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Portevin—Le Chatelier effect
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Aluminum subjected to smooth mechanical loading does not often deform in a correspondingly smooth
manner. Typically it deforms inhomogeneously through the propagation of deformation fronts that slowly
traverse the sample. These are called Portevin—Le Chatelier fronts; what determines their velocity has been
somewhat mysterious. We present a phenomenological theory for deformation fronts that centers on a nonlocal
rate dependence of the flow stress. In a one-dimensional idealization the equations can be solved exactly, and
compared directly with experiment. Many significant features of deformation fronts are captured, including a
well-known transition from hopping to continuous front motion. The phenomenology’s predictions are con-
firmed by our experiments.

PACS numbd(s): 81.40.Lm, 81.05.Bx

[. INTRODUCTION cally about a millimeter wide and move at speeds of centi-
meters per second. Metals deform through the generation and
propagation of dislocations, which appear on the submicron
Aluminum’s properties, chiefly its strength and light scale. The key to the effect lies ultimately bundled in the
weight, make it ideal for many commercial uses. Its useful-dynamics that connect the microscopic world of dislocations
ness is limited, however, by a series of bands that form wheg the macroscopic regime of the fronts. However, we will
the metal is rolled or formed. The bands mark regions ofot make any explicit connection to the dislocation scale in
appreciable plastic deformation; they are visible because ahis paper. All our analysis will be purely phenomenological.
surface roughness on the micron scale. The bands are part of
a more general phenomenon of inhomogeneous deformation B. Historical Note
in which yielding proceeds as a propagating front. The bands
occur when this front ceases to move with steady velocity i
and begins to hop.
The bands form all too easily during metal forming, such

as in die presses, but are typically studied systematically i
experiments with the geometry illustrated in Fig. 1. An alu- 813. In 1824 GerstndB] conducted tension measurements

minum sample a few centimeters long, a centimeter W'de\(/)v?reStgter :nplirlg\x';feﬁnfuggzﬁw.eg dlﬁxpear:]% T:jrlgtghlcg:?
and a few millimeters thick is gripped at two ends and 9 y 9 Y

pulled. After stretching in a reversible and elastic fashion,
the aluminum vyields plastically. The nature of its deforma-
tion thereafter depends upon several factors that we will ex-
plore in this paper.

In the simplest experiments, the stress on the sample is
slowly increased and bursts of yielding occur at critical
stresses. This produces a “staircase” on a stress-strain curve,
the earliest known example is shown in Fig. 2. Each vertical
line corresponds to the nucleation of a deformation front.

It is more common to force one end of the sample to
move at a constant velocity. The machine stiffness then be-
comes a factor, as the amount by which the stress can relax
depends upon the relative stiffness of machine and sample.
This has obscured a fundamental question: can fronts propa-
gate under a constant stress, or do they require an ever-
increasing load to move? Our experimepiy unambigu-
ously show the former to be true, and this behavior is
reproduced in our theory.

A picture of a deformation front moving steadily through
an aluminum sample is shown in Fig. 1. The fronts are typi-

A. Motivation

It is widely believed(e.g.,[1]) that Portevin and Le Chat-

elier [2] were the first to study systematically the phenom-

enon of inhomogeneous plasticity. This is not true. Duleau
ommented on irregularities in the deformation of metal in

FIG. 1. One end of a dogbone-shaped sample is pulled with
speedX, typically of order 100um/s. This results in a front of
*Present address: Department of Physics, Rochester Institute diformation that moves with spead of order cm/s. The front
Technology, Rochester, NY 14623. leaves behind strained material that is visibly rough.
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20 The deformation is described by the total straiy

= du/dx, which is the sum of the elastic straiy and the
plastic straine,. The elastic strain is completely reversible
and linearly related by Young’s modulus to the applied
stresso according to Hooke’s Law,

pry
(4]
T

o=Ee,. (1)

The plastic strain is irreversible and occurs whenever a
load is applied. Straining at low stresses is exponentially
small and called creep. The stress at which appreciable
straining begins is known as the flow strass. The flow
stress increases as a sample strains, i.e., the sample hardens
as it strains. This is called work hardening, and in many
cases the flow stress increases roughly as the square root of
03 > 4 Py 3 10 12 14 €, - One mechanism for work hardening is the increased en-

Load (kg) tanglement of dislocations which require ever-larger stresses
in order to break free.

FIG. 2. Masson's observation of temporally inhomogeneous The flow stress also depends upon the rate at which the
yielding. Note how the sample length remains fixed despite thesample is deformed, revealing an interaction between dislo-
addition of several kilograms mass before suddenly growing withcation motion and other time scalésg., diffusion of impu-
the addition of a single kilogram. Data from Masson, 188]L rity atomg inside the metal. The rate dependence, called the

strain-rate sensitivity, is not as well defined; experiments in-
stner goes on to explain that these experiments, the objects wéstigating this behavior are described below. It is common

our interest, were “left out” of his final discussion. [10-12 to assume that the plastic strain re&@ depends

~ The true discoverer of the phenomenon is Sajdltthe  exponentially on the difference between the applied siwess
first to believe that the observed inhomogeneities were a f“nénd the flow stressr( e, €p)

damental part of plastic deformation. Savart added weights
to the end of copper strips and documented the spatial inho- 1 F{U_gf(ep,gp)

mogeneity now known as Portevin—Le Chatelier bands. Sa- €p% T—lex E

Elongation (mm)
=S

3]
T

: 2

vart assigned the problem to his student, Masson, who in
1841[5] more carefully controlled the loading rate. Massonwhere 7, is a time constant. For a given stress Eq. (2)
observed the strain to remain constant as the load increasg@scribes a constitutive relation that the strain easatisfies.
until, with only a small change in load, suddenly elongating| the simplified case of a one-dimensional system, the ap-

by several millimeterssee Fig. 2 In his words, “solid bod- jieq stressr is uniform, determined by the boundary con-
ies do not elongate in a continuous manner, but by sudde§iiions imposed on the sample.

jumps.” Masson also carefully investigated the effect in dif-
ferent alloys and at different temperatures—the systematic D. Strain-rate sensitivity: Homogeneous
study often ascribed to Portevin and Le Chatelier. vs inhomogeneous yielding

Th ibution m rell, who in . L .
e current attributio ay be due to Cottrell, who Phenomenological descriptions of the Portevin—Le Chat-

iggf’][\?v]a\grn?fd eTbhye Iigftte?/ﬁ tgrr]r:jaﬁz gﬁg{eﬁﬁé??nprzecggmﬂonelier effect havg centered on the rate dependence of the flow
of whom the name ‘Portevin—Le Chatelier effect’ is now §tre§sUf. Penning 13] showed that homogeneous _def_orma—
often used.” Cottrell's attribution has survived despite Bell’'s tion is u_nstable when the TIOV.V stress decreases W'Fh increas-
[7] attempts to set the record straight. ing strain rate. This pehav!or is referr(_ed to as negative strain-
rate sensitivity. While this mechanism does produce an
instability, and produces a serrated stress-strain curve similar
to that observed in the laboratory, the spatial behavior is not

There are many phenomenological discussions of thef the form of propagating frontsl7]. The instability grows
Portevin—Le Chatelier effect. Their sheer number prohibits dastest at short wavelengths and is unphysical. In subsequent
detailed review, but a brief discussion of the common framework various diffusion terms were added to the flow stress
work within which such theories exist is necessary. Review$18] but these also fail to reproduce even qualitatively front
have been provided by Estrin and Kulp8] and FrankliM9].  dynamics[19].

One presumption of most theories, which has yet to be The rate dependence of the flow stress is not known with
checked with care by experiment, is that the dynamics otertainty because interpretation of experiments designed to
shear bands can be captured by a one-dimensional descripvestigate it is difficult. There is a natural tendency to use
tion. This reduction is accomplished by averaging theresults from homogeneously deforming samples in the con-
stresses and strains over the shear surface, generally at stitutive equatiofEqg. (2)] to explain the Portevin—Le Chat-
angle to the direction of propagation. The strain tensor thewrlier effect. For example, experiments to probe the rate de-
collapses to a scalar which varies only along the length of thgendence of the flow stregdescribed beloyvmeasure the
sample. We have investigated the appropriateness of thistresses required to maintain various global strain rates. The
simplification and it appears to be valid in the case ofstress dependence on global strain-rate rates is then incorpo-
steadily moving fronts. rated into constitutive equations as critiéatal strain rates.

C. Background



PRE 62 PORTEVIN-Le CHATELIER EFFECT 8197

But the physics governing the Portevin—Le Chatelier effect
necessarily localizes the deformation. It is not at all obvious All straining occurs
that the local stresses and strain rates experienced during in localized region
inhomogeneous vyielding are similar to those measured in

homogeneous deformation. Negative strain-rate sensitivity

can therefore be understood in the case of homogeneous de-
formation, but its role in localized vyielding is unclear. Our

. . . "Smeared"
experiments, for example, do not show a negative strain-rate strain—rate
sensitivity and this behavior is captured in our model. extends

Experimental study of negative strain-rate sensitivity has over length
taken two different forms. Bodner and Rosgi,15 im- L
posed a constant pulling speed and measured the stress nec-
essary to reach a given strain. They found that less stress was
needed to reach a given strain at higher pulling speeds. Bod-
ner and Rosen’s data show no serrations, which seems to

indicate their samples are deforming homogeneously. Later g6 3 The relation between the local strain r:.'r;,eand the

experiments by van den Brirfi0] and Ling[16] subjected a “smeared” strain-ratée. All plastic straining is confined to within

homogeneously deforming sample to a sudden change Itrt]1e shaded region bt extends outside of this region as indicated

pulling speed. The strain-rate sensitivityo/Ae, was ob- by the solid line.
tained by measuring the change in strAss that accompa-

nied a change in strain ratee,. For a range of strains and pendence. The functio@ smears the local strain-raig over
strain rates the stress fell below its original value. The inter@ characteristic length and time 7,. Constitutive relations
pretation was that a lower stress was required to deform th@volving convolutions as in Eq4) are standard in the elec-
material at the higher rate. For low strains the strain-ratdromagnetic response of dielectric media and in the mechani-
sensitivity was positive, consistefit was thought with the €@l behavior of polymeric fluids. While a possible physical
observation that the serrations occur only after an initialmotivation for such a term may be found in the various
homogeneous deformation. It is important to note that bot{neéchanisms for dislocation creation, we do not pursue this
Bodner and Rosen and van den Brink's experiments are rd2C Strongly. The theory is a phenomenological one.

stricted to homogeneously deforming samples. In our theo- .Whlle.there IS no d'r?Ct connec.tlon V_V'th d|§locatlons, \(ve
retical framework, negative strain-rate sensitivity cay be think of e as representing an active dislocation population

observed in a homogeneously deforming sample, and is $Pawned in a region surrounding areas of plastic deforma-
direct consequence of the nonlinear flow stress relatioioN: They remain active for some characteristic time gov-
i(ey). erned by the time decay rate &(x,t), and then become

pinned.

The spatial relation betweanand ép is shown in Fig. 3.
The strain rate, is localized within the filled rectangle. The
resulting smeared strain ra¢as shown by the solid line. We

A successful phenomenology of the Portevin—Le Chat{ropose that it is the nonlocal strain rate that is responsible
elier effect must reproduce the following observatioffy: ~ for reducing the flow stress. Thus in Fig. 3 the deforming
deformation fronts exist and move in steady fashion at Vematerial weakens the adjacent material. This process contin-
locities much slower than the speed of sowd?2) at very ~ Ues until the_adjacent material is suff_iciently \_/veakened that
low deformation rates fronts cease to move continuouslythe deformation spreads. The keri@lis also time depen-
and (3) once a front has propagated throughout the sampliim' so the effects of deformation on flow stress are delayed
another can be initiated if the stress is increased. Subsequ a characteristic time that we identify tentatively as an

o : - empirical diffusion time.
fronts move more slowly but are qualitatively identical to ™" \"q o 1 ot the flow stress as a function of nonlocal strain

their predecessors. . ST o
We have found that almost all features of deformation—'2t€ 1S shown in Fig. 4. The flow stress decreases with in-

both homogeneous and inhomogeneous—can be reproducgi@asinge, becoming constant at higher rates as the weaken-

ary local strain rate but rather on a nonlocal strain rate stress(75 MPa. in Fig. 4 no deformation occurs; stre_sses
defined as above the maximum flow stre$80 MP3 cause deformation

everywhere simultaneously. If the stress is at an intermediate
T=G(x,)* e &) value, however, the sample deforms inhomogeneously.

Places wheré is large enough to appreciably weaken the
material deform while portions wheteis small do not.

Il. THEORY

A. Constraints on phenomenology

EJ G(X',t")ep(x—x t—t")dx'dt’. (4)
B. Equations
The idea is that deformation at a given point depends on 1. Constitutive equation for strain

deformation in neighboring regions in some way linear in  Flow pelow the flow stress, called creep, is exponentially
€, Equation(4) is the most general way of expressing de-small and not a crucial component of the Portevin-Le Chat-
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95 ' ' ' Equation (7) indicates that the nonlocal strain rateat a

point is produced by any straining within a distarcand
decays over the characteristic timg Our results are insen-
sitive to the particular form ofG(x,t). Replacing exp
[—|x//1] by exd—x?12], for example, does not change the
results appreciably. The particular form in E@) is conve-
nient for analytical work.

©
o

=]
(6]

«©
o

2. Boundary conditions

Flow stress (MPa)

The relevant boundary conditions for both experiment and
theory are

]
(&)

v(x=0)=0p(x=L)=X. (8)

70 1 1 1
0.0 0.1 0.2 0.3 0.4 .
Nonlocal strain rate (1/s) Thesg determlne the stress th_roughout the sample for our
one-dimensional model, which is simply proportional to the
FIG. 4. Flow stress as a function of nonlocal strain rate elastic part of the deformation and is expressed mathemati-

cally by the machine condition

elier effect. We simplify the analysis by ignoring creep, and
also assume that the plastic strain ré,geis proportional to ot)=pu
the difference between the strassand the flow stress+,

made dimensionless by dividing through by Young’'s modu-

L
X(t)— fo dx’ ep(x,1)|. 9

X(t) is the machine displacement, and the integral is the total

lus & plastic strain throughout the sample; ES) is essentially
o) = or(x.1) Hooke’s law, andu is an effective spring constant that char-
de.(x,t) | ol —————" whenever o> i€y €) acterizes the testing machine. It depends upon the sample
% = 71 lengthL and cross-sectional aréa Young’s moduluss, and
0 whenever o<o(e, ). the stiffness of the machini¢ as
(5 KE
- r=KLTEA (10
The flow stressr; depends upon both the straég and the

nonlocal strain rat&, and varies across the sample. o . .
. An infinitely soft machine has & equal to zero while an
In constructing the theory we also assume that the experi-

ments are effectively one-dimensional. This implies that themfm'tely hard ”?aCh'”e ha_ls A of E/.L' _
For any particular testing machine can be determined

stress is constant throughout the length of the sample ar‘\‘crjom the stress-strain curve prior to the onset of plastic de-
that necking is negligible as pertains to front propagation P P

This must be checked experimentally, and in fact the magnitor_ma>t(|on. '_A‘I_LI] deformat_lon IS elaslt_lc anld E@r)] r(ra]duces to
tude of necking is comparable to that of some of the observ? — #X(1). The stress increases linearly with the extension
ables. Why do we feel justified in ignoring necking? We (Hook_es law with a slope u. The machine used in our
must find appropriate coupling terms to generate front propa@xperlmental tests has
gation. Diffusion is the customary mechanism, and terms to
account for necking take the same form as diffusion. That is,
terms that express the local three-dimensidBa)) effect of e atio of our maching: to the theoretical maximum is
necking as one-dimensionélD) nonlocal terms are diffu- (with a 10 cm sample

sional. We have unambiguously shown, however, that diffu-
sion terms do not lead to propagating fronts at a constant m

stress. Although necking is clearly present, and perhaps sig- —=0.6. (12
nificant, we conclude that something else must be respon- oo

sible for the front propagation.

For G(x,t) we choose

©w=432000 MPa/m. (11)

Our machine can be characterized as moderately stiff, corre-
sponding to a simple spring with a spring constant of ap-
L proximatelyK = 1.4x 10’ N/m.
Gx.0= 2l 7y e Mlemm. ® 3. Flow stress

The flow stressr(e, J€) is defined as the stress at which
appreciable plastic deformation begins. It depends on both

plastic straine, and nonlocal strain rate and we assume
this dependence is separable,

Equation(4) (the definition ofe) is then formally equivalent
to the following differential equation:

de(x,t) 1
at B 2l T2

Jde" 1) —|x—x'\_§(x,t) @
0 GP( e T ' Uf(Ep,’z):Y(ep)f(z)' (13)
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As discussed earlier, Bodner and Rogé#,15 measured
the flow stress at different end velocities; their data are con-
sistent with the separation in E¢L3). Curves for different
end velocities are qualitatively similar and are well approxi-
mated(at constant end velocitypy a square-root function

oi(€)=oy\ep (14)

with o, a property of the material. Sharp20] quotesa,
=384 MPa for aluminum.

In our experiments we are careful always to initiate fronts
at the same value of plastic strain. Later we will generalize
our equations to account for multiple fronts. Successive
fronts occur after the previous front has passed completely
through the sample. We therefore separate the strain due to
any existing frontse, from all other plastic strain, which we
label €. €, includes any strain introduced during sample
preparation, such as rolling or machining, as well as defor-
mation introduced during testing prior to the appearance of
the front. The flow stress can then be written as L o 03

Position (cm)

- - - - Piece—wise linear
— — - Exponential decay
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Til€p, €)= TyVeyt €pfle). (19 FIG. 5. Strain profiles from three simulations, each using a dif-

The strain from the fron, typically is smaller thare, , the ~ ferent function forf (<). Strains have been normalized by the maxi-

strain at initiation. For tphe purposes of a singleyfront wemum strain to emphasize similarities in profile. The solid line re-
sults from use of a step function and results in the steepest profile.

expand Eq(15) aboutep=0 to get The dashed line is the profile resulting from a piece-wise linear
function while the long-dashed line is that of a continuous, expo-
1+ i) f(‘g)_ (16) _ner_ltially decay. The qualitative similarity between all t_h_ree fron_ts
2¢y indicates the independence of our results from specific function

Uf(e,;)zoyJ:y
_ _ _ _ used forf ().
The central nonlinearity responsible for inhomogeneous
yielding is contained in the functiofi(e). Experiments on  Numerical solutions with different forms of the flow stress,
homogeneously deforming samples indicate that the flowncluding differentiable functions, produce no qualitative dif-
stress drops with strain rate. We propose that the details gérence.
the functional form of this drop are not important. In our

analytical work we use the discontinuous function C. Solving the steady-state equations
f(e)=1-N0(e—"%,), (17) When the initial conditions include inhomogeneities, nu-
merical solution of Eqs(5)—(7) reveals fronts that propagate

. I at constant stress at speeds of centimeters per sgddnd
which drop§ _S“dde”',y when the nonlocal strain rateur- The prediction of propagation at constant stress contradicts
passes a critical value; - ) ~the common view that fronts propagate only under increas-

Our results are qualitatively independent of the specifiGng stress. This prediction has been confirmed by our experi-
nature off (). What is essential is thétis a function of the ments. We now describe in more detail the motion of steady
nonlocal strain rate, rather than the local strain ratg. €  fronts. The solution permits close quantitative comparison
and e, are identical for homogeneous and steady deformaP&tWween theory and experiment. .
tion so data from such experiments can be used to determine W€ first move to a coordinate system traveling with con-
the particular nature of (). Figure 5 shows front profiles stant ve_locnyu. The origin is taken to be the point Whe_re the _

) ) _ TS ] - stress first equals or exceeds the flow stress; the strain rate is
from simulations using three different functions fe): the  thys zero forx less than zero. The background strainis
step function used in the analytics, a piece wise linear funcgonstant throughout the sample while strain produced by the
tion, and an exponential decay from 1Xo The profiles in front ¢, increases from zero. The definition of the origin as
Fig. 5 have been normalized by the final strain to emphasizgne point where straining first occurs implies that there the
the qualitative similarity in shape. This makes sense ORress equals the flow stress
physical grounds, since the width of the front is quite small
the system actually spends very little time between the ex- azaf(xzo)zgy\/e—yf(z(o))_ (18)
treme values. Front characteristics are determined by the ini-
g:lsggg ffrlgﬂ \éﬁtj?oofh??)titéim and not on how the SyStemAc~cording to Eq.(17), f(€) is less than one only whea

€., this fixes the value of the nonlocal strain rate at the

Choosing Egs(16) and(17) makes possible the analytic = °
integration of the equation for the plastic strdigqg. (5)]. origin to the critical valuee,
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2

e(x=0)=¢,. (19

At the origin the flow stress discontinuously drops and the
plastic strain-rate abruptly becomes nonzero.
In steady state the evolution equation for the strain is

€ (%)

dey(X) o—oi(ep, €

TR P (x>0) (20) : o
dx T . o Full Equations (Simultion)

1 ° e Approximate Equations (Simulation)

°

Approximate Equations (Analytic Sol)|

and the equation for the nonlocal strain rate Efj.is 0
-1 0 1 2
P / i Position (mm
Jde) 1ot dep(X) oy €X) (mm)
dx 2l )0 X' 72 FIG. 6. Strain profiles from simulations of the approximae)(

(22 and full (O) equations compared with the analytic soluti@olid
line) of the approximate equations. The differences between the
These equations are subject to the following conditions:  simulation of the full equations and the analytic solution are slight.
_ _ ~ We can therefore apply results from the analytic solution to the real
€p(X<0)=0,e(+)=0,6(0)=¢. (22 system.

Equation(20) incorporates one further approximation. At The solution for the strain Eq24) is used to integrate Eq.
the tail end of a fronk dips belowe,, and all motion locks  (21) to solve fore(x) for x less than zero. The result is that
up instantly. We continue to use EQO) in this region; %(x) decays exponentially to zero as one moves away from
deformation is dropping exponentially quickly to zero any-the origin,
way, and it is much simpler to have only one boundary at the
origin, where the strain rate discontinuously changes, rather ~ X
than two. The consequences of this simplification will be e(x<0)=A0(o,v)exr{|—
seen to be minor.

To find the strain, Eq(20) is integrated subject to the The rate of decay depends only upon the paramefss this

following conditions: parameter governs the spatial smearing';pfts appearance
here is quite logical. The coefficient of the exponential de-

. (28

€p(0) =0.65() = e(0), (23 pends on the stress and front velocityo,
the strain exponentially approaches a constant as oy 0€(o)
Ag(o,v)= . (29
—ay v 1 ayl
ep(x>0)=0e(0)| 1—exg ———=x||. (29 47’17'2\/6—y Tttt
2v Tl\/f_y ! 2 2v 71 \/G—y

We can solve for the strain jump across the froatsince Requiringe=¢. at the origin produces the second relation
straining stops when strain hardening has increased the flobetween stress and front velocity,
stress to once again surpass the applied stress

Ag(o,v)=€;. (30)

U=Uy\/6_y (1-)) (25  Equations(27) and(30) determine a unique stress and front
velocity that result from an imposed pulling speed.
It is possible to solve Eq21) for x greater than zerc is

. (26)  asum of exponentials

—X
+A2eX I

14 ¢
26y

= de(0)=2¢€y —(1—X\)

‘Ty\/e—y

The strain jumpde depends upon the stressand strain at ~ €(X>0)=A; ex;{l—
onsete,, and thus changes for successive fronts.

For a constant pulling speed we observe fronts that
travel with a constant velocity. The machine condition Eq. A;, A,, andA; are complicated functions af andv. The
(9) then requires that nonlocal strain rate is continuous across the origin and so
) A;+A,+Az;=Ay. Since a minor approximation was em-
X=vde(o), (27 ployed in this analysis, it is wise to compare the results with
direct numerical solution. Figure 6 shows the strain profile of
where the strain jumpe(o) is a function of the stress. This three fronts. The solid line is the analytic solution. It matches
provides one equation for two unknow(stresso and front  exactly the profile from a numeric simulation of the approxi-
velocityv). Equation(27) also includes the only independent mate equations, shown as the solid dots. The open circles are
variable from the experimerithe pulling speed the result of simulations of the full, nonapproximate, equa-

— 0y
+Azexg ——=
201’1\/6—

y :
(31
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FIG. 8. Front velocity for continuously moving fronts as a func-
tion of pulling speed. The linear relation is consistent with our
110 . . . . " . . " . theory and used to determine the paramater
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Ill. RESULTS

FIG. 7. Theoretical flow stress as a function of front velocity. Th . K f the oh | h d
The descending portion of the curve is unstable; perturbations to a € main weakness of the phenomenology we a~ve e

steady front grow via a mechanism similar to that of ordinary fric- veloped is its dependence on five parameteys,7,, |, e,

tional stick-slip motion. and \. To give the theory predictive power they must be
related as directly as possible to specific experiments, and

tions. Note the slightly larger final strain{8%) realized in  then remain locked in value and compared with different

the full equations, a consequence of the approximations digxperiments. We now describe the measurements needed to

cussed above. Note also the practical width of the ftdnt fix the parameters. This also highlights the theory’s qualita-

mm) and strain jump(1.5%), both in accord with experi- tive predictions that are confirmed by experiment.

ment.

A. Velocity selection

D. Stability The theory predicts that the velocity of a front is simply

The stability of the traveling front solution can be most proportional to the pulling speed, a fact observed in previous
easily determined by examining how the flow stress dependgxperiments. The proportionality constant uniquely deter-
upon the front velocity. This is shown in Fig. 7. The de- mines the parameteér of the model. The strain jump across
scending part of the curve in Fig. 7 marks a region in whichthe front is
the steady-state solution is unstable. The mechanism for this
instability is similar to that found in ordinary stick-slip fric-
tion and brittle fracture. A small perturbation that increases o \/6—
the front speed lowers the flow stress, accelerating the front. yyey
Similarly, a perturbation that slows the front speed results in ) ] o
a larger flow stress, further slowing the front. Numerical Which, since the stress is always within a few percent of the
simulations confirm this picture. An end velocity that corre-upper yield stress\/e,, is to good approximation
sponds to a front speed in the unstable region does not result
in a front moving at constant speed. Rather the front moves de=2€/\. (33)
in erratically, alternating periods of motion and rest.

This behavior is also seen in the experiments. At IowT
pulling speeds fronts do not move throughout the sampl
with constant velocity. Rather the front appears to hop; elasth
tic straining is followed by a brief burst of plastic straining. re
During the plastic strain, the front moves a distance of ordeb
of the sample thickness before again coming to[f2&L The
pulling speed at which fronts begin to move continuously is
easily determined experimentally and is one of the observa- 1.

. . v= X. (34
tions we use to determine values for our parameters. 2e N

oe(o)=2¢, —(1—\) (32

he strain jump depends only on the strain at initiation and
e parameteh. We have confirmed with experimenits]

at the strain jump is independent of pulling speed. The
lation between front velocity and pulling speed E2j7)
ecomes
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A comparison between the experimental observations and 100 - ' '

the theoretical prediction is shown in Fig. 8. A linear fit to
the data results in a value of < —— Model (c=¢")

A=0.175. (35)

ey
o
T

Should a second front follow the first it will introduce a
larger strain jumgdsincee, is larger in Eq.(33)] and travel
more slowly than its predecess$E. (34)]. This has not yet
been investigated experimentally for continuously moving
fronts.

Stress (MPa)

-
T

B. Exponential decay of stress upon yielding

The onset of plastic yielding is accompanied by a sharp
decrease in the stress as the sample “catches up” to the
machine. This is seen in both theory and experiment regard-
less of whether the fronts hop or move continuously. The
following calculation shows that the model predicts this de-
cay to be exponential, and the rate of decay uniquely deter- FIG. 9. Initial yielding of a sample is predicted to be exponen-
mines the parameter;. tial. This is seen in the experiment<) and is used to fix the

If all of the plastic straining takes place within a narrow parameterr; in the model.
band of widthw then the total rate of plastic deformation can

be replaced expressed gsv, wheree,, is the average strain The remaining three parameters are determined by two

rate in the band. Differentiating the machine condition withseparate experiments. It has been previously obs¢R2d]

respect to time gives that at low pulling speeds the fronts hop rather than move
steadily. At low pulling speeds steadily moving fronts are

0.060 0070 0.080 0.090 0.100
Time (seconds)

d_U_ (X—we)~ X_WU—Uf (36) unstable, and thus physically unrealizable. The minimum
at “ M | speed at which steady fronts are stable is
The last relation was obtained by using ES). to define the : 20y
strain rate in terms of the stress and flow stress. If the stress Xmin= M€, \/— (38)
decay occurs quickly, changes in the strain, and hence the T1T2\ €y

flow stress, are negligible. Equatidid36) is a differential

equation for the stress as a function of time with all otherExperiments indicate a minimum pulling speed of 481/s,
quantities constant. The solution of this equatior(iigro-  or a front speed of 1.2 mm/s; this is used to exprgsas a
ducing the integration constahy) function of |,

— W
+2exp{ ® tl.

1

X
o'(t)=(%+0'f (37) 7y 12, (39

To=
27\e,(1.2¢1073)2

The stress decay is exponential with the steepness of the

decay depending only upon the stiffness of the machine, the The set of independent parameters has thus been reduced

width of the front, and the time constant. Determination of to two: €., the critical value of the nonlocal strain rate at

the ma!Ch‘”e stiffnesg has begn describe'd ab_ove and thewhich weakening commences ahdhe distance over which
front width w can easily be obtained from video images. The

idth | imatel Lo th le thick 1 the strain rate is smeared. The stress at two different pulling
width IS approximately equa’ to the sampie thickness, mmspeeds are used to fix these parameters. We choose the stress
The slope of a logarithmic linear plot @f(t) vst then de-

. This plot is sh i Fi “the sl , corresponding to the slowest possible front, i.e., the transi-
terminesry. This plot is shown in Fig. 9; the slope gives a 4, yelocity, and the stress at the fastest observed front. The

value of 7,=1.2x10"3 s. 7, is the parameter t_hat governs fomer is 1108 newton, the latteiat a pulling speed of
how quickly the sample responds to changes in the stress; jt

is thus natural that it also governs the transient behavior o 300 umis) is 1.130 newton. Fitting the parametetsand|
the stress. to these two points gives

C. Stress at which fronts travel =50 um, €=0.027 s, 7,=0.04 s. (40)

A fundamentally new prediction of the theory is that de-
formation fronts travel at constant stress. Experimental conThe experimental error for these measurements is about 2%.
firmation of this, as reported ifil], casts doubt on other Our parameters are fairly sensitive to this uncertainty. Hold-
theories that predict fronts to progress only under an increasng four parameters constant, the fifth changes by as much as
ing stress. 20% to accommodate this.
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FIG. 11. The change in stress accompanying a sudden change in
pulling speed. Theorysolid line) and experiment@®) agree quite
well in all phases of the curve.
1980500 500 1000 1500
End Velocity (um/s) are experimental data and the solid line the result of numeri-

) o ) cal simulations. Note the qualitative agreement in all stages
FIG. 10. Theoretical prediction for stress as a function of theyt tha curve: the elastic loading, the initial yield to the lower
end velocity compared with experimental observation. The dashegtress level. and the smooth increase to the new stress. The
line indicates the region of unrealizable steady fronts; in this regior]argest diﬁérence is in the transition that accompanies the
hopping fronts occur in both simulation and experiment. change in pulling speed. Although the loading machine is

IV. COMPARING THEORY AND EXPERIMENT programmed to change speeds quickly, the actual accelera-
tion depends on the sample response to sudden changes in
A. Constant pulling-speed experiments stress. This response is complicated and not known. The

With the parameters fixed, we can compare the stress préjmulation doe; _change_ speed instantaneously, resulting in
dicted by the theory with that measured in the laboratory ah€ sharp transition of Fig. 11.
different pulling speeds. Solving EqR7) and(30) produces
a functional relation between the stress and pulling speed;D- Homogeneous yielding and negative strain-rate sensitivity

the resulting curve is shown in Fig. 10. Results from six  As described in Sec. |, experimental observations of nega-
different experiments are shown ass and the theoretical tjye strain rate sensitivity have involved homogeneously de-
prediction(solid line) passes through all six, within experi- forming samples. When deformation is homogeneous the

mental error. The<'s are from experiments where the pull- o0 1504) strain raté reduces to the local strain ragg
ing speed changes; in this case the experiment sweeps

through a range of pulling speeds. The theoretical curve T (41)
nicely follows the experimental results. P
and the flow stress is the traditional function of the local
B. The transition to hopping fronts strain rate.

For a homogeneously deforming sample there is a steady-

The solid line in Fig. 10 is the theoretical solution for the tat lution to Eag5)—(7) in which the strai i
steady-state load as a function of pulling speed. As the puII§ ate solution to g45)~(7) in which the strain grows lin-
%arly with time

ing speed increases from zero, the stress drops from th

maximum flow Stl’eSSTy\/E—y. The curve has a well-defined MX

minimum, after which it asymptotically approaches the €= t (42)
. ; ; b .

maximum flow stress from below. As mentioned earlier, so- ay

lutions in the descending region of the curve are numerically mL+ \/—

unstable and thus physically unrealizable. This is marked in 2Vey

Figure 10 by a dashed line. Numerical simulations show thah

in this region fronts do not move steadily. Instead the frontcrigzgvii Stl;ﬁli'rr: rzteesg?r?lct;\égeoscfr?ésstvrv;iﬁnr;tze I(S)l\j\?edr?nn Itr;;e
alternates appreciable periods of rést which the stress pufling Sp ’ 9

steadily increasgswith sudden, short periods of motion. ;lOI:N sltress._Th(Ia ts_amplﬁhfl?r\]/vs more qwcklytand t?ed st'resds
This is similar to the hopping fronts observed in prior experi- abs. r:ha sm(;u allor_lt wi E sa:lne Earamgfer S€ myerlve
ments[22,1]. The mechanism for this instability is similar to above the end velocity was abruptly changed from A00's

that which causes stick-slip motion in simple friction experi- to 1000.m/s after l_s of §mooth straining. Th_e stress tran-
ments. sient that accompanies this change is shown in Fig. 12.

The dashed line in Fig. 12 indicates the stress that would
accompany a constant end velocity test. Increasing the end
velocity causes a stress transient that falls below the steady-

The gquantitative agreement of theory and experiment istate stress associated with the slower end velocity. The in-
nicely illustrated in an experiment in which the pulling speedcreased slope of the stress-time curve after the transient cor-
is abruptly changed. Fig. 11 shows this comparison. @& responds to the larger steady-state strain rate. Transients

C. “Double-ramp” experiments
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FIG. 14. Simulation results showing the stress drops due to suc-
Bessive fronts. Each appears at a higher yield stress, dropping to a

constant as the front travels.

FIG. 12. Simulation of a homogeneous sample subjected to a
abrupt change in strain ratend velocity. At t=1 s the pulling
speed is increased from 1Q0m/s to 1000um/s.

E. Successive fronts
qualitatively identical to this were observed in experiments
by van den BrinK10] on homogeneously deforming samples
and were identified as indicating negative strain-rate sensi- The Portevin—Le Chatelier effect typically refers to the
tivity. initiation and propagation of repeated yield fronts. While our

van den Brink also observed that at low strains the tranmodel, and the analysis above, aimed at explaining the first
sients did not fall below the original stress. It was only atdeformation front, it nonetheless captures the phenomenon
larger strains that the transients dipped below the originaf successive fronts that propagate at ever higher stresses.
stress. Figure 13 shows the results of three simulations, &€cause the strain is separated into two components—
different strains, in which the pulling speed was abrupﬂy“background” strain at initiatione, and strain due solely to
increased. At low strains the sudden change in pulling speefi€ current fronte,—the phenomenology of successive
results in an increase of the stress, i.e., positive strain-ratfzi.;onts |S.S|mple. L '
sensitivity. This changes at higher strains with the stress ul- The first front is initiated when the stress reaches the first
timately falling below the original level. The strain depen- yield value of
dence is due to the square-root dependence of flow stress on
strain. As the strain increasesdg;/de decreases, and so

1= oyVey.
more strain is necessary to increase the flow stress by a cor-
responding amount. Once the front has passed through the sample, the strain

everywhere has been increased by an amdunand, be-
cause the sample has hardened, flow has everywhere
stopped. The flow stress is then everywhere

1. Continuously moving fronts

(43

Stress (MPa)

FIG. 13. Simulation showing the stress transients that accom
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oi=0y\ €yt Je. (44)
As all plastic flow has stopped, further extension of the
sample results in an increase in the stress as per Hooke’s law.
A second front is initiated once the stress reaches the new
flow stress. By redefining the background strain to include
the strain from the first front ,=e€,+ d¢) the equations
governing the second front become identical to those of the
first front. The only difference is the larger value of the back-
ground straine, which results in a larger strain jumge.
This behavior is shown in Fig. 14 where a constant pulling
speed produces a succession of yield fronts, each with its
own stress decay and propagatian different stresses

Since the only difference between successive fronts is the
value ofe,, it is fortunate that the strain jumfe takes such
a simple form, to first order

pany a sudden change in pulling speed at three different strains. The
strain-rate sensitivity is initially positive, becoming negative at

large strains. (45)

Se=2ecey.
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Since the sample yields at a stressawe_y and falls to a
X value of oy \e,(1—¢), the differenced o is

~
T

AO':(Ty\/E—y— Uy\/E_y(l—;C):Uy €y€c- (51

Successive fronts have larger background strains and there-
fore largerAo. As this difference increases, the reloading
< time also increases, and the front velocity decreasesiejs
approaches a constant, the velocity of hopping fronts also
x decreases to constant. McCorm[@3] has measured the ve-

X X x x x x X locity of successive hopping fronts and finds the velocity
decreases at higher strains, seemingly approaching a constant
value.

Front Velocity (mm/s)
[=>]

a
T

5 10 15 20 25
Strain at front initiation (%) V. CONCLUSION

FIG. 15. Velocity versus initiation or *background” strain for a We have presented a one-dimensional model that appears
constant pulling speed. Successive fronts travel more slowly thagy capture most of the salient features of inhomogeneous
earlier fronts. plastic yielding. The foundation of this model is a modifica-

5 tion of the flow stress to depend upon a new quantity, the
The strain jump across the first front iss2,, across the “nonlocal strain rate.” Theory and experiment are seen to
second front 2.€,(1+ 2€.), and across thath front agree on many points, including the following.
(1) Fronts move steadily under a constant applied stress.
i=n (2) Front velocity is proportional to applied pulling speed
Sen=¢, E (2€,)'. (46) (strain jump independent of pulling speed
i=1 (3) At low pulling speeds fronts cease to move steadily
~ and “hop.”
€. is less than one and so this series rapidly converges to a (4) Successive fronts move more slowly than their prede-
constant cessors and introduce a larger strain.
(5) Stress at which fronts move rises rapidly with pulling

Ze. €y speed before leveling off to an almost constant value.

Vo7 "2 (47) (6) Stress drops accompanying yielding are exponential.
€c (7) Homogeneously deforming samples show negative
strain-rate sensitivity at large strains.

de, =€

The velocity at a constant pulling spe¥dderived abovgis Many theories claim to explain deformation fronts, and
determining which is correct requires appeal to experiment.
X We feel there are strong reasons for believing our phenom-
U S (48 enology is more correct than others. Ours is the only theory

that produces fronts moving at a constant stress, a behavior

The front velocity of successive fronts therefore also conOPServed in our experiments. This is an important point, one
. . . which must be emphasized strongly. The close quantitative

Verges .to a constant value of approximately/&, . This is agreement between theoretical predictions and experimental

shown in Fig. 15. observationge.g., Figs. 8, 9, and 10s also unique to our

phenomenology. Finally, we can extend our theory to ex-

plain experimental observations made on homogeneously de-

The above analysis is for continuously propagating bandforming materials.
where the velocity is set by the relation

2. Hopping fronts
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