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Permeability of self-affine rough fractures
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The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic
arguments and numerical simulations. The limit where the roughness amplitude is small compared with
average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture,
we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann
method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments.
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[. INTRODUCTION nificant long-time tails[12]. Similarly, the deposition and
erosion of solid particles from a surface is sensitive to the

The transport of fluids through geological media such adocal shear stress, which in turn can change dramatically as a
hydrocarbon and water reservoirs involves a combination o$urface roughens.
flow through the microscopic pore space of the rock itself In the opposite extreme of a very narrow fracture, the
and flows through macroscopic channels such as fractureBow field changes qualitatively as the fluid winds through a
The first case is relatively well understood, at least in prin-highly irregular channel. Aside from the challenge of esti-
ciple[1,2], by means of models that treat the pore space as Bating the permeability of difficult geometry in terms of its
random network, and then use effective medium or percolastatistical characteristics, there are further effects arising
tion concepts for the transport. Fractures are typically modfrom the fact that the two sides of the fracture originate from
eled as simple straight-sided channels, with a cubic relatio@ single crack. In the fractal case, the spatial correlations
between fluid flux and average aperture, and a challengingetween the two sides of a fracture lead to velocity field
problem is to understand the dynamics of flow in a macrocorrelations, which again strongly affect tracer motja8—
scopic fracture networ3—6]. Typically the surface of a 15]. In Ref.[13] the authors estimate the permeability scal-
single fracture appears fairly smooth, aside from some smaling in the limit of large system size. They consider the frac-
scale superficially random roughness, and Poiseuille flow ifure surface as asymptotically flat and subsequently describe
a straight channel is the obvious model for fluid flow. How- the flow as a Poiseuille one between parallel plates. On the
ever, more careful analysfg] shows that common geologi- Other hand, Refd.14,15 are mainly devoted to the study of
cal fractures in fact have correlated, self-affine fractal suriracer dispersion. These works, in order to compute the spa-
faces. The roughness exponent, whose precise definition {&l variation of the(aperture-averaggdelocity, made use of
recalled below, is usually founfB,9] to be close to 0.8, avery approximate velocity field, obtained in the lubrication
surprisingly insensitive to the material and the fracturinglimit. One of the motivations of this paper is to examine the
process(Other values may arise from intergranular effects;{a:i(;jity of the lubrication approximation for the velocity
[10].) ield.

The aim of this paper is to study the permeability of ~The organization of this paper is as follows. We first re-
single self-affine two-dimensional fractures. We shall seecall some basic facts about self-affine surfaces, and give the
that it is possible to obtain general analytic expressions irlgorithm used to generate them numerically, and also ex-
two limiting cases, where the roughness associated with thelain the lattice Boltzmann method used for the numerical
fracture surface is either small or large compared to the meagimulations. We then consider the case of fractures with a
aperture. The theoretical predictions will be supported bywide average aperture, obtain a perturbative estimate for the
numerical simulations, using the lattice Boltzmann methodpermeability, and test it numerically. We then turn to narrow
which of course can address the case of intermediate-sizdtpctures, first in the case where the two sides are simply
roughness as well. In subsequent work, we will consider thélisplaced normally to the mean fracture plane, and second
fully three-dimensional case, and go on to consider moravhen there is a lateral shift as well. Finally, we summarize
general transport processes in fractures, involving both paghe results, and indicate the next steps.
sive tracers and finite-sized suspended particles. Complimen-
tary experimental studies on laboratory samples of fractured
rock are in progress elsewhdrel]. Il. PRELIMINARIES

To the extent that the fluctuations in the height are small
compared to the aperture width, the effect on permeability is
modest, and we will obtain small corrections to the usual We briefly review the mathematical characterization of
cubic law, but the effects on other transport processes argelf-affinity, and its implementation in this paper. We con-
much more significant. For example, passive tracer dispesider a rock surface without overhangs, whose height is
sion is very sensitive to the presence of any slow zones in thgiven by a single-valued functior(x,y), where the coordi-
velocity field, and even uncorrelated roughness leads to sigiatesx andy lie in the mean plane of the fracture. Self-affine

A. Self-affine roughness
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surfaced 16] display scale invariance with different dilation ingredient is the height function(x,y), a statistically self-
ratios along different spatial directions, remaining unchangeaffine surface with periodic boundary conditions. The peri-

under the rescaling odicity is not a physically essential ingredient here, but has
some calculational advantages in alleviating finite-size ef-
X—N1X, Y=Y, Z—NgZ. (1) fects. The surface is generated by a Fourier synthesis

method, based on power-law filtering of arrays of indepen-

Here we consider disordered media, so these scaling lawg, "o 4om numbeifd 9]. The random numbers are gener-
apply only in an ensemble or spatial average sense. Experi-

S LT ated using a Gaussian distribution, and then modulated by an
ment indicates that for many materials isotropy can be as- ~ ) )

sumed in the mean plane, implying that there is only one2PPropriate power law. IZ(k) is the Fourier transform of
nontrivial exponent relating the dilation ratio in the meanthe initial Gaussian random array, then the Fourier transform
plane to the scaling in the perpendicular direction, ing., ©f the surface elevation is chosen to be

=N\,=N\, and\3=\¢, with

Z(k)=k ¢ Y%Z(k). (4
2(%,Y)=\"Z(AX,\y), 2
where{ is the roughness or Hurst exponé]. (The 1/2 is appropriate for the self-affimairve used here,
We assume that the process of fracturing the rock i&nd would be 1 for a real rockurface) _
“clean,” in the sense that the rock breaks so as separate N MOSt cases the roughness exponent is chosen as the

along one single-valued surface without subsequent defoRftén-observed valug=0.8. The amplitude of the roughness
mation and without producing loose interstitial material. WeCan be expressed in terms of variance of the height distribu-
shall emphasize two complimentary limiting situations, in ion over the full range,

which the two surfaces are either well separated with respect

to each other, or very close to each other. lis the lateral 1L

size of the fracture in the mean plane, the typical range of the  o?={([z(x)—(z(x))]?) = EJ [z(x)—{(z(x))]%dx, (5)
fluctuations(the difference between the maximum and mini- 0

mum values of) scales aR~L*¢. If his the mean width of

the fracture, withh<L, then the two cases correspond to \yhich in this case isr2=0.49+0.06 for L =256. Alterna-

R<h andR>h, respectively. _ tively, the amplitude is given indirectly in terms of the range
The local aperture of the crack is the key parameter depy the fluctuations aR=R;L¢, with R; = 1.66+0.4. In these
te_rmining the fracture permeability, and three different casegquations, and in the rest of the paper, the unit of length is
will be addressed. For large aperture, the roughness assogjiat of the spacing between lattice points in the numerical

ated with the two sides of the fracture act independently, andg|culations.
it suffices to consider a channel with one rough and one gjnce we consider fluid flow in a highly irregular geom-
smooth boundary. In the case of a narrow fracture, the COfayry and eventually hope to consider dispersion and the evo-
relation between the two sides is a key feature, and we congtion of the solid surface due to particle transport, the lattice
sider two possibilities. We first study fractu_res where theBoItzmann(LB) method[20] is particularly convenient. In
upper surface has been simply translated a distamm@mal s algorithm, fictitious particles move between neighboring
to the mean plane, so that the local apertafe,y) equals  sjtes on a lattice, with suitable collision rules, and the bound-
the constanh. Alternatively, the two surfaces may have a 4y of the flow domain is simply a surface of sites where the
relative lateral displacement in the mean fracture plane, e is modified in some way to keep the particles out. We
e_lccompanied by a displacemdnin the perpendicula}r direc- jse the face-centered-hypercutiCHC) -projected version
tion, so that the two surfaces do not overlap. In this case thgt the LB model, with a cubic lattice in three dimensions and
local aperture is given by the random variable, 19 velocities(D3Q19 in the terminology of21]). We define
the lattice spacing as the unit of length, and the time step as
the unit of time. As we are concerned with incompressible
flow, we do not need to introduce a dimension of mass. In
what follows the macroscopic variables will be expressed in
these units. The collision operator is approximated by a
ingle relaxation time, the Bhatnagar-Gross-Krook model
FZZ], and the local equilibrium distribution given Bh21] is
used. This pseudoequilibrium distribution locally preserves
fpass and momentum values, and is formulated specifically

constant pressure drop. In a subsequent paper we will exte he Navier-Stok X | | h and
these calculations to fully three-dimensional fractures, but ifo "€cover the Navier-Stokes equation at large length an
time scales. For the no-slip solid boundaries, we use the sim-

is convenient, both conceptually and in the numerical simu- . . . .
lations, to regard the system as having a translationally inplest_lmple_mentatlon of_pa_rtlcle exclusion—the bounce-bapk
variant third dimension rule, in which a particle incident on the boundary reverses its

direction. Periodic boundary conditions are used for the in-
flow and outflow surfaces. A constant pressure gradient forc-
ing the fluid is added in the& direction, while the gap be-

Our aim is to study various aspects of the fracture permetween surfaces extends overand the geometry is taken to
ability which are sensitive to the fracture roughness. The firsbe translation invariant iry.

ag(x,y)=z(x+d,y)—z(x,y) +h. )

It turns out[18] thatd is the lateral correlation length for
fluctuations in the aperture, in the sense thgtx,y) and
aq4(x+Ax,y) decorrelate foAx>d.

In this paper we restrict ourselves to the two-dimensiona
case where the surface is invariant in tlgedirection,
z(x,y)=12(x), and the flow is forced in th& direction by a

B. Numerical methods
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Ill. SMALL SURFACE DEVIATIONS

2

Lin
In this section we consider the case of a channel with one K S( P
fractally rough wall, in the limit where the mean width is
large compared to the amplitude of the roughness. Wdhe analogous formula for the electrical conductivity
(re)derive an elegant general result for the permeability, andvhich follows from Ohm’s law and the Laplace equation
then an exact variant which gives the permeability of a per{23], is
turbed pore space. If the pore space perturbation is weak, the L1
leading-order correction is easy to evaluate and, when com- _ - N2
pared to numerical simulation, is seen to provide a reason- 7T 00s @J'vdvg (914)". (10
ably accurate estimate of the permeability.
Here o, is the conductivity of the pore fluidg(r) is the
A. Integral representations potential, and®d its difference across the sample. Note that
. . . . both of these formulas may also be derived by comparing the
We begin by deriving an integral representation for theenergy dissipation rate computed microscopically in the pore

permeability, and then considering a perturbation in thesgace to the same quantity computed using average fields.

boundary shape. Although we suspect that these results ar We next derive an exact variant of the integral expression

k”OWF‘ to many, we are not aware O.f an earlier pUbI'Ca.‘t'onfor the permeability(9) due to Wilkinson[24], which allows
containing them, although the electrical analog of the inte{ /s 1o implement a perturbation analysis. Suppose we begin

gral representation is in the literatui23]. . .with a pore volume/, and known Stokes equation solutions
Consider a rectangular volume of a porous medium, peri-

odic in all directions, and the following surface integral: ~ Po @ndUo, and thencontractthe volume toV, where the
exact (but unknown solution is p=pgy+p,. and u=ug
| = f ds-Ta(H (1. 6 +u,. The r_esult_to fO||OW is true even if the vo_Iume change
s [u(r)p()] ©) and alterations in the fields areot small, but is probably

only useful in that limit, hence the suggestive subscept
Here,u andp are the velocity and pressure fields of a fluid Substituting into the dissipation integral on the right-hand
that completely fills the pore space, assumed to satisfy thgide of Eq.(9), and suppressing the summation sign for the
Stokes equations, and the surfais the complete boundary Mmoment, we obtain
of the pore space, consisting of the inner grain surfaces and
the porous regions of the outer boundary. The pressure and j dV(aiuj)2=f dV[(dUgy)2+ (due,)]
velocity fields are periodic, except that the pressure jumps by Vv Vv
a constant amourf® between two opposite faces in one di-
rection, that of the mean flow. Now the velocity vanishes on +2J dVd;Uo;dUe, - (12)
the grain boundaries by the no-slip condition, and there is v ’ '
complete cancellation between the opposite faces in the two ) ) _ _
completely periodic directions, but in the flow direction the The last integral on the right-hand side can be rewritten as
remaining two faces of the box combine to give
KP2S deV[ai(Uo,jﬁiUs,j)_Uo,jé’izue,j]
71N

=P [ dsi(H)=-Po-- @

E

zf dSuO,j&iue,j_f dVUO’]z?,ZuE’J (12)
Here Q is the fluid flux through this end facg, and the S v
minus sign arises because the outward normal is used in
The last equality follows from Darcy’s law, whefis the

area of endE, k is the permeabilityy the fluid viscosity, and

Noting thatuy;=—u,; at the surfaceS due to the no-slip
condition, and usingu?izuaj =d;p., we may rewrite the pre-

L the length of the box. vious expression as
On the other hand, applying the divergence theorem to o
Eq. (6), we obtain deV5iU0,j3iUe,j =— deV[(ﬂiuevj)z‘f' ,L,LilU' Vpe]

- (13
I=J dVV-(up)
v Using incompressibility, the last term in the integrand can be
o o . rewrittenﬁ-(ﬁpe) and converted to a surface integral, which
=f dV(u-Vp)=,uJ dV(u-V2u)= —,uf dV(Vu)?, vanishes if the pressure is held constant on the ends of the
v v v porous medium. Finally, we obtain

®

where the volumé/ is just the pore space. We have used first
the incompressibility of the fluid, second the Stokes equa-
tion, and third integration by parts. Comparing the two ex- This result is exact but not useful. However, note that if
pressions foit, we have the relative change in volume is sma)(e), the second

L 2
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g , [ P2 hy  hi L g
jv V((?iUO’j) ~ H Y 1—2L—Z OZ(X) X

P ZSk 1 > 18

=\ ) T —h—o<2> ; (18

where(z) is the average of over the channel length, and

the cross-sectional area & hyY. The mean perturbation
(z) is computable for a specific profile, but here we wish to
use a statistical characterization and relate it to the average
properties of an ensemble of self-affine surfaces.

The mean height of the surface is half the range, and
therefore has the scalin@(x))=3R,L¢. Substituting, and
replacing the previous equation in E(), we obtain the
first-order perturbative correction to the permeability

L

3
1- EC]_G

FIG. 1. Example of the geometry and velocity field in a fracture
with one self-affine surface of roughness expongént0.80. The . . .
enlargements show the difference in the velocity decay near smooth/€ have added an adjustable paraméier which is ex-
and rough boundaries. pected to lie between<dC;<2, to take account of the dis-

tinction between open volume and flowing volume. A value

term is second order in the small parameter, so that to firse1=1 means that the fracture is equivalent to a straight
order the decrease in permeability involves only the integrafhannel of height equal to the mean height of the surface. On

of the unperturbed velocity over the deleted region, which ighe other hand, a valug, =2 means that the whole region of
easy to calculate. fluid below the maximum excursion of the surface is not

contributing to the permeability and the system is equivalent
to the maximum channel that does not intersect the surface.
Note the lowest-order correction to the permeability ob-
In this section we will determine the decrease in permetained here results from the reduced volume of a fracture
ability due to the presence of a self-affine perturbation in thecompared to that of a straight channel enclosing it, and hap-
lower surface of a straight channel, and in particular its depens to coincide with the lubrication approximation. The ap-
pendence on the size of the channel. To use the previoysroach taken here allows us to gain some insight in the draw-

B. Dependence of permeability on system size

result, we begin with a straight channel of width which
completely contains the rough-walled ofsee Fig. 1, where
we have Poiseuille flow

-

Ug z(hy—2)x (15)

“2ul

and an unperturbed permeabili%=h§/12. The lower

backs of this approximation and further improve them. Using
the previous equation we may write the first-order correction
to the flow rate,

CiR;

4
ohy ©

3
1—

Q(L)~Qq . (20)

To verify this prediction, we consider a pore space con-

boundary is shifted by(x)>0, where we assume that the sisting of a cubic lattice with periodic boundariesxiandy,

rangeR of z satisfiesse=R/hy<<1. The only surviving veloc-
ity derivative is

1P
azuo,x:ﬂ E(hO—ZZ) (16)

so that the dissipation integral is simply

L Y h
[ v (o= [ ax] ay [ datoen?
\% i, 0 0 z(x)
P\2 [t ho
=(—) Yf de dz
j s 0 0

JZ(X)d hz(z 1)2 .
“Jo HMlR 2 47

Up to first order ine this becomes

one impermeable wall atz=h,, and a self-affine rough
boundary lying above=0. We generate an ensemble of ten
self-affine surfaces with exponent=0.8, as discussed
above. In Fig. 2 we display the correction to the flow rate as
a function of the size of the systelm The straight line is a fit

to the expected exponent, which does reasonably well except
at the smallest and largest values»>ofThe origins of the
discrepancies are first that the discretization used in the nu-
merical calculation suppresses any roughness less than one
unit, which is a significant fraction of the system for siall
Moreover, the system should be periodiclinbut the nu-
merical algorithm used to generate it assumes a system size
that is a power of 2. As usual, there are computational limi-
tations on the sizes we can simulate, and for lengths between
32 and the accessible maximum of 64, we just truncate the
periodic surface. Finally, at the largest system sizes, we are
really outside the range of validity of the estimates. In fact,
the second term in the flux in ERO) is greater than 1/3 for

the parameters here whén=16.
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£=0.80 {=0.95
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FIG. 2. Perturbation in the flow rate in a wide, rough channel as a function of the leraftithe system for=0.80 and 0.95.

The fitted valueC, given that{=0.8 is C;=1.30"%1, 3C,A
meaning that a portion of the fluid does not contributes to Q=Qq| 1~ h
convective transport. Expressed in terms of the surface

hejght varianceo? instead of the span range, the excludgdHereA is analogous tdR; L%/2, andC,, an order-1 fitting
fluid represents 50% of the roughness region. The physicalyetficient. In Fig. 3 we show the results obtained by nu-
consideration absent in the leading-order perturbation calcys,arical simulation corresponding to a system with 32

lation is the fact that fluid velocity sharply decays inside s 5
- o : : dL=64 (and, to be specificV p=6.25x10°, ©=0.1,
depressions and corners where resistive eddies are likely 4, which givesQ,—0.683). The filled circles are the

occur [25]. This deficiency is associated with the omitted . X
numerical results, and we see the expected linear decrease of

second term in Eq(14), i.e., the correction to the unper- h bil thA. In f Y p h ical

turbed velocity. In Fig. 1 we magnify two regions close to (N€ permea IEyOV%t(') 83 act,dz(a: 'E%ar?#g)lt € Egmherlca

the lower and upper surfaces, respectively, showing théiatal givesQo=0. | Ho andi,=u./1=0.1, which are
reasonable numerical values given our assumptions.

markedly different way the velocity decays towards the sur- ) !
y y y y Further evidence for our arguments concerning the effects

face.
ace é)f low-velocity zones can be adduced by showing that the

We have also simulated a system with an alternativ o . S
roughness exponeit= 0.95, corresponding to a surface with permeability is unchanged if they are deleted. We begin with
' e family of adjustable-amplitude self-affine surface just

more persistent correlations and in a sense a lower fracta)

dimension(the dimension of the intersection of the surface iscussed, and filter out the smallest wavelengths from the
with a plane normal to it i© =2— 7 [16]). In this case the spectrum so as to generate a smother surface. The smooth

prefactor in the range scaling lawR§ = 0.6+ 0.12. In Fig. 2 surface is then shifted upwards so as to enclose the deleted

we show the numerical results; again, good agreement Witﬁurface fluctuations, in the rms sense. Quantitatively, if we

the predicted behavior is obtained. The fit giv&y
=2.04f'°1’:é, suggesting that the low-velocity zones are even
more important in this case, presumably because the greate
degree of correlation enhances them.

(21)

08

0.6

C. Permeability decrease due to zero mean surface
fluctuations oM

We wish to disentangle the permeability decrease due td”

the volume reduction of the fracture from that due to low-

velocity zones induced by surface fluctuations. The first step

is to consider “zero-mean” self-affine surfaces, whose mean o2

height h is constant, but which have a tunable roughness.

The previous profilez(x) for 0<x<L, is rescaled so as to

have unit variance, and then multiplied by an adjustable am-
. .. . . 2 0.0 : : ‘

plitude A, giving adjustable variancA<. If we assume that 00 0.1 0.2 03

the effect of the boundary perturbation is to give low veloc- e=AMh

ity zones which do not contribute to the flow, and that the FIG. 3. Flow rate as a function of the relative amplitude of the

volume of these zones contributing to the dissipation integradurface roughness. Circles and squares correspond to the fully

is proportional toA, we would write in analogy to Eq20) rough and the small-wavelength filtered surfaces, respectively.
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L which is a typical size over which the fluctuations in the
vertical direction are small compared to the effective aper-
o ) ture of the channel. Using the self-affine scaling law for the
IiaiiiiiTiiiiiiiiaiias correlation function,

R e e e S ISRV
P

\ '"'?"?T??:‘?TTT?;;:’?TTTT / g 2¢

— a§(§”)=<[z(x,y>—z<x+§|,y>12>=¢></>(7) (23
A e SO where/ is a microscopic length, say a grain size, af@")
jipinind oo Raaed is then on the order of a grain size squared, we estimate

[ -

P - - - - - -

/ g ) Z(x,y)—Z(X+§,y)~/(;

FIG. 4. Flow field in a narrow fracture with a constant gap, and
exponent{=0.80. The enlargements illustrate the effect of the ef-
fective aperture on the flow field.

¢
. (24)

A segment of lengtl is roughly straight when this quantity
is a small fraction oh, which yields

h 1/z
have N, points on thex axis, withL=N, A, and filter all §|~/(—) . (25

wavelengths smaller thax,=AN, /N¢, then 4

1§ 2N Returning to the entire fracture, eagp channel is ori-
(Ah)2=—2 E |Z(k,)|?, k”:A_' ented at some angle, with respect to the mean plane, and
(NL—=Nc¢)= n=Nc+1 N has effective apertureaj=hcosé, and length
(22 =§|/cosé. Assuming Poiseuille flow in eack channel,
; i L 2

The prefactor on the right arises from the discrete form ofine corresponding local permeability ks= a;/12. W,e com-
Parseval's theorerfi26], and in practice we choos&=1. pute the pressure drop across the fracture by adding the local
We then simulate fluid flow in the smoothed fracture, and inP"€SSure .drops along the straighchannels a}long the whole
Fig. 3 the open squares show the results obtained as a funpath. Noting that the flow rat®=Uh=Ua; is constant,
tion of roughness amplitudd. The agreement between the

actual and filtered surfaces is clear. N N m—\

The extension of this analysis to the three-dimensional AP:; AP;= _2'1 (Eui>§
(3D) case is conceptually straightforward, since the decrease - - '
in the permeability in this limit just corresponds to the de- N 12u Q g
crease in pore spaceolume The latter would bel, XL, =—2 > (h 0)( 0.)
X R, due to the self-affine topography of the fracture surface, =1 | hcos's, COS0; /| cost;
and the relevant expansion parameter is addihy. The 12 N
effects of low-velocity regions are presumably the same as - ﬂ 2 cos 4(6,)
well. hd =1 '

12180 &
IV. NARROW FRACTURES __ l‘;fl ;1 cos4(6)). (26)

We now turn to the complimentary situation of narrow
fractures, where the pore space is winding and convoluted.. . B .
Consider the situation in which a rock is fractured and the nally, noting thatN=L/£>1 is the number of channels,
two surfaces are simply displaced by a distaheel, per- we can convert th.e sum into an average over the distribution
pendicular to the mean fracture plane, with no lateral shift.Of angles, and write for the permeability
The vertical aperture is constant everywhere, but the effec- )
tive local aperture for fluid flow, i.e., the local width of the K= h_ 1 27)
channel normal to the mean flow direction, strongly depends 12 (cos4(0))

on the local angle between the surface and the mean plane. In

Fig. 4 we show a fracture of length=64, generated by a  \ve can give a simple if heuristic estimate of the perme-
self-affine surf_ace of exponegt= 0.8, separated a dlstqnce ability as follows. Since the exponegt<1, the channels
h=8, along with the(lattice Boltzmann computed velocity  haye small vertical fluctuations, and we can approximate the

field. . o _ cosine as
The theoretical analysis will be based on a kind of local

lubrication approximation, where the channel is divided into

i : : : £ 1 o&))\?
a sequence of quasilinear segments at varying orientation coSf= 2~ = (28)
angles. First, we estimate the lengthin the direction of the V& +o5(&) 2\ §

mean flow over which the channel formed by the two frac-
ture surfaces can be considered approximately straighGubstituting in Eq(27), we obtain
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FIG. 6. Change in the flow rate as a function of the dap
between vertically displaced self-affine surfaces, for exponénts
=0.80 and 0.95system length.=128).

10 o q

Moreover, aside from the purely numerical coefficients,
g, we can argue that scale invariance requires the angular aver-
age to have the form given in E31). The self-affine prop-

FIG. 5. Top: semilogarithmic plot of the distribution of heights erty of the fracture geometry implies that the probability dis-
Z=1z(x)—z(x+¢) for different values of¢; for a self-affine sur-  tribution of heightsp(Z) should only depend on the rescaled
face with exponenf=0.80. The solid lines are Gaussian fits to the var|ab|eZ/§§ [18]. More specifically,
numerical results. Bottom: variation of the mean spatial correlation
(Z?) with £ for {=0.80 and 0.95.

P(Z)=0, (EPeLZioy(é)], (32
K~ h? 1-2 Uz(gu) (29) where the prefactor comes from the normalization. If
12 ¢ ' (cos #6) is evaluated for this distribution, we obtain a vari-

ant of Eq.(31) where the numerical coefficients 2 and 3 are

A more convincing evaluation of the angular averagereplaced by the moments of the functign leading to the
makes use of the actual height distribution. Experimentakame scaling form for the permeability.
measurements indicate a Gaussian distribution for the spatial Finally then, using the leading term in E(31) for the
correlation in heights/=z(x,y) —z(x+ ¢)) [18], and in fact ~ angular average, and E(5) for the value of¢, we have
our numerical procedure for generating self-affine surfaceshe result for the permeability of a narrow two-dimensional
also gives a Gaussian distribution fd@r We illustrate this self-affine fracture,

( ¢(/)) (2¢-2)1¢
-2 - .
/2 (/ )

point in Fig. 5, where we plot our generated probability dis-
The principal approximation used in obtaining this result is

tribution function ofZ, corresponding to different values of
&|, along with their Gaussian fits k=
that the fracture aperture may be regarded as a sequence of
almost-straight segments.
To test EQ.(33) numerically, we first recast it in terms of
the fluid flux. For a straight channel of heidihtwidth Y, and
length L, and pressure dropP, we have flux Qg
=h3PY/12uL. Thus

h2

12 (33

p(2)= (30

1 z?
P — |-
v2may(§) 205(§)
We also plot the(numerically obtaineddependence of the
mean spatial correlation(22>=cr§(§”), on ¢ for two

choices ofZ, confirming the scaling given above in E@3).
The angular average is then given by

2

zZ\4 PY . B
(cos 46)= dep(Z) 1+2(§ +z } Qo—Q~C3—6M/(2 2B (39)
[ [
2 4 . .
( A§)) (Uz(fl)) whereC, is another adjustable parameter expected to be of
=1+2 +3| — . (31
§H fH order 1.

In Fig. 6 we present the correction @, as a function of

Using Egs.(23) and (27), this result is consistent with the
previous estimate Eq29) based on simple scaling argu-
ments.

the distance between the opposite surfdtder both rough-
ness exponentg=0.80 and(=0.95. We find the good
agreement for the predicted exponent for the c&s®.80.
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FIG. 7. Change in the flow rate as a function of the geafor FIG. 8. Change in the flow correction as a function of the gap

£=0.80 and variou.. The solid line is a fit to the numerical results 0" ¢=0.80 andL =64. The solid line is the best fit to the narrow
obtained in the largest systerh € 256). fractures regime obtained. At large gaps=64) a small deviation

towards a smaller exponent can be observed

The only adjustable parameter is the coefficient, which is . . . —
found to beCs=3.1+ 1.2 in fairly good agreement with the 92P size[27]) and higher accuracy in the fluid field close to

expected value. The fitted exponent is 24808, which the solid surface are needed. Our current computational limi-
agrees with the predicted value {52)/(=2.5. On the [@loNs prevents Us to simulate systems whereg;. Nev-
other hand, in the case=0.95 the numerical results deviates ertheless, we believe that the observed deviation corresponds

from the asymptotic behavior at small distances between th a crossover towayds a §maller expondrf) (as expected
surfaces. That is because the successive powers given by tHg@M the previous discussion.

expansion of Eq(33) are very close to each othghe dif-

ference between them is {2 2)/{~0.1]. Again if only the V. FRACTURES WITH SHIFTED SURFACES
coefficient is fitted, we findC;=0.35+0.21. Fitting also the

. : . ) ) In the field, when a rock is fractured its two sides may be
exponent, but using only the numerical simulations with

X . shifted laterally parallel to the mean plane by geological pro-
large separation between surfaces, we obtain 20039 oqse5. We now consider how our results for permeability are

where .(55_2)@:2‘89' . ) modified by this effect. The situation is somewhat different
In Fig. 7 we compare numerical results corresponding tqn two dimensions than in three. In order that a two-

systems of different sizes with the same roughness exponegiensional fracture remains open it is necessary that the

¢=0.80. It can be seen that the accuracy in the exponent ig,, siges do not touch, whereas in three dimensions in the
improved as the size of the system is larger. We obtain &resence of a lateral shift it is easy for the two surfaces to

value 2.52-0.04 for the largest system with size=256. touch at one or a few points in the plane, while the aperture
As mentioned, the crossover between small and large sufg || open to flow. Furthermore, in two dimensions when

face roughnesécompared to the mean aperture of the fraC-ye fracture nearly touches at a point, the permeability will
ture), can be addressc(asdginzli/r?grlcally. The narrow fracture repe qominated by the large pressure drop needed to force fluid
gime, whereQo—Qxh , is expected to be valid when  ,5,gh this narrow gap. In fact, in this case an estimate of
§<L. The critical mean aperture VaMG?.C which corre-  hq permeability is simplyk~a2, /12, wherea,,, is the
sponds teg~L tums out to be, using the fitted value©%,  minimum value of the aperture. In this section we address

.hCN 100. Qn the other han_d, the small surface-devifation scalyg complimentary case where the fracture is distinctly open.
ing behavior can be obtained from EQO), whereL is the As discussed in Sec. II, in the presence of a lateral shift

constant size of the system ahglis now the variable mean . facture aperture is now the random functims(x,y)

aperture of the fracturs, given by Eq.(3) rather than the constaht However, there is
PY 3C.R.L¢ a rgsidual correlation between the twolgides of the fract_ure,
Qu-Q~— 1 h2 (35)  Which allows us to relate the permeability to the self-affine
12p 2 statistics. First, we determine a condition on the shift for the
fracture to be open. Provided the average properties of the
In Fig. 8 we display the correction Qo in the range 2 surface are statistically stationafindependent ofx), we

=<h=128 for a system size=64. A small deviation from have(ay(x))=h, and the variance of the aperture distribu-
the narrow fractures regime can be observed, starting at tion is

=64. As the size of the gap becomes larger, the correction to

the unperturbed flow rat€, decreases as a power bf ag(d)z([ad(x)—(ad(x)ﬂz)

Therefore, both larger computational tinjey starting the d4\2¢
simulation from an initially at rest fluid, the time interval to _ _ 22— 10|

reach the steady asymptotic value grows as the square of the {[2(x+d) =2001%) = 3(d) ¢(/)( /) | (36
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proximate the velocity field14,15, and to obtain the per-
meability scaling in the limit of large system sig&3]. Our
results show that, in addition to the aperture spatial variation,
there are other important effects due to the complex geom-
etry of the fracture. That is, the sharp decay of the fluid
velocity inside depressions and cornédosv-velocity zoneg,
and the correction due to the tortuosity of the fracture gap.
In the wide-gap case, we obtained a perturbative correc-
tion related to the roughness exponent and amplitude. The
result is formally identical to the lubrication theory predic-
tion, but the corrections are known, in principle, and further-
more we can understand the discrepancies between the de-
rived numerical coefficient and simulation in terms of the
effects of low-velocity zones which do not contribute to
transport. In the narrow gap case, we also derive an analytic
n ) correction related to the roughness exponent and amplitude
(or microscopic lengthY’). The analysis is based in a local
FIG. 9. Change in the flow rate correction as a function of thejyprication approximation, dividing the whole fracture into a
gaph for exponent/=0.80 and various lateral shifts The solid  chain of approximately linear channels with varying orienta-
line is a fit to the casal=0 shown in Fig. 6. /Tghe wo vertical 5 angles with respect to the main flow direction. The result
d>asdr;e’</j{ }meg_(;;/lded(:h_e46reglonsh/()<(d//) and (//) is equivalent to a correction due to the tortuosity of the frac-
(d/#)* for d=22 andd=46. ture, where the tortuosity itself depends on the gap size. Fi-
nally, we show that in the case when there is a lateral shift
between the surfaces, there is no qualitative change com-
ared to the unshifted case. This is basically due to the two-
imensional geometry, where in order to have an open chan-
el the shift must be small compared to the size of the typical

Q-Q,

N
N \
g N s g g MO g
N

The aperture is surely open when(d)<h, which givesd
</(h1/)*, but from Eq.(25) this is justd<¢;. In other
words, the shift must be small compared to the typical lengt
of a straight segment of unshifted channel, and there is littl

change in the geometry compared to the unshifted case. gngth of a quasilinear segment of the unshifted fracture. The

eelxplec;tt:;ear:tf(l)]re,t;h:t dﬁ?fgrgrtw\;gruse rgfltjrllté lr?ﬁ)ﬁesrrc(;lljIgoef_two-dimensional nature of the problem imposes restrictions
fiEiFE’:Zt C P on the range of validity of analytic estimates, but the numeri-
3.

) . . . cal results are in general agreement over a much wider range.
In Fig. 9 we show LB simulation results for the correction 9 g g

i The extension of this work to fully three-dimensional
to the unperturbed flow rat®,, for different values of the fractures is in progress. The case of a wide gap does not

q‘equire any further significant conceptual effort. However, in

argumhentstrtor z;:l_lftv_altjeslof th? Srt‘r':t’ with dewattlons gccu:ﬂ:e narrow gap case the fracture geometry is significantly
fing when the snift 1S too farge for tn€ mean aperture. severgy,, .o complicated because it is not feasible to use any quasi-

other shift values were simulated obtaining the same general . i ansional approximation for the flow paths. Numeri-

behaviors as in those shown in Fig. 9. As is often the Casgal simulations are certainly feasible, at least up to size limits

with this type of scaling argument, reasoning in terms Ofimposed by one’s computational hardware, but additional

asymptotic limits leads to conditions that one quantity musrideas are required for analytic arguments. Future work will

be _m_uch larger th_an another, but in practice the range 0fconsider diffusion, and also convection plus diffusion, in
validity is much wider.

these self-affine fractures, in both two and three dimensions.
The LB method is quite simple for numerical simulations,

VI. CONCLUSIONS and we will explore the way in which the roughness expo-
jnent enters into the quantitative behavior, along the lines

We have studied the permeability of two-dimensiona
piven here.

self-affine fractures, using asymptotic analytic arguments fo
wide and narrow apertures. Numerical simulations using the
lattice Boltzmann method have verified the predictions, and
also suggest a smooth crossover between the limits used in We thank J. P. Hulin, F. Plourabguand M. Tanksley for
the derivations. We have obtained expressions for the permeliscussions. This research was supported by the Geosciences
ability in which the usual expression for straight channels isResearch Program, Office of Basic Energy Sciences, U.S.
modified by terms related to the Hurst exponent characterizDepartment of Energy, and computational facilities were
ing the fracture surface. provided by the National Energy Resources Scientific Com-
In previous works, the lubrication limit was used to ap- puter Center.
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