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Three-dimensional pattern formation, multiple homogeneous soft modes, and nonlinear
dielectric electroconvection
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Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 28 January 2000!

Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite
several homogeneous soft modes~' hydrodynamic modes! of the underlying physical system, much more than
quasi-one-~1D! and two-dimensional~2D! patterns are. The reason is the lack of damping boundaries. This
paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually
equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electro-
convection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern
dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced
further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region
above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predic-
tions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic
approximations in terms of material parameters are given.@S1063-651X~00!09512-X#

PACS number~s!: 45.70.Qj, 61.30.2v, 47.65.1a, 67.57.Fg
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I. INTRODUCTION

Spontaneous formation of spatially periodic structures
a homogeneous background is ubiquious in nature, fasc
ing to look at, and often hard to understand in detail. T
periodic structures are almost never ideal. Irregularities m
be generated in the transient after the pattern formatio
initiated and anneal after some time; or, in particular in d
sipative systems far from equilibrium, they may be the res
of an instability of the regular, spatially periodic state itse
often leading to a state which exhibits persistent spatiot
porally chaotic dynamics. In some systems this is the c
arbitrarily close to the threshold of pattern formation in co
trol parameter space. With the help of reduced descripti
like phase-diffusion and Ginzburg-Landau-like amplitu
equations, which are to some extent universal~i.e., indepen-
dent of physical details!, several phenomena associated w
these deviations from the simple periodic structure can
explained@1#.

For mostly practical reasons, experimental and theoret
research on pattern formation and dynamics has concent
on quasi-one-~1D! or two-dimensional~2D! systems, but
most of the results obtained should have a direct corresp
dence also in genuinely three-dimensional~3D! patterns. By
a genuinely 3D pattern~below simply 3D pattern! I mean a
spatially periodic structure for which~i! the spatial period~s!
are not determined by the spatial extension of the sam
~referred to as the class of patterns formed by ‘‘compet
interaction’’ in Ref.@1#! and ~ii ! for which the spatial exten
sion of the sample is in all directions large compared to
period~s! of the pattern. This is a stronger conception o
‘‘3D pattern’’ than the one used in Refs.@2,3#, which is
based only on condition~ii !.

Additional complications in 3D patterns, as compared
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1D or 2D patterns, arise from the structure and dynamics
defects ~dislocations as well as disclinations!, which are
pointlike in 2D but linelike in 3D. The implications for dis
sipative, nonpotential systems, mainly those described by
complex Ginzburg-Landau equation, have been addresse
several authors@4–9#. But there is another particularity o
3D patterns, which has so far found little attention: the m
sive occurrence ofhomogeneous soft modes, which couple to
the pattern and can drastically change its dynamics.

By homogeneous soft modes I mean marginally stable
slowly decaying homogeneous or long-wavelength pertur
tions of the homogeneous basic state from which the pat
arises. In the abstract sense of the word, they are hydro
namic modes of the basic state. But for the sake of clarity
terms ‘‘hydrodynamic mode’’ and ‘‘hydrodynamics’’ sha
here be reserved for slowly relaxing deviations from t
thermodynamicequilibrium in an unbounded, homogeneo
medium, and their dynamics~e.g., the velocity field in a
convective flow is a hydrodynamic variable!. The pattern-
forming basic state is itself a nonequilibriums state. Th
although there is some correspondence between hom
neous soft modes and hydrodynamic modes~in the narrow
sense!, the notions are not identical.

As it has become clear by the investigation of several
and 2D model systems, homogeneous soft modes are the
for understanding many of the phenomena occurring at
close to, the onset of pattern formation. The most promin
example is the mode associated with a homogeneous pe
bation of the pressure field in Rayleigh-Be´nard convection,
which leads to a ‘‘singular mean flow.’’ It is worth noticing
that, since it is usually possible to construct self-consist
amplitude equations that donot include the effect of homo-
geneous soft modes, their relevance is easily underestim
in the theoretical analysis.

In 1D and 2D pattern-forming systems, most hydrod
namic modes are damped by the boundaries enclosing
system. For example, momentum and heat can usually
fuse freely through the boundaries and are stabilized by la
8114 ©2000 The American Physical Society
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PRE 62 8115THREE-DIMENSIONAL PATTERN FORMATION, . . .
external reservoirs. Obviously, this mechanism is ineffect
in systems that are extended in all three spatial dimensi
On the other hand, some coupling to a reservoir will also
required in 3D in order to sustain nonequilibrium patte
formation. This could be through electromagnetic fiel
some matrix embedding the active, pattern-forming mediu
or some chemical reactant provided in excess. But the c
plings to the reservoirs are highly specific in these cases
stabilize only a few hydrodynamic variables. The remain
fields do then lead to homogeneous soft modes.As a result,
several homogeneous soft modes should be considered a
rule in 3D, pattern-forming systems.

For example, when studying the 3D structures formed
chemical waves in the Belousov-Zhabotinsky~BZ! reaction,
the dynamics of the plain BZ reagent does also involve c
vective fluid motion. Since these hydrodynamic modes
usually considered to be a nuisance, they are suppresse
embedding the reagent in a gel@10#. But another homoge
neous soft mode excited by the pattern, the temperature
~gradients of which are probably driving the convection! re-
mains. Since temperature gradients have a strong influe
on the dynamics of the pattern@11#, a complete description
of the 3D BZ reaction should explicitly involve this mode

The paper presented here is a case study of 3D pa
formation in the dielectric regime of electroconvection~EC!
in nematic liquid crystals. The system was chosen becaus
its easy experimental accessibility. In particular, the elec
nature of the instability allows to obtain patterns with seve
hundred periods extension in cells of a fingernail’s si
evolving on the time scale of seconds. A closely related v
ant, the conduction regime of EC, which always leads
quasi-2D patterns, is currently one of the best underst
experimental pattern-forming systems, on the phenome
logical as well as on the quantitative level~see the reviews
@12,13#!. These advantages compensate the inconvenienc
dealing with rather complicated~electro-! hydrodynamic
equations.

Rather than trying to understand the complex pattern
namics itself, this paper is mainly devoted to the devel
ment of consistent reduced descriptions of the dynam
Section II sketches the experimental phenomenon and
hydrodynamics of dielectric EC, emphasizing its 3D natu
Approximations used for an analytic or semianalytic desc
tion of dielectric EC are introduced in Sec. III, thereby d
cussing the linear stability problem. In Sec. IV the 3D a
plitude formalism for dielectric EC is derived. Close to th
threshold of EC and in a liquid-crystal slab of large but fin
thickness, the pattern dynamics becomes essentially 2D.
corresponding equations of motion are derived from the
formalism in Sec. V. In Sec. VI the stability of ideal period
patterns is investigated and in Sec. VII a general scenario
the transition from the onset of dielectric EC to fully 3
pattern dynamics with increasing external stress is de
oped. Section VIII discusses possible experiments base
electric Nusselt number measurements and Sec. IX sum
rizes the results. Appendix A contains some analytic a
numerical results for coupling coefficients, Appendix B co
pares two different methods for integrating multiple, hom
geneous soft modes into the amplitude formalism in a g
eral framework; one method is used in the main text.
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II. SOME PHENOMENOLOGY OF
ELECTROCONVECTION

Notice that below some points are oversimplified in ord
to facilitate intuition. For comprehensive reviews of EC, s
Refs. @12–14#, for introductions into nematohydrodynamic
Refs.@15,16#.

A. Basic phenomena

In the typical experiment a nematic liquid crystal wi
negative dielectric anisotropy is sandwiched between a
of transparent, parallel electrodes~separation d
;20– 50mm, area;1 cm2!. By a special treatment of the
electrode surfaces, the nematic directorn ~the locally aver-
aged molecular orientation;unu51! is forced to align parallel
to the electrodes in some preferred direction, which sh
here be identified with thex direction ~z be normal to the
electrodes,y normal tox andz!. An ac voltageE0ẑd cosvt is
applied at the electrodes. In theconduction regimeat fre-
quencies below thecutoff frequencyvc , the first instability
to be observed as the voltage is increased is towards a pa
of convection rolls called Williams domains@17#.

At higher frequencies a different kind of structure pe
odic alongx is found. Compared to Williams domains it ha
shorter wavelength and decays faster after switching of
voltage~fast turnoff mode!. At least two concurring mecha
nisms have been proposed for this high-frequency mode:
dielectric EC @18#, which depends essentially on the aniso
ropy of the nematic~its threshold diverges at the nemati
isotropic phase transition@19#!, and theisotropic mechanism
@20,21# where the liquid crystal’s anisotropy is not essent
for the convection mechanism itself but only for selecting
preferred modulation direction. It has a finite threshold at
nematic-isotropic phase transition as its characteristic sig
ture@22#. The two linear modes have the same symmetry a
do in principle mix, but generally the corresponding thres
olds can be assumed to be sufficiently separated to cons
the mechanisms isolatedly. The isotropic mode is though
be located mainly near the electrodes, while the dielec
mode is maximal at midplane. Unfortunately, it is not alwa
clear which mode is actually observed. At least in so
cases the dielectric mode could be identified by the go
match of the threshold curve with theoretical predictio
~e.g., Ref.@23#!. The isotropic mechanisms will not be con
sidered here.

For voltages slightly higher than the threshold of diele
tric EC, the formation of thechevronsuperstructure is ob
served: defects~dislocations! in the pattern of convection
rolls accumulate along lines oriented in they direction, such
that the topological charge of the defects alternates from
to line. Between the lines, the convection rolls are rota
and the nematic director is twisted, alternately clock- a
counterclockwise@24#. The observation of chevron pattern
in the conduction regime of EC with homeotropic direct
alignment@25,26# shows that this scenario is not restricted
a particular convection mechanism.

B. Hydrodynamic equations and material parameters

EC in both the conduction and the dielectric regime res
from the interaction of electric field, space charges, m
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8116 PRE 62AXEL G. ROSSBERG
flow, and the nematic director via the Carr-Helfrich@27#
mechanism: Spatial modulations of the director orientat
are amplified by an inhomogeneous mass flow generate
electric volume forces on space charges that accumulate
to inhomogeneous electric currents in the inhomogene
director field. Thus Maxwell’s equations1 ~in the quasistatic
approximation2 curlE5curlH50! and the balance equation
for charge, momentum, mass~continuity equation!, and the
torque acting onn have to be taken into account. They co
tain several material parameters: the conductivitiess i*s'

5O(1029
¯1025 V21 m21) for electric currents parallel~i!

and perpendicular~'! to n, respectively~they vary on a large
range depending on purity and doping, whiles i /s' changes
only little!, the dielectric constants3 e i ,e'5O(e0) @the
quantitiessaªs i2s'5O(s'), eaªe i2e'5O(e') mea-
sure their anisotropies#, the flexoelectric constantse1 ,e3
5O(10212210211 C m21) ~e1ªe11e3 , e2ªe12e3 !, the
diffusion constants for~ionic! charge carriersO(10211

m2 s21)5:Dr , the mass densityrm5O(103 kg m23), the
five independent viscositiesa1 ,...,a55O(0.1 N m22 s)
(a65a21a31a5 , g15a32a2 , g25a31a2 , 2h152a2
1a41a5 , h25g21h1), and the curvature elasticities o
the director fieldk22&k11&k335O(10211N). I also include
the ‘‘dynamic flexoelectric effect,’’ which was predicte
@28,29# on the basis of a systematic rederivation of nema
hydrodynamics, but, to the authors’ knowledge, has not b
detected, yet. It is characterized by a parameterzE and leads
to additional dissipative contributions in the charge, mom
tum, and torque balance equations.

C. Dimensional analysis

With the exception of the charge relaxation timet0
ªe' /s'5O(102621021 s) the nematohydrodynami
equations~without external fields!, being derived as a limit
of large time and length scales~though typically valid down
to molecular scales!, do not set any time or length scale b
themselves. Instead, one finds basically three types of d
sivities: ~i! for charge (Dr), ~ii ! director orientation@e.g.,
Dd,stat5k33/g15O(10210 m2 s21) for static, Dd,dyn

5(k33h1)/(g1h12a2
2)5O(1029 m2 s21) for dynamic de-

formations; notice that~static! flexoelectric effects do no
introduce a new diffusive scale sincee1/3

2 /e0&k33#,
and ~iii ! momentum @e.g., Dp5(g1h12a2

2)/(g1rm)
5O(1025 m2 s21) along n#. The overdamped limitrm→0,
Dp→` is generally a good approximation. Charge diffusi
is not essential for the Carr-Helfrich mechanism and is ty
cally screened out. Then orientational diffusion sets the o
diffusive scale.

With an externally generated electric ac field,E0ẑ cosvt,
two additional time scales are introduced:~i! The period
2pv21 and ~ii ! the ‘‘director time’’ td5g1 /(e'E0

2) @the
more intuitive choicetdªg1 /(eaE0

2) would suggest thatea

50 is singular for EC, which is, for the convective mod
themselves, not the case#.

1In MKSA units.
2We will only allow for homogeneous magnetic fields.
3For convenience, the factore0 is absorbed intoe i ande' .
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In the conduction regime the charge densities oscill
with the frequency of the applied field, while the direct
orientation is mostly constant. This imposes a condition

td*v21*t0 ~1!

on the three time scales. The finite sample thicknessd deter-
mines the wavelengthl of the convection pattern and lead
through a conditiond;l;(Dd,stattd)1/2 to a voltage thresh-
old Vc

25d2Ec
2;k33/e' , for the onset of convection~see Ref.

@13# for a good analytic formula!. A lower limit for the
sample thickness is givenvia relation ~1! by d2*Dd,statt0 .
At frequencies higher then the cutoff frequencyvc;t0

21,
the conduction mechanism is also disabled or at least su
seded by the dielectric mode.

In the dielectric regime, director and fluid flow oscilla
with v, which leads to a condition

td&v21. ~2!

The charge distribution is at high enough frequencies (v21

&t0) mostly constant in time. This is not actually necessa
for the dielectric mechanism to be effective@30#, but typi-
cally dielectric EC is superseded by the conductive mode
lower v. The threshold for the onset of EC is now given b
a conditiontd;v21 ~or Ec

2e' /g1;v!, i.e., the lowestE0

compatible with relation~2!. The wavelengthl of the critical
mode can under some conditions be;d @30#, but for typical
materials used it isl;(Dd,dyn/v)1/2, at least as long as thi
length is smaller thand and larger than the Debye screenin
length (Drt0)1/2, i.e., vt0,Dd,dyn/Dr5O(102), where
charge diffusion becomes important.

Thus, the length scales given by the spatial period of
patternl and the sample thicknessd are usually independen
and easily separated (l!d) in the dielectric regime, eithe
by increasingd or by simultaneously increasingv and the
conductivities, while leaving the secondary control para
etervt0 constant. Since strong doping may affect the ne
atic material parameters and the nematodynamics at high
quencies is not fully understood, the program carried
below is best seen as the limit of thick cells. The theo
should accurately describe typical experiments in cells w
d*10l. To observe fully 3D patterns, thicker cells might b
required~see also Sec. VII!.

III. APPROXIMATION METHODS
AND LINEAR THEORY

A. 2D vs 3D amplitude formalism

Below we will develop the amplitude formalism for th
pattern dynamics in the dielectric regime, i.e., obtain
laws of motion of amplitude and phase of the spatial mo
lations as described by the complex pattern amplitu
A8(x,y,t) or A(x,y,z,t), respectively.

The basic state in the experimental cell is anisotropic a
inversion symmetric and the primary bifurcation is sup
critical ~forward! towards a steady-state pattern with a sing
critical wave vector. Hence, the most elementary descrip
of the pattern dynamics is give by the time-depend
Ginzburg-Landau equation in 2D,
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t] tA85~«81jx
2]x

21jy
2]y

22g8uA8u2!A8, ~3!

important physical properties of which are reviewed in Re
@31,32#. The real, positive coefficientst, jx , jy , andg8 have
magnitudes corresponding to natural scales of the sys
~e.g., the pattern wavelength forjx ,jy! and can be calculate
from the underlying hydrodynamic equations. The small,
mensionless parameter«8 measures the distance from th
threshold of pattern formation in the control-parameter sp
of the underlying system.

It will be shown in Sec. V that, as a direct consequence
the separation of length scales in the dielectric regime,
range of validity of Eq.~3! is highly restricted. Already for
values of«8 of the orderl4/d4, corrections to Eq.~3! must
be taken into account. For«8;l2/d2 the 2D description
breaks down completely. But the convective dynamics
then still be described in terms of the 3D modulations of
complex pattern amplitudeA(x,y,z,t) @defined by Eq.~4!
below#, which is coupled nonlinearly to several homog
neous soft modes. It is therefore natural to derive first the
amplitude dynamics, which can then be reduced further
2D description in a subsequent step.

Julien, Knobloch, and Tobias@2,3# were the first to imple-
ment the idea of deriving a reduced description for thez
dependence of the amplitude of patterns withl/d!1 as an
intermediate step in the theory, and also the first to obse
that this method significantly eases the restriction of the c
trol parameter to values close to threshold. Their calcula
does, however, not involve in-plane modulations of the p
tern and the resulting excitation of homogeneous soft mo
Several results concerning the 3D description of dielec
EC and its reduction to 2D are derived in an unpublish
work by Lindner@33#, which is quoted here whenever ne
essary.

B. Linear stability in 3D

The starting point for setting up the 3D amplitude equ
tions is to calculate the linear thresholdEc , critical wave
numberqc , and critical eigenvector~i.e., the 2p/v periodic
time dependence of the hydrodynamic fields at thresh!
ignoring any spatial variations alongz. Several linear stabil-
ity calculations of this type have been carried o
@18,30,34,13#.

In experiments, the critical wave vector is always found
be parallel to the orientation of the nematic director in t
basic state~thex direction!. The linear problem is thus effec
tively 1D, with trivial, sinusoidal variations along the re
mainingx direction, and is much easier to solve than the
problem including variations and boundary conditions alo
z. This technical advantage of the 3D approach, which is
course not restricted to EC, remains effective also in
subsequent calculations of the coupling coefficients in
3D amplitude equation.

For analytic as well as numerical calculations it is conv
nient to use a truncated Fourier expansion of the time dep
dencies of the hydrodynamic fields, assuming them to
2p/v periodic—in the simplest cases are truncated at low
order ~i.e., including constant and sin/cosvt contributions!
@13,33# or including the sin/cos 2vt modulation of the in-
duced electric potential in order to better model the interp
.
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between electric charges and fields. With these truncati
the stability problem for sinusoidal excitation can be solv
explicitly ~see Appendix A!. Notice, however, that this
‘‘lowest-order’’ or, respectively, ‘‘second-lowest-order Fou
rier approximation’’ involves some arbitrariness in th
choice of variables and does not correspond to any phys
limit. Numerical convergence~5% accuracy! requires inclu-
sion of at least the third harmonic. The actual time dep
dence of, e.g., the director field, depends onv and is non-
trivial even asv→` @18#.

Some results presented here rely on the first or seco
lowest-order Fourier expansion of the induced electric pot
tial F, the nematic director expressed bynz andw such that
n5nzẑ1(12nz

2)1/2ĉ, ĉª(cosw,sinw,0), the velocity field
v, and the pressureP. The other hydrodynamic fields ar
treated implicitly. For the representation of the dielect
mode itself,v is expressed in the divergence-free formv
5(2]y ,]x,0)g1(]x]z ,]y]z ,2]x

22]y
2) f and the pressure is

eliminated.
As a natural consequence oftd;v21, the relative phases

of electric, director, and velocity fields in the linear eige
vector are shifted by anglesO(1). Remarkably, the phase
shift between the lowest Fourier mode of director oscil
tions and external field isp/4, for the first-@33# and second-
lowest-order Fourier approximation~see Appendix A! ex-
actly and only slightly perturbed~,1% for vt0.2! when
higher Fourier modes are included. No simple physical
planation for this result should be expected, since it ho
only at the critical~most unstable! wave number. Experimen
tal observations@35# seem to agree with a valuep/4 for the
phase shift even better than the comparison with Gale
calculations includingz dependence@36#, which had been
carried out as a test of the dielectric model of EC.

We define the pattern amplitudeA such that the amplitude
nz,c of the cosvt Fourier component of the director tilt os
cillations ~which is in phase with the applied voltage! has a
spatial dependence

nz,c5A~x,y,z,t !exp~ iqcx!1c.c. ~4!

Assuming as usuale,]x ,]y ,]z to be small and discarding
contributions beyond the lowest nontrivial order, the line
part of the 3D amplitude equation assumes the form

t] tA5~«1jx
2]x

21jy
2]y

21jz
2]z

2!A. ~5!

As conventional,«ª(E0
22Ec

2)/Ec
2. The coherence length

jx ,jy ,jz turn out to be;l and the relaxation timet is of the
order of the charge relaxation timet0 @30# ~see Appendix A!.

The horizontal boundary conditions forA are simply

A50 at z56d/2. ~6!

Contributions from derivatives ofA and nonlinear contribu-
tions to the boundary conditions are of higher order and
be discarded. In particular, as is well known, the distincti
between free and no-slip boundary conditions for the vel
ity field plays no role at this point. With the realistic no-sl
boundary conditions for the velocities, the relative mag
tude of the hydrodynamic fields in the 2D linear eigenvec
~including x and z variations! locally deviates from the 1D
eigenvector~only x variation! only in a boundary layer of
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8118 PRE 62AXEL G. ROSSBERG
thickness;l, an example of which is shown in Fig. 1. Th
boundary layer might provide a problem for numerical a
proaches directly using 2D eigenvectors in thick cells w
no-slip boundaries, notably when Galerkin approximatio
are used.

C. Linear stability in a cell of finite thickness

Assuming as usual the lateral~x,y! extensions of the cel
to be large compared to its thicknessd, the trivial solution
A[0 of Eq. ~5! with boundary conditions~6! becomes un-
stable at«5«dª(pjz /d)2 @i.e., «85«2«d in Eq. ~3!# with
a critical modeA;cos(pz/d). The small threshold shiftEc
→(11«d/2)Ec due to thez variation is rather uninterestin
by itself @there is also a shift;l2/d2 in qc by a discarded
contribution to Eq.~5! of the form i ]x]z

2A#, but the effect
provides, for example, a simple interpretation of the sm
gap (DE053«dEc/2) between the critical mode and the low
est z-antisymmetric mode@i.e., A;sin(2pz/d)# reported in
Ref. @37#.

D. Flexoelectric effects

A short remark about flexoelectric effects, which are ge
erally difficult to isolate experimentally, is in place at th
point. The high symmetry of the linear problem in 3D do
not allow flexoelectric effects:Ec , qc , t, and jx are inde-
pendent of the flexoelectric coefficients. Most of the rema
ing linear and nonlinear coefficients contain flexoelect
contributions. With our choice of variables these contrib
tions are, except for some dynamic-flexoelectric terms,
indirect: flexoelectric effects excite additional, ‘‘slaved
contributions in the subspace orthogonal to the critical eig
vector, which, again by flexoelectric effects, feed back in
the dynamics of the amplitude of the eigenvector. In contr
the contributions not depending on flexoelectric coefficie
are, except forjx , all direct: no excitation of slaved degree
of freedom is involved. Thereforeflexoelectric effects are
separated in a natural wayfrom the standard dynamics. Th
might provide methods for measuring the flexoelectric co
ficients in a way not sensitive to parasitic boundary effec

FIG. 1. Linear boundary layer calculated in the lowest Four
approximation for MBBA. The temporally unmodulated compone
of the potentialFu , the in-phase and out-of-phase components
the director tiltnz,c , nz,s , and the in-phase component of the v
locity vz,c are shown, normalization to unit slope at large distan
@l!(z1d/2)!d# from the boundaries.
-

s

ll

-

-

-
ll

-
o
t,
s

f-
.

Previous calculations involving flexoelectric effec
@34,38,39# were restricted to the conventional, ‘‘static
flexoelectric contributions and concentrated on the deter
nation of critical mode and voltage.

IV. THE 3D AMPLITUDE EQUATIONS

A. Method

Before discussing the homogeneous soft modes rele
for dielectric EC, some comments on methodology are
quired.

Multiple homogeneous soft modes excited by a pattern
mode have, to my knowledge, first been introduced by P
and Pesch@40#. But their description requires the soft-mod
amplitudes to be constant along all but one spatial direct
This limitation seems to be partly due to the procedure
which the equations were derived. There are two popu
philosophies for this procedure~see below and Appendix B!,
which shall here be labeled as ‘‘order-parameter’’ meth
and ‘‘center manifold’’ method. The two methods usua
~for at most one homogeneous soft mode! differ only in the
way in which the problem is formulated and solved, but le
to the same results. The association of existing general
scriptions for deriving amplitude equations with the form
~e.g., Refs.@41–44,32#! and the latter philosophy~e.g., Refs.
@45,46#, the Chapman-Enskog approach@47,48# for the deri-
vation of hydrodynamics from statistical mechanics is also
this type, see Refs.@49,50#! is therefore not always conclu
sive ~see also Refs.@31,51,52#!. When using the ‘‘order-
parameter’’ method to obtain reduced equations, each sp
Fourier mode of the physical state is projected onto the~ad-
joint! slowly decaying linear eigenmodes of the basic st
with the corresponding wave vector. Using the ‘‘center
manifold’’ method, the projection is always onto the~ad-
joint! eigenvectors for~typically neutrally stable! homoge-
neous perturbations. When there are multiple slow modes
a single wave vector~usually q50!, the resulting reduced
equations differ, as is shown in Appendix B. Plaut and Pe
@40# seem to be using the ‘‘order-parameter’’ method, whi
leads to problems in more than one spatial dimension. H
the ‘‘center manifold’’ method is used to derive the nonli
ear extensions of the amplitude equation~5! including homo-
geneous soft modes.

B. Derivation of the soft-mode equations

Some particularities of the problem under considerat
have to be taken into account: The quasistatic approxima
of electrodynamics curlE505curlH and the approximation
of an incompressible fluid¹v50 both lead to additional ho
mogeneous ‘‘soft modes’’: Since no time derivatives of ele
tric potential ~electric field! or pressure occur in the bas
equations as they are used here, all their temporal Fou
modes are in the kernel of the linear operatorL(0,0) ~see
Appendix B!. When the viscid limitrm→0 becomes effec-
tive, the same applies for the oscillating part of the veloc
field. This is the case when spatial variations occur on sc
smaller than (vDp)1/25(Dp /Ddyn)

1/2l5O(105/2)l. For-
mally we shall assume length scales to be larger than t
But, since, at least in this case, velocity and pressure os
lations do not feed back into the remaining dynamics at lo
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est order in the derivatives, i.e., there are no contributi
;rm

21, the description should be good also on smaller sca
To simplify the problem further, the equations for the s

modes are here calculated only in the lowest-order Fou
approximation. The ‘‘slaved’’ modes being eliminated a
then the slowly varying average director tiltnz , which is
stabilized by the applied electric field through the dielect
anisotropyea ~assumed to be negative hereafter!, and oscil-
lations of the director, which are viscously damped. Fina
in anticipation of corresponding boundary conditions, on
small deviations from the basic statev,w,nz ,F50 shall be
considered for now.

In order to obtain a consistent truncation of the soft-mo
equations, recall that the only nondiffusive scale in the
drodynamic equations is the charge relaxation timet0 . As-
sume vt0 to be fixed. This also determinesEc;v1/2 for
givent0 and we will assumeE0'Ec . The elimination of the
fast modes~nz and oscillations ofn! becomes more efficien
whenv andE0 increase or, respectively,t0 decreases. Then
in the limit of smallt0 ~or larges i , with fixed s i /s'!, the
time scalet0 drops out of the equations. A purely diffusiv
scaling for the derivatives (]x

2;]y
2;]z

2;] t) is retained,
without making anya priori assumptions about the actu
scaling laws of typical lengths and times, which may be d
ferent. This approximation breaks down when length sca
become shorter than (Dd,statt0)1/2 or (Dd,stat/v)1/2.

It turns out that with these approximations the onlyrel-
evantmodes in the fast subspace~i.e.,R in Appendix B3! are
nz and its temporal modulations as given by

nz~x,y,z,t !52]z

~k222k11!]yny1a3vx

E0
2ea

12]x

eaE0F r2~e122g1zE!]zF01a2vz

E0
2ea

1
2b~ea]xF02e2]yny!

E0
3ea

2

3@E0
2ea cos~vt !24g1v sin~vt !#. ~7!

The electric potential has been decomposed asF5F0

12F r cosvt22Fi sinvt. The parameterbªE0
4ea

2/(3E0
4ea

2

116g1
2v2) measures the strength of the excitation of t

oscillatory part ofnz . It is numerically small@in the standard
material MBBA ~p-methoxybenzilidene-p8-n-butylaniline!
b'0.01#. The resulting description for the soft-mode dyna
ics is given by Eq.~40! ~for the terms containingA, see Sec.
IV F!.

C. Comments on the soft-mode equations

Most of the terms in Eq.~40! reproduce linearized nema
tohydrodynamics. Equations~40a!–~40c! derive from the
charge balance equation@Eqs. ~40b!, and ~40c! have been
multiplied with E0#, Eq. ~40d! from the angular momentum
balance onn, Eqs. ~40e!–~40g! from the Navier-Stokes
equation, and Eq.~40h! is the unchanged continuity equa
tion. In Eq. ~40d! a termxaHy

2w has been included, which
describes the action of a magnetic field in they direction. It
s
s.
t
er

,

e
-

-
s

-

will be used in Sec. V. The contributions resulting from t
elimination of fast modes are underlined.

Remarkably, the equations are mostly independent of
strength of the external field~a factorE0 can be absorbed
into the definitions ofF r andF i!, although it is the cause fo
the excitations of the slaved modes. As an example, cons
the mechanism for the reduction of viscosity by the te
a2]x

2vz in Eq. ~40g! ~recall a2,0!: Shear forces;a2]xvz

excite nz . This leads to polarization charges;]xE0eanz .
The electric field;E0 acting on these charges genera
bulk forces on the fluid. On the other hand, the excitation
nz is damped by electric forces;eaE0

2 and the factorE0
2

cancels out.
The soft-mode equations reflect the nonequilibrium ch

acter of the basic state. For example, if Onsager’s relati
would hold, the coefficients of]x]zvx in Eq. ~40g! and of
]x]zvz in Eq. ~40e! would be the same. At lowv the basic
state is even unstable. The mechanism corresponds to E
the conduction regime. Ignoring flexoelectric effects, the c
off frequencyvc above which the basic state stabilizes
given by

vc
25

s i~a2e's i2a2e is'2eah1s'!

eae ie'h1
, ~8!

which reproduces the result of direct stability calculatio
using~effectively! the same Fourier truncation@18#. Only the
threshold field for the Williams domains is too small to b
resolved by Eq.~40!.

D. Nonlinear extensions

Of course, constant values can always be added to an
the soft modes by a Galilei transformation, a rotation, o
gauge transformation. The problem of adding nonlinear c
tributions ~e.g., advection terms! to Eqs.~40! such that they
become formally invariant under these transformations
easily solved. The solution is not unique, but it can be s
by inspection that the precise form of the nonlinearities d
not matter under the following conditions:

~1! The dynamics is such that, in fact, diffusive scalin
holds. In particular this implies that, ifL@l is the typical
length scale~i.e., ]x ,]y ,]z;L21!, the variations ofv, F r ,
F i , w/L, andF0 /L over L scale in the same manner asL
→`.

~2! The variations inw overL are much smaller than one
It is not necessary to specify the scaling relation ofw andL.
When L is determined through the bulk dynamics,w may
actually vary byO(1) over the sample.

It should be noted that, although the second condition
satisfied for many problems of pattern dynamics, it is t
strong for disclinations~line defects! in the director field at
any distanceR from the core of the disclination: On th
typical length scaleL5R, variations ofw are O(1). Then,
for example, nontrivial nonlinear contributions from the v
locity field v;L21, like a term of the form (]xvz)(]yw) in
Eq. ~40g!, might have to be included.

For the part describing the curvature elasticity in E
~40d!, the fully nonlinear corrections inw have been calcu-
lated by extending the ‘‘center manifold’’ method to nonlin
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ear contributions and requiring rotation invariance. The
sult has the same form as close to equilibrium:

g1] tw5k33ĉ'~]x
21]y

2!ĉ

1~k118 2k33!~ ĉ'¹!~¹ ĉ!1k22ĉ']z
2ĉ1¯ ~9!

@ ĉ'ª(2sinw,cosw,0)#, however, with k118 ªk1112be2
2 /

ea . Although an additional term proportional t
(¹ ĉ')(¹ ĉ) would be thinkable, it does not occur in th
present approximation. For a rotationally invariant descr
tion of the dynamics of the convection pattern, it is useful
go over to a representation in terms ofÃ(r )
5A(r )exp(iqcx) as in Ref.@53#.

E. Stability of the twist mode with respect tox modulations

Another point to note is that below the threshold of d
electric EC~i.e., with A50! the system can, in our approx
mation, never destabilize in such a way thatw is excited but
]yw50, even when allowing for flexoelectric effects and a
bitrary z dependencies. Withouty modulations, the in-plane
director couples only tovx , and this interaction is not af
fected by the elimination of the fast modes and hence re
ational. This is remarkable because such modulation in
bilities of w below the EC threshold are apparentlyobserved
in experiments@19,54# ~the ‘‘inertial mode’’ @55#, which was
proposed as an explanation, has the wrong symmetry!. A far
fetched but possible explanation would be that the mod
tions in w are generated through a mechanism that is sim
to the one that generates the chevron superstructure in
dielectric regime, however, invoked by the convection ro
of ‘‘isotropic’’ EC ~see Sec II A!. The isotropic mechanism
is expected to become active in the respective experime
situations but does itself not involve excitations ofw. The
convection rolls might themselves be smaller than the opt
resolution and therefore remain unobserved. Then the o
of w modulation wouldappearto be the threshold of a pri
mary instability of the homogeneous basic state, although
actual primary~‘‘isotropic’’ ! threshold is at slightly lower
voltages.

F. Interaction with the pattern

The equation of motion for the pattern amplitude itself
given by

t~] t1v•¹1 ivxqc!A

5Fkx¹xvx1kz¹zvz1jx
2]x

21jy
2~]y

222iqcw]y2qc
2w2!

1jz
2]z

21 iax¹xF01 iby¹yw2
4¹zF r

Ec

1«2guAu2GA. ~10!

All coefficients are real. The differential operators¹x , ¹y ,
and¹z are used to indicate that only the immediately follo
ing expression should be differentiated, notA. With the ex-
ceptions ofvx]xA and¹xvxA, which are included for sym-
metry, only terms up to lowest nontrivial order have be
-

-

-

x-
a-

-
r
he

tal

al
et

e

n

included; assuming time, all lengths and all fields scale
dependently. The left-hand side is given by Galilean inva
ance, the form of the expression followingjy

2 from rotation
invariance@56#. The term involving¹zF r represents simply
an additional contribution to the electric driving field. Sym
metry would also allow a termky¹yvyA, but the hydrody-
namic equations do not generate it.

Whenby52jy
2qc it is possible to absorb the correspon

ing term into the parentheses afterjy
2 and to rewrite the com-

plete expression in the ‘‘potential’’ formjy
2(]y2 iqcw)(]y

2 iqcw)A. In this case the phase of the pattern does not d
in a weakly deformedw field. In fact,by is close to this value
~see Ref.@33#, Appendix A!, which is largely due to the
conservation of charge and momentum and the fl
divergence form of the resulting expressions.

The Landau coefficientg is of order unity in our normal-
ization @33#. As in the conduction regime@40#, it is domi-
nated by ‘‘geometric’’ effects, i.e., inhibition of the Carr
Helfrich mechanism for largenz ; besides flexoelectric
effects, about 99% ofg come from contributions quadratic o
cubic in nz . This indicates that a breakdown of the weak
nonlinear expansion should be expected forA;nz5O(1).

The nonlinear excitation of the soft modes by the conv
tion pattern is less intuitive than their feedback onto the ro
discussed above. The principle of truncation for the con
butions ofA in Eq. ~40! is again to keep only terms of lowes
nontrivial order, however, allowing for phase gradients ofA
without gradients of the modulus. As the relative scaling ow
vs length scales is left undetermined at this stage~see Sec.
IV D !, the nonlinear term2A* iqcwA, which is given by
rotation symmetry, must always come along withA* ]yA.

Since Eq.~40a! must have flux-divergence form, the larg
est contributions fromA areO(¹2A2), which is too small to
be relevant. The coefficientsI r andI i in Eqs.~40b! and~40c!
have the dimensions of a current density and measure
strength of an alternating currentj uAu252uAu2(I r cosvt
2Ii sinvt) generated by the convection pattern. Importa
contributions to the coefficientsI r ,...,I iz come from charge
advection.

The strongest contributions toG in Eq. ~40d! are simple
potential effects. In MBBA, the most important one d
scribes a relaxation of the bend of the director modulatio
by twist and is given by 4(k222k33) ~see Refs.@33,40# and
Appendix A!, which is generally negative. The second mo
important contribution comes from the dielectric torqu
from applied and induced field on the director. In MBBA th
contribution toG is positive and in materials with large neg
tive ea ~e.g.,&2e'! it could compensate the elastic one a
reverse the sign ofG. Notice also thatG is paricularly sensi-
tive to flexoelectric effects~see Table I!. A negative value of
G is required for the occurrence of abnormal rolls~see Sec.
VI A ! and chevron patterns.

The terms associated withSx and Sz in Eqs. ~40e! and
~40g! represent internal stresses of the convection pattern
for the coupling ofA to v in Eq. ~10!, a corresponding term
for the y direction or a term of the formSyx]y Im$A*]xA%
does not enter into Eq.~40f!, although they are allowed by
symmetry.Sxx ,Syy ,...,Szx can be interpreted as surface te
sions of the planes of equal phase of the convection patt

The high number of soft modes and the rich, nonpoten
coupling almost certainly lead to spatiotemporally chao
states already at onset, provided the spatial extensions o
sample are large enough.
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TABLE I. Coupling coefficients in the 3D dynamics of dielectric EC patterns atvt0ªve' /s'58. The first column reproduces th
analytic results of Eqs.~A1!–~A21!. The second and third column give accurate numerical results for MBBA and phase 5~Merck!. For the
units of the flexoelectric constants, see Appendix A. Ellipses stand for suppressed flexoelectric contributions.

MBBAa, second-lowest Fourth-lowest Fourier approximation Phase 5b, fourth-lowest

Ec
2/v 7.523109 V2 s m22 7.743109 V2 s m22 4.013109 V2 s m22

qc
2/v 1.533109 s m22 1.793109 s m22 1.193109 s m22

t/t0 1.01 1.05 0.707
qc

2jx
2 0.796 1.06 1.89

qc
2jy

2 1.391¯ 1.4120.0089e2
2 10.0138e2e120.0032e1

2 1.261¯

20.0012e2z8E10.0005e1z8E20.0004z8E2

qc
2jz

2 5.921¯ 6.0020.0031e1
2 10.0017e1z8E20.0014z8E2 5.59

qcby 2qc
2jy

21¯ 2qc
2jy

210.0022e2e110.0045e2z8E 2qc
2jy

21¯

Ecax 0.0216e110.0439z8E

kx /t0 20.445 20.388 20.690
kz /t0 ;rm 63102723.1331029 m3 kg21 rm

g 9.371¯ 9.3910.0056e1
2 20.0452e1z8E10.0755z8E2 9.121¯

I r /Ecve' 0.265 0.277 0.293
I i /Ecve' 0.0408 0.0518 0.128

qcI rx /Ecve' 20.02291¯ 20.031216.2131025e1
2 23.1231025 e1z8E

23.0831025z8E2
0.5901¯

qcI ix /Ecve' 20.4591¯ 20.45121.0031024e1
2 15.0431025e1z8E

14.9831025z8E2
20.5021¯

qcI rz /Ecve' 0.7115 0.642 0.992
qcI rz /Ecve' 0.2254 0.250 0.671

SE /Ec
2e' 0.0728 0.0851 0.162

Below this line, all values are given in units of 10212 N
SE /qc

2 16.6 17.1 25.2
Sx /qc

2 22.23 21.96 23.56
Sz /qc

2 6.14 7.49 18.2
Sxx /qc 27.34 25.95 216.4
Syy /qc 8.321¯ 7.0710.0419e2

2 20.0561e2e110.0141e1
2 10.11¯

10.0017e2z8E20.0022e1z8E2131024z8E2

Szz/qc 217.61¯ 215.710.0101e2e120.0101e1
2 25.491¯

10.0050e2z8E20.0052e1z8E2131024z8E2

Sxy /qc 9.861¯ 8.6620.0847e2z8E10.0285e1z8E20.00500z8E2 10.21¯

Sxz /qc 213.71¯ 211.820.0201e1
2 20.0102e1z8E2131024z8E2 0.3171¯

Szx /qc 34.8 34.8 88.8
G 214.61¯ 214.520.557e2

2 10.323e2e120.0565e1
2 232.11¯

20.195e2z8E10.0665e1z8E20.0100z8E2

aUsing the parameter set ‘‘MBBA I’’ from Ref.@36#.
bAs tabulated in Ref.@70# for 30°C, e'55.22e0 .
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V. EFFECTIVELY 2D PATTERN DYNAMICS
NEAR THRESHOLD

Currently more interesting than the fully 3D chaotic sta
are, from the experimental point of view, the quasi-2D p
tern dynamics in a restricted geometry near threshold@e8
&(l/d)2#. The dynamics is derived here for a slight gen
alization of the usual setup: A magnetic fieldHy might be
applied along they direction ~i.e., in plane, normal to the
rubbing direction!. With Hy slightly below the twist-
Freédericksz fieldxaHF

25k22(p/d)2, the amplitude of the
twist mode, which is known to be important for the patte
dynamics in any case, becomes a slow variable and mus
included explicitly in the 2D formalism. The convention
setup is described byHy50.
-

-

be

A. Derivation of the 2D description

The appropriate boundary conditions for the soft mode
the enclosing electrodes are

F0 ,F r ,F i ,w,v50 at z56d/2. ~11!

Thus, all components of the electric potential and the vel
ity field are damped by the boundaries.

Again the ‘‘center manifold’’ method is used~see Appen-
dix B!, now to reduce the 3D equations to 2D. The dynam
cally active partS of the state vectorU is now given by the
sum of

A~x,y,z!5A8~x,y!cos~pz/d!, ~12!
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w~x,y,z!5w8~x,y!cos~pz/d!, ~13!

P~x,y,z!5P8~x,y!, ~14!

with the amplitudes of the active modesA8, w8, andP8.
To be specific, associateA with the complex conjugate o

Eq. ~10! andF0 , F r , F i , w, vx , vy , vz , andP with suc-
cessive equations in the system~40!, and define the scala
product ^•u•& as usual, as the equally weighted sum ovez
integrals over products of the two components. The proje
onto the slow dynamics is constructed from the biorthon
malized linear functionals

~2/d!E
2d/2

d/2

cos~pz/d!A dz, ~2/d!E
2d/2

d/2

cos~pz/d!w dz,

and ~1/d!E
2d/2

d/2

P dz.

We proceed with a calculation of the excitations in t
fast subspaceR by a term-by-term solution of Eq.~B12!. The
truncation is chosen such that the distinguished limit

P8,HF
22Hy

2,] t;«8,

w8,A8,]x ,]y;«81/2, ~15!

«85O~l/d!4, and d→`

is correctly described.
At linear order in the amplitudes and to linear order

]x ,]y , the slaved part of the state vector contains only
contributions

vx
~1!52

1

h2
S d2

8
2

z2

2 D ]xP8, ~16!

vy
~1!52

2

a4
S d2

8
2

z2

2 D ]yP8. ~17!

At orderO(uA8u2) and without anyx or y modulations, there
are excitations of the electric field

F r
~2!1 iF i

~2!5
I r1 i I i

s'1 ive'
E

2d/2

z

uA~z8!u22^uAu2&z dz8,

~18!

and a contribution to the pressure field, orthogonal to
active pressure mode,

P~2!52~Sz22SE!~ uAu22^uAu2&z!, ~19!

where^uAu2&z5uA8u2/2 is the average ofuAu2 over z and

SEª
E0e'~ve'I i1s'I r !

v2e'
2 1s'

2 . ~20!

By gradients ofF r
(2) , F i

(2) , P(2), and by direct contributions
at orderO(]xuA8u2,]yuA8u2), the mean flow
or
-

e

e

vx
~2!5FSxS d2

16
2

z2

4 D1~SE1Sx2Sz!
d2

4p2 cos2S pz

d D G
3

]xuA8u2

h2
, ~21!

vy
~2!5~SE2Sz!

d2

4p2 cos2S pz

d D 2]yuA8u2

a4
~22!

is excited ~there is no distinction between ‘‘singular’’ an
‘‘nonsingular’’ mean flow in this approach!. Excitations of
F0 are of the orderO(«8) and do, as all other remainin
corrections, not contribute at leading order.

Projection of the dynamics with the full state vectorU
5S1R onto the slow space yields the equations of mot
for the pattern amplitude

t] tA85Fjx
2]x

21jy
2S ]y

22
16iqc

3p
w8]y2

3qc
2

4
w82D ~23a!

1 i
8

3p
by¹yw81«82S 3

4
g1

SE

e'E0
2D uA8u2

~23b!

2
id2qct

48p2

9SE1~1512p2!Sx29Sz

h2
¹xuA8u2

~23c!

1
id2qct

12p2

31p2

h2
¹xP8GA8 ~23d!

and the twist mode,

g1] tw85@k33]x
21k118 ]y

22xa~HF
22Hy

2!#w8 ~24a!

1
qcG

2
ImH A8* F 8

3p
]y2

3iqc

4
w8GA8J

~24b!

1
4d2

p3 Fa3

h2
1

2a2

a4
G]x]yP8 ~24c!

2
2d2

3p3 F2a2~SE2Sz!

a4

1
a3~SE14Sx2Sz!

h2
G]x]yuA8u2, ~24d!

and the pressure Poisson equation~@1#!

052
d2

12F 1

h2
]x

21
2

a4
]y

2GP8 ~25a!

1
d2

8p2

SE1~11p2/3!Sx2Sz

h2
]x

2uA8u2 ~25b!

1
d2

4p2

SE2Sz

a4
]y

2uA8u2. ~25c!
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B. Remarks on the 2D amplitude equations

By the explicit representation of the coupling coefficien
in Eqs. ~23!–~25!, the increasing importance of the mea
flow contributions in lines~23c!, ~23d!, ~24c!, and~24d!, as
the separationd of the damping boundaries increases, b
comes obvious. On the other hand, for small enoughd, i.e.,
«8!(l/d)4, mean flow is negligible. With some rescalin
~indicated by a caret! dynamics are then described by th
system

ť] ť Ǎ5@11] x̌
21] y̌

222ic1w̌] y̌2c2w̌22uǍu21 i b̌ y̌¹ y̌w̌#Ǎ,
~26a!

] ťw̌5] y̌
2w̌1Ǩ3] x̌

2w̌2Ȟ2w̌12Ǧ Im$Ǎ* ~] y̌2 i w̌ !Ǎ%.
~26b!

This is the ‘‘normal form’’ for the dynamics of a patter
coupled to a soft mode with symmetry under the reflectio

@ x̌→2 x̌,w̌→2w̌,Ǎ→Ǎ* # and @ y̌→2 y̌,w̌→2w̌# or @ y̌→
2 y̌,w̌→2w̌,Ǎ→2Ǎ#. In the present casec15c2
5 4

3 @8/(3p)#2'0.96 are fixed by geometric constraints@33#.
These values are quite close to the case with an underl
rotation symmetryc15c251 @56#, which turns out to be
somewhat singular in its dynamical properties@57,58#.

With Hy
250 in line ~24a!, w8 is damped out and become

one of many higher-order corrections. Equations~23! and
~25! with w50 are then sufficient, and with«8!(l/d)4 the
simple Ginzburg-Landau Equation~3! with

g85
3

4
g1

SE

e'E0
2 ~27!

~the second contribution is numerically small, see Table I! is
retained.

When modulations ofuAu2 along x are strong, as in the
chevron pattern, it is instructive to redefine the pressureP8
→P82const3uA8u2 such that its excitation by]x

2uA8u2 in line
~25b! is canceled. It turns out that the remaining excitation
P8 by ]y

2uA8u2 is proportional toSx . The substitute for line
~23c! incorporating this redefinition ofP8 has the form

2
id2qct~p226!

164

SE1Sx2Sz

h2
“xuA8u2

and accounts for a mean flow with a nontrivial flow profi
with zeroz average.

C. Pressure vs singular mean flow

As for any incompressible Newtonian fluid, Eq.~25! is of
the form

05] r•M ] rP82] r•V. ~28!

In the present simple case, the matrixM is constant and, in
the usual coordinates, diagonal. The inhomogeneityV ~with
dimensions of velocity! depends on timex and y. Equation
~28! can be solved formally by the transformation

] rP85M21~ ẑ3] rG1V!, ~29!

which requires a fundamental solutionG(x,y,t) satisfying
-

s

ng

f

05 ẑ3] r •] rP85~ ẑ3] r !M
21~ ẑ3] r !G1~ ẑ3] r !M

21V.
~30!

With some rearrangements, Eq.~30! has the same simple
structure as Eq.~28!. The quantityG can be interpreted as
stream function generating a certain component of the la
scale variations of the velocity field (vx ,vy);( ẑ3] r)G, the
‘‘singular mean flow’’ ~in early works @59# expressed in
terms of the vertical vorticity2¹2G!. By using Eq.~30!
instead of Eq.~28! and eliminating the pressureP8 through
Eqs. ~29! also in the remaining equations@in our case Eqs.
~23! and ~24!#, a description completely in terms of the sin
gular mean flow is obtained.

In principle the three forms of Eqs.~28!, ~29!, and ~30!
are equivalent, although the last is often preferred in
literature ~for an overview see both Refs.@1,60#!, perhaps
because in some situations with high symmetryG is not
excited, whileP8 is. When disregarding the effects of th
additional soft modew8, application of the less obvious bu
direct method of Kaiser and Pesch@61# leads to the same
result for the mean flow equation~30! as the route describe
here.

The flux V in Eq. ~29! is determined by Eq.~28! only up
to a transformationV→V1( ẑ3] r)G0(x,y,t), which im-
plies a redefinitionG→G2G0 . Hence (ẑ3] r)G is not gen-
erally proportional to thez average of the large-scale flow
This is not necessary for the formalism to work. In simp
cases, like the present, the stream functionG has this prop-
erty with the ‘‘natural’’ choice ofV. To guarantee it in gen-
eral, the method of Newellet al. @60# can be used to derive
Eq. ~29! ~Eq. ~2.59! in Ref. @60#! directly under this addi-
tional constraint.

Here, following Ref.@1#, the formulation as a mass con
servation equation~28! is used, since it derives naturall
from the general formalism and is thus easily extended
three spatial dimensions, to additional homogeneous
modes, or to relax the assumption of incompressibi
~which is not essential for the relevance of mean flow as
sometimes suggested!.

In principle, terms proportional to]x
2w8 and ]y

2w8 could
also appear in theP8 equation~25!. It is a particularity of the
system considered here that they do not. In the conduc
regime of EC in cells with homeotropic boundary conditio
it can be shown@58# that there is such a, presumably sma
excitation of P8 by w8 proportional to the dynamic flexo
electric coefficientzE.

D. Variation of the boundary conditions

Of course, the reduction from 3D to 2D can also be c
ried out for other boundary conditions than Eqs.~6! and~11!.
Some variants are of practical interest.

An effect similar to applying a magnetic field alongy can
be obtained by a homeotropic~normal! anchoring of the di-
rector at the boundaries: For negative, not too smallea , and
with external electric fields as required for dielectric EC,
homeotropic director alignment is unstable and instead
director becomes planarly oriented everywhere, except
small boundary layers of thickness (k11/ea)1/2E0

21'l.
Hence, on the length scales@l relevant for the amplitude
formalism, the boundary layer vanishes and instead f
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boundary conditions forw can be assumed. For this setu
only some geometry factors have to be changed in E
~23!–~25!.

Another variant is a twisted cell, e.g., withw50 at z5
2d/2 andw5p/2 at z5d/2, as it was recently investigate
experimentally by Bohatsch and Stannarius@62#. Based on
the reduced 3D description derived here, the linear theory
this configuration is developed in Ref.@63#.

E. Higher-order contributions

It is worth noting that, when only the limit of small«8 is
considered while keepingd fixed, there are several othe
nonlinear and higher-order gradient terms besides thos
lines~23c! and~23d! which are formally of the same order o
magnitude. A longer list containing more than 50 terms h
been calculated numerically by Kaiser and Pesch@61# for the
conduction regime of EC. Their form correctly predicts t
stability of ideal roll patterns close to threshold but, since
does not separate mean flow and director effects, is unab
describe important effects like the transition to abnorm
rolls @64# ~see Sec. VI A!. These limitations are partly over
come in the less systematic but numerically surprisingly
curate description of Plaut and Pesch@40#.

In fact, since the lowest-order mean flow effects enter
Eqs.~23!–~25! all depend on gradients ofuA8u2, they do not
contribute to long-wavelength instabilities of the band cen
~i.e.,A[const!. For the calculation of the thresholds of lon
wavelength instabilities of the pattern it may be useful
formally set up amplitude equations including higher-ord
mean flow. But for a systematic quantitative description
general nonideal patterns containing structures of s
;l«821/2, only the truncation used here is justified. Wh
higher-order mean flow becomes relevant, the 2D amplit
formalism is already breaking down because, for exam
the coherence lengthjy«821/2 becomes of the order of th
sample thickness@61#.

VI. STABILITY OF IDEAL PATTERNS

Rather than deriving stability bounds of ideal patternsA
5a(z)exp(iqx1ipy) using a reduced 2D description,
seems more appropriate to do the calculations directly ba
on the 3D equations, in particular whenHy50. This is easily
seen from the fact that there is a~numerically small! manifest
deviation ofa(z) from the cos(pz/d) profile at the threshold
of all instabilities calculated below, indicating that the e
pansion for smallA8 is breaking down. Nevertheless, in o
der to obtain analytic estimates, Galerkin approximatio
will be used that correspond effectively to Eqs.~23!–~25!
and their extension to higher-order contributions. For s
plicity, the stability analysis shall here be performed only
the band centerq,p50 and only take homogeneous an
long-wavelength instabilities with modulations alongy into
account. The latter restriction is justified by experimen
observations and by the fact that, with this geometry,
advection of the pattern by mean flow is particularly stron
It is then sufficient to consider only the interaction ofw, vx ,
and of the phaseu given by A5a(z)expiu(y,z,t) @a5a(z)
5O(e8/g8)1/2 be real and given by Eqs.~10!, ~40b!, and
~40c!#, which leads to the following linear problem:
s.

or

in

s

t
to
l

-

g

r

r
f

e
e,

ed

s

-
t

l
e
.

g1] tw5@~k1112be2
2 /ea!]y

21k22]z
2#w

2a3]yvx1~qcG/2!a2~]yu2qcw!, ~31a!

rm] tvx5h2~]y
21]z

2!vx1a3]y] tw

1Syya
2]y~]yu2qcw!1Szz]z~a2]zu!,

~31b!

t] tu52tqcvx1by]yw1jy
2]y

2u1jz
2a22]z~a2]zu!.

~31c!

Sincea50 at z56d/2, the singular last term in Eq.~31c!
implies boundary conditions]zu50. The other boundary
conditions arew,vx50 at z56d/2.

A. Homogeneous destabilization

First, consider homogeneous (]y50) destabilizations of
the pattern. In this casew decouples fromvx and u. The
destabilization ofw is known as the abnormal-roll instabilit
and was investigated in the dielectric regime in Ref.@33#. It
was found that

«85«AR8 ª2
8p2g8k33

3d2qc
2G

, ~32!

which can be derived from Eqs.~23! and~24!, is typically a
good approximation of the threshold. In MBBA«AR8
'2.83(l/d)2(vt0>8). The value obtained by numericall
calculating eigenmodes of Eq.~31a! directly is 3% lower
than the value of Eq.~32!. Below it will be shown that for
MBBA the abnormal-roll instability is preceded by a long
wavelength modulation instability. Nevertheless, some p
nomena associated with abnormal rolls might be observa
around«5«AR , e.g., the tendency of defects in the conve
tion pattern to cluster along lines parallel to the rolls.

For the discussion of homogeneous perturbations ofvx
andu, notice first the neutral mode associated with a tra
lation of the patternu→u1const. This mode is best dea
with by decomposingu asu5 ũ(z,t)1Q(t) such that thez
averagê ũ&z vanishes. By multiplying Eq.~31c! by a2 and
integrating overz the dynamics ofQ is obtained as

] tQ52qc

^a2vx&z

^a2&z
. ~33!

This describes the advection of the pattern by mean flow
large pattern amplitudes.

At the threshold of instability one has] tũ,] tvx50 and
] tQ5const ~] tQÞ0 implies an acceleration instability o
pattern and liquid crystal!. To calculate the threshold, elimi
nateũ from Eq. ~31b! by Eqs.~31c! and ~33!, obtaining the
equation

05h2]z
2vx1

Szztqc

jz
2 a2Fvx2

^a2vx&z

^a2&z
G ~34!

from which the critical mode can be determined numerica
When using the low-amplitude approximationa2
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5(«8/g8)cos2(pz/d) the critical mode is found to be antisym
metric in z ~i.e., ] tQ50! at

«85«drift8 573.3
h2g8jz

2

d2Szztqc
. ~35!

@With the large amplitude approximationa25«/g, the first
symmetric and antisymmetric mode both become unstab
the same«5(4p2h2gjz

2)/(d2Szztqc).# The antisymmetric

excitation of the phaseũ involved in this instability is obvi-
ously inaccessible to a reduced 2D description. SinceSzz

,0 in MBBA, the value of«drift8 '21003(vt0)21(l/d)2 is
negative and the instability does not occur. However, si
the electric contribution toSzz @the second term in formula
~A25!# is always positive and comparable in size with t
hydrodynamic one, a positiveSzz is thinkable for other ma-
terials. WhenSzz,0, the mechanism leading to Eq.~34! is
stabilizing—in particular for all perturbations ofũ. The
lamellae of EC are forced to align normal to the boundar
This explains why the experimental shadowgraph imag
which average the pattern alongz, remain quite sharp eve
for complicated pattern dynamics.

B. Modulation instabilities

The stability of ideal patterns with respect to perturbatio
in w, vx , andu modulated with small wave numbersk along
y was investigated numerically using the system~31!. It was
found that for MBBA the dominating destabilizing feedba
loop is based on the excitation ofvx by the term containing
Syy in Eq. ~31b! and advection of the phase. There is a go
Galerkin approximation for the numerical results. Using t
low amplitude approximation fora2, Galerkin modesw,vx
;cos(pz/d) andu;1, and projectors*dz cos(pz/d) on Eqs.
~31a! and ~31b! and *dz cos2(pz/d) on Eq. ~31c! to reduce
the system~31! to algebraic equations, the threshold f
long-wavelength modulation instabilities is estimated to be

«85«ZZ8 ª

72p4h2g8k33jy
2

d2qc

3@512k33Syyt2h2G~256by127p2qcjy
2!#21.

~36!

With by52qcjyy
2 the parentheses followingG nearly van-

ish; the remainder is related to the small deviation
c1 in Eq. ~26a! from unity. Numerically «ZZ8
'9(vt0)21(l/d)2 ~observe that«ZZ8 and«AR8 have different
frequency dependence!. In particular, atvt058, using the
second-lowest Fourier approximation without flexoelect
effects, Eq.~36! yields«ZZ8 50.792(l/d)2, while the numeri-
cal solution of system~31! gives a threshold at«8
50.797(l/d)2. Using the Galerkin approximation it is easi
verified that the instability is in fact of the long-waveleng
(k→0) type.

VII. QUALITATIVE TRANSITIONS

For the caseHF50, order of magnitude estimates shall
used to distinguish regions of qualitatively different patte
dynamics in parameter space—above as well as below
at

e

s.
s,

s

d
e

t

f

he

stability bounds of ideal patterns.
As mentioned before, simple Ginzburg-Landau dynam

can be expected for smalle until the last two lines in Eq.~23!
become relevant. Assuming]x'«81/2jx

21 and uA8u2

'«8/g8, these terms have an effect of the magnitude
«8A8 when, say,«8'@3p2h2gqcjxl

2#2/@(p226)(SE1Sx

2Sz)td2#2'231043(l/d)4(vt0)22 (MBBA, vt0*10).
Preliminary simulations of Eqs.~23! and ~25! with w8[0
show that, for higher«8, defect cores~where ]xuA8u2 is
large! are strongly deformed and lines along which the ph
argA8 ‘‘jumps’’ are often generated and long living~rather
long living phase jump lines are also observed experim
tally and in simulations of a similar model@61#; it is not
clear, though, whether these are due to lowest-order m
flow effects!. But the simulations also indicate that the
lowest-order mean flow effects, although they are forma
dominating over the direct nonlinear saturation through
last term in line~23b!, do not prevent the system from finall
reaching a steady state withuA8u2'«8/g8.

Thus, assuming stilluA8u2'«8/g8, there will be a further
transition at «8'@31/2p(a412h2)gk33qc

3jy /(128a2Sx)#2/3

3(l/d)8/3'13(l/d)8/3 (MBBA, vt0>8) where contribu-
tions from slaved excitations of the in-plane directorw by
mean flow become relevant in the 2D pattern dynam
Semiquantitatively these effects are described by Eq.~24!
with Hy50, but a restriction of dynamics to a single line
mode ofw is then not justified.

When, with increasinge, horizontal length scales becom
of the size of the sample thicknessd @at «8'(pjx /d)2

'0.23(l/d)2 (MBBA), say# the 2D description breaks
down. Then, becaused is not the dominating length scal
for the damping of mean flow anymore, the trend
the influence of mean flow on the smallest structures
the A field ~e.g., defects! is reversed. Now the structure
themselves set the length scale. Assuming]x'«1/2jx

21 and
uAu2'«/g, the contribution i tvxA in Eq. ~10! is
large compared to «A up to «'(qcSxtjx /h2g)2

'1310263(vt0)2 (MBBA, vt0*10). For larger« the
cores of defects are not affected by lowest-order mean fl
effects. Larger structures, like the phase field of the patt
or variations in the defect density~e.g., in chevron patterns!,
still may be.

Current experimental resolutions are of the orderD«
51023...1022. The estimates above suggest that lowe
order mean flow effects are best observed near the u
limit of the frequency range for the validity of the hydrody
namic description used here, atvt05O(102) ~see Sec. II C!.
With d'5l they should be observable in the range of val
ity of the 2D description.

According to the model for the chevron mechanism@65#,
chevrons depend essentially on the abnormal-roll mechan
and can only form above the abnormal-roll instability bou
@here given by Eq.~32!#. Thus, it is plausible to assume
«8;(l/d)2 threshold for chevron formation, in accordan
with measurements presented in Ref.@23#, where an approxi-
matev21 frequency dependence is found.

For very high«8 many authors report the formation o
disclination loops, which, being singularities in the direct
field, indicate already a breakdown ofhydrodynamics. In
thicker cells, the chevron pattern might decay along ot
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8126 PRE 62AXEL G. ROSSBERG
routes before the 3D amplitude formalism breaks down
some«5O(1).

For convection in most quasi-2D systems, i.e., syste
with d/l5O(1), all these transitions, from the breakdow
of simple 2D Ginzburg-Landau dynamics to the breakdo
of the amplitude formalism, do, in principle, collapse at«
5O(1). Only by especially designed experiments~as in Ref.
@66#! can these transitions be unfolded.

VIII. ELECTRIC NUSSELT NUMBERS

Recently ‘‘electric Nusselt numbers’’Nr ,Ni have been
introduced by Gleeson,et al. @67# as the ratio of the in-phas
or, respectively, out-of-phase components of the electric
rent to the corresponding values expected for the unst
tured basic state at a given voltage, minus one. As for
Nusselt number in thermal convection, they are to first
proximation proportional touAu2.

Several interesting questions can be addressed by me
ing electric Nusselt numbers. First, it follows from the d
cussion above that, in dielectric EC,uAu2'«/g remains valid
even far inside the three-dimensionally chaotic range~the
average ofuAu2 across the pattern is typically only weak
reduced in the presence of defects; see, e.g., Ref.@65#!. Mea-
surements of the electric Nusselt numbers therefore see
be an effective method to test an essential feature of
theory. Second, Nusselt number measurements may also
to identify the qualitative changes in the dynamics predic
in Sec. VII, in particular since they do not, in contrast
optical methods, lose their sensitivity in thick cells or wi
small wave numbers. Finally, the frequency dependenc
the Landau coefficientg8, which enters the Nusselt numbe
near threshold in a simple way, provides information on
strength of the dynamic flexoelectric effect~see Appendix
A!. From the derivation ofg8 it is clear that boundary effect
do not interfere in these measurements. To obtain the th
t
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retical value for the Nusselt numbers, take thex andy aver-
age~symbol^•&xy! of Eq. ~40b! plus i times Eq.~40c!, which
leads to

~s'1 ive'!]z
2^F r1 iF i&xy

5~ I r1 i I i !]z^uAu2&xy

1~ I rz1 i I iz!]z^Im$A* ]xA%&xy . ~37!

Taking the boundary conditions~6! and ~11! into account,
this implies, similarly as forF r

(2)1 iF i
(2) in Eq. ~18!,

1
2 j zª2~s'1 ive'!]z^F r1 iF i&xy

5~ I r1 i I i !^uAu2&xyz1~ I rz1 i I iz!^Im$A* ]xA%&xyz

~38!

at z56d/2. Obviously, j z is the complex amplitude of the
average, pattern-induced electric current density through
sample.~The last term on the right-hand side represent
correction due to a global deviation of the average wa
number from the critical one, and will be dropped below!
Thus,

Nr5
2I r^uAu2&xyz

E0s'

~39a!

and

Ni5
2I i^uAu2&xyz

E0e'v
. ~39b!

At threshold, (d/d«8)^uAu2&xyz5(2g8)21, e.g., dNr /d«8
50.31 in MBBA atvt058, dropping flexoelectric contribu
tions. The value increases roughly;v as frequency in-
creases. Typically, it seems to be larger than the corresp
ing value for the conduction regime@67#.
052@~s i22bsa!]x
21s'~]y

21]z
2!#F022be2~sa /«a!]x]yw, ~40a!

051E0]x
2@e ivF i2~s i2sa!F r #1E0~]y

21]z
2!~e'vF i2s'F r !2@sa /ea1~123b!E0

2ea/2g1#

3~e122g1zE!]x
2]zF01@~sa /ea!~2k111k22!1e2E0

2~123b!~e1/2g12zE!] ]x]y]zw

1~sa /ea!]x~a3]zvx1a2]xvz!1E0~ I r]zuAu21I rx]x Im$A* ]zA%1I rz]z Im$A* ]xA%!, ~40b!

052E0]x
2@s iF i1~e i2ea!vF r #2E0~]y

21]x
2!~s'F i1e'vF r !2v~122b!~e122g1zE!]x

2]zF0

1@v~2k111k22!2~2be2 /ea!~e122g1zE!#]x]y]zw1v]x~a3]zvx1a2]xvz!

1E0~ I i]zuAu21I ix]x Im$A* ]zA%1I iz]z Im$A* ]xA%!, ~40c!

g1] tw5@k33]x
21~k1112be2

2 /ea!]y
21k22]z

21xaHy
2#w1~e122g1zE22be2!]x]yF0

2a3]yvx2a2]xvy1~qcG/2!Im$A* ~]y2 iqcw!A%, ~40d!

rm] tvx5~a11a41a51a6!]x
2vx1h2~]y

21]z
2!vx1~a21h1!]x~]yvy1]zvz!

1]x@2P2E0e']zF r12a3zE~]y
21]z

2!F0#1a3]y] tw1Sx]xuAu2

1Sxx]x Im$A* ]xA%1Syy]y Im$A* ~]y2 iqcw!A%1Szz]z Im$A* ]zA%, ~40e!
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rm] tvy5~h1]x
21a4]y

21a4]z
2/2!vy1]y@~a21h1!]xvx1a4]zvx/2#

1]y@2P2E0e']zF r12a2zE]x
2F0#1a2]x] tw1Sxy]x Im$A* ~]y2 iqcw!A%, ~40f!

rm] tvz5@~a21h1!]x
21a4~]y

2/21]z
2!#vz1]z@~a31a21h1!]xvx1a4]yvy/2#

1]z@2P2~k112k2212be1e2 /ea!]x]yw#2@e122be122~g11a2!zE#]x
2]zF0

2E0@~e i2ea!]x
21e']y

212e']z
2#F r1Sz]zuAu21Sxz]x Im$A* ]zA%1Szx]z Im$A* ]xA%, ~40g!

05¹•v. ~40h!
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IX. CONCLUSION

It has been shown how the 3D dielectric convection p
tern interacts with various homogeneous soft modes, wh
are related to undamped hydrodynamic modes. The me
to establish these relations is not unique, but the ‘‘cen
manifold’’ method seems to be favorable over the ‘‘orde
parameter’’ method.

The reduction of the 3D pattern dynamics to a quasi-
form in the layer geometry was derived analytically, th
establishing a description of the interaction of the patt
with the twist mode and the pressure field~or singular mean
flow!. Scaling analysis suggests that the transition from
simple, quasi-2D Ginzburg-Landau dynamics to manifes
3D dynamics in thick layers unfolds into several well disti
guished steps, the first of which occurs already very clos
threshold@e85O(l/d)4#. These characteristics should ge
erally be expected for 3D patterns.

Ideal, dielectric EC patterns are found to destabilize
some value«8;(vt0)21(l/d)2 for which an analytic ap-
proximation in terms of material parameters is given. A p
ticular nonlinear mechanism that stabilizes the phase of
pattern to be constant alongz, thus giving the pattern a 2D
appearance also at higher«8, is identified in Sec. VI. As
outlined in Sec. VIII, measurements of the electric Nuss
numbers are suitable for quantitatively testing the theo
probing the dynamic flexoelectric effect in nematic liqu
crystals independent of boundary effects, and investiga
the route of the transition from simple 2D to fully 3D dy
namics.
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APPENDIX A: RESULTS FOR LINEAR STABILITY
AND COUPLING COEFFICIENTS IN 3D

Some analytic and numeric results relating the 3D
scription of the pattern dynamics to hydrodynamics are p
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sented here, in particular analytic approximations for all c
efficients entering the the results in Secs. V, VI, and VIII.
the second-lowest Fourier approximation the onset of die
tric EC is at

Ec
25

4vs i~a2
22g1h1!

XS a22
2vs i~a2e i1eah1!

4e i
2v21s i

2 D 2eah1s'

~A1!

with a critical wave number

qc
25

2v~2a2
21g1h1!

k33h1

3

2e i
2v21s i

22
2eae ie'h1v2s i

a2X2eah1s'

4e i
2v21s i

22
2Xvs i~a2e i1eah1!

a2X2eah1s'

, ~A2!

whereXªe isa2eas i . The accurate numerical result forEc
2

vs v is nearly a perfect straight line~see Fig. 2!, which can
probably be understood by means of the approximation u
in Ref. @18#. Formula~A1! nicely estimates the offset of thi
line for intermediatevt0 , but gives a different slope a

FIG. 2. Ec
2t0 andqc

2t0 calculated for MBBA, including Fourier
modes up tov ~dotted!, 2v ~dashed!, and 7v ~solid!.



c

ita
rn

he

8128 PRE 62AXEL G. ROSSBERG
vt0→`. The deviations at the lower end are an artifa
occurring with all truncated Fourier approximations. Forqc

2

the situation is similar.
In the second-lowest Fourier approximation, the exc

tion of the hydrodynamic fields in the convection patte
near threshold~critical mode! is

F5uAusin~qcx1argA!

3@Fu12Fc cos~2vt !22Fs sin~2vt !#, ~A3!

nz52uAucos~qcx1argA!@cos~vt !1sin~vt !#, ~A4!

f 52uAusin~qcx1argA!@ f c cos~vt !2 f s sin~vt !#,
~A5!

where f generates a velocity fieldv5(]x]z ,]y]z ,2]x
2

2]y
2) f and the real constantsf c , f s ,Fu ,Fc ,Fs are given by

4h1f cqc
3524a2v1

XEc
2~8e i

2v222e ivs i13s i
2!

4e i
2v2s i1s i

3 ,

~A6!

4a2f sqc
352eaEc

224g1v14k33qc
2

1
eaEc

2@2eav~2e iv2s i!1sa~2e iv1s i!#

4e i
2v21s i

2 ,

~A7!

Fu5
Ecsa

qcs i
, ~A8!
t

-

Fc1 iFs5
~12 i !Ec~2i eav1sa!

2qc~2i e iv1s i!
. ~A9!

With the help of the real constantsFu
1 , Fc

1 , Fs
1 , andnz

1 ,
which characterize the adjoint eigenvector,

Fu
15

Ec~a2e i1eah1!qc

2a2s i
, ~A10!

Fc
11 iFs

15
qc

4a2XEcv

3$Ec
2@2a2X1eah1~2i e'v1s'!#

24@~a2
22g1h1!v1k33h1qc

2#~2i e iv1s i!%,

~A11!

nz
152

h1qc
2

a2
~A12!

and the normalization factor

4N52~qc
22nz

1!eaEc
2

1Ecqc@~eanz
12e iqc

2!~Fu1Fc1Fs!

22eav~Fc
11Fs

1!2sa~2Fu
11Fc

12Fs
1!#,

~A13!

analytic results for most coupling coefficients entering t
3D description can be obtained:
2Nt5eaEc~2Fu
11Fc

12Fs
1!qc22e i~Fu

1Fu1Fc
1Fc1Fs

1Fs!qc
2, ~A14!

Ec
2jx

258k33h1$26k33h1qc
2s i~4e i

2v21s i
2!1Ec

2@eah1~2e ie'v2s i12e i
2v2s'1s i

2s'!2a2~2e i
2v21s i

2!X#%

3$8@2e ik33h1~a2e i2eah1!v2qc
21~a2e i1eah1!~a2

22g1h1!v2s i1a2k33h1qc
2s i

2#X13a2
2Ec

2s iX2

28eak33h1
2qc

2~4e i
2v21s i

2!s'1Ec
2@ea

2h1
2~4e'

2 v2s i18e ie'v2s'13s is'
2 !22a2eah1~4e ie'v213s is'!X#%21,

~A15!

2Njy
25e'Ec~Fu1Fc1Fs!qc2~ f c1 f s!a4qc

324e'v~Fs
1Fc2Fc

1Fs!22s'~Fu
1Fu1Fc

1Fc1Fs
1Fs!1flexo,

~A16!

2Njz
25e'Ec~Fu1Fc1Fs!qc14a3v22~ f c1 f s!@a11a31a41a51~a3 /a2!h1#qc

324e'v~Fs
1Fc2Fc

1Fs!

22s'~Fu
1Fu1Fc

1Fc1Fs
1Fs!1flexo, ~A17!

~8/3!Ng5~2qc
224nz

1!eaEc
214qc

2@v~a31g2!22eanz
1FuFc#1~ f c1 f s!@~6a214a3!nz

124~a11g2!qc
2#qc

3

22Ecqcsa~3Fu
11Fc

122Fs
1!1eaEcqc@~5nz

122qc
2!~Fu12Fc!24v~2Fc

11Fs
1!#

18vqc
2ea~Fc

1Fu12Fs
1Fc22Fc

1Fs!14qc
2sa@2Fu

1~Fu2Fs!12Fc
1Fc1Fs

1~2Fs2Fu!#1flexo,

~A18!

4I r14i I i5~ i eav1sa!@~422i !Ec2~222i !qc~Fu1 iFc2Fs!#1qc
3eaEc@~231 i ! f c1~12 i ! f s#

12e iqc
4@ f c~Fu1Fc1 iFs!1 i f s~Fu2Fc2 iFs!#, ~A19!
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4I rx14i I ix5
2~ i eav1sa!

eaEc
@4g2~ f c2 f s!qc

212eaEc~Fu1Fc2Fs!2ea~Fu
212Fc

212Fs
2!qc14qc~k332k11!#

2~222i !~ i eav1sa!~Fu1 iFc2Fs!2qc
2eaEc@~231 i ! f c1~12 i ! f s#

22e iqc
3@ f c~Fu1Fc1 iFs!1 i f s~Fu2Fc2 iFs!#1flexo, ~A20!

G54k2224k332ea~Ec /qc!~Fu1Fc2Fs!1ea~Fu
212Fc

212Fs
2!22a3qc~ f c2 f s!1flexo, ~A21!

2Sx5qc@2qc
2~a11a51g2!~ f c2 f s!2eaEc~Fu1Fc2Fs!1qce i~Fu

212Fc
212Fs

2!#, ~A22!

2Sz52a5qc
3~ f c2 f s!1eaEc@2Ec2qc~Fu1Fc2Fs!#, ~A23!

2Syy5~2h22a4!~ f c2 f s!qc
21qce'~Fu

212Fc
212Fs

2!1flexo, ~A24!

2Szz52~g22a1!~ f c2 f s!qc
21qce'~Fu

212Fc
212Fs

2!1flexo, ~A25!

2Sxy5~a21a5!~ f c2 f s!qc
22eaEc~Fu1Fc2Fs!1qce i~Fu

212Fc
212Fs

2!1flexo, ~A26!

2Sxz52~g22a1!~ f c2 f s!qc
21qce'~Fu

212Fc
212Fs

2!14qc~k332k11!1flexo, ~A27!
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Here ‘‘flexo’’ stands for flexoelectric corrections, whic
involve matrix inversions and are hard to express in a co
pact form. For similar reasons, no formulas are given forkx ,
Sxx , Szx , I rz , and I iz . The coefficientkz vanishes for the
second-lowest Fourier approximation~and rm50! and ax

andby1qcjy
2 have only flexoelectric contributions. The e

pression forjx
2 has a different structure than the other fo

mulas because it was not calculated with the ‘‘center ma
fold’’ formalism but by differentiating the determinanta
condition for stability of the basic state, which is more effe
tive in this case. There are indirect contributions from ex
tations ofnz enteringSxz , I ix , and I rx @the first bracket in
Eq. ~A20!, in Eq. ~A27! they cancel favorably#. These have
been calculated only in the lowest Fourier approximat
~i.e., for the nonoscillatory part ofnz!, which introduces a
small error.

The quality of these results can be judged by compar
the values obtained for MBBA atvt058 with the accurate
numerical values in Table I~only the approximation for the
indirect contribution fromnz enteringSxz , I ix , and I rz is
retained!. In the combinations in which the results are e
pressed there, they are, for fixedvt0 , independent of the
electric conductivity and, with the exception ofkx ,kz ,I rx ,
and some contributions involvingz8E, also largely indepen-
dent ofvt0 for vt0.8. Two exceptions, which should bot
be experimentally accessible, shall be highlighted: the
namic flexoelectric contribution toEcax , which increases
linear invt0 , and the contribution tog proportional toz8E2

,
which is the only one that increases;(vt0)2 as vt0→`.
The result forg in the lowest Fourier approximation

g59.4510.002 52e1
2 20.004 01vt0e1z8E

25.1831025vt0z8E2
10.001 02v2t0

2z8E2
~A28!

illustrates the latter effect, although it is correct only in
order of magnitude. The flexoelectric contributions in E
-

i-

-
-

n

g

-

-

.

~A28! and also in Table I are expressed in terms ofe1ªe1
1e3 , e2ªe12e3 andz8E

ª2g1zE, in units of 10212cm21

~3.0031025 dyn1/2 in Gaussian units!. Typical values mea-
sured fore1 ande3 are a few times that much~see the over-
views in Refs.@68,16#!.

As a result of the approximatep/4 phase shift of the di-
rector oscillations,kz is so small that the remaining finit
viscous effect is comparable in size to the effect of fin
mass densityrm , which has been suppressed everywh
else.

APPENDIX B: ‘‘ORDER-PARAMETER’’ VS ‘‘CENTER
MANIFOLD’’ METHOD

Here, two general methods for obtaining amplitude eq
tions are compared. It is shown that they give different
sults in the presence of multiple homogeneous soft mode
this work, the ‘‘center manifold’’ method is used to deriv
the reduced equations. In order to keep the formalism sim
it will be restricted to homogeneous (q50) modes and their
slow modulations. The inclusion of patterning soft mod
(uquÞ0) is straightforward.

1. Formal setting

Let the state vectorU(r ) describe the configuration of a
relevant degrees of freedom~e.g., hydrodynamic fields! of
the system in the~ideally! infinitely extended,D-dimensional
r space. Assume the ‘‘microscopic equations’’ to be of t
form

05F~U !5L~] t ,¹!U~r !1nonlinear terms ~B1!

where the linear operatorL(] t ,¹) is polynomial in] t and¹,
acting onU(r ) locally and translation invariant in space an
time. There are several branchesj of linear modesVj (q)
which solve the generalized eigenvalue problem

L@s j~q!,iq#Vj~q!50, ~B2!
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and, with some suitable scalar product^•u•& ~that doesnot
contain an integration overr !, adjoint eigenstates

Wj~q!L@s j~q!,iq#50. ~B3!

For some branchesj PK, the growth rates Re$sj(q)% vanish
~or are small! at their maxima atq50, for the others (j ¹K)
they are negatively large in the vicinity ofq50.

2. The order-parameter method

Using the ‘‘order-parameter’’ method physical states
characterized by weighted sums over slow eigenfunction
L(] t ,¹),

U~r !5 (
j PK

E
V

uj~q!Vj~q!exp~ iq•r !dq1R~$uk%!.

~B4!

The weightsuj (q) are interpreted as the Fourier transform
of the set of ‘‘amplitudes’’ used in the reduced descriptio
The range of integrationV is a region aroundq50, large
enough to include all significant contributions fromuj (q)
and small enough to exclude slow~patterning! modes at
large wave numbers. With this ansatz, slaved contributi
R($uk%), which are fully in the fast eigenspace ofL, come in
only at nonlinear order. The linear dynamics for each am
tude is simply given by

] tuj~q!5s j~q!uj~q!. ~B5!

An inverse Fourier transform yields the linear dynamics
physical space, which is usually simplified by truncating t
Taylor expansion ofs j (q) in each component ofq for small
uqu, such that, in physical space, derivatives ofuj are ob-
tained.

However, the situation is different in the case of multip
slow branches. Thens j (q) is typically nonanalytic in the
components ofq ~although it is analytic inuqu!. As a generic
example, consider the linear operator

L~] t ,¹!5S ]x
21]y

22] t ]x]y

]x]y ]x
21]y

22a] t
D ~B6!

with a positive parametera. There are two neutral modes
(q,p)ªq50. It is easily seen that one of the two grow
rates is of the form

s1~q,p!52
p41p2q21q4

p21q2 1O~a!, ~B7!

i.e., nonanalytic atq,p50. As a result, the correspondin
amplitude equation in physical space

] tu1~r !5 7
8 ¹2u1~r !1E K~r 82r !u1~r 8!d2r 8

1O~a!1o~u1 ,u2! ~B8!

is nonlocal. In polar coordinatesK(r )52(3/p)r 24 cos 4w.
These conclusions do not requirea to be small, because th
e
of

.

s

i-

e

additional termsO(a) depend ona and they can cancel th
nonanalyticity calculated here at most at particular valu
of a.

This transition from local basic equations to amplitu
equations withalgebraicallydecaying nonlocalities is coun
terintuitive and misleading. This approach has the advant
that in Fourier space the linear dynamics~B5! is simple. This
is useful for calculations of pattern stability involving only
few Fourier modes.

Finally, notice that a general method to reobtain loc
amplitude equations from the Fourier representation~B5!,
e.g., by redefining the amplitudes, should not be expec
Equation ~B5! is general enough to include even nonloc
interactions in the basic equations, which certainly can
lead to local amplitude equations.

3. The center manifold method

Alternatively, in the ‘‘center manifold’’ method only the
slow modes atq50, Vj (0) enter into the characterization o
the physical state

U~r !5 (
j PK

E
V

uj~q!Vj~0!exp~ iq•r !dq1R~$uk%!.

~B9!

The ‘‘slow subspace’’ spanned by the sum in Eq.~B9!, can
be extracted by the projection operator

P•ª(
j PK

Pj • ~B10!

with

Pj f ~r !ªE
V

dqE dr 8
~2p!D ^Wj~0!u f ~r 8!&

3Vj~0!exp@ iq•~r2r 8!#, ~B11!

where it is assumed without loss of generality that the sta
Wj (0) andVj (0) ( j PK) enteringP form a biorthonormal
system. The ‘‘slaved’’ contributionsR($uk%) cover the re-
maining subspace.

The factorVj (0) in Eq. ~B9! can be pulled out of the
integral, which is then simply the inverse Fourier transfo
of uj (q) into physical spaceuj (r ). It is thus justified to
defineuj (r ) as~the local average of! the hydrodynamic vari-
able^Wj uU(r )&. In particular, if^Wj uU(r )& is conserved, so
is uj (r ). In such a local representation, the vicinity of th
‘‘center manifold’’ method to a multiple scale approximatio
would be more obvious. Similar simplifications would als
be possible for the integrals below, but have been suppre
in order to ease the comparison with the ‘‘order-paramet
method.

The functionR($uk%) is defined by the perturbative solu
tion of

~12P!F~U !50, ~B12!

whereU is given by Eq.~B9! and theuk are small and vary
slowly and smoothly in space and time but are otherw
arbitrary.
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At linear order inU, where Eq.~B12! reduces to

~12P!L~] t ,¹!U50, ~B13!

a form

R~$uk%!5 (
j ¹K

E
V

r j~q!Vj~0!exp~ iq•r !dq ~B14!

with contributionsr j (q) only in the vicinity of q50 is suf-
ficient.

The amplitude equations are then given by

PiL~] t ,¹!U50 for each i PK, ~B15!

whereR is eliminated fromU through Eq.~B13!.
When Eqs.~B13! and ~B15! are satisfied with slowly

varying uk and smallR($uk%), this implies thatU contains
no fast eigenvectors ofL(] t ,¹). Hence the resulting linea
dynamics forU is the same as the one obtained with t
‘‘order-parameter’’ method, in particularR($uk%) is then
given by Eq.~B14! with

r j~q!52(
k,l

^Wk~q!uVj~0!&21^Wk~q!uVl~0!&ul~q!,

~B16!

where l PK is running over all fast modes andj ,k¹K are
running over all slow modes~for small uqu the matrix
^Wk(q)uVj (0)& in this expression is generally a perturb
unit matrix and readily inverted!.

To see that this method yields local dynamics for the a
plitudes, split the linear operator, restricted to the subsp
selected byQª(12P), like
re

s

-
ce

into a partL0 which is regular, and a term which is small fo
slow temporal and spatial variations of the operand and p
nomial in] t,¹. Calling the sum on the right-hand side of E
~B9! S($uk%) and suppressing the arguments~such thatU
5S1R!, Eq. ~B13! becomes

QLR5QLQR5~L01 l !R52QLS, ~B18!

and is solved by expanding for smalll, i.e.,

R52 (
n50

`

@2L0
21l ~] t ,¹!#nL0

21QL~] t ,¹!S. ~B19!

When eliminatingR from Eq. ~B15! by Eq. ~B19! and
truncating at some power in the derivatives~i.e., for slow
enough variations!, linear amplitude equations with local in
teractions are obtained. The extension to the nonlinear le
is straightforward~see Sec. V A!.

It should be noticed that with this approach all modes
the kernel ofL(0,0) have to be treated as ‘‘soft modes
some of which, e.g., those resulting from gauge symmetr
may not actually have slowly relaxing modulations asso
ated with them~see, e.g., the pressure mode in Sec. IV!.
For the simple example~B6! the ‘‘center manifold’’ method
leads to amplitude equations identical to the basic equati

The reason for the difference between the two approac
is that in the multidimensional kernel ofL(0,0) the choice of
the basis vectors characterizing the slow modes is
unique. While they are fixed~with respect to the hydrody
namic variables in the ‘‘microscopic equations’’! for the
‘‘center manifold’’ method, they point, depending onq, into
arbitrary directions in the slow space for the ‘‘orde
parameter’’ method. For the same reason, there is no n
identity transformation mapping one representation onto
other.
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