are the 3D data of the gel fraction for namic properties of the backbone. The dynamic properties
¢;=0.003 (closed circley in comparison with the corre- may depend on the substrate structure in a more complex
sponding data for the backbone of the ordinary lattice percomanner. As an example, an infinite network of continuum
lation at percolation thresholg.=0.3117 (open circles  percolation exhibits all the static properties similar to those
plotted against the size of systdnranging from 10 to 180. of the ordinary lattice percolation; however, the conductivity
The upper sets of data are obtained using the periodic bounéxponent in 3D was found to be different from the corre-
aries and are shifted by an amount 1.0, and the lower sets agponding lattice percolation valig6]. It is, therefore, inter-
obtained using the free boundaries. We also carried ousting to study the dynamic properties of the backbone net-
simulations forc,=0.003 and found that the plots were ba- work to clarify the universality of the kinetic gelation model.
sically similar to those foc,;=0.03 (not shown. The mean In order to investigate the dynamic properties of the back-
estimates of the regression fits from two boundary conditiongone, we generate random walks from the randomly selected
for the kinetic gelation model yield the sloggs/v=1.143  starting points on a backbone and calculate the probability
*0.005 forc;=0.003 and 1.146 0.002 forc,=0.03, which,  P(t) of returning to the starting point and the rms displace-
respectively, yield the fractal dimensiag=1.857-0.010 ment(R(t)?)"? aftert time steps. The probabilitP(t) be-
and 1.854-0.004. On the other hand, the corresponding eshaves asymptotically as
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FIG. 7. Plot of[d\'?v,eﬁ(t)]‘l for random walks on a backbone of

FIG. 6. Plots ofP(t) againstt for random walks on a backbone _the kinetic gelation model for selected valuexpfn 2D. The inset

of the kinetic gelation model. The lower data are the 2D results for'® the plot of the same data for late time.
¢,=0.05 and the upper data the 3D resultsdp= 0.003. The solid

- B
lines are the regression fits, with the slope equat-af/2. estimated from the known values df, anddg [27] by the

Alexander-Orbach scaling relatiatf=2d2/d2 [18]. How-
ever, since the difference is small and the errors overlap one
onto another, we still believe that they are consistent with

B . - . . .. each other, implying that the spectral dimension of the back-
ds being the spectral dimension of the backbone, which ig),ne of the kinetic gelation model is similar to the percola-

also related to the densityBOf states for the lattice vibration of;,, backbone(To the best of our knowledge, no reliable
frequencyw via p(w)~w% "', while the rms displacement data ford® of random walks on a percolation backbone are
(R(1)%¥2is known to exhibit the asymptotic behavior as  available as ye}.
5 In 3D, calculations forc,=0.03 andc;=1.0 are also car-
(R(t)?)YV2~ My, (7)  ried out, in addition to that presented in Fig. 6. The linear
regression fit between 100 steps and 25 000 steps yielded the
d® being the fractal dimension of random walks on a back-slope d2/2=0.589+0.002 for ¢,=0.003 andc,=0.4 and

P(t)~t %", ()

bone network. d8/2=0.592+0.001 forc,=0.03 andc;=1.0. From these
In order to estimate the spectral and fractal dimensions oéstimates, the spectral dimension is estimated todbe
random walks, we calculate the probabiliB(t) and the =1.181+0.010. This is again consistent with the value of

mean-square displaceme(R(t)?) up to 50000 time steps. ¢8=1.18+0.01 for a backbone network of the standard per-
The raw data ofP(t) obtained from the simulation exhibit colation mode[24].

Strong even-odd OSCi“ationS, which are attributed to the char- In order to estimate the fractal dimension of random
acteristic of the underlying lattice structure. In order to getyalks d® on a backbone, one should plot, as B(t),

rid of such oscillations, we calculate the average of the dat@R(t)2> againstt on a double logarithmic scale and estimate
in every interval ofA(Int)=0.05 and plot the result on the 4 asymptotic slope in the— limit. However, if the rms

geometrical average time in each interval. Shown in Fig. &jisplacement exhibits nontrivial correction terms, as in Eq.
are such data for random walks on a backbone in 2Dcfor (7), estimatingd® will not be as simple as fadf . In order to

=0.05 andc;=1 (lower data and in 3D forc,=0.003 and B . : ;
c,=0.4 (upper data In both plots, data fot=100 yield a n(;%asure ?"{ gcglljrately, we dReflfne28the hgf;ectwel |r_1dex
good power-law behavior, indicating th&(t) indeed be- [ V.V'eff(t)] . similar to veq(t) in Ref. [28], which results in,
haves as in Eq.6). using Eq.(7),
_ In 2D, thg linear regression fit between 100 and 50 000 [d\l/av,eff(t)]ilzl/d\?v_k at d+bt 4., (8)
time steps yielded the slomif/220.622t 0.005. We also

calculated the same quantities for other valuescgf c, whereA is the possible nonanalytic correction-to-scaling ex-
=0.01, 0.02, 0.1, and 0.2, all witty=1. All plots are basi- ponent. In order to extract the fractal dimension of random
cally similar to that in Fig. 6 with the regression slope of walks, it is natural to plofd2 .«(t)]~* againstt~* and ex-
dg/2=0.624+0.003, which is consistent with the estimate trapolate the value in the *—0 limit.

for ¢,;=0.05. From these estimates, we obtain the spectral Shown in Fig. 7 is the{d&,’eﬁ(t)]*l plotted against 1,
dimensiondf= 1.246+0.010. This value is larger by about for random walks on a backbone network of the 2D kinetic
2% than the corresponding value on a backbone network ajelation model, the inset being the plot of largeegions.
the ordinary lattice percolatiordSB=1.22i0.02, which is  Plots forc,=0.05, 0.1, and 0.2 appear to converge onto the
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T T T spectrum of the eigenvalues is related to the spectral and
0o o, fractal dimensions of random walks via the Laplace trans-
0.32 [WRiggmsnso gusoo7a o * 0000 " e ® ead form. One of the advantages of such an analysis is that the
aanaa ansnacs s W .o detailed zigzag motion of random walks is not necessary;
m““: oeoo o 009°°°°° oot ? however, the estimate appears not to be as accurate as that of
- 0wt ° the direct Monte Carlo analysis. As a cross check, we calcu-
E 0.30 | 0.34 - 1 lated the eigenvalues of the transition probability matrix and
‘% 033} : estimated the spectral and fractal dimensions of random
oz % 032 | wonmg oo™ no walks on a backbone far;=0.2. Results were found to vary
=3 % depending on the size of the system; the raw estimates are
028 | 7 0% P - d%=1.230 (L=250), 1.234 [ =200), 1.237 [ =150), and
= ¢;=0.03 030 F T 1.240 (=100), and d5=2.693 (=250), 2.705 [
2620008 o - =200), 2.708 [L=150), and 2.712l(=100). A similar size
o 00000 0'0,?912 0.0004 dependence was recently found by Lee and Nakanish for
0.26 : : : random walks on an infinite network of 4D percolations in a
0.000 0001  0.002 0003 0004 hypercubic latticd30]. Considering the size dependence, we
t! obtainedd® = 1.22+0.01 andd®=2.69+0.01, both of which

are also in agreement with those of random walks on a per-

FIG. 8. As in Fig. 7 for the 3D kinetic gelation model foy colation backbone

=0.03 (c,=1.0), ¢,=0.003 €,=0.4), andc,=0.0003 ¢,=1.0).

same value in the¢ 1—0 limit. On the other hand, data for
¢,=0.02 and 0.01 appear to show slow convergence behav- IV. SUMMARY AND CONCLUSIONS

ior. This might be because the substrate fractal is less com- \we studied by Monte Carlo simulations the fractal nature
pact than those of the larger valuesopf and random walks  f the hackbone network for the irreversible kinetic gelation
encounter more friction than for the cases of larger In- 56| The fractal dimension of the backbone network gen-
deed, the gel-points for these two cases are lower than ﬂ'Lgrated at the gel point was measured by various methods, and

other cases. However, the upturns near the gnd of the Cha{ﬂe results were found to be consistent with that of the back-
clearly indicate that they converge asymptothally onto th one of the standard percolation model. Our observation is
same value on the ordinate. Simple extrapolation of the plodifferent from the previous work in 3D, where a distinctly
yields 182=0.381+0.010, i.e.,d®=2.64+0.01, which is ’

. . . : : . _larger value was observed. We also measured the spectral
not inconsistent with the corresponding lattice percolation . B . )
valuedB =2.69+0.04[27]. dimensiondg and the fractal dimensiod,, of random walks
n a backbone defined, respectively, by the probability o
I g backb defined ively, by th bability of
random walks returning to the starting point and by the rms
displacements aftet time steps, and we obtainedE
- B_ ; B_
dB=dBdB/2=1.645+0.010, —1.246t0.0180 anddw—2.6_4i0.01 in 2D andds—l.lsl_
+0.010 andd,=3.13+0.01 in 3D. These values are consis-

which is in excellent agreement with the earlier estimate. tent, within the statistical errors ”Sted, with the COI’I’eSpOI’Id-
In 3D, the results are basically similar to those in 2D.iNg percolation values. From these observations, we con-
Data for smallerc, such as those foc,=0.0003 €,=1.0) clude that both the static and dynamic properties of the
and 0.003 ¢,=0.4) are smaller than those for larggr, as backbone network for the kinetic gelation model are similar
shown in Fig. 8. However, beyond 5000 time steps, data fof® those of the percolation backbone and the two models
both cases exhibit a sharp upturn. Considering the data fd€long to the same universality class. _
three cases, it appears that the value[dﬁ ]! con- It is interesting that the two models generated by different
verges onto,a value of d3=0.32, which is'iaf;so consistent Procedures exhibit the same critical behavior. While the per-

with that of the random walks on a percolation backboneCOIat'on. is thestatic equilibrium model, the gelation is the
B : : irreversible growthmodel where bonds are formed as a re-
d;,=3.13+0.03[24]. It is thus clear that the fractal dimen- It of a Kineti h | hat th
sion of random walks on a backbone network in 3D is alsqsuw a Kinetic growth process. Our results suggest that the
‘static” percolation model may be adequate to describe the

S|mA|Iarttho the cortrjsponm?g per(f:_olatltct)? v_alute. i ai% sol-gel transition and related phenomena of the irreversible
nother possible way to confirm this is to estim _ growth model.

from the Alexander-Orbach scaling relation. With the previ-
ous estimates af anddg in 3D, one can calculate? as

The fractal dimension of the substrate backbone can als
be obtained from the estimates dff andd® as
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