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Portevin–Le Chatelier effect

Scott V. Franklin,* F. Mertens, and M. Marder
Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712

~Received 29 November 1999!

Aluminum subjected to smooth mechanical loading does not often deform in a correspondingly smooth
manner. Typically it deforms inhomogeneously through the propagation of deformation fronts that slowly
traverse the sample. These are called Portevin–Le Chatelier fronts; what determines their velocity has been
somewhat mysterious. We present a phenomenological theory for deformation fronts that centers on a nonlocal
rate dependence of the flow stress. In a one-dimensional idealization the equations can be solved exactly, and
compared directly with experiment. Many significant features of deformation fronts are captured, including a
well-known transition from hopping to continuous front motion. The phenomenology’s predictions are con-
firmed by our experiments.

PACS number~s!: 81.40.Lm, 81.05.Bx
ht
fu
he
o

e
r
ti

nd
cit

ch
y
lu
ide
nd
on
a
e

le
a
r

ica
.
to
b
e
p

op
v

i

h
p

nti-
and
ron
he
ns
ill
in

al.

-
m-
au
in
ts

the
r-

te

ith
I. INTRODUCTION

A. Motivation

Aluminum’s properties, chiefly its strength and lig
weight, make it ideal for many commercial uses. Its use
ness is limited, however, by a series of bands that form w
the metal is rolled or formed. The bands mark regions
appreciable plastic deformation; they are visible becaus
surface roughness on the micron scale. The bands are pa
a more general phenomenon of inhomogeneous deforma
in which yielding proceeds as a propagating front. The ba
occur when this front ceases to move with steady velo
and begins to hop.

The bands form all too easily during metal forming, su
as in die presses, but are typically studied systematicall
experiments with the geometry illustrated in Fig. 1. An a
minum sample a few centimeters long, a centimeter w
and a few millimeters thick is gripped at two ends a
pulled. After stretching in a reversible and elastic fashi
the aluminum yields plastically. The nature of its deform
tion thereafter depends upon several factors that we will
plore in this paper.

In the simplest experiments, the stress on the samp
slowly increased and bursts of yielding occur at critic
stresses. This produces a ‘‘staircase’’ on a stress-strain cu
the earliest known example is shown in Fig. 2. Each vert
line corresponds to the nucleation of a deformation front

It is more common to force one end of the sample
move at a constant velocity. The machine stiffness then
comes a factor, as the amount by which the stress can r
depends upon the relative stiffness of machine and sam
This has obscured a fundamental question: can fronts pr
gate under a constant stress, or do they require an e
increasing load to move? Our experiments@1# unambigu-
ously show the former to be true, and this behavior
reproduced in our theory.

A picture of a deformation front moving steadily throug
an aluminum sample is shown in Fig. 1. The fronts are ty

*Present address: Department of Physics, Rochester Institu
Technology, Rochester, NY 14623.
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cally about a millimeter wide and move at speeds of ce
meters per second. Metals deform through the generation
propagation of dislocations, which appear on the submic
scale. The key to the effect lies ultimately bundled in t
dynamics that connect the microscopic world of dislocatio
to the macroscopic regime of the fronts. However, we w
not make any explicit connection to the dislocation scale
this paper. All our analysis will be purely phenomenologic

B. Historical Note

It is widely believed~e.g.,@1#! that Portevin and Le Chat
elier @2# were the first to study systematically the pheno
enon of inhomogeneous plasticity. This is not true. Dule
commented on irregularities in the deformation of metal
1813. In 1824 Gerstner@3# conducted tension measuremen
on steel piano wire and observed ‘‘experiments in which
wire strings revealed sudden yielding.’’ Unfortunately, Ge

of

FIG. 1. One end of a dogbone-shaped sample is pulled w

speedẊ, typically of order 100mm/s. This results in a front of
deformation that moves with speedv of order cm/s. The front
leaves behind strained material that is visibly rough.
8195 ©2000 The American Physical Society
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8196 PRE 62SCOTT V. FRANKLIN, F. MERTENS, AND M. MARDER
stner goes on to explain that these experiments, the objec
our interest, were ‘‘left out’’ of his final discussion.

The true discoverer of the phenomenon is Savart@4#, the
first to believe that the observed inhomogeneities were a
damental part of plastic deformation. Savart added weig
to the end of copper strips and documented the spatial in
mogeneity now known as Portevin–Le Chatelier bands.
vart assigned the problem to his student, Masson, who
1841 @5# more carefully controlled the loading rate. Mass
observed the strain to remain constant as the load incre
until, with only a small change in load, suddenly elongati
by several millimeters~see Fig. 2!. In his words, ‘‘solid bod-
ies do not elongate in a continuous manner, but by sud
jumps.’’ Masson also carefully investigated the effect in d
ferent alloys and at different temperatures—the system
study often ascribed to Portevin and Le Chatelier.

The current attribution may be due to Cottrell, who
1953 @6# wrote ‘‘The first systematic study of@the phenom-
enon# was made by Portevin and Le Chatelier in recognit
of whom the name ‘Portevin–Le Chatelier effect’ is no
often used.’’ Cottrell’s attribution has survived despite Bel
@7# attempts to set the record straight.

C. Background

There are many phenomenological discussions of
Portevin–Le Chatelier effect. Their sheer number prohibit
detailed review, but a brief discussion of the common fram
work within which such theories exist is necessary. Revie
have been provided by Estrin and Kubin@8# and Franklin@9#.

One presumption of most theories, which has yet to
checked with care by experiment, is that the dynamics
shear bands can be captured by a one-dimensional des
tion. This reduction is accomplished by averaging t
stresses and strains over the shear surface, generally
angle to the direction of propagation. The strain tensor t
collapses to a scalar which varies only along the length of
sample. We have investigated the appropriateness of
simplification and it appears to be valid in the case
steadily moving fronts.

FIG. 2. Masson’s observation of temporally inhomogeneo
yielding. Note how the sample length remains fixed despite
addition of several kilograms mass before suddenly growing w
the addition of a single kilogram. Data from Masson, 1841@5#.
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The deformation is described by the total strain,e tot
5]u/]x, which is the sum of the elastic strainee and the
plastic strainep . The elastic strain is completely reversib
and linearly related by Young’s modulusE to the applied
stresss according to Hooke’s Law,

s5Eee . ~1!

The plastic strain is irreversible and occurs wheneve
load is applied. Straining at low stresses is exponentia
small and called creep. The stress at which apprecia
straining begins is known as the flow stresss f . The flow
stress increases as a sample strains, i.e., the sample ha
as it strains. This is called work hardening, and in ma
cases the flow stress increases roughly as the square ro
ep . One mechanism for work hardening is the increased
tanglement of dislocations which require ever-larger stres
in order to break free.

The flow stress also depends upon the rate at which
sample is deformed, revealing an interaction between di
cation motion and other time scales~e.g., diffusion of impu-
rity atoms! inside the metal. The rate dependence, called
strain-rate sensitivity, is not as well defined; experiments
vestigating this behavior are described below. It is comm
@10–12# to assume that the plastic strain rateėp depends
exponentially on the difference between the applied stress

and the flow stresss f(ep ,ėp)

ėp}
1

t1
expFs2s f~ep ,ėp!

E
G , ~2!

where t1 is a time constant. For a given stresss, Eq. ~2!

describes a constitutive relation that the strain rateė satisfies.
In the simplified case of a one-dimensional system, the
plied stresss is uniform, determined by the boundary co
ditions imposed on the sample.

D. Strain-rate sensitivity: Homogeneous
vs inhomogeneous yielding

Phenomenological descriptions of the Portevin–Le Ch
elier effect have centered on the rate dependence of the
stresss f . Penning@13# showed that homogeneous deform
tion is unstable when the flow stress decreases with incr
ing strain rate. This behavior is referred to as negative str
rate sensitivity. While this mechanism does produce
instability, and produces a serrated stress-strain curve sim
to that observed in the laboratory, the spatial behavior is
of the form of propagating fronts@17#. The instability grows
fastest at short wavelengths and is unphysical. In subseq
work various diffusion terms were added to the flow stre
@18# but these also fail to reproduce even qualitatively fro
dynamics@19#.

The rate dependence of the flow stress is not known w
certainty because interpretation of experiments designe
investigate it is difficult. There is a natural tendency to u
results from homogeneously deforming samples in the c
stitutive equation@Eq. ~2!# to explain the Portevin–Le Chat
elier effect. For example, experiments to probe the rate
pendence of the flow stress~described below! measure the
stresses required to maintain various global strain rates.
stress dependence on global strain-rate rates is then inco
rated into constitutive equations as criticallocal strain rates.
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But the physics governing the Portevin–Le Chatelier eff
necessarily localizes the deformation. It is not at all obvio
that the local stresses and strain rates experienced du
inhomogeneous yielding are similar to those measured
homogeneous deformation. Negative strain-rate sensiti
can therefore be understood in the case of homogeneou
formation, but its role in localized yielding is unclear. O
experiments, for example, do not show a negative strain-
sensitivity and this behavior is captured in our model.

Experimental study of negative strain-rate sensitivity h
taken two different forms. Bodner and Rosen@14,15# im-
posed a constant pulling speed and measured the stress
essary to reach a given strain. They found that less stress
needed to reach a given strain at higher pulling speeds. B
ner and Rosen’s data show no serrations, which seem
indicate their samples are deforming homogeneously. L
experiments by van den Brink@10# and Ling@16# subjected a
homogeneously deforming sample to a sudden chang
pulling speed. The strain-rate sensitivityDs/Dėp was ob-
tained by measuring the change in stressDs that accompa-
nied a change in strain rateDėp . For a range of strains an
strain rates the stress fell below its original value. The int
pretation was that a lower stress was required to deform
material at the higher rate. For low strains the strain-r
sensitivity was positive, consistent~it was thought! with the
observation that the serrations occur only after an init
homogeneous deformation. It is important to note that b
Bodner and Rosen and van den Brink’s experiments are
stricted to homogeneously deforming samples. In our th
retical framework, negative strain-rate sensitivity canonly be
observed in a homogeneously deforming sample, and
direct consequence of the nonlinear flow stress rela
s f(ep).

II. THEORY

A. Constraints on phenomenology

A successful phenomenology of the Portevin–Le Ch
elier effect must reproduce the following observations:~1!
deformation fronts exist and move in steady fashion at
locities much slower than the speed of soundc, ~2! at very
low deformation rates fronts cease to move continuou
and ~3! once a front has propagated throughout the sam
another can be initiated if the stress is increased. Subseq
fronts move more slowly but are qualitatively identical
their predecessors.

We have found that almost all features of deformation
both homogeneous and inhomogeneous—can be reprod
by assuming that the flow stress depends not on the cus
ary local strain rate but rather on a nonlocal strain rateẽ̇,
defined as

ẽ̇5G~x,t !* ė ~3!

[E G~x8,t8!ėp~x2x8,t2t8!dx8dt8. ~4!

The idea is that deformation at a given point depends
deformation in neighboring regions in some way linear
ėp . Equation~4! is the most general way of expressing d
t
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pendence. The functionG smears the local strain-rateėp over
a characteristic lengthl and timet2. Constitutive relations
involving convolutions as in Eq.~4! are standard in the elec
tromagnetic response of dielectric media and in the mech
cal behavior of polymeric fluids. While a possible physic
motivation for such a term may be found in the vario
mechanisms for dislocation creation, we do not pursue
too strongly. The theory is a phenomenological one.

While there is no direct connection with dislocations, w
think of ė as representing an active dislocation populat
spawned in a region surrounding areas of plastic defor
tion. They remain active for some characteristic time go
erned by the time decay rate ofG(x,t), and then become
pinned.

The spatial relation betweenẽ̇ and ėp is shown in Fig. 3.
The strain rateėp is localized within the filled rectangle. Th
resulting smeared strain rateẽ̇ is shown by the solid line. We
propose that it is the nonlocal strain rate that is respons
for reducing the flow stress. Thus in Fig. 3 the deformi
material weakens the adjacent material. This process con
ues until the adjacent material is sufficiently weakened t
the deformation spreads. The kernelG is also time depen-
dent, so the effects of deformation on flow stress are dela
by a characteristic time that we identify tentatively as
empirical diffusion time.

A sketch of the flow stress as a function of nonlocal str
rate is shown in Fig. 4. The flow stress decreases with
creasingẽ̇, becoming constant at higher rates as the weak
ing effect saturates. If the stress is below the minimum fl
stress~75 MPa in Fig. 4! no deformation occurs; stresse
above the maximum flow stress~90 MPa! cause deformation
everywhere simultaneously. If the stress is at an intermed
value, however, the sample deforms inhomogeneou
Places whereẽ̇ is large enough to appreciably weaken t
material deform while portions whereẽ̇ is small do not.

B. Equations

1. Constitutive equation for strain

Flow below the flow stress, called creep, is exponentia
small and not a crucial component of the Portevin–Le Ch

FIG. 3. The relation between the local strain rateėp and the

‘‘smeared’’ strain-rateẽ̇. All plastic straining is confined to within

the shaded region butẽ̇ extends outside of this region as indicate
by the solid line.
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8198 PRE 62SCOTT V. FRANKLIN, F. MERTENS, AND M. MARDER
elier effect. We simplify the analysis by ignoring creep, a
also assume that the plastic strain rateėp is proportional to
the difference between the stresss and the flow stresss f ,
made dimensionless by dividing through by Young’s mod
lus E

]ep~x,t !

]t
5H cl

s~ t !2s f~x,t !

t1
whenever s.s f~ep , ẽ̇ !

0 whenever s,s f~ep , ẽ̇ !.
~5!

The flow stresss f depends upon both the strainep and the
nonlocal strain rateẽ̇, and varies across the sample.

In constructing the theory we also assume that the exp
ments are effectively one-dimensional. This implies that
stress is constant throughout the length of the sample
that necking is negligible as pertains to front propagati
This must be checked experimentally, and in fact the mag
tude of necking is comparable to that of some of the obse
ables. Why do we feel justified in ignoring necking? W
must find appropriate coupling terms to generate front pro
gation. Diffusion is the customary mechanism, and terms
account for necking take the same form as diffusion. Tha
terms that express the local three-dimensional~3D! effect of
necking as one-dimensional~1D! nonlocal terms are diffu-
sional. We have unambiguously shown, however, that di
sion terms do not lead to propagating fronts at a cons
stress. Although necking is clearly present, and perhaps
nificant, we conclude that something else must be resp
sible for the front propagation.

For G(x,t) we choose

G~x,t !5
1

2l t2
e2uxu/ le2t/t2. ~6!

Equation~4! ~the definition ofẽ̇) is then formally equivalent
to the following differential equation:

]ẽ̇~x,t !

]t
5

1

2l t2
E

0

L

dx8ėp~x8,t !e
2ux2x8u

l 2
ẽ̇~x,t !

t2
. ~7!

FIG. 4. Flow stress as a function of nonlocal strain rateẽ̇.
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Equation ~7! indicates that the nonlocal strain rateẽ̇ at a
point is produced by any straining within a distancel and
decays over the characteristic timet2. Our results are insen
sitive to the particular form ofG(x,t). Replacing exp
@2uxu/l# by exp@2x2/l2#, for example, does not change th
results appreciably. The particular form in Eq.~7! is conve-
nient for analytical work.

2. Boundary conditions

The relevant boundary conditions for both experiment a
theory are

v~x50!50,v~x5L !5Ẋ. ~8!

These determine the stress throughout the sample for
one-dimensional model, which is simply proportional to t
elastic part of the deformation and is expressed mathem
cally by the machine condition

s~ t !5mFX~ t !2E
0

L

dx8ep~x8,t !G . ~9!

X(t) is the machine displacement, and the integral is the t
plastic strain throughout the sample; Eq.~9! is essentially
Hooke’s law, andm is an effective spring constant that cha
acterizes the testing machine. It depends upon the sam
lengthL and cross-sectional areaA, Young’s modulusE, and
the stiffness of the machineK as

m5
KE

KL1EA
. ~10!

An infinitely soft machine has am equal to zero while an
infinitely hard machine has am of E/L.

For any particular testing machinem can be determined
from the stress-strain curve prior to the onset of plastic
formation. All deformation is elastic and Eq.~9! reduces to
s5mX(t). The stress increases linearly with the extens
~Hooke’s law! with a slopem. The machine used in ou
experimental tests has

m5432 000 MPa/m. ~11!

The ratio of our machinem to the theoretical maximum is
~with a 10 cm sample!

m

m`
50.6. ~12!

Our machine can be characterized as moderately stiff, co
sponding to a simple spring with a spring constant of a
proximatelyK51.43107 N/m.

3. Flow stress

The flow stresss f(ep , ẽ̇) is defined as the stress at whic
appreciable plastic deformation begins. It depends on b
plastic strainep and nonlocal strain rateẽ̇ and we assume
this dependence is separable,

s f~ep , ẽ̇ !5Y~ep! f ~ ẽ̇ !. ~13!
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PRE 62 8199PORTEVIN–Le CHATELIER EFFECT
As discussed earlier, Bodner and Rosen@14,15# measured
the flow stress at different end velocities; their data are c
sistent with the separation in Eq.~13!. Curves for different
end velocities are qualitatively similar and are well appro
mated~at constant end velocity! by a square-root function

s f~e!5syAep, ~14!

with sy a property of the material. Sharpe@20# quotessy
5384 MPa for aluminum.

In our experiments we are careful always to initiate fro
at the same value of plastic strain. Later we will general
our equations to account for multiple fronts. Success
fronts occur after the previous front has passed comple
through the sample. We therefore separate the strain du
any existing frontsep from all other plastic strain, which we
label ey . ey includes any strain introduced during samp
preparation, such as rolling or machining, as well as de
mation introduced during testing prior to the appearance
the front. The flow stress can then be written as

s f~ep , ẽ̇ !5syAey1epf ~ ẽ̇ !. ~15!

The strain from the frontep typically is smaller thaney , the
strain at initiation. For the purposes of a single front w
expand Eq.~15! aboutep50 to get

s f~e, ẽ̇ !5syAeyS 11
ep

2ey
D f ~ ẽ̇ !. ~16!

The central nonlinearity responsible for inhomogeneo
yielding is contained in the functionf ( ẽ̇). Experiments on
homogeneously deforming samples indicate that the fl
stress drops with strain rate. We propose that the detail
the functional form of this drop are not important. In o
analytical work we use the discontinuous function

f ~ ẽ̇ !512lu~ ẽ̇2 ẽ̇c!, ~17!

which drops suddenly when the nonlocal strain rateẽ̇ sur-
passes a critical valueẽ̇c .

Our results are qualitatively independent of the spec
nature off ( ẽ̇). What is essential is thatf is a function of the
nonlocal strain rateẽ̇, rather than the local strain rateėp . ẽ̇

and ėp are identical for homogeneous and steady deform
tion so data from such experiments can be used to determ
the particular nature off ( ẽ̇). Figure 5 shows front profiles
from simulations using three different functions forf ( ẽ̇): the
step function used in the analytics, a piece wise linear fu
tion, and an exponential decay from 1 tol. The profiles in
Fig. 5 have been normalized by the final strain to empha
the qualitative similarity in shape. This makes sense
physical grounds, since the width of the front is quite sm
the system actually spends very little time between the
treme values. Front characteristics are determined by the
tial and final value of the strain and not on how the syst
passes from one to the other.

Choosing Eqs.~16! and ~17! makes possible the analyti
integration of the equation for the plastic strain@Eq. ~5!#.
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Numerical solutions with different forms of the flow stres
including differentiable functions, produce no qualitative d
ference.

C. Solving the steady-state equations

When the initial conditions include inhomogeneities, n
merical solution of Eqs.~5!–~7! reveals fronts that propagat
at constant stress at speeds of centimeters per second@1#.
The prediction of propagation at constant stress contrad
the common view that fronts propagate only under incre
ing stress. This prediction has been confirmed by our exp
ments. We now describe in more detail the motion of stea
fronts. The solution permits close quantitative comparis
between theory and experiment.

We first move to a coordinate system traveling with co
stant velocityv. The origin is taken to be the point where th
stress first equals or exceeds the flow stress; the strain ra
thus zero forx less than zero. The background strainey is
constant throughout the sample while strain produced by
front ep increases from zero. The definition of the origin
the point where straining first occurs implies that there
stress equals the flow stress

s5s f~x50!5syAeyf „ẽ̇~0!…. ~18!

According to Eq.~17!, f ( ẽ̇) is less than one only whenẽ̇
>ẽ̇c ; this fixes the value of the nonlocal strain rate at t
origin to the critical valueẽ̇c

FIG. 5. Strain profiles from three simulations, each using a d

ferent function forf ( ẽ̇). Strains have been normalized by the ma
mum strain to emphasize similarities in profile. The solid line
sults from use of a step function and results in the steepest pro
The dashed line is the profile resulting from a piece-wise lin
function while the long-dashed line is that of a continuous, ex
nentially decay. The qualitative similarity between all three fron
indicates the independence of our results from specific func

used forf ( ẽ̇).
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8200 PRE 62SCOTT V. FRANKLIN, F. MERTENS, AND M. MARDER
ẽ̇~x50![ẽ̇c . ~19!

At the origin the flow stress discontinuously drops and
plastic strain-rate abruptly becomes nonzero.

In steady state the evolution equation for the strain is

v
dep~x!

dx
5

s2s f~ep , ẽ̇c!

t1
~x.0! ~20!

and the equation for the nonlocal strain rate Eq.~7! is

v
dẽ̇~x!

dx
5

1

2l t2
E

0

L

dx8v
dep~x8!

dx8
e(2ux2x8u)/ l2

ẽ̇~x!

t2
.

~21!

These equations are subject to the following conditions:

ep~x<0!50,ẽ̇~6`!50,ẽ̇~0!5 ẽ̇c . ~22!

Equation~20! incorporates one further approximation. A
the tail end of a frontẽ̇ dips belowẽ̇c , and all motion locks
up instantly. We continue to use Eq.~20! in this region;
deformation is dropping exponentially quickly to zero an
way, and it is much simpler to have only one boundary at
origin, where the strain rate discontinuously changes, ra
than two. The consequences of this simplification will
seen to be minor.

To find the strain, Eq.~20! is integrated subject to th
following conditions:

ep~0!50,ep~`!5de~s!, ~23!

the strain exponentially approaches a constant as

ep~x.0!5de~s!S 12 expF 2sy

2vt1Aey

xG D . ~24!

We can solve for the strain jump across the frontde since
straining stops when strain hardening has increased the
stress to once again surpass the applied stress

s5syAeyS 11
de

2ey
D ~12l! ~25!

⇒de~s!52eyF s

syAey

2~12l!G . ~26!

The strain jumpde depends upon the stresss and strain at
onsetey , and thus changes for successive fronts.

For a constant pulling speedẊ we observe fronts tha
travel with a constant velocityv. The machine condition Eq
~9! then requires that

Ẋ5vde~s!, ~27!

where the strain jumpde(s) is a function of the stress. Thi
provides one equation for two unknowns~stresss and front
velocity v). Equation~27! also includes the only independe
variable from the experiment~the pulling speed!.
e

e
er

w

The solution for the strain Eq.~24! is used to integrate Eq
~21! to solve for ẽ̇(x) for x less than zero. The result is tha
ẽ̇(x) decays exponentially to zero as one moves away fr
the origin,

ẽ̇~x,0!5A0~s,v !expFx

l G . ~28!

The rate of decay depends only upon the parameterl. As this
parameter governs the spatial smearing ofėp its appearance
here is quite logical. The coefficient of the exponential d
pends on the stresss and front velocityv,

A0~s,v !5
syde~s!

4t1t2AeyS v

l
1

1

t2
D S 11

syl

2vt1Aey
D . ~29!

Requiring ẽ̇5 ẽ̇c at the origin produces the second relati
between stress and front velocity,

A0~s,v !5 ẽ̇c . ~30!

Equations~27! and ~30! determine a unique stress and fro
velocity that result from an imposed pulling speed.

It is possible to solve Eq.~21! for x greater than zero;ẽ̇ is
a sum of exponentials

ẽ̇~x.0!5A1 expF2x

l
G1A2 expF 2x

vt2
G1A3 expF 2sy

2vt1Aey
G .

~31!

A1 , A2, andA3 are complicated functions ofs and v. The
nonlocal strain rate is continuous across the origin and
A11A21A35A0. Since a minor approximation was em
ployed in this analysis, it is wise to compare the results w
direct numerical solution. Figure 6 shows the strain profile
three fronts. The solid line is the analytic solution. It match
exactly the profile from a numeric simulation of the appro
mate equations, shown as the solid dots. The open circles
the result of simulations of the full, nonapproximate, equ

FIG. 6. Strain profiles from simulations of the approximate (d)
and full (s) equations compared with the analytic solution~solid
line! of the approximate equations. The differences between
simulation of the full equations and the analytic solution are slig
We can therefore apply results from the analytic solution to the
system.
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tions. Note the slightly larger final strain (;8%) realized in
the full equations, a consequence of the approximations
cussed above. Note also the practical width of the front~1
mm! and strain jump~1.5%!, both in accord with experi-
ment.

D. Stability

The stability of the traveling front solution can be mo
easily determined by examining how the flow stress depe
upon the front velocity. This is shown in Fig. 7. The d
scending part of the curve in Fig. 7 marks a region in wh
the steady-state solution is unstable. The mechanism for
instability is similar to that found in ordinary stick-slip fric
tion and brittle fracture. A small perturbation that increas
the front speed lowers the flow stress, accelerating the fr
Similarly, a perturbation that slows the front speed results
a larger flow stress, further slowing the front. Numeric
simulations confirm this picture. An end velocity that corr
sponds to a front speed in the unstable region does not r
in a front moving at constant speed. Rather the front mo
in erratically, alternating periods of motion and rest.

This behavior is also seen in the experiments. At l
pulling speeds fronts do not move throughout the sam
with constant velocity. Rather the front appears to hop; e
tic straining is followed by a brief burst of plastic strainin
During the plastic strain, the front moves a distance of or
of the sample thickness before again coming to rest@21#. The
pulling speed at which fronts begin to move continuously
easily determined experimentally and is one of the obse
tions we use to determine values for our parameters.

FIG. 7. Theoretical flow stress as a function of front veloci
The descending portion of the curve is unstable; perturbations
steady front grow via a mechanism similar to that of ordinary fr
tional stick-slip motion.
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III. RESULTS

The main weakness of the phenomenology we have
veloped is its dependence on five parameters,t1 , t2 , l, ẽ̇,
and l. To give the theory predictive power they must b
related as directly as possible to specific experiments,
then remain locked in value and compared with differe
experiments. We now describe the measurements need
fix the parameters. This also highlights the theory’s qual
tive predictions that are confirmed by experiment.

A. Velocity selection

The theory predicts that the velocity of a front is simp
proportional to the pulling speed, a fact observed in previo
experiments. The proportionality constant uniquely det
mines the parameterl of the model. The strain jump acros
the front is

de~s!52eyF s

syAey

2~12l!G ~32!

which, since the stress is always within a few percent of
upper yield stresssyAey, is to good approximation

de52eyl. ~33!

The strain jump depends only on the strain at initiation a
the parameterl. We have confirmed with experiments@1#
that the strain jump is independent of pulling speed. T
relation between front velocity and pulling speed Eq.~27!
becomes

v5
1

2eyl
Ẋ. ~34!

a
-

FIG. 8. Front velocity for continuously moving fronts as a fun
tion of pulling speed. The linear relation is consistent with o
theory and used to determine the parameterl.
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A comparison between the experimental observations
the theoretical prediction is shown in Fig. 8. A linear fit
the data results in a value of

l50.175. ~35!

Should a second front follow the first it will introduce
larger strain jump@sinceey is larger in Eq.~33!# and travel
more slowly than its predecessors@Eq. ~34!#. This has not yet
been investigated experimentally for continuously mov
fronts.

B. Exponential decay of stress upon yielding

The onset of plastic yielding is accompanied by a sh
decrease in the stress as the sample ‘‘catches up’’ to
machine. This is seen in both theory and experiment reg
less of whether the fronts hop or move continuously. T
following calculation shows that the model predicts this d
cay to be exponential, and the rate of decay uniquely de
mines the parametert1.

If all of the plastic straining takes place within a narro
band of widthw then the total rate of plastic deformation ca
be replaced expressed asē̇pw, whereē̇p is the average strain
rate in the band. Differentiating the machine condition w
respect to time gives

ds

dt
5m~Ẋ2wē̇p!'mS Ẋ2w

s2s f

t1
D . ~36!

The last relation was obtained by using Eq.~5! to define the
strain rate in terms of the stress and flow stress. If the st
decay occurs quickly, changes in the strain, and hence
flow stress, are negligible. Equation~36! is a differential
equation for the stress as a function of time with all oth
quantities constant. The solution of this equation is~intro-
ducing the integration constantS)

s~ t !5S Ẋt1

w
1s f D 1S expF2mw

t1
t G . ~37!

The stress decay is exponential with the steepness of
decay depending only upon the stiffness of the machine,
width of the front, and the time constantt1. Determination of
the machine stiffnessm has been described above and t
front width w can easily be obtained from video images. T
width is approximately equal to the sample thickness, 1 m
The slope of a logarithmic linear plot ofs(t) vs t then de-
terminest1. This plot is shown in Fig. 9; the slope gives
value of t151.231023 s. t1 is the parameter that govern
how quickly the sample responds to changes in the stres
is thus natural that it also governs the transient behavio
the stress.

C. Stress at which fronts travel

A fundamentally new prediction of the theory is that d
formation fronts travel at constant stress. Experimental c
firmation of this, as reported in@1#, casts doubt on othe
theories that predict fronts to progress only under an incre
ing stress.
d
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The remaining three parameters are determined by
separate experiments. It has been previously observed@22,1#
that at low pulling speeds the fronts hop rather than mo
steadily. At low pulling speeds steadily moving fronts a
unstable, and thus physically unrealizable. The minim
speed at which steady fronts are stable is

Ẋmin5l l eyA 2sy

t1t2Aey

. ~38!

Experiments indicate a minimum pulling speed of 13mm/s,
or a front speed of 1.2 mm/s; this is used to expresst2 as a
function of l,

t25
sy

2t1Aey~1.231023!2
l 2. ~39!

The set of independent parameters has thus been red
to two: ẽ̇c , the critical value of the nonlocal strain rate
which weakening commences andl, the distance over which
the strain rate is smeared. The stress at two different pul
speeds are used to fix these parameters. We choose the
corresponding to the slowest possible front, i.e., the tra
tion velocity, and the stress at the fastest observed front.
former is 1108 newton, the latter~at a pulling speed of
1300mm/s) is 1130 newton. Fitting the parametersẽ̇c and l
to these two points gives

l 550 mm, ẽ̇c50.027 s21, t250.04 s. ~40!

The experimental error for these measurements is about
Our parameters are fairly sensitive to this uncertainty. Ho
ing four parameters constant, the fifth changes by as muc
20% to accommodate this.

FIG. 9. Initial yielding of a sample is predicted to be expone
tial. This is seen in the experiment (3) and is used to fix the
parametert1 in the model.
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IV. COMPARING THEORY AND EXPERIMENT

A. Constant pulling-speed experiments

With the parameters fixed, we can compare the stress
dicted by the theory with that measured in the laboratory
different pulling speeds. Solving Eqs.~27! and~30! produces
a functional relation between the stress and pulling spe
the resulting curve is shown in Fig. 10. Results from
different experiments are shown asn ’s and the theoretica
prediction~solid line! passes through all six, within exper
mental error. The3 ’s are from experiments where the pu
ing speed changes; in this case the experiment sw
through a range of pulling speeds. The theoretical cu
nicely follows the experimental results.

B. The transition to hopping fronts

The solid line in Fig. 10 is the theoretical solution for th
steady-state load as a function of pulling speed. As the p
ing speed increases from zero, the stress drops from
maximum flow stresssyAey. The curve has a well-define
minimum, after which it asymptotically approaches t
maximum flow stress from below. As mentioned earlier,
lutions in the descending region of the curve are numeric
unstable and thus physically unrealizable. This is marked
Figure 10 by a dashed line. Numerical simulations show t
in this region fronts do not move steadily. Instead the fro
alternates appreciable periods of rest~in which the stress
steadily increases! with sudden, short periods of motion
This is similar to the hopping fronts observed in prior expe
ments@22,1#. The mechanism for this instability is similar t
that which causes stick-slip motion in simple friction expe
ments.

C. ‘‘Double-ramp’’ experiments

The quantitative agreement of theory and experimen
nicely illustrated in an experiment in which the pulling spe
is abruptly changed. Fig. 11 shows this comparison. Thed ’s

FIG. 10. Theoretical prediction for stress as a function of
end velocity compared with experimental observation. The das
line indicates the region of unrealizable steady fronts; in this reg
hopping fronts occur in both simulation and experiment.
re-
t

d;

ps
e

ll-
he

-
ly
in
at
t

-

is

are experimental data and the solid line the result of num
cal simulations. Note the qualitative agreement in all sta
of the curve: the elastic loading, the initial yield to the low
stress level, and the smooth increase to the new stress.
largest difference is in the transition that accompanies
change in pulling speed. Although the loading machine
programmed to change speeds quickly, the actual acce
tion depends on the sample response to sudden chang
stress. This response is complicated and not known.
simulation does change speed instantaneously, resultin
the sharp transition of Fig. 11.

D. Homogeneous yielding and negative strain-rate sensitivity

As described in Sec. I, experimental observations of ne
tive strain rate sensitivity have involved homogeneously
forming samples. When deformation is homogeneous
nonlocal strain rateẽ̇ reduces to the local strain rateep

ẽ̇5 ėp , ~41!

and the flow stress is the traditional function of the loc
strain rate.

For a homogeneously deforming sample there is a stea
state solution to Eqs.~5!–~7! in which the strain grows lin-
early with time

ep5
mẊ

mL1
sy

2Aey

t. ~42!

Negative strain rate sensitivity occurs when the sudden
crease in pulling speed increases the strain rate, lowering
flow stress. The sample flows more quickly and the str
falls. In a simulation with the same parameter set deriv
above the end velocity was abruptly changed from 100mm/s
to 1000mm/s after 1 s of smooth straining. The stress tra
sient that accompanies this change is shown in Fig. 12.

The dashed line in Fig. 12 indicates the stress that wo
accompany a constant end velocity test. Increasing the
velocity causes a stress transient that falls below the ste
state stress associated with the slower end velocity. The
creased slope of the stress-time curve after the transient
responds to the larger steady-state strain rate. Trans

e
d

n

FIG. 11. The change in stress accompanying a sudden chan
pulling speed. Theory~solid line! and experiment (d) agree quite
well in all phases of the curve.
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qualitatively identical to this were observed in experime
by van den Brink@10# on homogeneously deforming sampl
and were identified as indicating negative strain-rate se
tivity.

van den Brink also observed that at low strains the tr
sients did not fall below the original stress. It was only
larger strains that the transients dipped below the orig
stress. Figure 13 shows the results of three simulations
different strains, in which the pulling speed was abrup
increased. At low strains the sudden change in pulling sp
results in an increase of the stress, i.e., positive strain-
sensitivity. This changes at higher strains with the stress
timately falling below the original level. The strain depe
dence is due to the square-root dependence of flow stres
strain. As the strain increases,]s f /]e decreases, and s
more strain is necessary to increase the flow stress by a
responding amount.

FIG. 12. Simulation of a homogeneous sample subjected to
abrupt change in strain rate~end velocity!. At t51 s the pulling
speed is increased from 100mm/s to 1000mm/s.

FIG. 13. Simulation showing the stress transients that acc
pany a sudden change in pulling speed at three different strains
strain-rate sensitivity is initially positive, becoming negative
large strains.
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E. Successive fronts

1. Continuously moving fronts

The Portevin–Le Chatelier effect typically refers to th
initiation and propagation of repeated yield fronts. While o
model, and the analysis above, aimed at explaining the
deformation front, it nonetheless captures the phenome
of successive fronts that propagate at ever higher stres
Because the strain is separated into two componen
‘‘background’’ strain at initiationey and strain due solely to
the current front ep—the phenomenology of successiv
fronts is simple.

The first front is initiated when the stress reaches the fi
yield value of

s15syAey. ~43!

Once the front has passed through the sample, the s
everywhere has been increased by an amountde and, be-
cause the sample has hardened, flow has everyw
stopped. The flow stress is then everywhere

s f5syAey1de. ~44!

As all plastic flow has stopped, further extension of t
sample results in an increase in the stress as per Hooke’s
A second front is initiated once the stress reaches the
flow stress. By redefining the background strain to inclu
the strain from the first front (ey[ey1de) the equations
governing the second front become identical to those of
first front. The only difference is the larger value of the bac
ground strainey which results in a larger strain jumpde.
This behavior is shown in Fig. 14 where a constant pulli
speed produces a succession of yield fronts, each with
own stress decay and propagation~at different stresses!.

Since the only difference between successive fronts is
value ofey , it is fortunate that the strain jumpde takes such
a simple form, to first order

de52ẽ̇cey . ~45!

n

-
he
t

FIG. 14. Simulation results showing the stress drops due to
cessive fronts. Each appears at a higher yield stress, dropping
constant as the front travels.
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The strain jump across the first front is 2ẽ̇cey , across the
second front 2ẽ̇cey(112ẽ̇c), and across thenth front

den5ey (
i 51

i 5n

~2ẽ̇c!
i . ~46!

ẽ̇c is less than one and so this series rapidly converges
constant

de`5ey

2ẽ̇c

122ẽ̇c

'
ey

2
. ~47!

The velocity at a constant pulling speedẊ ~derived above! is

v5
Ẋ

de
. ~48!

The front velocity of successive fronts therefore also c
verges to a constant value of approximately 2Ẋ/ey . This is
shown in Fig. 15.

2. Hopping fronts

The above analysis is for continuously propagating ba
where the velocity is set by the relation

v5
Ẋ

de
. ~49!

When the fronts hop, their velocity is determined directly
the pulling speed, the primary factor being how long it tak
the sample to reload. If the difference between the upper
lower stress isDs and the pulling speedẊ then the time to
reloadt is

t5
Ds

mX
. ~50!

FIG. 15. Velocity versus initiation or ‘‘background’’ strain for
constant pulling speed. Successive fronts travel more slowly t
earlier fronts.
a

-
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Since the sample yields at a stress ofsyAey and falls to a
value ofsyAey(12 ẽ̇c), the differenceDs is

Ds5syAey2syAey~12 ẽ̇c!5syAeyẽ̇c . ~51!

Successive fronts have larger background strains and th
fore largerDs. As this difference increases, the reloadi
time also increases, and the front velocity decreases. Asdey
approaches a constant, the velocity of hopping fronts a
decreases to constant. McCormick@23# has measured the ve
locity of successive hopping fronts and finds the veloc
decreases at higher strains, seemingly approaching a con
value.

V. CONCLUSION

We have presented a one-dimensional model that app
to capture most of the salient features of inhomogene
plastic yielding. The foundation of this model is a modific
tion of the flow stress to depend upon a new quantity,
‘‘nonlocal strain rate.’’ Theory and experiment are seen
agree on many points, including the following.

~1! Fronts move steadily under a constant applied stre
~2! Front velocity is proportional to applied pulling spee

~strain jump independent of pulling speed!.
~3! At low pulling speeds fronts cease to move stead

and ‘‘hop.’’
~4! Successive fronts move more slowly than their pre

cessors and introduce a larger strain.
~5! Stress at which fronts move rises rapidly with pullin

speed before leveling off to an almost constant value.
~6! Stress drops accompanying yielding are exponenti
~7! Homogeneously deforming samples show negat

strain-rate sensitivity at large strains.
Many theories claim to explain deformation fronts, a

determining which is correct requires appeal to experime
We feel there are strong reasons for believing our phen
enology is more correct than others. Ours is the only the
that produces fronts moving at a constant stress, a beha
observed in our experiments. This is an important point, o
which must be emphasized strongly. The close quantita
agreement between theoretical predictions and experime
observations~e.g., Figs. 8, 9, and 10! is also unique to our
phenomenology. Finally, we can extend our theory to
plain experimental observations made on homogeneously
forming materials.
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