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Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite
several homogeneous soft modeshydrodynamic modesf the underlying physical system, much more than
quasi-one{1D) and two-dimensional2D) patterns are. The reason is the lack of damping boundaries. This
paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually
equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electro-
convection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern
dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced
further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region
above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predic-
tions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic
approximations in terms of material parameters are gil®h063-651X00)09512-X]

PACS numbgs): 45.70.Qj, 61.30-v, 47.65:+a, 67.57.Fg

I. INTRODUCTION 1D or 2D patterns, arise from the structure and dynamics of
defects (dislocations as well as disclinationswhich are
Spontaneous formation of spatially periodic structures orpointlike in 2D but linelike in 3D. The implications for dis-
a homogeneous background is ubiquious in nature, fascinagipative, nonpotential systems, mainly those described by the
ing to look at, and often hard to understand in detail. Thecomplex Ginzburg-Landau equation, have been addressed by
periodic structures are almost never ideal. Irregularities mageveral author$4—9]. But there is another particularity of
be generated in the transient after the pattern formation igD Patterns, which has so far found little attention: the mas-
initiated and anneal after some time; or, in particular in dis-SIVe occurrence diomogeneous soft modeghich couple to
sipative systems far from equilibrium, they may be the resulf€ Pattern and can drastically change its dynamics.

of an instability of the regular, spatially periodic state itself, BY omogeneous soft modes | mean marginally stable or

often leading to a state which exhibits persistent spatiotemgflowIy decaying homogeneous or long-wavelength perturba-

porally chaotic dynamics. In some systems this is the Casgons of the homogeneous basic state from which the pattern
o7 ' o arises. In the abstract sense of the word, they are hydrody-
arbitrarily close to the threshold of pattern formation in con-

. .~ namic modes of the basic state. But for the sake of clarity the
trol parameter space. With the help of reduced descrlptlonﬁemS “hydrodynamic mode” and “hydrodynamics” shall
like phase-diffusion and Ginzburg-Landau-like amplitudeyore pe teserved for slowly relaxing deviations from the

equations, which are to some extent univefsal, indepen-  iharmodynamiequilibrium in an unbounded, homogeneous
dent of physical detai)s several phenomena associated withjyedium. and their dynamic.g., the velocity field in a
these deviations from the simple periodic structure can begnyective flow is a hydrodynamic variabléThe pattern-
explained[1]. forming basic state is itself a nonequilibriums state. Thus,

For mostly practical reasons, experimental and theoreticadithough there is some correspondence between homoge-

research on pattern formation and dynamics has concentrat@@ous soft modes and hydrodynamic modesthe narrow

on quasi-one<{1D) or two-dimensional(2D) systems, but sensg the notions are not identical.

most of the results obtained should have a direct correspon- As it has become clear by the investigation of several 1D
dence also in genuinely three-dimensio(gD) patterns. By and 2D model systems, homogeneous soft modes are the key
a genuinely 3D patterfbelow simply 3D patternl mean a  for understanding many of the phenomena occurring at, or
spatially periodic structure for whicti) the spatial perio@)  close to, the onset of pattern formation. The most prominent
are not determined by the spatial extension of the sampleexample is the mode associated with a homogeneous pertur-
(referred to as the class of patterns formed by “competingation of the pressure field in Rayleigh+ied convection,
interaction” in Ref.[1]) and (ii) for which the spatial exten- which leads to a “singular mean flow.” It is worth noticing
sion of the sample is in all directions large compared to thehat, since it is usually possible to construct self-consistent
periods) of the pattern. This is a stronger conception of aamplitude equations that dwot include the effect of homo-
“3D pattern” than the one used in Ref§2,3], which is  geneous soft modes, their relevance is easily underestimated
based only on conditiofii). in the theoretical analysis.

Additional complications in 3D patterns, as compared to In 1D and 2D pattern-forming systems, most hydrody-
namic modes are damped by the boundaries enclosing the
system. For example, momentum and heat can usually dif-

*Electronic address: www.rossberg.net/ag fuse freely through the boundaries and are stabilized by large
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external reservoirs. Obviously, this mechanism is ineffective Il. SOME PHENOMENOLOGY OF
in systems that are extended in all three spatial dimensions. ELECTROCONVECTION
On the other hand, some coupling to a reservoir will also be

required in 3D in order to sustain nonequilibrium patterny, ¢, qijitate intuition. For comprehensive reviews of EC, see

formation. This could be through electromagnetic fields'Refs.[lz—lzl], for introductions into nematohydrodynamics
some matrix embedding the active, pattern-forming mediumRefs.[lS,l@.

or some chemical reactant provided in excess. But the cou-

plings to the reservoirs are highly specific in these cases and

stabilize only a few hydrodynamic variables. The remaining A. Basic phenomena

fields do then lead to homogeneous soft modesa result, In the typical experiment a nematic liquid crystal with

several homogeneous soft modes should be considered as theyative dielectric anisotropy is sandwiched between a pair
rule in 3D, pattern-forming systems of transparent, parallel electrodes(separation d
For example, yvhen studying the 3D structures formed by 20-50um, area~1 cnd). By a special treatment of the
chemical waves in the Belousov-ZhabotinglBZ) reaction,  electrode surfaces, the nematic direatothe locally aver-
the dynamics of the plain BZ reagent does also involve conaged molecular orientatiofn|= 1) is forced to align parallel
vective fluid motion. Since these hydrodynamic modes argo the electrodes in some preferred direction, which shall
usually considered to be a nuisance, they are suppressed hgre be identified with the& direction (z be normal to the
embedding the reagent in a ddl0]. But another homoge- electrodesy normal tox andz). An ac voltageEy2d coswt is
neous soft mode excited by the pattern, the temperature fielgpplied at the electrodes. In tte®nduction regimeat fre-
(gradients of which are probably driving the convecliosr  quencies below theutoff frequencyw,, the first instability
mains. Since temperature gradients have a strong influende be observed as the voltage is increased is towards a pattern
on the dynamics of the pattefd1], a complete description of convection rolls called Williams domairid7].
of the 3D BZ reaction should explicitly involve this mode. At higher frequencies a different kind of structure peri-
The paper presented here is a case study of 3D patte@ﬂic anngx is found. Compared to Williams domains it has
formation in the dielectric regime of electroconvecti@C)  shorter wavelength and decays faster after switching of the
in nematic liquid crystals. The system was chosen because ¥pltage(fast turnoff mode. At least two concurring mecha-
its easy experimental accessibility. In particular, the electridiSms have been proposed for this high-frequency mode: the
nature of the instability allows to obtain patterns with severafielectric EC [18], which depends essentially on the anisot-

hundred periods extension in cells of a fingernail's size/OPY Of the nematidits threshold diverges at the nematic-

evolving on the time scale of seconds. A closely related v::xrij":’OtrOpiC phase transitiori9]), and theisotropic mechanism

ant, the conduction regime of EC, which always leads t0[20,2]] where the liquid crystal’s anisotropy is not essential

. . for the convection mechanism itself but only for selecting a
quasi-2D patterns, is currently one of the best understoo . L e

. . referred modulation direction. It has a finite threshold at the
experimental pattern-forming systems, on the phenomen

logical I th titative levake th : 1ematic-isotropic phase transition as its characteristic signa-
ogical as well as on the quantitative levs € the reviews re[22]. The two linear modes have the same symmetry and
[12,13)). These advantages compensate the inconvenience

. . . . 8b in principle mix, but generally the corresponding thresh-
g:ﬁgﬁgn\g'th rather complicatedelectro) hydrodynamic olds can be assumed to be sufficiently separated to consider

Rather than trving t derstand th | ttern d the mechanisms isolatedly. The isotropic mode is thought to
a e.tr Ifanthrylng oun ers.aln d € (t:oéntp et); pad ernl Ybe located mainly near the electrodes, while the dielectric
hamics ISefl, his paper IS mainly devoted 10 the developqy,ye is maximal at midplane. Unfortunately, it is not always

ment of consistent reduced descriptions of the dynamicSya,r which mode is actually observed. At least in some

ﬁe(;:tiodn I sI_<etchfe;_ tre te_xpégmenta:] phe_“OfT‘te“gg antd thc,eases the dielectric mode could be identified by the good
ydrodynamics of dielectric , emphasizing 1ts Nalur€,atch of the threshold curve with theoretical predictions

Approximations used for an analytic or semianalytic descrip—e Ref[23]). The isotropic mechanisms will not be con-
tion of dielectric EC are introduced in Sec. Ill, thereby dis- (si(.jge.r,ed hgre]). ! i ! W

cussing the linear stability problem. In Sec. IV the 3D am- For volta : . .
. ) : : ; . ges slightly higher than the threshold of dielec-
plitude formalism for dielectric EC is derived. Close to thetric EC, the formation of thehevronsuperstructure is ob-

threshold ofECandina quui(_j—crystal slab of Iarge but finiteserved: defectgdislocation$ in the pattern of convection
th|ckness,dthe pattertr) dynafmlcst.becomeds e_ssczn;lally tth. :;”}8"8 accumulate along lines oriented in thelirection, such
corresponding equations of motion are derived from the I:%hat the topological charge of the defects alternates from line
formallsm in Sec._V. In Sec. .VI the stability of ideal perlogmc to line. Between the lines, the convection rolls are rotated
patterns is investigated and in Sec. VIl a general scenario foénd the nematic director is twisted, alternately clock- and

thetttranaltlon f.r om tf:r(]a _onset qf dleletctrlclECt: to fglly d3D Icounterclockwise[24]. The observation of chevron patterns
pattern dynamics with incréasing external stress 1S devei, y,qo conduction regime of EC with homeotropic director

olpecti._ Sﬁctmn I:/m dlzcusses pOSS'blet exp%ngentfxbased Oé]ignmenl{ZS,ZQ shows that this scenario is not restricted to
electric Nusselt number measurements and Sec. IX SUMM@- e jar convection mechanism.

rizes the results. Appendix A contains some analytic an
numerical results for coupling coefficients, Appendix B com-
pares two different methods for integrating multiple, homo-
geneous soft modes into the amplitude formalism in a gen- EC in both the conduction and the dielectric regime result
eral framework; one method is used in the main text. from the interaction of electric field, space charges, mass

Notice that below some points are oversimplified in order

B. Hydrodynamic equations and material parameters
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flow, and the nematic director via the Carr-Helfri¢B7] In the conduction regime the charge densities oscillate
mechanism: Spatial modulations of the director orientatiorwith the frequency of the applied field, while the director
are amplified by an inhomogeneous mass flow generated rientation is mostly constant. This imposes a condition
electric volume forces on space charges that accumulate due
to inhomogeneous electric currents in the inhomogeneous
director field. Thus Maxwell’s equatiohgin the quasistatic _ . )
approximatiof curlE= curlH=0) and the balance equations ON the three time scales. The finite sa!mple thicknkedster-

for charge, momentum, massontinuity equation and the ~Mines the wavglgngth of the convel%tlon pattern and leads
torque acting om have to be taken into account. They con- throuzgh azccz)nd|t|ord~)\~(Dd'Stag-d) to a voltage thresh-
tain several material parameters: the conductivites o, 0/ Ve=d"Ec~Kss/e€, , for the onset of convectiofsee Ref.
—0(107%--10-5Q~*m™Y) for electric currents parallél) [13] for a good a_nalytlc _formuD@ A lower I;mlt for the

and perpendiculatl ) to n, respectivelythey vary on a large SaMPle thickness is givevia relation (1) by d =Dy sy
range depending on purity and doping, while'o, changes At frequenc.les higher t.hen.the cutqff frequeney~ 7, -,

only little), the dielectric constaritse;,e, =O(ey) [the the conduction 'mechgnlsm is also disabled or at least super-
quantitieso,:=0y— 0, =0(0,), €5:=¢,— €, =0(€,) mea- seded by t_he dle_lectrlc_ mOde.' . .

sure their anisotropids the flexoelectric constants; ,es _ In the d_|electr|c regime, d|r_e_ctor and fluid flow oscillate
—0(10 2-1011CmY) (e, =€, +e;, e i=e,—e5), the with w, which leads to a condition

diffusion constants for(ionic) charge carriersO(10 !

m?s 1)=:D,, the mass densitp,,=0(10° kgm3), the rgso L 2

five independent viscositiesa,...,as=0(0.1 Nm 25s)

(ag=ast azt+as, yi=az—ay, yo=aztay, 291=—ay The charge distribution is at high enough frequencies{
+ay4tas, mo=7,+m1), and the curvature elasticities of <7,) mostly constant in time. This is not actually necessary
the director fieldky,<k;;=ks33=0(10 'N). I also include for the dielectric mechanism to be effecti{@0], but typi-

the “dynamic flexoelectric effect,” which was predicted cally dielectric EC is superseded by the conductive mode at
[28,29 on the basis of a systematic rederivation of nematofower w. The threshold for the onset of EC is now given by
hydrodynamics, but, to the authors’ knowledge, has not beea conditiony~w~* (or E2¢, /y,~ ), i.e., the lowestE,
detected, yet. It is characterized by a paramgteand leads  compatible with relatiori2). The wavelength of the critical

to additional dissipative contributions in the charge, momenmode can under some conditions e [30], but for typical

=0 =1, (]

tum, and torque balance equations. materials used it i ~ (D g 4yn/ @) 2 at least as long as this
length is smaller thad and larger than the Debye screening
C. Dimensional analysis length ©,70)*? ie., @7g<Dgayn/D,=O(10%), where

charge diffusion becomes important.
Thus, the length scales given by the spatial period of the
pattern\ and the sample thickneslsare usually independent

With the exception of the charge relaxation timg
=€, /o, =0(10 6—10"'s) the nematohydrodynamic
equations(without external fields being derived as a limit . ; . : . .
o?large t?(me and length scalégﬁ)ugh tgypically valid down and easily separated\ d) in the dielectric regime, either

by increasingd or by simultaneously increasing and the

to molecular scalgs do not set any time or length scale by conductivities, while leaving the secondary control param-
themselves. Instead, one finds basically three types of diffu- X 9 y P

e )l chrge B 1 ket oo S orsant. Snce steng oprg ey fect e e
Dy sta=Kas/ y2=0(10 m?s™)  for static, Dyggyn P y 9

=(k337;1)/(71771—a§)=0(10_9 m2sY) for dynamic de- quencies is not fully understood, the program carried out

¢ tions: notice thafstatia fl lectric effects d ¢ below is best seen as the limit of thick cells. The theory
rormations; notice a_(s a_|© exoelectric ezec S 00 Nt ghould accurately describe typical experiments in cells with
introduce a new diffusive scale since]yeo=<Kaal,

5 d=10\n. To observe fully 3D patterns, thicker cells might be
and (i) momentum [e.g., Dp=(y171~a2)/(v1Pm)  required(see also Sec. V)i

=0(10 °m?s %) alongn]. The overdamped limip,,— 0,

D,— is generally a good approximation. Charge diffusion

is not essential for the Carr-Helfrich mechanism and is typi- . APPROXIMATION METHODS

cally screened out. Then orientational diffusion sets the only AND LINEAR THEORY

diffusive scale.

With an externally generated electric ac fielthz coswt, . ) ,
two additional time scales are introduce@ The period Below we will develop the amplitude formalism for the
27w L and (i) the “director time” r4=1,/(e, E2) [the pattern dynamlcs in the dielectric regime, i.e., qbtam the
more intuitive choicery:= yll(eaES) would suggest tha, Iav_vs of motion of_amplltude and phase of the spatial n_10du-
=0 is singular for EC, which is, for the convective modesla:[IonS as described by the pomplex pattern amplitudes
themselves, not the cdse A'(x.y.1) or A(x,y,;,t), respec_tlvely. . . :

The basic state in the experimental cell is anisotropic and

inversion symmetric and the primary bifurcation is super-

critical (forward towards a steady-state pattern with a single
'in MKSA units. critical wave vector. Hence, the most elementary description
2We will only allow for homogeneous magnetic fields. of the pattern dynamics is give by the time-dependent
3For convenience, the facteg is absorbed inta; ande, . Ginzburg-Landau equation in 2D,

A. 2D vs 3D amplitude formalism
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TatA’=(s’+§§¢9)2(+ 53(95_9'|A/|2)Af, ©) between electric charges and fields. With these truncations,
the stability problem for sinusoidal excitation can be solved
explicitly (see Appendix A Notice, however, that this
“lowest-order” or, respectively, “second-lowest-order Fou-
jer approximation” involves some arbitrariness in the

magnitudes corresponding to natural scales of the systec oice of variables and does not correspond to any physical
(e.g., the pattern wavelength fég,&,) and can be calculated - : P 0 any phy
limit. Numerical convergencé&% accuracy requires inclu-

from the underlying hydrodynamic equations. The small, di-_. . : .
mensionless pa)llra?netyer’ m%easures (':[{he distance from the 5" of at least the th|rd harmonlc. The actual time depen-
threshold of pattern formation in the control-parameter spacgril?;lee?lgnefé;thid['ig]cmr field, dependsmnd is non-

of the underlying system. - : '

It will be shown in Sec. V that, as a direct consequence o Some results presented here rely on the first or second-
the separation of length scales in the dielectric regime, théowest-order Fou_rler_expansmn of the induced electric poten-
range of validity of Eq.(3) is highly restricted. Already for al q)L the ”e”;alt,'gd'[e“or exprgssed byand ¢ Su.Ch t_hat
values ofs’ of the order\*/d*, corrections to Eq(3) must n=n,z+(1-n;)™¢, €:=(cosesing,0), the ve_IOC|_ty field
be taken into account. Fas'~\%d? the 2D description v, and the pressur®. The other hydrodynamic fields are
breaks down completely. But the convective dynamics Caﬁreated_ |mpI|C|_tIy. For the representation of the dielectric
then still be described in terms of the 3D modulations of the'lmOle itself,v is expressed |n2the2d|vergence-free form
complex pattern amplitud&(x,y,z,t) [defined by Eq.(4) = (= 9y:9x0)9+(dxdz,dyd,,— dx—dy)f and the pressure is
below], which is coupled nonlinearly to several homoge- €liminated. . .
neous soft modes. It is therefore natural to derive first the 3D AS @ natural consequence gf~w -, the relative phases

amplitude dynamics, which can then be reduced further to gf electric, director, and velocity fields in the linear eigen-
2D description in a subsequent step. vector are shifted by angleS(1). Remarkably, the phase

Julien, Knobloch, and Tobid®,3] were the first to imple-  Shift between the lowest Fourier mode of director oscilla-
ment the idea of deriving a reduced description for the tions and external field is/4, for the first-[33] and second-
dependence of the amplitude of patterns witli<1 as an lowest-order Fourier approximatiotsee Appendix A ex-
intermediate step in the theory, and also the first to observaCtly and only slightly perturbed<1% for w7o>2) when
that this method significantly eases the restriction of the conbigher Fourier modes are included. No simple physical ex-
trol parameter to values close to threshold. Their calculatiofpl@nation for this result should be expected, since it holds
does, however, not involve in-plane modulations of the patOnly at the criticalmost unstablewave number. Experimen-
tern and the resulting excitation of homogeneous soft moded@! observation$35] seem to agree with a value/4 for the
Several results concerning the 3D description of dielectri®®h@se shift even better than the comparison with Galerkin
EC and its reduction to 2D are derived in an unpublishecf@lculations includingz dependenc¢36], which had been

work by Lindner[33], which is quoted here whenever nec- aried out as a test of the dielectric model of EC.
essary. We define the pattern amplitudesuch that the amplitude

n, . of the coswt Fourier component of the director tilt os-
cillations (which is in phase with the applied voltggeas a
spatial dependence

important physical properties of which are reviewed in Refs
[31,32. The real, positive coefficients ¢, £,, andg’ have

B. Linear stability in 3D

The starting point for setting up the 3D amplitude equa-
tions is to calculate the linear threshdi}, critical wave
numberq,, and critical eigenvectofi.e., the 27/w periodic
time dependence of the hydrodynamic fields at threshold
ignoring any spatial variations alorey Several linear stabil-
ity calculations of this type have been carried ou
[18,30,34,13 _ 2.2 #2022 £22

In experiments, the critical wave vector is always found to THAZ(e+ G T E0)A. ©®
be parallel to the orientation of the nematic director in theag conventional,e :=(E2—E2)/E2. The coherence lengths
basic statéthe x direction. The linear problem is thus effec- &€, &, tumn out to be~\ and the relaxation timeis of the
tively 1D, with trivial, sinusoidal variations along the re- ordeyr of the charge relaxation timg [30] (see Appendix A

mainingx direction, and is much easier to solve than the 2D 1ne horizontal boundary conditions férare simply
problem including variations and boundary conditions along

z. This technical advantage of the 3D approach, which is of A=0 at z=+d/2. (6)
course not restricted to EC, remains effective also in the
subsequent calculations of the coupling coefficients in theContributions from derivatives oA and nonlinear contribu-
3D amplitude equation. tions to the boundary conditions are of higher order and can
For analytic as well as numerical calculations it is conve-be discarded. In particular, as is well known, the distinction
nient to use a truncated Fourier expansion of the time deperetween free and no-slip boundary conditions for the veloc-
dencies of the hydrodynamic fields, assuming them to béy field plays no role at this point. With the realistic no-slip
27/ w periodic—in the simplest cases are truncated at lowedboundary conditions for the velocities, the relative magni-
order (i.e., including constant and sin/ces contribution$  tude of the hydrodynamic fields in the 2D linear eigenvector
[13,33 or including the sin/cos@ modulation of the in- (including x and z variationg locally deviates from the 1D
duced electric potential in order to better model the interplayeigenvector(only x variation only in a boundary layer of

nZ,C:A(X!yfzrt)eXKiqCX)‘f’C.C. (4)

Assuming as usua, dy,d, ,d, to be small and discarding
contributions beyond the lowest nontrivial order, the linear
tpart of the 3D amplitude equation assumes the form
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2 . . . Previous calculations involving flexoelectric effects
[34,38,39 were restricted to the conventional, ‘“static”
15 e, s flexoelectric contributions and concentrated on the determi-
N n

nation of critical mode and voltage.

. IV. THE 3D AMPLITUDE EQUATIONS

S A. Method
Z
05 r et il Before discussing the homogeneous soft modes relevant
,"'A:,»/'/ for dielectric EC, some comments on methodology are re-
0 ey , . quired.
0 0 o (z1+d/2) 1.5 2 Multiple homogeneous soft modes excited by a patterning

mode have, to my knowledge, first been introduced by Plaut
FIG. 1. Linear boundary layer calculated in the lowest Fourierand Pescli40]. But their description requires the soft-mode
approximation for MBBA. The temporally unmodulated componentamplitudes to be constant along all but one spatial direction.
of the potential®,,, the in-phase and out-of-phase components ofThis limitation seems to be partly due to the procedure by
the director tiltn, ¢, n, s, and the in-phase component of the ve- which the equations were derived. There are two popular
locity v, . are shown, normalization_ to unit slope at large distancephilosophies for this procedutsee below and Appendix)B
[A<(z+d/2)<d] from the boundaries. which shall here be labeled as “order-parameter’ method
and “center manifold” method. The two methods usually
thickness~\, an example of which is shown in Fig. 1. This (for at most one homogeneous soft mpdéfer only in the
boundary layer might provide a problem for numerical ap-way in which the problem is formulated and solved, but lead
proaches directly using 2D eigenvectors in thick cells withto the same results. The association of existing general pre-
no-slip boundaries, notably when Galerkin approximationsscriptions for deriving amplitude equations with the former
are used. (e.g., Refs[41-44,32) and the latter philosoph¢e.g., Refs.
[45,44, the Chapman-Enskog approdety,4§ for the deri-
vation of hydrodynamics from statistical mechanics is also of
this type, see Ref§49,50) is therefore not always conclu-
Assuming as usual the latered,y) extensions of the cell sjve (see also Refs[31,51,53). When using the “order-
to be large compared to its thicknedsthe trivial solution  parameter” method to obtain reduced equations, each spatial
A=0 of Eq.(5) with boundary conditiong6) becomes un-  Fourier mode of the physical state is projected onto(tte
stable ate=eq:=(m¢,/d)? [i.e., e’ =e—eq in Eq. (3] with  joint) slowly decaying linear eigenmodes of the basic state
a critical modeA~ cos@@z/d). The small threshold shifE, with the corresponding wave vectolsing the “center
—(1+£4/2)E. due to thez variation is rather uninteresting manifold” method, the projection is always onto tliad-
by itself [there is also a shift-A?/d? in g, by a discarded joint) eigenvectors fortypically neutrally stable homoge-
contribution to Eq.(5) of the formiaxagA], but the effect neous perturbations/Vhen there are multiple slow modes at
provides, for example, a simple interpretation of the smalla single wave vectofusually g=0), the resulting reduced
gap AEy=3¢e4E./2) between the critical mode and the low- equations differ, as is shown in Appendix B. Plaut and Pesch
est z-antisymmetric moddi.e., A~sin(2rz/d)] reported in  [40] seem to be using the “order-parameter” method, which
Ref. [37]. leads to problems in more than one spatial dimension. Here,
the “center manifold” method is used to derive the nonlin-
D. Flexoelectric effects ear extensions of the amplitude equat{hincluding homo-

. . eneous soft modes.
A short remark about flexoelectric effects, which are gen—g

erally difficult to isolate experimentally, is in place at this
point. The high symmetry of the linear problem in 3D does
not allow flexoelectric effectsk;, q., 7, and ¢, are inde- Some particularities of the problem under consideration
pendent of the flexoelectric coefficients. Most of the remain-have to be taken into account: The quasistatic approximation
ing linear and nonlinear coefficients contain flexoelectricof electrodynamics cu=0=curlH and the approximation
contributions. With our choice of variables these contribu-of an incompressible flui#v=0 both lead to additional ho-
tions are, except for some dynamic-flexoelectric terms, almogeneous “soft modes™: Since no time derivatives of elec-
indirect: flexoelectric effects excite additional, “slaved” tric potential (electric field or pressure occur in the basic
contributions in the subspace orthogonal to the critical eigenequations as they are used here, all their temporal Fourier
vector, which, again by flexoelectric effects, feed back intomodes are in the kernel of the linear operatd0,0) (see

the dynamics of the amplitude of the eigenvector. In contrastAppendix B. When the viscid limitp,,—0 becomes effec-
the contributions not depending on flexoelectric coefficientdive, the same applies for the oscillating part of the velocity
are, except fog,, all direct: no excitation of slaved degrees field. This is the case when spatial variations occur on scales
of freedom is involved. Thereforélexoelectric effects are smaller than D,)Y?=(D,/Dg) A =0(10°)\. For-
separated in a natural wafrom the standard dynamics. This mally we shall assume length scales to be larger than this.
might provide methods for measuring the flexoelectric coefBut, since, at least in this case, velocity and pressure oscil-
ficients in a way not sensitive to parasitic boundary effectslations do not feed back into the remaining dynamics at low-

C. Linear stability in a cell of finite thickness

B. Derivation of the soft-mode equations
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est order in the derivatives, i.e., there are no contributionsvill be used in Sec. V. The contributions resulting from the
~pm , the description should be good also on smaller scaleslimination of fast modes are underlined.

To simplify the problem further, the equations for the soft Remarkably, the equations are mostly independent of the
modes are here calculated only in the lowest-order Fouriestrength of the external fielta factorE, can be absorbed
approximation. The “slaved” modes being eliminated areinto the definitions ofb, and®;), although it is the cause for

then the slowly varying average director tilt,, which is

the excitations of the slaved modes. As an example, consider

stabilized by the applied electric field through the dielectricthe mechanism for the reduction of viscosity by the term

anisotropye, (assumed to be negative hereaftend oscil-

lations of the director, which are viscously damped. Finally,excite n,.

a,d%v, in Eq. (409 (recall a,<0): Shear forces- a,d,v,
This leads to polarization chargesd,Eqe,n,.

in anticipation of corresponding boundary conditions, onlyThe electric field~E; acting on these charges generates

small deviations from the basic statgp,n,,®=0 shall be
considered for now.

bulk forces on the fluid. On the other hand, the excitation of
, is damped by electric forces e,E3 and the factorE3

In order to obtain a consistent truncation of the soft-modecancels out.

equations, recall that the only nondiffusive scale in the hy-

drodynamic equations is the charge relaxation tirge As-
sume w, to be fixed. This also determinds,~ w'/? for
given rg and we will assum&gy~E_. The elimination of the

fast modegn, and oscillations oh) becomes more efficient
whenw andE increase or, respectively, decreases. Then,

in the limit of small =, (or largeo, with fixed o /o), the

The soft-mode equations reflect the nonequilibrium char-
acter of the basic state. For example, if Onsager’s relations
would hold, the coefficients of,d,v, in Eq. (409 and of
dyd,v, In EQ. (408 would be the same. At low the basic
state is even unstable. The mechanism corresponds to EC in
the conduction regime. Ignoring flexoelectric effects, the cut-
off frequency w. above which the basic state stabilizes is

time scalery drops out of the equations. A purely diffusive given by

scaling for the derivatives &~ d;~d2~d,) is retained,

without making anya priori assumptions about the actual
scaling laws of typical lengths and times, which may be dif-

(€, 0= ar€e0, —€3710)
wi= 2 : ®

€a€|€L 71

ferent. This approximation breaks down when length scales

become shorter tharD( siamo) /2 of (D, siad @) Y2

It turns out that with these approximations the ondy-
evantmodes in the fast subspa@ee., R in Appendix B3 are
n, and its temporal modulations as given by

(kao— ki) dyny+ azvy
Egea

€aEoP (€.

n,(X,y,z,t)=24d,

—27105)9,Po+ azv,
Ele.,

+24,

2b(€,0xPp—e_dyny)
Ege

X[E3e,cod wt) —4ywsin(owt)].  (7)

The electric potential has been decomposeddastbo
+2®, coswt—2®d; sinwt. The parametet:=Ege?/(3Eje>

+16y1w2) measures the strength of the excnanon of the_}'o’O

oscillatory part ofn, . It is numerically smal[in the standard
material MBBA (p—methoxybenzilidenep’-n-butylaniline

b~0.01]. The resulting description for the soft-mode dynam-

ics is given by Eq(40) (for the terms containing\, see Sec.
IVF).

C. Comments on the soft-mode equations

Most of the terms in Eq(40) reproduce linearized nema-

tohydrodynamics. Equation8403—(40¢ derive from the
charge balance equatidiEgs. (40b), and (400 have been

multiplied with Ey], Eq. (40d) from the angular momentum

balance onn, Egs. (40e—(40g from the Navier-Stokes

which reproduces the result of direct stability calculations
using(effectively) the same Fourier truncati¢t8]. Only the
threshold field for the Williams domains is too small to be
resolved by Eq(40).

D. Nonlinear extensions

Of course, constant values can always be added to any of
the soft modes by a Galilei transformation, a rotation, or a
gauge transformation. The problem of adding nonlinear con-
tributions (e.g., advection termgo Egs.(40) such that they
become formally invariant under these transformations is
easily solved. The solution is not unique, but it can be seen
by inspection that the precise form of the nonlinearities does
not matter under the following conditions:

(1) The dynamics is such that, in fact, diffusive scaling
holds. In particular this implies that, lf>\ is the typical
Iength scale(i.e., dy,dy,d,~L 1), the variations ofv, ®,,
¢/L, and®d,/L overL scale in the same manner bs

(2) The variations inp overL are much smaller than one.
It is not necessary to specify the scaling relatiorpcindL.
When L is determined through the bulk dynamiges,may
actually vary byO(1) over the sample.

It should be noted that, although the second condition is
satisfied for many problems of pattern dynamics, it is too
strong for disclinationgline defect$ in the director field at
any distanceR from the core of the disclination: On the
typical length scald. =R, variations ofe are O(1). Then,

for example, nontrivial nonlinear contributions from the ve-
locity field v~L 1, like a term of the form dxv,) (dye) in

Eq. (409, might have to be included.

equation, and Eq(40h) is the unchanged continuity equa-
tion. In Eq. (400) a termXaH§¢ has been included, which
describes the action of a magnetic field in thdirection. It

For the part describing the curvature elasticity in Eq.
(40d), the fully nonlinear corrections i@ have been calcu-
lated by extending the “center manifold” method to nonlin-
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ear contributions and requiring rotation invariance. The redincluded; assuming time, all lengths and all fields scale in-

sult has the same form as close to equilibrium: dependently. The left-hand side is given by Galilean invari-
o o ance, the form of the expression followigg from rotation
Y1019 =kas€, (95 +))C invariance[56]. The term involvingV,®, represents simply

an additional contribution to the electric driving field. Sym-
metry would also allow a ternx,V,v A, but the hydrody-
namic equations do not generate it.

When g, = — gf,qc it is possible to absorb the correspond-
ing term into the parentheses afgérand to rewrite the com-

+(Ki;—Kag) (8, V) (V&) + kool 028+ (9)

[€, :=(—sing,cos¢,0)], however, with kj :=k;,+2be®/
€,. Although an additional term proportional to
(VE,)(VE) would be thinkable, it does not occur in the plete expression in the “potential” forn&z(a —igee)(d
resent approximation. For a rotationally invariant descrip-_; : y oy APy
P PP . ' X y o — ig.¢)A. In this case the phase of the pattern does not drift
tion of the dynamics of the convection pattern, it is useful to;,, a weakly deformegp field. In fact, g, is close to this value

go over to a representaton in terms OA(r)  (see Ref[33], Appendix A, which is largely due to the

=A(r)exp(gcx) as in Ref.[53]. conservation of charge and momentum and the flux-
divergence form of the resulting expressions.
E. Stability of the twist mode with respect tox modulations The Landau coefficieng is of order unity in our normal-

) _ _ization [33]. As in the conduction regimg40], it is domi-
Another point to note is that below the threshold of di- 5teg by “geometric” effects, i.e., inhibition of the Carr-

electric EC(i.e., with A=0) the system can, in our approxi- Helfrich mechanism for largen,; besides flexoelectric
mation, never destabilize in such a way tigeit excited but  effects, about 99% af come from contributions quadratic or
dye=0, even when allowing for flexoelectric effects and ar-cubic inn,. This indicates that a breakdown of the weakly
bitrary z dependencies. Withoyt modulations, the in-plane nonlinear expansion should be expectedAorn,=O(1).
director couples only tw,, and this interaction is not af- The nonlinear excitation of the soft modes by the convec-
fected by the elimination of the fast modes and hence relaxtion pattern is less intuitive than their feedback onto the rolls
ational. This is remarkable because such modulation instadiscussed above. The principle of truncation for the contri-
bilities of ¢ below the EC threshold are apparentlyserved butions ofA in Eq. (40) is again to keep only terms of lowest
in experiment$19,54 (the “inertial mode” [55], which was ~ nontrivial order, however, allowing for phase gradientshof
proposed as an explanation, has the wrong symmeirfar ~ Without gradients of the modulus. As the relative scaling of
fetched but possible explanation would be that the modula¥s length scales is left undetermined at this stégge Sec.
tions in ¢ are generated through a mechanism that is similat¥ D), the nonlinear term-A*ig.@A, which is given by

to the one that generates the chevron superstructure in tfgtation symmetry, must always come along withd,A.
dielectric regime, however, invoked by the convection rolls ~ Since Eq(408 must have fluzx—(glvergencg form, the larg-
of “isotropic” EC (see Sec Il A The isotropic mechanism est contributions fromg greO(V A )., which is too small to

is expected to become active in the respective experiment relevant._ The (_:oeff|C|ent$ andl; in Eqs_.(40b) and(400
situations but does itself not involve excitations @f The ~nave the dimensions of a current density and measure the

convection rolls might themselves be smaller than the opticait:.eggtht Ofer?;at?aléerk?atiﬂg Ccoun”zg'i%;_ zzllﬁiar(nlr (I:r?"nsuétrtan i
resolution and therefore remain unobserved. Then the onset i >' f) g Y vection p ' P

of ¢ modulation wouldappearto be the threshold of a pri- ggcgg;grns to the coefficients ...l come from charge

mary||nst_ab|llty f?.f the hprxlogre]neohusldbgsw sta}'_[ehalllthlough the The strongest contributions 10 in Eq. (40d) are simple
actual primary(“isotropic”) threshold is at slightly lower ,ential effects. In MBBA, the most important one de-

voltages. scribes a relaxation of the bend of the director modulations
by twist and is given by 4(,,—ks3) (see Refs[33,40 and
F. Interaction with the pattern Appendix A), which is generally negative. The second most
: i ; ; <important contribution comes from the dielectric torques
giv'le':l]ebiz/quatlon of motion for the pattern amplitude itself ISfrom applied and induced field on the director. In MBBA this
contribution tol is positive and in materials with large nega-
(9 +V-V+iv,go)A tive €, (e.9.,= — €, ) it could compensate the elastic one and
reverse the sign df. Notice also thal is paricularly sensi-

_ 299 2 2 A > tive to flexoelectric effectésee Table)l A negative value of

=| K VUxt K2V 0,7+ Exd+ £(9) = 2i0cpdy = Ace”) I is required for the occurrence of abnormal rdee Sec.
VIA) and chevron patterns.

4v, o, The terms associated wit, and S, in Egs. (408 and

2.2 - . _
+ &0, Ti1a VDo +i B, Vye E, (409 represent internal stresses of the convection pattern. As

for the coupling ofA to v in Eg. (10), a corresponding term

for the y direction or a term of the forng,,d, Im{A* s, A}

does not enter into Eq40f), although they are allowed by
symmetry.S,,,Syy,-..,S;x can be interpreted as surface ten-
All coefficients are real. The differential operatdrg, Vy,  sions of the planes of equal phase of the convection pattern.
andV, are used to indicate that only the immediately follow-  The high number of soft modes and the rich, nonpotential
ing expression should be differentiated, #WotWith the ex-  coupling almost certainly lead to spatiotemporally chaotic
ceptions ofv,d,A andV,v,A, which are included for sym- states already at onset, provided the spatial extensions of the
metry, only terms up to lowest nontrivial order have beensample are large enough.

+s—g|A|2}A. (10
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TABLE I. Coupling coefficients in the 3D dynamics of dielectric EC patterns a§:=we, /o, =8. The first column reproduces the
analytic results of Eq9A1)—(A21). The second and third column give accurate numerical results for MBBA and pha&erés). For the
units of the flexoelectric constants, see Appendix A. Ellipses stand for suppressed flexoelectric contributions.

MBBA?, second-lowest Fourth-lowest Fourier approximation PhiséoBrth-lowest
Elw 7.52x10° VZsm 2 7.74x10° VZsm 2 4.01x10°VZsm 2
Qi 1.53x10°sm 2 1.79<10° sm 2 1.19x10° sm 2
7o 1.01 1.05 0.707
q2é? 0.796 1.06 1.89
a2 1.3%+--- 1.41-0.008%> +0.013&_e, —0.00322 1.26+---
—0.0012_¢'E+0.000%, {'E—0.0004'E*
qz& 5.92+: - 6.00-0.00382 +0.001%, ¢'E—0.0014' & 5.59
dcBy — QRS+ —03&5+0.0022_e, +0.004%_('F — QRS+
E.ay 0.021@&. +0.0433'E
Kyl 7o —0.445 —-0.388 —0.690
Kk, 1 7g ~Pm 6x10 7—3.13x10 °*m*kg tp,,
g 9.37+- - 9.39+0.005&2 —0.0452, ¢{'E+0.0755 'E* 9.12+- -
I, /Ecwe, 0.265 0.277 0.293
I, /E.we, 0.0408 0.0518 0.128
Qcl iy [Ecwe, —0.0220+- - —0.0312+6.21x 10 %% —3.12x10 %e, 'E 0.590+- - -
—3.08x10 57 'F*
Qclix /Ecwe, —0.459+ -+ —0.451-1.00x 10" “e? +5.04x 10 %e, 'E —0.502+---
+4.98<107 57 'E*
Qcl 2 /Ecwe, 0.7115 0.642 0.992
Qcl 2 /Ecwe, 0.2254 0.250 0.671
Se/E?e, 0.0728 0.0851 0.162
Below this line, all values are given in units of 16N
Se/q? 16.6 17.1 25.2
S./q? -2.23 -1.96 —3.56
S,/q? 6.14 7.49 18.2
S/ e -7.34 -5.95 -16.4
S,y /dc 8.3+ 7.07+0.041%2 —0.056k_e, +0.014E> 10.1+- -
+0.001%2_¢'E—0.0022, {'E—1x 10 %¢'F°
S,,/0¢ —17.6+-- —15.7+0.010k_e, —0.010%2 —5.49+- -
+0.005@_¢'E—0.0052, {'E—1x 10 4’
Syy/dc 9.86+: - 8.66-0.084%_¢'E+0.028%., {'E—0.0050q"E* 10.2+---
Scz/dc —13.7+- —11.8-0.02082 —0.0102, {'E—1x 10 4¢'E° 0.317+---
S,, /0. 34.8 34.8 88.8
r —14.6+-- —14.5-0.55%% +0.32%_e, —0.056%> —32.1+- -

~0.19%_¢'E+0.066%, {'E—0.010Q'E*

8Using the parameter set “MBBA I” from Ref.36].
PAs tabulated in Ref[70] for 30°C, €, =5.22¢,.

V. EFFECTIVELY 2D PATTERN DYNAMICS A. Derivation of the 2D description

NEAR THRESHOLD The appropriate boundary conditions for the soft modes at

. . . the enclosing electrodes are
Currently more interesting than the fully 3D chaotic state g

are, from the experimental point of view, the quasi-2D pat- Oy, D, ,D;,0,v=0 at z=+d/2. (12)
tern dynamics in a restricted geometry near thresheld

=(M\/d)?]. The dynamics is derived here for a slight gener- ) i

alization of the usual setup: A magnetic fietti, might be Thu_s, all components of the electrlc_potentlal and the veloc-
applied along they direction (i.e., in plane, normal to the Ity field are d‘?mped by the b?“”da”esj

rubbing direction. With H, slightly below the twist- _Again the “center manifold” method is usedee Appen-
Freadericksz fieIanH§=k22(7-r/d)2, the amplitude of the dix B), now to reduce the 3D equations to 2D_. The dynami-
twist mode, which is known to be important for the patternca!lY afctlve partS of the state vectou is now given by the
dynamics in any case, becomes a slow variable and must MmO

included explicitly in the 2D formalism. The conventional
setup is described bid,=0. A(x,y,z)=A’(X,y)cog 7z/d), (12
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X,Y,2)=¢'(x,y)coq wz/d), 13 d?> Z2 d? wz
e(xy.2)=¢' (xy)cog nz/d) (13 U£<2):[Sx(l_6_z +(SE+SX_SZ)WCO§(F)
P(X,y,2)=P'(xy), (14
AT 1)
with the amplitudes of the active modas, ¢’, andP’'. 7y
To be specific, associatewith the complex conjugate of
Eq. (10 and®,, ®,, ®;, ¢, vy, vy, v,, andP with suc- 2 d? wz 2(7y|A'|2
cessive equations in the systerD), and define the scalar vy :(SE—SZ)WCOSZ(F)— (22

product(-|-) as usual, as the equally weighted sum oxer

integrals over products of the two components. The projectojs excited (there is no distinction between “singular” and
onto the slow dynamics is constructed from the b'Orthonor*‘nonsingular” mean flow in this approaghExcitations of

malized linear functionals ®, are of the ordeiO(¢’) and do, as all other remaining
o i correc.tion.s, not contribute gt Ieading order.
(2/d)f cog wz/d)A dz, (2/d)f cog 7z/d) ¢ dz, Projection of the dynamics with the full state vectdr
—di2 —di2 =S+ R onto the slow space yields the equations of motion

o for the pattern amplitude
and (1/d) f Pdz
—dr2

16iq 3q2
A L e (23a
We proceed with a calculation of the excitations in the
fast subspacR by a term-by-term solution of E§B12). The ) 3 Se
truncation is chosen such that the distinguished limit +i gﬁywp' +e'— 297 Ez) |A’|?
oo 23b)
P/ HZ—HZ0~8', (
id%q.7 9Se+(15+272)S,— 9
@’,A’,ﬁx,0y~s’1/2, (15) _ 48?:2 E ( o~ )Sx SZVX|A/|2
¢’ =O(\/d)*, andd—o (239
: . id2q.7 3+ 72
is correctly described. qCZT —WVXP’}A’ (230
At linear order in the amplitudes and to linear order in 12a° 7,
dy,dy, the slaved part of the state vector contains only the :
contibutions and the twist mode,
NN 71019 =[Kagdx + k1195~ xa(HE—H) Te’ (249
v§>=——(§— §>axP', (16)
72 q.Jl 8 3iq,
+ = Imj A —ay— —— ' |A
2 d2 22 2 37 4 (24b)
LH__ 2|2 _ 2 '
vy a4( 8 2)&yP . (17
. B 4d2 a3 2[12
At order O(|A’|?) and without any or y modulations, there +—3 | —+ ——|xdyP’ (249
itati io fi T[22 A
are excitations of the electric field
(2) (2) Ir+||| z 5 ) 2d2 2a2(SE_SZ)
i N = ! — ! - _g -
o +iaf= 0 [ A P=(aR), a7, ] I
1 _
(18 . a3(Se+4S,—S,) B, |A2 (249
and a contribution to the pressure field, orthogonal to the 2
active pressure mode, and the pressure Poisson equatifi)
P@=—(S,—2S)(|AI*—=(|AI%)), (19 d2
== 13| oot — [P (259
where(|A|?),=|A’|?/2 is the average dfA|? overz and 72 %4
. d? Sg+(1+m23)S—
SE:zEOEL((;)GZLI,-l-Za'LIr) (20 +WSE ( S SZ(7>2(|A’|2 (25h)
we o 72
2 g _
By gradients ofp(?), &), P() and by direct contributions N d_2 Se— S, 2IA[2, (250
at orderO(d,|A’[2,d,|A’|?), the mean flow An° ay Y
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B. Remarks on the 2D amplitude equations

By the explicit representation of the coupling coefficients
in Egs. (23)—(25), the increasing importance of the mean

flow contributions in lineg230), (23d), (240, and(24d), as
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0=2X0d, - 9,P' =(2X )M~ 12X 9,)G+ (2X d,)M "1V,
(30)

With some rearrangements, E@0) has the same simple

the separatiord of the damping boundaries increases, be-structure as Eq28). The quantityG can be interpreted as a

comes obvious. On the other hand, for small enodghe.,
g’ <(\/d)* mean flow is negligible. With some rescaling

stream function generating a certain component of the large-
scale variations of the velocity field {,v,)~ (2% d,)G, the

(indicated by a cargtdynamics are then described by the “singular mean flow” (in early works[59] expressed in

system

FoHA=[1+ 5+ 05— 2ic, 0y Co0°— |A12+i ByVyp]A,
(268

=055+ K305 p—H2p+ 21 Im{A* (gy—i ¢)A}.(26b)

This is the “normal form” for the dynamics of a pattern

terms of the vertical vorticity— V2G). By using Eq.(30)
instead of Eq(28) and eliminating the pressui’ through
Egs. (29 also in the remaining equatiofis;m our case Egs.
(23) and(24)], a description completely in terms of the sin-
gular mean flow is obtained.

In principle the three forms of Eq$28), (29), and (30)
are equivalent, although the last is often preferred in the
literature (for an overview see both Ref§l,60]), perhaps
because in some situations with high symme®yis not

coupled to a soft mode with symmetry under the reflectionsxcited, whileP’ is. When disregarding the effects of the

[X——%¢——p,A—A*] and[y——¥,p——] or [J—
—V,p——&A——A]. In the present casec;=c,
=3[8/(37)]°~0.96 are fixed by geometric constraifgs].

additional soft modep’, application of the less obvious but
direct method of Kaiser and Pes¢6l] leads to the same
result for the mean flow equatigB80) as the route described

These values are quite close to the case with an underlyin@ere-

rotation symmetryc;=c,=1 [56], which turns out to be
somewhat singular in its dynamical propertjé3,58.

With H§=O in line (249, ¢’ is damped out and becomes
one of many higher-order corrections. Equatid@8) and
(25) with =0 are then sufficient, and with’ <(\/d)* the
simple Ginzburg-Landau EquatidB) with

Se

=

3
9'=49+ (27)
(the second contribution is numerically small, see Tapis |
retained.

When modulations ofA|? along x are strong, as in the
chevron pattern, it is instructive to redefine the pres®ire
— P’ —constX|A’|? such that its excitation by2|A’|? in line

The fluxV in Eq. (29) is determined by Eq28) only up
to a transformationv—V+(2X d,)Gy(X,Y,t), which im-
plies a redefinitiorlG—G— G,. Hence £X d,)G is not gen-
erally proportional to the average of the large-scale flow.
This is not necessary for the formalism to work. In simple
cases, like the present, the stream functibhas this prop-
erty with the “natural” choice ofV. To guarantee it in gen-
eral, the method of Newe#t al. [60] can be used to derive
Eqg. (29) (Eg. (2.59 in Ref.[60]) directly under this addi-
tional constraint.

Here, following Ref[1], the formulation as a mass con-
servation equation(28) is used, since it derives naturally
from the general formalism and is thus easily extended to
three spatial dimensions, to additional homogeneous soft
modes, or to relax the assumption of incompressibility

(25b) is canceled. It turns out that the remaining excitation ofWhich is not essential for the relevance of mean flow as is

P’ by a)2,|A’|2 is proportional toS,. The substitute for line
(230 incorporating this redefinition oP’ has the form

id%g.r(7°—6) S+ S-S,
72

12

sometimes suggested

In principle, terms proportional to;¢’ and d;¢’ could
also appear in thP' equation(25). It is a particularity of the
system considered here that they do not. In the conduction
regime of EC in cells with homeotropic boundary conditions
it can be showr}58] that there is such a, presumably small,

and accounts for a mean flow with a nontrivial flow profile €xcitation of P’ by ¢ proportional to the dynamic flexo-

with zeroz average.

C. Pressure vs singular mean flow

As for any incompressible Newtonian fluid, E5) is of
the form

0=0,-M 9,P'—9,-V. (29
In the present simple case, the matkixis constant and, in
the usual coordinates, diagonal. The inhomogenéityvith
dimensions of velocitydepends on timex andy. Equation
(28) can be solved formally by the transformation

9,P' =M Y2x9,G+V), (29

which requires a fundamental soluti®(x,y,t) satisfying

electric coefficient’E.

D. Variation of the boundary conditions

Of course, the reduction from 3D to 2D can also be car-
ried out for other boundary conditions than E@.and(11).
Some variants are of practical interest.

An effect similar to applying a magnetic field aloggan
be obtained by a homeotropinorma) anchoring of the di-
rector at the boundaries: For negative, not too smalland
with external electric fields as required for dielectric EC, a
homeotropic director alignment is unstable and instead the
director becomes planarly oriented everywhere, except for
small boundary layers of thicknesskq(/e,)Y?Eq t~X\.
Hence, on the length scakea relevant for the amplitude
formalism, the boundary layer vanishes and instead free
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boundary conditions fokp can be assumed. For this setup y1dro=[(Ky+ 2be2_/ea)&§+ K202l

only some geometry factors have to be changed in EQs.

(23)—(25). — agdyot+(ql/2)a*(dy0—dce), (318
Another variant is a twisted cell, e.g., with=0 at z=

—d/2 andp=7/2 atz=d/2, as it was recently investigated PmitUx= 772(55‘*‘ I2)vg+ agdydre

experimentally by Bohatsch and Stannarj6g]. Based on + 2 . + 2
the reduced 3D description derived here, the linear theory for Syy@70y(9y 0= Ae) + S, 0,(8°9,0),
this configuration is developed in R¢63]. (31b

E. Higher-order contributions 7010=— TQo + Bydyp+ £330+ §zafzaz(a25z9)-( )
31c
It is worth noting that, when only the limit of smadl’ is

considered while keeping fixed, there are several other Sincea=0 atz=+d/2, the singular last term in E4310

nonlinear and higher-order gradient terms besides those implies boundary conditiong,§=0. The other boundary

lines(23¢) and(23d) which are formally of the same order of conditions arep,v,=0 atz=*d/2.

magnitude. A longer list containing more than 50 terms has

been calculated numerically by Kaiser and P& for the A. Homogeneous destabilization

conduction regime of EC. Their form correctly predicts the

Sy o el o s Cose 1 eSS e patin. i s case dcoupls fomu, and . The
L . g ’ estabilization ofp is known as the abnormal-roll instability

describe important effects like the transition to abnormal

rolls [64] (see Sec. VIA These limitations are partly over- 3\;;(1 \;\(/)&L\anhn\t/ﬁ;ttlgated In the dielectric regime in R88]. It
come in the less systematic but numerically surprisingly ac-
curate description of Plaut and Pegdid]. L 8729 ka3

In fact, since the lowest-order mean flow effects entering € TEAR=T W (32
Egs.(23)—(25) all depend on gradients &A’|2, they do not ¢
contribute to long-wavelength instabilities of the band center, ,.; ; ; :
(i.e.,A=cons}. For the calculation of the thresholds of long- ngé%h Zi%:)ii?nea:gloe: f(r)?mtrfeqs?ﬁgezuil(czi%)’lf tlil/lpBICBa,ltl)i);s

wavelength instabilities of the pattern it may be useful to_ 2 . :
formally set up amplitude equations including higher-order 2.8x (M d)"(wro=8). The value obtained by numerically

; o o calculating eigenmodes of E@31a directly is 3% lower
mean flow. But for a systematic quantitative description Ofthan the value of Eq(32). Below it will be shown that for

general nonideal patterns containing structures of SiZ€\\BBA the abnormal-roll instability is preceded by a long-

el —12 i is iystifi
hi)\rfer-oraeornllr):et:r? f:(rjl\‘,\?cbif(':%r:ngzerdeIgs;it'st#]uesgfl'jeg'mvvﬂﬁgwavelength modulation instability. Nevertheless, some phe-
9 ’ P omena associated with abnormal rolls might be observable

Iﬁgmfgﬁgeﬁczlrliidi/ br??'f,'zngeigmzsbiﬁﬁzeérf(;)ére;(faigglearounds =gaR, €.0., the tendency of defects in the convec-
gttye tion pattern to cluster along lines parallel to the rolls.

sample thicknest51]. For the discussion of homogeneous perturbations of

and 6, notice first the neutral mode associated with a trans-

lation of the patternd— 6+ const. This mode is best dealt
Rather than deriving stability bounds of ideal pattefns with by decomposing as = 6(z,t) + O(t) such that thez

=a(z)exp(gx+ipy) using a reduced 2D description, it average(d), vanishes. By multiplying Eq(31¢ by a? and

seems more appropriate to do the calculations directly basefdtegrating overz the dynamics o is obtained as

on the 3D equations, in particular whety=0. This is easily

seen from the fact that there igrrumerically smaljl manifest (a%vy),

deviation ofa(z) from the cos¢z/d) profile at the threshold 0= —ch- (33

of all instabilities calculated below, indicating that the ex- z

pansion for smalA’ is breaking down. Nevertheless, in or- Thjs describes the advection of the pattern by mean flow at
der to obtain analytic estimates, Galerkin approxmaﬂonqarge pattern amplitudes.

will be used that correspond effectively to Eq23)—(25) . - ~ .

and their extension to higher-order contributions. For sim-[9 @Ai the tth(r;asgilg Qf |r1|§tab|l|ty onel ha‘?e’&‘?";%ﬁnd f
plicity, the stability analysis shall here be performed only att const (o, IMplies an acceleration Instabiiity o
the band centeg,p=0 and only take homogeneous and patte~rn and liquid crystal To calculate the thresh.olld, elimi-
long-wavelength instabilities with modulations alopgnto ~ nated from Eq. (31b) by Egs.(319 and(33), obtaining the
account. The latter restriction is justified by experimenta/€duation
observations and by the fact that, with this geometry, the
advection of the pattern by mean flow is particularly strong.

It is then sufficient to consider only the interactiongfv, ,

and of the phasé given by A=a(z)expid(y,zt) [a=a(z)
=0(e'lg’")¥? be real and given by Eqg10), (40b), and  from which the critical mode can be determined numerically.
(400)], which leads to the following linear problem: When using the low-amplitude approximatiora?

First, consider homogeneous,0) destabilizations of

VI. STABILITY OF IDEAL PATTERNS

<a2v x>z

SZZ/TqC 2 UX_ <a2>
z

2
0= myd7vx+ &2
z

(34
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=(e'lg')co(wz/d) the critical mode is found to be antisym- stability bounds of ideal patterns.

metric inz (i.e., 9;0=0) at As mentioned before, simple Ginzburg-Landau dynamics
s can be expected for smalluntil the last two lines in Eq.23)
e—e! —733.1%9 & . (35 become relevant. Assumingd,~s'Y%, 1 and |A’|?

drift d?s,,mq. ~¢g'lg’, these terms have an effect of the magnitude of

PAT I 2 272 2__

[With the large amplitude approximatiaf=¢/g, the first S_éz) Tv(\j/?]ezr; Zsjﬁéx([flz)zzgggfgz\ %,\Z[égA fq)-(fiElJ(r))Sx
symmetric and antisymmetric mode both become unstable %;reliminary simulations of Eqg23) and (25) ,with ©'=0

the Sames:(472’729§§)/(dzsﬂ7’q0)'] The antisymmetric  gpo\y that, for highers’, defect coresiwhere d,|A’|? is
excitation of the phaSG involved in this |nStab|l|ty is obvi- |arge are Strong|y deformed and lines a|ong which the phase
ously inaccessible to a reduced 2D description. SiSgce argA’ “jumps” are often generated and long livingather
<0 in MBBA, the value ofe g~ — 100X (w70) *(Md)?is  |ong living phase jump lines are also observed experimen-
negative and the instability does not occur. However, sincg|ly and in simulations of a similar mod¢61]; it is not

the electric contribution t&,, [the second term in formula ¢jear, though, whether these are due to lowest-order mean
(A25)] is always positive and comparable in size with thefq,y effecty. But the simulations also indicate that these
hydrodynamic one, a positivé,, is thinkable for other ma- |\ est-order mean flow effects, although they are formally
terials. WhenS,,<0, the mechanism leading to E@®4) iS  yominating over the direct nonlinear saturation through the

stabilizing—in particular for all perturbations of. The ~last term in line(23b), do not prevent the system from finally
lamellae of EC are forced to align normal to the boundanesreaching a steady state with'|>~&'/g’.

Thi.s explains why the experimental ;hadqwgraph images, Thus, assuming stillA’|2~¢'/g’, there will be a further
which average the pattern alozgremain quite sharp even transition ats’m[31’277(a4+2772)gk33q3§y/(128a28x)]2’3
Cc

for complicated pattern dynamics. X (M d)83~1x (\/d)®3 (MBBA, w7,>8) where contribu-
o tions from slaved excitations of the in-plane directoby
B. Modulation instabilities mean flow become relevant in the 2D pattern dynamics.

The stability of ideal patterns with respect to perturbationsSemiquantitatively these effects are described by @24)
in ¢, vy, and @ modulated with small wave numbeksalong ~ with Hy=0, but a restriction of dynamics to a single linear
y was investigated numerically using the syst@t). It was ~ mode of is then not justified.
found that for MBBA the dominating destabilizing feedback ~ When, with increasing, horizontal length scales become
loop is based on the excitation of, by the term containing Of the size of the sample thickness[at &'~ (mé,/d)?
S,y in Eq. (31b) and advection of the phase. There is a good~0.2x (\/d)? (MBBA), say] the 2D description breaks
Galerkin approximation for the numerical results. Using thedown. Then, because is not the dominating length scale
low amplitude approximation foa?, Galerkin modesp,v,  for the damping of mean flow anymore, the trend in
~cos(rz/d) and 6~ 1, and projectorg dz cos(rz/d) on Egs.  the influence of mean flow on the smallest structures in
(319 and (31b) and fdz co(wz/d) on Eq.(31¢) to reduce the A field (e.g., defectsis reversed. Now the structures
the system(31) to algebraic equations, the threshold for themselves set the length scale. Assuming &%, * and
long-wavelength modulation instabilities is estimated to be atA|>~e/g, the contribution i7v,A in Eg. (10) is

large compared toeA up to e=~(0.S.7Ex/7,9)2

- 727% 17,9 Kaaé) ~1%X10 %% (w70)? (MBBA, wr,=10). For largere the
& —8z77'= d2q, cores of defects are not affected by lowest-order mean flow
effects. Larger structures, like the phase field of the pattern

X [51K33Syy7— 7,1 (2568, + 27m20c&5) ] . or variations in the defect densitg.qg., in chevron patterhs

(36) still may be.
Current experimental resolutions are of the ordes

With Byz—chiy the parentheses followinfj nearly van- =10"3...10 2. The estimates above suggest that lowest-
ish; the remainder is related to the small deviation oforder mean flow effects are best observed near the upper
c, in Eg. (269 from unity. Numerically &5, limit of the frequency range for the validity of the hydrody-
~9(wro) " *(\/d)? (observe that}, ande  have different namic description used here,ato=0(10) (see Sec. I €.
frequency dependenceln particular, atwr,=8, using the With d~5\ they should be observable in the range of valid-
second-lowest Fourier approximation without flexoelectricity Of the 2D description.

effects, Eq(36) yields e },=0.792(./d)2, while the numeri- According to the mod(_al for the chevron mechani$], _
cal solution of system(31) gives a threshold ats’ chevrons depend essentially on the abnormal-roll mechanism

=0.797(/d)2. Using the Galerkin approximation it is easily and can only form above the abnormal-roll instability bound

verified that the instability is in fact of the long-wavelength [1€re givezn by Eq(32)]. Thus, it is plausible to assume a
(k—0) type. &'~ (N/d)* threshold for chevron formation, in accordance

with measurements presented in R&f3], where an approxi-
matew ! frequency dependence is found.
For very highe’ many authors report the formation of
For the casél-=0, order of magnitude estimates shall be disclination loops, which, being singularities in the director
used to distinguish regions of qualitatively different patternfield, indicate already a breakdown bfydrodynamics In
dynamics in parameter space—above as well as below théicker cells, the chevron pattern might decay along other

VIl. QUALITATIVE TRANSITIONS
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routes before the 3D amplitude formalism breaks down atetical value for the Nusselt numbers, take ¥hendy aver-

somee =0(1). age(symbol( - ),,) of Eq. (40b) plusi times Eq.(40¢), which
For convection in most quasi-2D systems, i.e., system&ads to

with d/A=0(1), all these transitions, from the breakdown

of simple 2D Ginzburg-Landau dynamics to the breakdown (0, tiwe )IH P +idi)yy

of the amplitude formalism, do, in principle, collapse et = (1, +i1) a4 A%

=0(1). Only by especially designed experimefds in Ref. z i

[66]) can these transitions be unfolded. + (Lt i) dIm{A* 9,A} )4y - (37
VIIl. ELECTRIC NUSSELT NUMBERS Taking the boundary condition®) and (11) into account,

this implies, similarly as fol>®+id( in Eq. (18),

Recently “electric Nusselt numbers\; ,; have been
introduced by Gleesort al.[67] as the ratio of the in-phase Fiz=— (o, tiwe)d D +iD),y
or, respectively, out-of-phase components of the electric cur- _ . 2 . %
rent to the corresponding values expected for the unstruc- = i)(IA Pxyzt (a4 1) (IM{AT 9xAb )y
tured basic state at a given voltage, minus one. As for the (39
Nusselt number in thermal convection, they are to first ap-
proximation proportional tgA|2.

Several interesting questions can be addressed by meas
ing electric Nusselt numbers. First, it follows from the dis-
cussion above that, in dielectric E{@|?~ /g remains valid
even far inside the three-dimensionally chaotic rafe

at z= *=d/2. Obviously,j, is the complex amplitude of the
@verage, pattern-induced electric current density through the
sample.(The last term on the right-hand side represents a
correction due to a global deviation of the average wave
number from the critical one, and will be dropped below.

average oflA|? across the pattern is typically only weakly Thus,

reduced in the presence of defects; see, e.g.,[BE}).. Mea- 21.(|A%)

surements of the electric Nusselt numbers therefore seem to N=— e (393
be an effective method to test an essential feature of the Eoo

theory. Second, Nusselt number measurements may also helpq

to identify the qualitative changes in the dynamics predicted

in Sec. VII, in particular since they do not, in contrast to 21;(|A? Yxyz

optical methods, lose their sensitivity in thick cells or with M—W (39

small wave numbers. Finally, the frequency dependence of

the Landau coefficierd’, which enters the Nusselt numbers At threshold, @/de’)(|A|?)y,,=(29')" ", e.g., d\;/de’

near threshold in a simple way, provides information on the=0.31 in MBBA atwr,=8, dropping flexoelectric contribu-
strength of the dynamic flexoelectric effe(stee Appendix tions. The value increases roughlyw as frequency in-

A). From the derivation of’ it is clear that boundary effects creases. Typically, it seems to be larger than the correspond-
do not interfere in these measurements. To obtain the thedag value for the conduction reginié7].

0=—[(0y=2boy) di+ 0, (d5+d7) Do —2be_(oa/ea) dydye, (403

0= +Eodi e,0P— (0= 00) P, ]+ Eo(d5+ 32) (e, 0P~ D) —[ 74/ €5+ (1—3b)Eges/2y1]
X (e —2y1L5)050,P0+[ (0l €2) (—Kistkop) +€_E(1—3b) (e, /2y, — {F)] dedyd,0

+ (04 €3) (@390 + azdy0,) + Eo(1,d5| A%+ 1 dy IM{A* 3,A} +1,,0, Im{A* 9,A}), (40b)

0=—Eodi oy @i+ (&~ €2) 0P, ]~ Eq( 35+ 33 (0, D+ €, 0P,) — w(1—2b) (e, —271{5) 529,

+[w(—kj1t Ky —(2be_/e,) (e, — 271§E)]axayﬁz¢+ 0y (a3dv+ aydyvy,)
+ Eo(1id5| A%+ 1140y IM{A* 3,A} + 1;,0, Im{A* 5,A}), (400

V10,0 =[Kaadg + (Kyg+ Zbealfa)ﬁ)2,+ k22<9§+XaH§]<P+ (er—2y1LF~2be_)dd, D
— azdyvx— azdvy+ (412 IM{A* (dy—iqce) A}, (40d)

Pmivy= (a1t as+as+ aﬁ)&ivx'l' 772(f932/+ (9§)UX+ (ax+ Ul)ax(ayvy_F ;)
+ 0X[ —-P- EOGL(?ZCDI' + 2a3§E(o"§+ (95)(1)0] + a3(9y(3’t(p+ SX(?X|A|2
+ S, dy IM{A* 9, A} + Syy5y Im{A* (o'?y— i9cp)AL+S,,0, ImM{A* 9,A}, (40e



PRE 62 THREE-DIMENSIONAL PATTERN FORMATION, . .. 8127
Pmdtvy=( 7]1&5-1- a4&§+ a4z9§/2)vy+ Ay[ (az+ 171) dxvy+ aad,v4/2]
+dy[ — P—Ege, 9,0, + 2, F 55D ] + apdydip+ Seydx IN{A* (9, — i) A}, (40f)

Pmotv = [(ﬂ"_ 71) 5>2<+ ay( 532//2"_ ‘95)]024' 0"2[(%4_ @zt m1)dxvxt a4’9yvy/2]

+3,[ —P—(kii— koot 2be,e_ /ey dxdye]—[e, —2be, —2(y1+ ay) {F1959,P

—Eol(€— €a) Iz + €, I+ 2€, 51D+ S, Al*+ S0, IM{A* 9,AL+ S,,9, IM{A* 5,A}, (409
0=V-v. (40h)
|
IX. CONCLUSION sented here, in particular analytic approximations for all co-

It has been shown how the 3D dielectric convection pat_efﬂments entering the the results in Secs. V, VI, and VIII. In

tern interacts with various homogeneous soft modes, whicf‘he secc_)nd—lowest Fourier approximation the onset of dielec-
are related to undamped hydrodynamic modes. The methdf¢ EC s at
to establish these relations is not unique, but the “center

2

manifold” method seems to be favorable over the “order- E2— 4oay(az—y171) (A1)
parameter” method. ¢ 2o (aret+€am1)

The reduction of the 3D pattern dynamics to a quasi-2D X| az— 4w+ o2 T €3710
form in the layer geometry was derived analytically, thus ! !
establishing a description of the inter_actiorj of the pattern . o critical wave number
with the twist mode and the pressure fiétdt singular mean
flow). Scaling analysis suggests that the transition from the D — o
simple, quasi-2D Ginzburg-Landau dynamics to manifestly 2= w(—aztyim)
3D dynamics in thick layers unfolds into several well distin- ¢ Ka3m1
guished steps, the first of which occurs already very close to 9
threshold ¢’ =0O(N/d)*]. These characteristics should gen- 2w+ g2 2€3€1€, 71070
erally be expected for 3D patterns. ! I aX—eamo;

Ideal, dielectric EC patterns are found to destabilize at X . (A2)

a . ; 2Xwo(aze)t €371)

some values’ ~(w7y) ~1(N/d)? for which an analytic ap- 4elw’+al—
proximation in terms of material parameters is given. A par- azX— €710,

ticular nonlinear mechanism that stabilizes the phase of the .
pattern to be constant alorm thus giving the pattern a 2D WhereX:=e€jo,— €,0) . The accurate numerical result fiif
appearance also at highet, is identified in Sec. VI. As Vs w is nearly a perfect straight linesee Fig. 2 which can
outlined in Sec. VIII, measurements of the electric Nusselirobably be understood by means of the approximation used
numbers are suitable for quantitatively testing the theoryjn Ref.[18]. Formula(Al) nicely estimates the offset of this
probing the dynamic flexoelectric effect in nematic liquid line for intermediatewr,, but gives a different slope as
crystals independent of boundary effects, and investigating

the route of the transition from simple 2D to fully 3D dy- 8 . . . .
namics.
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APPENDIX A: RESULTS FOR LINEAR STABILITY 0 & . ‘.‘
AND COUPLING COEFFICIENTS IN 3D or,

Some analytic and numeric results relating the 3D de- FIG. 2. E2r, andg?7, calculated for MBBA, including Fourier
scription of the pattern dynamics to hydrodynamics are premodes up tav (dotted, 20 (dashegl and % (solid).
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wTg—®. The deviations at the lower end are an artifact

occurring with all truncated Fourier approximations. k'—q@r
the situation is similar.
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(1-1)Ec(2i eqo+ )

PotiPs= 20.(2i o+ 0y)

(A9)

In the second-lowest Fourier approximation, the excita-\vith the help of the real constamtsj, q;:, @;, andn;,
tion of the hydrodynamic fields in the convection patternwhich characterize the adjoint eigenvector,

near thresholdcritical mode is

® =|A|sin(g.x+argA)

X[®,+ 2D, cog 2wt) — 2D sin(2wt)], (A3)
n,=2|A|cog g.x+argA)[ cog wt) +sin(wt)], (A4)

f=2|A|sin(g.x+argA)[ f. cog wt) — f¢sin(wt)],
(A5)

X

where f generates a velocity fieldlz(axﬁz,<9yo7z,—<92
- aﬁ)f and the real constanfs,f,,®,,®.,P, are given by

XE2(8¢€f w?—2€ywa+307)

46%&)20'” + oﬁ

4 fe=—4ay0+ ,
(A6)
da,f Q3= — B~ 4y 0+ dka?

N eaEg[Zeaw(Ze”w— o)t o(2ewto))]

4Efw2+ crﬁ '
(A7)
Ecoa
b = , A8
! qcoy (A8)

2NT=€,E(2D + D — DI )q.—2¢/(P D+ DD+ D D)2,

_ Ec(aze+€em1)qc

N
= (A10)
+ . + _ qC
P s = XEow

X{Eg[_ a2X+ Ganl(zl 6J_(l)+ O-J_)]

— 4 (a5~ y1m1) 0+ ka3n102](2i g0+ o)},
(A11)
2
oy = e (A12)

an

and the normalization factor
AN=2(dz—n;)€Ee
+Ecel (€an; — €00 (Py+ Doty
—26,0(P + D) 0,20+ DD )],
(A13)

analytic results for most coupling coefficients entering the
3D description can be obtained:

(A14)

E2¢5=8Ka3m1{ — 6kazn1020 (4l w’+ o) + EY €a71(2€1€, 0?0+ 2€ 0?0, + 070, ) — ax(2€fw?+ 07)X]}

X{8[2¢€/kazn1( @z~ €a71) 0205+ (a2, + €a71) (a5~ y171) 0207 + a2k33771q§<ff]x+ 3a5EZo X2

—8e.ka37i05(4erw?+ 0l) o) +EY €57i(4€S w0+ 8eje, w?o, + 30107 ) —2a6,m1(4€1€, 0+ 300 )X]H L,

(A15)

2NE2= € Ef( D+ D+ D)o~ (fo+ FoasqP—de, w(DF D~ D D) — 20, (B D+ D D+ DI D) +flexo,
y c s c u c s

(Al6)

2NE2=€ E((Py+ P+ PG+ Aazw—2(fo+ Tl ar+ ag+as+ ast(aglay) m]di—4e, (P D~ DL D)

20, (D] D+ D] D+ DI D) +flexo,

(A17)

(8/3)Ng= (29— 4n; ) €,EZ+ 40 w(az+ v5) — 2€,n; P D]+ (fo+ f[(6an+das)n) —4(as+ y,2)dZ]qs

—2EGea(3P + D¢ — 2B ) + €Ecq (5N, —205) (P +2D ) — 4w (2D + D )]

+8wq2ey(P D+ 2D D — 20 D) +4q20 [ 2D (D — Do)+ 2D D+ DL (20— D )]+ Tlexo,

(A18)

A1, +4il = (i eqo+ o) [ (A= 20 Ee— (2= 21)Qo( Py + i Do— Do) |+ G2 €aEc[ (— 3+i) Fot+ (1—i)f]

+2€ Qi fo( P+ D +iDg)+if (P— D —iDY)],

(A19)
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4Irx+4nif%[wn—fs>q§+2eaEc<<bu+<bc—<bs>—ea<c1>§+2<I>§+2<I>§>qc+4qc<k33— kip)]

—(2=2i)(i €qu+ o) (Py+iP— Do) — Qe Ec[ (—3+i)fo+(1—i)f]

— 26 Q[ f (D +D+idg)+if (D,— D —idg)]+flexo, (A20)

I'=4Kpy— 4Kgg— €4(Ec/qe) (P + P o— D) + € D2+ 202+ 2D2) — 25, f— f) + flexo, (A21)

28 =0 205(ayt ast 7o) (fo— fo) — €Ec( @+ o= D) + oy (PF+ 207 +2D3)], (A22)

2S,=2a503(fo— fo) + €4E[ 2Ec— Qe( P+ P— D) ], (A23)

2S,,= (27— ay)(fo—T)AZ+qce, (Di+2D2+202) +flexo, (A24)

2S,,=2(v,— a1)(fc— o) Q2+ qee, (P2+ 22+ 2D2) +flexo, (A25)

2S,=(as+ as)(fo— Q5 — €E(Py+ P~ Do)+ qee(Pi+ 202+ 2d72) +flexo, (A26)

28=2(v2— ay)(fc—fIAe+dce (PF+207+203) + 4d(kas— Ky) + flexo, (A27)

Here “flexo” stands for flexoelectric corrections, which (A28) and also in Table | are expressed in termeopf=¢e;
involve matrix inversions and are hard to express in a com-+ e, e_:=e;—e; and'5:=2v, /5, in units of 10 22cm™?
pact form. For similar reasons, no formulas are givendpr ~ (3.00< 10 ° dyn'? in Gaussian units Typical values mea-
Si» S lvz, @andl,. The coefficientx, vanishes for the sured fore; ande; are a few times that mudtsee the over-
second-lowest Fourier approximatidand p,,=0) and @,  views in Refs[68,16).
andg,+ qC§§ have only flexoelectric contributions. The ex-  As a result of the approximate/4 phase shift of the di-
pression forgi has a different structure than the other for- rector oscillations, is so small that the remaining finite
mulas because it was not calculated with the “center maniviscous effect is comparable in size to the effect of finite
fold” formalism but by differentiating the determinantal mass densityp,,, which has been suppressed everywhere
condition for stability of the basic state, which is more effec-€lse.
tive in this case. There are indirect contributions from exci-
tations ofn, enteringS,,, iy, andl,, [the first bracket in APPENDIX B: “ORDER-PARAMETER” VS “CENTER
Eqg. (A20), in Eq. (A27) they cancel favorably These have MANIFOLD” METHOD
been calculated only in the lowest Fourier approximation
(i.e., for the nonoscillatory part af,), which introduces a
small error.

The quality of these results can be judged by comparin
the values obtained for MBBA ab ;=8 with the accurate
numerical values in Table (only the approximation for the
indirect contribution fromn, enteringS,,, Iy, andl,, is
retained. In the combinations in which the results are ex-
pressed there, they are, for fixegry, independent of the
electric conductivity and, with the exception &f ,«,,l,y,
and some contributions involving &, also largely indepen- 1. Formal setting
dent ofw, for wro>8. Two exceptions, which should both | et the state vectod (r) describe the configuration of all
be experimentally accessible, shall be highlighted: the dyrelevant degrees of freedofe.g., hydrodynamic fieldsof
namic flexoelectric contribution t& e, , which increages the system in théideally) infinitely extendedP-dimensional
linear inw g, and the contribution tg proportional toz’ &, r space. Assume the “microscopic equations” to be of the
which is the only one that increases(wo)? as wro— . form
The result forg in the lowest Fourier approximation

Here, two general methods for obtaining amplitude equa-
tions are compared. It is shown that they give different re-

ults in the presence of multiple homogeneous soft modes. In
his work, the “center manifold” method is used to derive
the reduced equations. In order to keep the formalism simple,
it will be restricted to homogeneoug€ 0) modes and their
slow modulations. The inclusion of patterning soft modes
(lg|#0) is straightforward.

0=F(U)=L(4;,V)U(r)+nonlinear terms (B1)

— 2 1E
9=9.45+0.002 527, —0.004 0o 7€+ ¢ where the linear operatar(4,,V) is polynomial ing, andV,
_ e JE2 2 2.2 acting onU(r) locally and translation invariant in space and
5.18x10 7ol ™™ +0.001 02775 (A28) time. There are several brancheef linear modesV;(q)

which solve the generalized eigenvalue problem
illustrates the latter effect, although it is correct only in its

order of magnitude. The flexoelectric contributions in Eq. L[oj(a),iq]V;(aq)=0, (B2)
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and, with some suitable scalar prodyef) (that doesnot  additional termsO(a) depend ora and they can cancel the

contain an integration oven, adjoint eigenstates nonanalyticity calculated here at most at particular values
. of a.
Wj(a)L[j(9),iq]=0. (B3) This transition from local basic equations to amplitude

) i equations withalgebraically decaying nonlocalities is coun-
For some branchejse K, the growth rates Rej(q)} vanish  terinuitive and misleading. This approach has the advantage
(or are small at their maxima atj=0, for the others(¢K)  that in Fourier space the linear dynami&s) is simple. This

they are negatively large in the vicinity of=0. is useful for calculations of pattern stability involving only a
few Fourier modes.
2. The order-parameter method Finally, notice that a general method to reobtain local

mplitude equations from the Fourier representatiBB),

.g., by redefining the amplitudes, should not be expected.
quation(B5) is general enough to include even nonlocal
interactions in the basic equations, which certainly cannot
lead to local amplitude equations.

Using the “order-parameter” method physical states aré®
characterized by weighted sums over slow eigenfunctions OE
L(at !V)r

V=3, | w@Vi@extia nda+R(ud).
"’ (B4) 3. The center manifold method

Alternatively, in the “center manifold” method only the

The weightsu;(q) are interpreted as the Fourier transformssjow modes ay=0, V;(0) enter into the characterization of
of the set of “amplitudes” used in the reduced description.the physical state

The range of integratiof) is a region aroundj=0, large

enough to include all significant contributions from(q) B _
and small enough to exclude slogpatterning modes at U(r)—J;K Quj(q)vj(O)exmqr)dq+R({uk}).
large wave numbers. With this ansatz, slaved contributions (B9)

R({u,}), which are fully in the fast eigenspacelgfcome in
only at nonlinear order. The linear dynamics for each ampli-The “slow subspace” spanned by the sum in EB9), can

tude is simply given by be extracted by the projection operator
du;(q)=oj(q)u;(q). (B5) p..=S P, (B10)
jeK

An inverse Fourier transform yields the linear dynamics in
physical space, which is usually simplified by truncating thewith
Taylor expansion otr;(q) in each component af for small

, such that, in physical space, derivativeswfare ob- dr’ )
|tc(’jli|ned. e P ” ij(r)::fgdqf (277)D<Wj(0)|f(r %
However, the situation is different in the case of multiple
slow branches. Thew;(q) is typically nonanalytic in the X V(0)exdiq-(r—r")], (B11)
components of] (although it is analytic inq|). As a generic o . _
example, consider the linear operator where it is assumed without loss of generality that the states
W;(0) andV;(0) (j eK) enteringP form a biorthonormal
92+ 35—& dydy system. The “slaved” contribution®({u,}) cover the re-
L(d,V)= 2 (B6)  maining subspace.
dxdy Oyt dy—ao The factorV;(0) in Eqg. (B9) can be pulled out of the

) - integral, which is then simply the inverse Fourier transform
with a positive paramgte&. There are two neutral modes at u;(q) into physical spaceu(r). It is thus justified to
(a.p):=q=0. It is easily seen that one of the two growth gefineu;(r) as(the local average dthe hydrodynamic vari-
rates is of the form able(W;|U(r)). In particular, if(W;|U(r)) is conserved, so

4, .22, 4 is uj(r). In such a local representation, the vicinity of the
+ + o K " . . .
__pbrparrq center manifold” method to a multiple scale approximation
o1(9,p) +0(a), (B7) . L
pe+q would be more obvious. Similar simplifications would also
be possible for the integrals below, but have been suppressed
i.e., nonanalytic ag,p=0. As a result, the corresponding in order to ease the comparison with the “order-parameter”
amplitude equation in physical space method.
The functionR({u}) is defined by the perturbative solu-
atul(r)zﬁvzul(r)ﬂLf K(r'—r)uy(r")d?r’ tion of
(1-P)F(U)=0, (B12)
+0(a)+o(uq,u,) (B8)
whereU is given by Eq.(B9) and theu, are small and vary
is nonlocal. In polar coordinateé(r)= — (3/)r ~* cos 4p. slowly and smoothly in space and time but are otherwise
These conclusions do not requiieo be small, because the arbitrary.
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At linear order inU, where Eq.B12) reduces to
(1-P)L(4;,V)U=0, (B13)

a form

RGud)=> f ri(q)V;(0)exp(iq-r)dq  (B14)
jeK JQ

with contributionsr(q) only in the vicinity of =0 is suf-
ficient.

The amplitude equations are then given by
P;L(d;,V)U=0 for eachieK, (B15)

whereR is eliminated fromU through Eq.(B13).

When Egs.(B13) and (B15) are satisfied with slowly
varying u, and smallR({uy}), this implies thatU contains

THREE-DIMENSIONAL PATTERN FORMATION, ...
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into a partL which is regular, and a term which is small for
slow temporal and spatial variations of the operand and poly-
nomial iné,,V. Calling the sum on the right-hand side of Eq.
(B9) S({uy}) and suppressing the argumerissich thatU
=S+R), Eq. (B13) becomes

QLR=QLQR=(Ly+1)R=—QLS, (B18)

and is solved by expanding for sméalli.e.,
R=-2 [~Lo'(d,V)]"5'QL(4,,V)S. (B19)
n=0

When eliminatingR from Eg. (B15 by Eg. (B19) and
truncating at some power in the derivative®., for slow

no fast eigenvectors df(d;,V). Hence the resulting linear enough variations linear amplitude equations with local in-
dynamics forU is the same as the one obtained with theteractions are obtained. The extension to the nonlinear level

“order-parameter” method, in particulaR({u,}) is then
given by Eq.(B14) with

rJ-(q):f; (Wi (@)|V;(0)) "X Wi(a) [V (0))uy(a),

(B16)

wherel e K is running over all fast modes arjdk ¢ K are
running over all slow modegfor small |g| the matrix

(Wi(a)|V;(0)) in this expression is generally a perturbed

unit matrix and readily inverted

To see that this method yields local dynamics for the am
plitudes, split the linear operator, restricted to the subspac

selected byQ:=(1—P), like

QL(3,,V)Q=0L(0,0)Q+1(4,,V)
——
=L,

is straightforwardsee Sec. VA
It should be noticed that with this approach all modes in
the kernel ofL(0,0) have to be treated as ‘“soft modes,”
some of which, e.g., those resulting from gauge symmetries,
may not actually have slowly relaxing modulations associ-
ated with them(see, e.g., the pressure mode in Sec. )}V B
For the simple exampléB6) the “center manifold” method
leads to amplitude equations identical to the basic equations.
The reason for the difference between the two approaches
is that in the multidimensional kernel &f0,0) the choice of
the basis vectors characterizing the slow modes is not

unigue. While they are fixedwith respect to the hydrody-
famic variables in the “microscopic equationsfor the
“center manifold” method, they point, depending gninto
arbitrary directions in the slow space for the “order-
parameter” method. For the same reason, there is no near-
identity transformation mapping one representation onto the
other.
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