
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Analytic calculation of the anomalous exponents in turbulence: Using the fusion rules
to flush out a small parameter

Victor S. L’vov and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 12 May 2000!

The main difficulty of statistical theories of fluid turbulence is the lack of an obvious small parameter. In this
paper we show that the formerly established fusion rules can be employed to develop a theory in which
Kolmogorov’s statistics of 1941~K41! acts as the zero order, or background statistics, and the anomalous
corrections to the K41 scaling exponentszn of thenth-order structure functions can be computed analytically.
The crux of the method consists of renormalizing a four-point interaction amplitude on the basis of the fusion
rules. This amplitude includes a small dimensionless parameter, which is shown to be of the order of the
anomaly ofz2 , d25z222/3'0.03. Higher-order interaction amplitudes are shown to be even smaller. The
corrections to K41 toO(d2) result from standard logarithmically divergent ladder diagrams in which the
four-point interaction acts as a ‘‘rung.’’ The theory allows a calculation of the anomalous exponentszn in
powers of the small parameterd2. The n dependence of the scaling exponentszn stems from pure combina-
torics of the ladder diagrams. In this paper we calculate the exponentszn up to O(d2

3). Previously derived
bridge relations allow a calculation of the anomalous exponents of correlations of the dissipation field and of
dynamical correlations in terms of the same parameterd2. The actual evaluation of the small parameterd2

from first principles requires additional developments that are outside the scope of this paper.

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.2a
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I. INTRODUCTION

The aim of this paper is to build on previous work
achieve a controlled evaluation of the anomalous expon
that characterize various correlation and structure functi
in isotropic, homogeneous, and stationary Navier-Stokes
bulence, and in particular the exponentszn that characterize
nth-order structure functions. The main result of this pape
that given a single experimental input~for example, the
value of the anomalous exponent of the second-order st
ture function!, the n dependence of all the other exponen
that were reliably measured in experiments and simulati
can be calculated analytically.

Decades of experimental and theoretical attention~see, for
example, Refs.@1–7#! have been devoted to two types
simultaneous correlation functions; the first type includes
structure functions of velocity differences

Sn~R!5^uu~r1R!2u~r!un&, ~1!

where^•••& stands for a suitably defined ensemble avera
A second type of correlations include gradients of the vel
ity field. An important example is the ratee(r,t) at which
energy is dissipated into heat due to viscous damping. T
rate is roughlynu¹u(r,t)u2. An often-studied simultaneou
correlation function ofê(r,t)5e(r,t)2 ē is

Kee~R!5^ê~r1R!ê~r!&. ~2!

It has been hypothesized by Kolmogorov in 1941~K41! and
1962~K62! that statistical objects of this type exhibit powe
law dependence onR @1,8#:

Sn~R!}Rzn, Kee~R!}R2m. ~3!
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ts
s
r-

is

c-

s

e

e.
-

is

In addition, the K41 theory predicted the values ofzn to be
n/3. Experimental measurements and computer simulat
show that in some aspects K41 was remarkably close to
truth. The major aspect of its predictions, that the statist
quantities depend on the length scaleR as power laws, is
corroborated by experiments. On the other hand, the
dicted exponents seem not to be exactly realized. The
merical values ofzn deviate progressively fromn/3 whenn
increases@3–6#. K62 tried to improve on this prediction by
taking into account the fluctuations in the rate of ener
dissipation. On the basis of a phenomenological model,
suming the distributions function of energy dissipation to
lognormal, K62 reached the predictions

zn5
n

3
2

mn~n23!

18
. ~4!

In addition to the fact that these predictions did not follo
from fluid mechanical considerations, it was pointed out@7#
that they violate basic inequalities that do not allow the e
ponentszn to decrease, something that always happens w
Eq. ~4! with n large enough. The quest for computing th
scaling exponents from the equations of fluid mechanics
long, arduous, and on the whole pretty unsuccessful.

In this paper we present an approach that is based on
own previous findings which culminates in the analytic c
culation of exponents such aszn andm. At present the cal-
culation is not completely from first principles. We need t
input of one number from experiment, sayd2[z222/3.
Given this number we can calculate all the other expone
systematically withd2 being a small parameter that org
nizes our calculations. To first order ind2 we recapture Eq.
~4!. We will show that the result toO(d2) is universal, in-
dependent of the details of the calculations performed bel
To second order we find the results
8037 ©2000 The American Physical Society
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zn5
n

3
2

n~n23!

2
d2@112d2~n22!b2#1O~d2

3!, ~5!

m59d2~118b2d2!1O~d2
3!. ~6!

The curves ofzn vs n are shown in Fig. 1, using the exper
mentally accepted valued2'0.03 @6#. We show the K41
prediction, the result of our calculation to one-loop ord
and the two-loop result that is presented in Eq.~5!. While the
form of these results is universal, the numerical value of
dimensionless parameterb2 depends on the details of th
calculations; we find thatb2 is always negative and of th
order of unity. Note that the two-loop results correct t
unwanted down curving of the one-loop calculation~which
is the same malaise as in K62!.

In thinking about the strategy for this work we were le
by some insights that developed in the context of understa
ing how to compute the scaling exponents of the Kraichn
model of passive scalar advection@9,10#. In that model a
scalar fieldT(r,t) is advected by a Gaussian velocity fie
u(r,t) which is d-correlated in time but which has a scalin
exponentz25e. For e50 the advected scalar has trivial st
tistics, and fore small the model has a natural small para
eter. It turned out that the calculation of the exponents
proceed along two lines. The first, which is nonperturbati
was pioneered in Ref.@11#. It considers the differential equa
tions that thenth-order correlation functions satisfy, an
identifies the anomalous scaling solutions as the zero mo
of these differential equations. The calculation of the ex
nents then depends on the calculation of the zero mo
themselves, a task that is not at all easy, and therefore
calculations were never done for any order butO(e). In this
method the renormalization scale is the outer scaleL, not the
inner scaleh, and the dimensionless ratio of scales that c
ries the anomalous part of the exponents of the struc
functions isL/R where R is defined in Eq.~1!. A second
method that was discussed in detail in Ref.@12# considers
instead of the correlation functions the averages of hig
moments of¹T, i.e., ^u¹Tun&. These quantities diverge a
powers ofL/h, and the exponents of this power are the sa
as the anomalous part of the exponent of thenth-order struc-
ture function. The great advantage of the second metho
that one can write a perturbative theory ine for the scaling

FIG. 1. The scaling exponentszn as a function ofn. The calcu-
lation is organized by the small parameterd25z222/3'0.03.
Shown is the K41 prediction which is zero order ind2, together
with our results to first and second order ind2. To first order the
results are the same as the phenomenological prediction of K
and to second order it is Eq.~5! with b2520.55 according to Eq.
~72!.
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exponents themselves, without any need to compute the
modes or any other functions of many variables. Thus
second method allows computations toO(e2) @13,14# easily
and with some more effort to higher orders. The insig
gained is that one needs to focus on a quantity that offers
most feasible calculation, exposing the anomalous part of
exponents as it appears with a dimensionless ratio of len
scales.

In Navier Stokes turbulence the situation is similar. O
the one hand we have a nonperturbative theory which in
case is the infinite hierarchy formed by the equations of m
tion of the correlation function@15#. We can use this hierar
chy to demonstrate that anomalous solutions exist, but
computation of the scaling exponents requires a calcula
of the correlation functions themselves. This is a very di
cult task that up to now has not been accomplished i
satisfactory manner. The other approach will be describe
this paper. It will be a perturbative theory for the scalin
exponents themselves, not requiring the computation of
correlation function along the way. Similarly to the seco
method in the Kraichnan problem it will be based on cons
ering limits of correlation functions whenp coordinates fuse.
In that limit we create, even when all the distances are in
inertial range, a ratio of large and small lengthscales t
appears raised to the power of the anomalous exponentzn .

The two previous findings that influence the present f
mulation crucially are the mechanism for anomalous sca
that was announced in Ref.@16#, and the fusion rules tha
were discussed in Ref.@17#. In short, Ref.@16# exposed lad-
der diagrams which appear in the theory of turbulence. Th
diagrams contain logarithmic divergences that are summ
to power laws with anomalous exponents. These ladder
grams contain ‘‘rungs’’ of the ladder, that are actually ver
ces with four, six, and more ‘‘legs,’’ representing four-poin
six-point, and higher-order interaction amplitudes. In R
@16# these objects were represented in terms of infinite se
of diagrams that could not be resummed analytically. This
where the fusion rules are now most useful. The fusion ru
determine the asymptotic properties ofn-point correlation
functions when subgroups ofp coordinates coalesce to
gether. As such the fusion rules are nonperturbative, and
believed to be exact. We use the fusion rules to determ
the asymptotic properties of the rungs. This is done such
a calculation of z2 from the theory will agree with the ex
perimental value ofz2. We then show that the knowledge o
the asymptotics suffices for constructing a calculation of
the other scaling exponents, and in particular ofzn for n
.2 and ofm. The crux is that in the process of determinin
the analytic form of the rungs we discover that their amp
tude contains powers of a dimensionless small param
d25z222/3'0.03 @6#. Using this small parameter in th
renormalized four-point interaction allows us to develop
systematic expansion in orders ofd2. At the end of this paper
we sketch a way to understand the remaining task regar
the origin of the small parameterz222/3.

One should stress at this point that fundamental diff
ences exist with the Kraichnan problem. First, the seco
order correlation function has exactly one diagram in its d
grammatic representation, and since the rung remains ba
the Kraichnan model, there is no way to dress the norm
exponent. But once we go to higher-order objects the sit

2,
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tion becomes very similar to the present Navier-Stokes c
Of course one cannot present in the Kraichnan case a s
tion for zn in terms ofz2 or any lower orderzp—the problem
is linear, decoupled, and therefore genuinely multiscali
Our proposition is that in the case of Navier-Stokes the
erarchic coupling between various orders makes the prob
less genuinely multiscaling.

In Sec. II we summarize past results that are necessar
the present developments. In Sec. III we show how the
sion rules can be used to determine the properties of
rungs in the ladder diagrams appearing in thenth-order cor-
relation functions. The first important result is demonstra
in Sec. V—the numerical coefficient contained in the fou
point rung is shown to besmall, of the order of the anomaly
of z2. This result is crucial since it allows~to our knowledge
for the first time! the development of a perturbative calcul
tion of the anomalous parts of all the other exponents. T
physical reason for this result is that~in Sec. IV! we are
developing the theory around the K41 solution instead of
dissipative solution as was always attempted. In Sec. V
pave the way for the calculation of all the other exponents
Sec. VI we calculate the scaling exponents by resumming
logarithmically divergent ladder diagrams up toO(d2)
~which is known in field-theoretic jargon as the ‘‘one-loo
order’’ in the renormalized rungs!. We find ~admittedly to
our surprise! that to this order the scaling exponents are id
tical to K62. Similar to the latter they suffer from the viola
tion of the known requirement thatzn cannot decrease withn
@7#. In Sec. VII we show that the two-loop order solves t
problem of K62, and we present the result~5! for zn that in
our theoretical estimate is valid forn<12. The exponentm is
also computed in this section. If one wanted results forzn
with higher values ofn one would need to go to three-loo
order~and see Sec. VIII where the form ofzn to this order is
presented!, but the current experimental situation does n
warrant a theoretical prediction ofzn for very high values of
n. In Sec. VIII we summarize the paper, paying special
tention to the range of validity of the theory and to demo
strating that no uncontrolled approximations were made.

II. SUMMARY OF PERTINENT PREVIOUS RESULTS

In this section we present a brief summary of some p
work which is most pertinent. We refer to Ref.@19# as paper
I, to Ref. @16# as paper II, and to Ref.@18# as paper III.

A. The basic perturbation theory

The starting point of the analysis are the Navier-Sto
equations for the velocity field of an incompressible flu
with kinematic viscosityn which is forced by an externa
force f(r,t):

S ]

]t
2nD2Du1PJ~u•“ !u5PJf, ~7!

where PJ is the transverse projection operatorPJ[2D22
“

3“3. It is well known ~see, for example, paper I! that
developing a perturbative approach@20–22# for the correla-
tion functions and response functions in terms of the Eu
rian velocity u(r,t) results in a theory that is plagued wit
e.
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infrared divergences. On the other hand, one can transf
to new variables, and after the transformation~which
amounts to infinite partial resummations in the perturbat
theory! one finds a renormalized perturbation theory that
finite, without any divergences in any order of the expans
~see Ref.@23# and paper I! . One can achieve such a theo
using Lagrangian variables@24#; we find it technically sim-
pler to employ the Belinicher-L’vov transformation@23#

v@r0ur,t#[u@r1r~r0 ,t !,t#, ~8!

where r(r0 ,t) is the Lagrangian trajectory of a fluid poin
which has started at pointr5r0 at time t5t0

r~r0 ,t !5E
0

t

u@r1r~r0 ,t!,t#dt. ~9!

The natural variables for a divergence free theory are
velocity differences

w~r0ur,t ![v@r0ur,t#2v@r0ur0 ,t#. ~10!

Since the averages of quantities that depend on one time
can be computed att50, it follows that the average mo
ments of these BL variables are the structure functions of
Eulerian fieldSn(R) defined by Eq.~1!. It was shown@23#
that these variables satisfy the Navier Stokes equations,
that one can develop~see paper I! a perturbation theory of
the diagrammatic type in which the natural quantities are
Green’s functionG1,1

ab(r0ur,r8,t,t8) and the correlation func-
tion F2

ab(r0ur,r8,t,t8):

G1,1
ab~r0ur,r8,t,t8!5K dwa~r0ur,t !

d f b~r8,t8!
L U

f→0

, ~11!

F2
ab~r0ur,r8,t,t8!5^wa~r0ur,t !wb~r0ur8,t8!&. ~12!

Physically the Green’s function is the mean response of
velocity difference to the action of a vanishingly small for
ing. In stationary turbulence these quantities depend ont8
2t only, and we can denote this time difference ast. The
quantities satisfy the well-known and exact Dyson and W
coupled equations. The Dyson equation reads

F ]

]t
2nDGG1,1

ab~r0ur,r8,t !

5G1,1
0;ab~r0ur,r8,01!d~ t !1E dr2G1,1

0;ad~r0ur,r2,01!

3E dr1E
0

t

dt1Sdg~r0ur2 ,r1 ,t1!G1,1
gb~r0ur1 ,r8,t2t1!,

~13!

whereG1,1
0;ab(r0ur,r8,01) is the bare Green’s function dete

mined by Eq.~3.20! in paper I. The Wyld equation has th
form
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F2
ab~r0ur,r8,t !5E dr1dr2E

0

`

dt1dt2G1,1
ag~r0ur,r1 ,t1!

3@Dgd~r12r2 ,t2t11t2!

1Fgd~r0ur1 ,r2 ,t2t11t2!#

3G1,1
db~r0ur8,r2 ,t2!. ~14!

In Eq. ~13! the ‘‘mass operator’’S is related to the ‘‘eddy
viscosity’’ whereas in Eq.~14! the ‘‘mass operator’’F is the
renormalized ‘‘nonlinear’’ noise which arises due to turb
lent excitations. Both these quantities are dependent on
Green’s function and the correlator, and thus the equat
are coupled.

The main result of Paper I is a demonstration of the pr
erty of ‘‘locality’’ in the Dyson and Wyld equations. This
property means that given a value ofur2r0u in Eq. ~13!, the
important contribution to the integral on the right-hand s
~RHS! comes from that region whereur12r0u and ur22r0u
are of the order ofur2r0u. In other words, all the integral
converge both in the upper and the lower limits. The sam
true for the Wyld equation, meaning that in the limit of larg
L and smallh these length scales disappear from the theo
and there is no natural cutoff in the integrals in the pertur
tive theory. In this case one cannot form a dimensionl
parameter such asL/r or r /h to carry dimensionless correc
tions to the K41 scaling exponents. Forh!ur2r0u!L scale
invariance prevails, and one finds precisely the K41 sca
exponents

G1,1
ab~lr0ulr,lr8,lzt !5lb2G1,1

ab~r0ur,r8,t !, ~15!

F2
ab~lr0ulr,lr8,lzt !5lz2F2

ab~r0ur,r8,t !.

One can derive two scaling relations which hold order-b
order, i.e.,

2z1z252, z12z252. ~16!

The solution isz5z252/3. It was also shown that the sca
ing exponent of the Green’s function~15! is b2523. Ex-
tending such considerations to the higher order struc
functions leads to the order-by order K41 prediction thatzn
5n/3.

Of course, the order-by-order result~15! which leads to
Eq. ~16! is not necessarily the correct one. If one could
sum all the diagrammatic expansion one could find nonp
turbative answers that may be different. The whole sum
diagrams may diverge when the outer scale goes to infi
or the inner scale to zero, allowing a renormalization scal
creep in even though the order-by-order theory is conv
gent. Indeed, this mechanism was demonstrated explicitl
the case of the Kraichnan model@25#. The infinite series for
the correlation functionsFn are convergent order-by-order a
in the the Navier-Stokes case. In this case the perturba
expansions were resummed analytically, yielding equati
for Fn ~that were the same as the equations that were o
nally derived by Kraichnan@9#!. These equations have force
solutions which are identical to the initial order-by-order e
pansion, but in addition they have zero modes of nonper
bative nature, which diverge when the outer scale goe
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infinity. The conclusion is that indeed the infinite series f
Fn hides a divergence that could be exposed by an e
resummation. The difficulty with the Navier-Stokes case
that no one knows how to resum the infinite expansion wh
exhibits no obvious small parameter.

In this paper we will propose a way out of this difficulty
It is based on the fusion rules. Instead of considering fu
unfused correlation functions only, we will allow some c
ordinates to be much closer together, say within a distancr,
whereas the rest will be separated by a much larger dista
say of the order ofR wherer !R. We will show that we can
form a dimensionless ratio withR/r and that such ratios
carry anomalous exponents that are going to survive the
cess of fusion of coordinates in correlation functions wh
we make structure functions. We will thus be able to reco
nize the anomalous exponents even though at first sight t
is no obvious renormalization scale.

To clarify how this mechanism works we need to remi
ourselves how ladder diagrams appear in the theory of
relations functions. Such diagrams appear in the most tra
parent way in nonlinear Green’s functions, and we revi
briefly our past results on these objects.

B. The nonlinear Green’s functions

The nonlinear Green’s functionG2,2(r0ux1 ,x2 ,x3 ,x4) de-
scribes the mean value of the product of two responses o
velocity differences taken at different space-time coordina
to the action of the forcef:

G2,2
abgd~r0ux1 ,x2 ,x3 ,x4!5 K dwa~r0ux1!

d f b~r0ux3!

dwg~r0ux2!

d f d~r0ux4! L
f→0

,

~17!

where for brevity we use the notationxj[$r j ,t j%. Similarly,
one defines the nonlinear Green’s functionsGn,n as the mean
value of the product ofn such responses taken at distin
points to the action ofn forces in different points. In particu
lar the linear Green’s function~11! corresponds ton51.

In a Gaussian theory~which ours is not! G2,2 would be the
products of two linear Green’s functions such
G1,1

ab(r0ux1 ,x3)G1,1
gd(r0ux2 ,x4). In a non-Gaussian theor

one could assume that this quantity is a homogeneous f
tion of its arguments when they are in the scaling regim
This means that

G2,2
abgd~r0ulr1 ,lzt1 ,lr2 ,lzt2 ,lr3 ,lzt3 ,lr4 ,lzt4!

5lb4G2,2
abgd~r0ux1 ,x2 ,x3 ,x4!. ~18!

From the Gaussian decomposition of this quantity we wo
guess thatb452b2526. We know by now that the as
sumption of homogeneity~18! is wrong for different-time
objects@26#. Notwithstanding, the proof of locality in pape
II means that there is no way from an order-by order a
proach to change the scaling index that follows from t
homogeneity assumption. On the other hand, this quan
which is a function of four space-time coordinatesxi has
scaling properties that are not exhausted by the overall s
ing exponentb4. In thinking about such objects one needs
remember that in turbulence one forces the velocity field
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the boundaries~with forces of characteristic scaleL), and
measures correlation functions at the interior. Universal s
ing exponents are expected when all the distancesur i2r j u,1
< i , j <n are of the order ofr !L. In this sense these corre
lation functions are actually response functions. It should
come as a surprise then that the same scaling exponent
also exhibited by the genuinenth-order response function
Gn,n which are the average response ofn velocity differences
to n forces. For example, when we think aboutG2,2 we
should expect that whenur12r2u→r and r is much smaller
than all the other five distances involved here,G2,2 scales as
r z2 and in general in the corresponding limitGn,n scales as
r zn ~a further discussion of the fusion limit is offered in Se
III !. It is thus natural to consider these nonlinear Gree
function if one wants to evaluate the scaling exponents.

The physics of response functions in hydrodynamics
the following. There is always an uncorrelated response
the points of observation to the far away forcing. ThusG2,2
always has ‘‘Gaussian’’ contributions of the form
G1,1(r1 ,t1 ,r3 ,t3)G1,1(r2 ,t2 ,r4 ,t4). This contribution is
shown as a pair of half wavy and half straight lines in Fig.
~In the figureG2,2 is denoted ink,v representation.! In addi-
tion, there are contributions that arise due to hydrodyna
processes. The forcings atr3 ,t3 and r4 ,t4 give rise to inter-
mediate responses at intermediate pairs of space-time po
affecting later responses at the points of observationsr1 ,t1
andr2 ,t2. Such contributions are shown as the skeleton d
gram in Fig. 2. The totality of such intermediate processe
represented by the rectangle, and of course one need
integrate over all intermediate spatial positions and times
addition, there are responses that are mitigated by more
termediate space-time points, and these are shown as
one-loop and two-loop diagrams in Fig. 2. The total respo
function is evidently the sum of all these contributions, ta
ing into account all the possible intermediate hydrodynam

FIG. 2. Diagrams forG2,2(ka ,va ,kb ,vb ,kc ,vc ,kd ,vd) ~a!
and of the rungR(ka ,kb ,kc ,kd) ~b!. Diagram ~1! in ~a! is the
Gaussian contribution made of a product of two linear Gree
functions. Diagram~2! is the skeleton contribution, and diagram
~3! and ~4! are the one-loop and two-loop contributions resp
tively. In ~b! we show the beginning of the infinite series expans
for the rung, with diagram~1! being the bare rung.
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interactions giving rise to the response to far away forci
We thus are able to represent the response functionG2,2 in
terms of integrals in which the integrands are consists o
number of the standard Green’s function and a new fo
point interaction amplitude. On the one hand we have
idea at this point what this four-point object is. But on th
other hand we have eliminated from the problem the thr
point standard hydrodynamic vertex (u“)u. This is not a
minor feat, since this vertex is protected by Galilean inva
ance. No renormalization can make it in ‘‘small’’ anywa
and this has been one of the central difficulties of the the
of turbulence for a long time. The elimination of theexplicit
participation of the three-point vertex from the theory
anomalous scaling opens a possibility of having a small
rameter in the higher-order interaction amplitudes. Inde
we will show momentarily that this is the case: the four-po
vertex is small, giving us a way to present a systema
theory with a small parameter.

If the reader is puzzled by the physical arguments p
sented here, we should stress that the diagrammatic ex
sion of Fig. 2 had been formally derived from standard p
turbation theory in paper II. The simple ladder diagram
shown here areall the termsthat appear inG2,2 as defined in
Eq. ~17!. There are other contributions with different topol
gies that appear in similar quantities such
^w1d2w2 /d f 3d f 4&, but for the average product of two re
sponses Fig. 2~a! is everything. It is easy to understand wh
this is so: when we consider the average of aproductof two
responses, each response must contain one line of Gre
function connecting the point of response to the point
forcing, with the orientation of the Green’s function a
shown in Fig. 2~a!. When we form the product, we mus
have two ‘‘struts’’ to the ladder such that the Green’s fun
tion appear in pairs with the same orientation. Other 2
responses can contain inverted Green’s functions or corr
tors instead of Green’s function, but this is not possible
G2,2 as defined in Eq.~17!.

In paper II the four-point rungs were presented in terms
an infinite series whose beginning is shown in Fig. 2~b!. In
terms of the physical explanation given above it is not s
prising that the first contribution is a two-point correlatio
function with two standard three-point vertices—this is p
cisely the origin of the correlated response that was d
cussed above. In addition we have shown in paper II t
when we consider the dependence ofG2,2 on ratios of space-
time coordinates in their asymptotic regimes we pick up a
of anomalous scaling exponents. The main result of pape
was that in the regimer 1;r 2!r 3;r 4 the diagrammatic ex-
pansion of this object produces logarithms such as ln(r 3 /r 1)
to some power. It was explained that the sum of such lo
rithmically large contributions is given by (r 3 /r 1)D with
some anomalous exponentD. Just from general propertie
one could show that the ladder withn rungs contains a con
tribution which is exactly@D ln(r3 /r1)#

n/n!. The summation
of all these contributions gives a term proportional
(r 3 /r 1)D, and this is the observation that we want to build
in this paper. In later sections we will return to this mech
nism of logarithmic divergence and the ladder resummat
to anomalous exponents in full detail, but at this point w
need to explain the connection of the observation to the
sion rules.
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III. FUSION RULES AND LADDER DIAGRAMS IN
HIGHER-ORDER CORRELATION FUNCTIONS

In this section we demonstrate how the anomalous ex
nents of the correlation functions can be related to resum
ladder diagrams. The idea is to consider a typicalnth-order
correlation function and to almost fusep coordinates,p,n,
chosen from the availablen coordinates. The point to ob
serve is that the diagrammatic theory allows us to wr
upon observation, all the topologically possible diagrams
pearing in the expansion of a given object. Thus, for
ample, consider Fig. 3 where we represent a gen
nth-order correlation function, in which two coordinates a
a distancer from each other, and all the rest are a distancR
from them and from each other. While coalescing the t
coordinates we pull out all the possible diagrammatic fr
ments that are allowed by the topological rules, connec
the two fusing coordinates with the body of the diagram
thenth-order correlation functions. To the reader who is le
familiar with diagrammatic representation we comment t
these fragments represent the totality~the sum of! all the
diagrams that have less than three legs at their end, be
entering the body of thenth-order correlation function which
by necessity must have more legs. The fragments pulled
can connect to the body either with two straight lines, or o
straight and one wavy, or two wavy lines. The last is noth
but the fourth-order correlation function, whereas the fi
two are thefull response functions of two velocities to tw
forcings, and three velocities to one forcing. The latter
known asG3,1. We should stress that the full response of tw
velocities to two forcings contains one contribution that
preciselyG2,2 of Eq. ~17!. In addition it contains two addi-
tional 2-2 responses such as^w1d2w2 /d f 3d f 4&, etc. These

FIG. 3. A diagrammatic representation of the fusion process
typical nth-order correlation function is represented byn wavy lines
decorating a circle.~a! The fusion of two coordinates to within
distancer which is much smaller than the typical separationsR
between the other coordinates. All the existing diagrams are sho
~b! The fusion of three coordinates to within a distancer !R from
each other. In this case we show only the diagram withG3,3 as the
fragment carrying the scaling exponentz3.
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additional objects are also represented diagrammatically
series of ladder diagrams, but their topology differs fromG2,2
of Eq. ~17!, with four-point rungs of different types.

We are interested in the fusion limit in whichr !R. Due
to the property of diagrams called ‘‘rigidity’’ in paper III one
can show that the dominant contribution to the diagrams
Fig. 3 comes from the region of integration in which th
separation between the two last legs of fragments~connect-
ing to the body! is of the order ofR. Accordingly, we can
analyze ther dependence of each of the fragments using
fusion rules whenr !R separately for the fragments them
selves. Very importantly, all these contributions have
same leading exponent inr, which is z2, in the fusing limit
r !R. This result follows from the fusion rules@17#. For the
fragmentF4 this is almost obvious; fusing two coordinates
a fourth-order correlation function results inr z2 scaling. For
the Green’s functions one needs to convince oneself th
follows as well. The way to do it is to write the Green
functions as sums and differences of two-point correlat
functions of velocity differences at different values of th
forcing—each contribution will scale asr z2—multiplied by
some function that depends on the large scales. These d
ent prefactor functions cannot possibly cancel the lead
order scaling result. This natural conclusion can be suppo
by the full diagrammatic theory of paper III in which it i
shown that the exact equations forG2,2, G3,1, andF4 are all
coupled together, giving rise to the same asymptotic ex
nent for all these objects in the fusion limit.

Accordingly, if we want to calculate the anomalous co
tribution to z2 we can consider the ladder resummation
any of these contributions, and in particular ofG2,2 of Eq.
~17!. Thus the anomaly ofz2 is represented by the sum of th
ladder diagrams that we display in Fig. 2. We thus state
whenever we are about to fuse two coordinates in a
nth-order correlation function we can expose a series of d
grams that are the same as those that appear in the expa
of the nonlinear Green’s functionG2,2(r0ux1 ,x2 ,x3 ,x4), to-
gether with the logarithmic divergences that are associa
with them. In doing so we really take into account all th
necessary contributions, leaving nothing uncontrolled.

Similarly, we can almost fuse 3, 4, orp coordinates, and
accordingly pull out of the diagram for thenth-order corre-
lation functions fragments that have 3, 4, orp wavy lines on
the left, connected to the body of the diagrams with a
number of wavy and straight lines such that this num
sums up to 3, 4, orp, respectively. As before, we can argu
that in the fusion limit all these fragments have the sa
exponent inr , r zp, when r !R. It is thus sufficient, for the
consideration of sayz3, to consider the fragment shown i
Fig. 2~b!, and to focus onG3,3 which is the average of the
product of three responses. This quantity has the relativ
simple ladder expansion which is shown explicitly in Fig.
In a similar way toG3,3 whose ladder diagrams have thre
struts,Gp,p will have ladder withp struts made of Greens
function G1,1 oriented from left to right. The fusion rule
guarantee that thenth-order correlation is a homogeneou
function of thep fusing coordinates withzp being the homo-
geneity exponent. We will show that these more comp
ladders also resum into power laws inR/r , being responsible
for the anomalous parts ofzp .

At this point all this is a bit formal, since we do not hav

A

n.
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an explicit form of the rungs in the ladder diagrams, and
can compute nothing without this knowledge. In the next t
sections we will address this issue and demonstrate th
judicious use of the fusion rules dictates enough knowle
of the rungs to take us through a useful calculation.

FIG. 4. Diagrammatic expansion ofG3,3 ~a! Contributions with
no rungs,~diagram 0!, one rung and two rungs.~b! Contributions
with three rungs.
e
o
t a
e

IV. BUILDING THE THEORY ON THE BACKGROUND
OF K41

In this section we reorganize the theory such that K
mogorov’s 41 theory serves as its ‘‘free’’ limit. In othe
words, we aim at achieving a theory in which resummatio
of divergent contributions would directly give theanomalous
parts of the scaling exponents; the K41 parts should be
vious order-by-order. This is done in two steps, that are c
respondingly presented in Secs. IV A and IV B.

A. Resummation into K41 propagators

It was explained in Sec. II A that our theory is develop
in the BL representation, to eliminate spurious IR dive
gences that stem from the sweeping interactions. The m
result of paper I was that after line resummation each d
gram in the BL-diagrammatic expansion of the propagat
~Green’s function and double correlation function! con-
verged in the infrared and the ultraviolet regimes. Acco
ingly, K41 scaling is a solution of the order-by-order theo
Nevertheless, the propagators in the BL representation
translational invariance, and are therefore not diagona
Fourier space. For the purpose of actual calculations i
extremely advantageous to rearrange the theory such tha
BL propagators become again diagonal in Fourier space

The actual resummation that is necessary is presente
Appendix A. It results in a diagrammatic theory that is top
logically exactly the same as the standard Wyld diagra
matic expansion before line resummation. There are two
ferences as explained in Appendix A. For the purposes of
considerations below the main issue is the simple form of
the propagators that appear as lines in the diagrams:
exhibit K41 scaling exponents

G1,1
ab~k,v!5Pab~k!g~k,v!, g~k,v!5

1

v1 ig~k!
,

~19!

F2
ab~k,v!5Pab~k! f ~k,v!, f ~k,v!5

f~k!

v21g2~k!
.

~20!

In these formulas the scaling exponents are carried by

g~k!5cgē1/3k2/3, f~k!5cfēk23, ~21!

wherecg andcf are dimensionless constants.

B. Renormalization to K41 four-point rung

In this section we determine the form of the four-poi
rungs of the ladder diagrams in two steps. These two s
are based on the following observation: the diagramm
expansion of the rung includes many diagrams, some
which contain in them additional subsets of ladder diagra
In the first step we will consider the rungs as if all the d
grams appearing in their infinite series were resummed,ex-
ceptfor their own internal subsets of ladder diagrams. In t
second step we will consider also the ladder diagrams
pearing in the series for the rung. We aim for a situation
which all the ladders that appear in the theory, as in Fig
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already contain renormalized rungs. However, instead
evaluating the rungs from actual resummations we are go
to determine their form using the fusion rules. Thus in t
first step we find the form of the rung that results, up
fusion, in K41 scaling exponents. In the second step we
ognize that the rungs themselves have ladders, leading t
anomalous correction in the scaling properties of the ru
themselves. This being accomplished, we will have our fi
form of the rung. Then we turn to the ladder diagrams
pearing in the fused correlation functions, using the rung a
basic building block of the theory. All anomalies of all th
measurable statistical objects will result from resummati
of the remaining ladder diagrams.

Consider Fig. 2~a!, in which the rung appears as an obje
It is given in terms of an infinite series of diagrams in F
2~b!. It is in fact a four-point vertex depending on fourk
vectors and four frequencies. As a first step we consider
value of the rung when all the frequencies are zero, deno
it in this limit as R(ka ,kb ,kc ,kd). At a later point we will
explain that this is sufficient for our purposes. The bare va
of this object can be read directly from diagram~1! in Fig.
2~b!, with two bare BL verticesG and one double correlatio
function. The answer is

R0
abgd~ka ,kb ,kc ,kd!

5d0ē1/3
Gags~ka ,kc ,ke!G

bds~kb ,kd ,2ke!

ke
13/3

,

~22!

whereke[ka2kc5kd2kb , andd0 is a dimensionless con
stant.

We demonstrate now that if we use this bare form of
rung the fusion rules would predictdissipativeexponents
zn5n. We first demonstrate this in the context ofz2. Con-
sider a generalnth-order correlation function and fuse tw
coordinates, pulling out the fragment ofG2,2 as explained in
the beginning of Sec. III. We will now compute the scalin
exponent by finding ther dependence of this fragment whe
the two coordinates approach each other to asmall distance
r !R whereR is the typical distance between all the oth
coordinates. To find ther dependence we must integrate a
cording to the explanation in Appendix B, and to this aim w
introduce the objectT2(r ,k) ~which is ‘‘longitudinal’’ in the
sense defined in Appendix B!:

T2~r ,k!5E dka

~2p!3
4 sin2S 1

2
ka•rD E dva

2p
G2,2~ka ,va ,

2ka ,2va ,k,0,2k,0!. ~23!

We are interested in ther dependence of this object in th
limit rk!1. To calculateT2(r ,k) in this limit we return to
Fig. 2~a!. Obviously the Gaussian contribution diagram~1! is
irrelevant in this limit. The skeleton diagram~2! contributes
the following integral:

T2
s~r ,k!'E dva

2p E dka

~2p!3
4 sin2S 1

2
ka•rDg~ka ,va!

3g~2ka ,2va!R0~ka ,2ka ,k,2k!, ~24!
f
g

e
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e

e
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where the tensor indices of the rung were contracted for
longitudinal contribution. The superscript ‘‘s’’ is used here
and below to denote skeleton contributions. We note tha
the limit k@k the BL vertices are proportional to the sma
est wave vectork. Thus the rung is proportional tok2/ka

13/3.
Integrating over the frequencies of the two Green’s functio
g(ka ,va) in this rung @see Eqs.~19!, ~21!# results in the
evaluation 1/@g(ka)ka

13/3#}ka
25 . Thus ther dependence ofT2

s

is given by

T2
s~r ,k!}E dka

~2p!3
4 sin2S 1

2
ka•rD 1

ka
5

. ~25!

Up to logarithmic corrections this integral is proportional
r 2 which is the dissipative solution. Similarly, if we use th
bare rung in the diagram in Fig. 2~b! to determinez3 we will
find z353. In general we will findzn5n instead of the K41
value ofn/3. Now one could think that the correct values
the inertial range exponents may be obtained from res
ming all the ladder diagrams with the bare rungs. This w
the point of view proposed in paper II. In such a case
sought after correction to the scaling exponents is of
order of unity, and it is unclear how to develop a controll
resummation. In this paper we point out a new way, based
the existence of a renormalized rung which gives, upon
sion, K41 exponentsbeforeladder resummations. The cha
acteristics of the renormalized rung in such a scheme
dictated by the fusion rules.

Next we want to determine therenormalizedform of the
rung. To this aim we repeat the exercise of integrating o
the two Green’s functions and the rung, with the vertic
determined as before in the limitka'kb@kc'kd . But now
we leave the exponent ofka in the asymptotic evaluation o
the rung free, anddemandthat the result of the integration
will be ka

25/3. We find that this requires thatR0}ka
23 .

We are now in a position to propose a renormalized fo
of the rung which in a proper calculation could be obtain
by summing up all the nonladder diagrams that contribute
this rung. This conforms with our basic hypothesis that
nonladder diagrams contribute to K41, whereas the ladd
are responsible for the anomalous scaling. Since K41 d
not allow L renormalization we propose the form

Rabgd~ka ,kb ,kc ,kd!

5dē1/3
Gags~ka ,kc ,ke!G

bds~kb ,kd ,2ke!

ke
3kc

2/3kd
2/3

.

~26!

This form gives the K41 overall scaling exponent~which is
the same as in the bare rungR0, and in addition agrees with
the fusion rules for the second-order correlation funct
with a K41 scaling exponent. In addition it is symmetric,
it should be, for exchanging the indicesa andb together with
c andd. Note thatd is now a renormalized unknown dimen
sionless parameter which will be determined later.

To proceed, we note that our actual calculation~see be-
low! depends really only on the asymptotic properties of
rung, which are rigidly determined by the fusion rules. W
can thus attempt to simplify the form of the rung as much
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possible, preserving the asymptotic and parity properties
changed. In particular we note that the BL vertic
G(ka ,kc ,ke) have complicated structure which makes calc
lations involving them rather difficult. Therefore we propo
to use instead Eulerian verticesV(ka ,kc ,ke) corrected by a
factor 22(kb•kc)/@ka

21kb
21kc

2#. The correction is aimed a
reproducing the asymptotic behavior of the BL vert
Gags(ka ,kc ,ke);min$ka ,kb ,kc%. Thus instead of Eq.~26!
one has

Rabgd~ka ,kb ,kc ,kd!

5
24dē1/3~kc•ke!~kd•ke!

@ka
21kc

21ke
2#@kb

21kd
21ke

2#

3
Vags~ka ,kc ,ke!V

bds~kb ,kd ,2ke!

ke
3~kckd!2/3

. ~27!

As a further simplification of the actual calculations we w
use a one-dimensional~1D! reduction of the problem~pre-
serving the asymptotic scaling properties and parity! in
which instead of three-dimensional integrations*d3k/(2p)3

we will use the one-dimensional one*2`
` dk/2p. Then we

can disregard the vector indices and repla
Vags(ka ,kc ,ke)→ka , (k•k8)→kk8 ~keeping the signs! and
ke

3 in the denominator byukeu ~because we replaced 3D b
1D integration!. The one-dimensional version of the run
~27! turns into

R~ka ,kb ,kc ,kd!5
24dē1/3kakbkckdukeu

@ka
21kc

21ke
2#@kb

21kd
21ke

2#ukckdu2/3
.

~28!

Note that hereka ,kb ,kc ,kd are in the interval6` and
that they carry signs in order to preserve the parity of
rungs. Hereka ,kb are incoming wave vectors andkc ,kd are
outgoing, and they conserve momentum

ka1kb5kc1kd . ~29!

Substituting into Eq.~28! ke5ka2kc5kb2kd one finally
obtains

R~ka ,kb ,kc ,kd!

52dē1/3
kakbkckduka2kcu

@ka
22kakc1kc

2#@kb
22kbkd1kd

2#ukckdu2/3
.

~30!

In particular,

R~k,2k,k,2k!5
2dē1/3k2k2/3uk2ku

@k22kk1k2#2
, ~31!

R~k,2k,k,k8!5
dē1/3sgn~kk8!ukk8u1/3

uku
for k,k8!k.

~32!
n-

-

e

e

To check that we get the right K41 scaling exponents w
the new renormalized rung we need to recalculate the o
dimensional version of Eq.~24! with ~30! for the rung

T2
s~r ,k!5E

2`

` dk

2p
4 sin2S kr

2 DR~k,2k,k,2k!

3E
2`

` dv

2p
g~k,v!g~2k,2v!. ~33!

Using Eq.~19! the frequency integral yields21/2g(k). Thus

T2
s~r ,k!5

dk2/3

cgp E
2`

`

dk

uku4/3uk2kusin2S kr

2 D
@k22kk1k2#2

. ~34!

In the limit k→0 the integral simplifies to

T2
s~r ,k!52d̃k2/3E

0

` dk

k5/3
sin2S kr

2 D , ~35!

where

d̃[
d

pcg
. ~36!

This integral is elementary, reading

T2
s~r ,k!52

1

2
d̃~kr !2/3GS 2

2

3D'2d̃~kr !2/3, ~37!

whereG(x) is the gamma function.
The point to notice is that in the asymptotic limitk→0

the only properties of the rung that guaranteed the app
ance of the scaling exponent 2/3 are the asymptotic pro
ties that we preserved in the series of simplifications lead
to Eq.~30!. In general, we will show below that the series
simplifications of the model form of the rung are of abs
lutely no import also for the calculation of theanomalous
scaling exponents up to one-loop order. We will show bel
that we getpreciselythe same exponents in this order wi
any arbitrary analytic form of the rung, with tensor indices
without, in 3D form or 1D form or whatever, as long as th
asymptotics are preserved, as they are. In two-loop order
is no longer true. The actual numbers obtained in the tw
loop order are model dependent. We will show, howev
that the sensitivity of the predicted exponentszn to the model
for the rung is small as long asn,8. We need the two-loop
order mainly to make sure that it corrects for some unacc
able properties of the one-loop results for higher-order c
relation functions.

Before we proceed we need to check the self-consiste
of our approach. We need to make sure that all higher-or
nonlinear Green’s functionGp,p ~the response ofp velocities
to p forcing! yield, upon fusion, the correct K41 exponent f
pth order correlation functionszp

K415p/3. For this aim we
have to consider the so calledskeletondiagrams which are
the lowest order connected diagrams without loops. ForG2,2
this is diagram~2! in Fig. 2~a! for G3,3 the skeleton contri-
bution are shown as diagrams~3! in Fig. 4~a!. We must make
sure that the skeleton diagrams, upon fusion, yield K41 s
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ing zp
K415p/3 for the appropriatepth-order correlation func-

tions, since our grand hypothesis is that the anomalous s
ing comes only from ladder resummations.

This test of self-consistency is presented in Appendix
The important conclusion of this appendix is that the sk
eton diagrams forGp,p($kj ,k j%) ~with asymptotics of the
rung defined by the two-point fusion rules withz2

K4152/3)
automatically reproduces the K41 scaling exponentzp

K41

5p/3 whenp points are fused.

V. SANDING THE FLOOR IN ONE-LOOP ORDER

In this section we demonstrate the most important n
property of the resummed theory, i.e., that the rungs in
ladder diagrams appear with a small parameter. This
allow us to develop acontrolled ladder resummation, some
thing that to our knowledge has never been available bef
In fact, we will lay out in this section all that is needed
calculate the scaling exponents in the one-loop order. In S
V A we demonstrate that the prefactord of the rung is the
order ofd2 which is the anomalous part ofz2 and thus small.
In Sec. V B we consider the anomalous exponent of the r
itself, denoted asda , and stemming from ladder resumm
tions within the rung infinite series representation. In S
V C we reconsider the contribution of the skeleton diagra
to the scaling exponents upon fusion, taking into account
anomaly of the rung. In Sec. V D we throw in the followin
input: the fact thatz351 and the experimental value ofz2.
The result is Eq.~60! which states that in the one-loop ord
all the unknown parameters are numerically identical. Fr
this point the calculation of all the other scaling exponents
one-loop order is straightforward.

A. The four-point rung is small

Here we show that the coefficientd in front of the renor-
malized four-point rung~26! is of the order of the correction
to K41 of the scaling exponentz2

d25z22z2
K41'0.03. ~38!

To this aim consider the one-dimensional version of
quantityT2(r ,k) of Eq. ~23!:

T2~r ,k!5E
2`

` dka

2p
4 sin2S 1

2
kar D E

2`

` dva

2p
G2,2~ka ,va ,

2ka ,2va ,k,0,2k,0!. ~39!

We will examine the ratio of the contributions of the on
loop diagram~3!, denoted below asT2

(1)(r ,k), to the contri-
bution of the skeleton diagram Eq.~33! @diagram~2! in Fig.
2~a!#. After performing the frequency integrals the on
dimensional form ofT2

(1)(r ,k) @see diagram~3! in Fig. 2~a!#
is

T2
(1)~r ,k!5E

2`

` dka

pg~ka!
sin2S 1

2
kar D E

2`

` dq

2pg~ka!

3R~ka ,2ka ,q,2q!R~q,2q,k,2k!. ~40!
al-

.
l-

w
e

ill

e.

c.

g
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e

n

e

In the asymptotic limit defined bykr→0 the main contribu-
tion to the integral comes from the two symmetric regions
theq integration in whichuku!uqu!ukau. In these regions we
use the form~32!. We calculate

T2
(1)~r ,k!'2d̃2k2/3E

0

`dka

ka
5/3

sin2S 1

2
kar D E

k

kadq

q
. ~41!

As expected the loop integral overq produces a logarithmic
contribution. At this point we use the asymptotical identit

lim
kr→0

E
0

`

d~kr ! f ~kr !lnS k

k D5 lnS 1

rk D E
0

`

d~kr ! f ~kr !,

~42!

which produces, upon comparison with Eq.~35! the final
result

T2
(1)~r ,k!5 d̃ lnF 1

kr GT2
(s)~r ,k!. ~43!

The factord̃ that was introduced in Eq.~36! reappears here
in front of the logarithm as the effective parameter of expa
sion.

Analogously one computes the leading contribution of
two-loop diagram~4! in Fig. 2~a!. This is done explicitly in
Secs. VII A and Appendix C,

T2
(2)~r ,k!5

1

2 F d̃ lnS 1

rk D G2

T2
(s)~r ,k!, ~44!

and, in general the leading contribution of then-loop dia-
gram

T2
(n)~r ,k!5

1

n! F d̃ lnS 1

rk D Gn

T2
(s)~r ,k!. ~45!

The sum of all these contributions is as follows:

T2~r ,k!5T2
(s)~r ,k!1 (

m51

`

T2
(m)~r ,k! ~46!

5T2
(s)~r ,k! (

m50

`
1

m! F d̃ lnS 1

rk D Gm

5
T2

(s)~r ,k!

~rk!d̃
.

We see that, as usual, resummation of the leading contr
tions from the logarithmic ladder diagrams results in t
power function with the exponentd̃ which is the prefactor of
the logarithm in the one-loop diagram, see Eq.~43!. Because
the expected correctiond2 to the K41 exponentz2

K41 is small

(d2'0.03) we conclude that the prefactor of the rungd̃ is
small as well. This allows us to begin with the one-loo
approximation in computing the higher-order scaling exp
nentszp with p.2.

B. Anomalous correction of the rung asymptotics

So far we have disregarded the explicit appearance
ladder diagrams in the infinite series that defines the r
itself. As pointed out in paper II the same kind of ladd
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resummation that is responsible for the anomaly of the
ponents of the nonlinear Green’s functions will also contr
ute an anomalous part to the scaling properties of the ru
Nevertheless the outer and inner scale do not appear in
rung either, and therefore the anomaly is explicit only in t
asymptotic regime where we have a ratio of large and sm
scales. In this section we flush out this anomaly.

Instead of Eq.~32! we expect

Ra~k,2k,k,k8!5
dē1/3sgn~kk8!ukk8u1/31d a

uku112d a

for k@k,k8, ~47!

with some anomalous exponentda which is expected~and
later demonstrated! to be of the order ofd̃ as it stems from
the same origin. This correction to the asymptotics may
achieved, for example by the following model form of th
rung ~30!:

Ra~ka ,kb ,kc ,kd!5R~ka ,kb ,kckd!S ukckdu

uka2kcu2D da

.

~48!

As before, we will argue that the exact analytic form of t
rung is not important for our calculations, and only t
asymptotic scaling form is essential. This statement will
shown to be exact in the one-loop order. We thus need at
point only to preserve the essential properties, i.e., that
outer scaleL cannot appear due to locality, that the rung h
to be symmetric with respecta,b→c,d, etc.

C. Contributions of the skeleton diagrams with the anomalous
four-point rung

In this section we reconsider the skeleton diagrams
pearing in the nonlinear Green’s functionsGp,p but taking
into account the anomaly of the rung. In other words we
going to compute the scaling exponents accounting only
the ladder resummationinside the rung, but not the ladde
resummation with the anomalous renormalized rungs. T
final step will be done in Secs. VI and VII.

We are interested in the scaling exponents of struc
functions inr representation, and these are obtained from
correlation functions ink representation as detailed in Ap
pendix B. Upon fusion we obtain automatically contributio
behaving as nonliner Green’s functions. Accordingly the o
jects of interest in the analysis below are the nonlin
Green’s functions in which thek dependence of the fusin
coordinates is transformed tor representation. The outgoin
wave vectorsk are left as are, and the outgoing frequenc
can be put to zero with impunity. This results in objec
defined in a mixedr ,k representation, which we denote
Tp(r ,$k j8%):

Tp~r ,$k j8%!5E
2`

`

)
i 51

p
dv idki

~2p!2
d~v11•••vp!

3d~k11•••kp! f p~r ,$kj%!

3Gp,p~$kj ,v j ,k j ,0%!. ~49!
-
-
g.
he
e
ll

e

e
is
e

s

p-

e
r

is

re
e

-
r

s

Here f p(r ,$kj%) are one-dimensional versions of the fun
tions f p(r,$kj%) defined by Eq.~B7!. The set$k j% denotes all
the outgoing wave vectors.

We consider the skeleton contributions to the nonlin
Green’s functionGp,p , denoted byGp,p

s . Similarly to the
definition ~33! we introduceTp

s(r ,$k j%) as

Tp
s~r ,$kj8%!5E

2`

`

)
i 51

p
dv idki

~2p!2
d~v11•••vp!

3d~k11•••kp! f p~r ,$kj%!

3Gp,p
s ~$kj ,v j ,k j ,0%!. ~50!

Repeating the calculation of Appendix B in the asympto
regimek j r !1 but with the redefined rung~47! one gets

Tp~r ,$k j%!5Cp~ ēr !p/3r pda)
j 51

p

uk j u1/31da. ~51!

HereCp are dimensionless constants that absorb all the
merical factors. In fact, the result~51! could be guessed di
rectly by recognizing that every rung which is connect
with the ‘‘outgoing’’ Green’s functionsG(k j ,0) contributes
to Tp(r ,$k j%) a factor uk j u1/31da. All together they give
) j 51

p uk j u1/31da. Convergence of the integrals overk j andv j

implies that neither inner nor outer scales may appear,
therefore dimensional consideration require a fac
r p(1/31da).

D. The second and third order correlation functions: relations
betweenda , d2, and d̃

Consider first the scaling exponentz2. In Sec. V A we
showed that the resummation of the ladder diagrams lead
an anomalous correction to the exponentz2

K415 2
3 which is

2 d̃ @see Eq.~46!#. But according to Eq.~51! the ladder in
the skeleton contribution brings in an additional correcti
2da . Altogether we have in the one-loop order

z25 2
3 2 d̃12da . ~52!

Therefore the exponentd2 defined by Eq.~38! may be ex-
pressed as follows:

d252da2 d̃. ~53!

Another relation between the exponents will follow fro
the analysis of the fusion of three points. To one-loop or
the nonlinear Green’s functionG3,3 has the skeleton contri
bution diagram 3 in Fig. 4~a!, and the one-loop diagrams i
Fig. 4~b!. The skeleton contribution can be read directly fro
Eq. ~51!:

T3
s~r ,$k j%!5C3ērr 3dauk1k2k3u1/31da. ~54!

To discuss the other contributions we refer to Fig. 4 in wh
all the diagram ofG3,3 with zero, one and two rungs ar
represented. We have one diagram with no rung, three w
one, nine with two. The multiplicity of 3 in the diagrams o
type~2! represent the three possible connections of two st
by two rungs. The multiplicity of 6 in the diagrams of typ
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~3! represent the different pair permutations of three struts
general there are 3n diagrams withn rungs, out of which
three will have one disconnected strut. Diagrams with d
connected struts will not contribute in the asymptotic regi
that interests us here. Thus out of the diagrams in Fig.~a!
only the skeleton diagram~3! remains in the asymptotic re
gime.

In general, withn rungs we have 3n23 fully linked dia-
grams. This number is 6@(3n2121)/2#, and the number
@(3n2121)/2# counts the topologically distinct fully linked
diagrams withn rungs. Thus for example we represent
Fig. 4~b! the four topologically distinct contributions with
three rungs. These are all the one-loop ladder diagrams
tributing to the third-order correlation function. We sho
now that of these four terms diagram~1a! does not contribute
a logarithmic divergence, whereas the other three contrib
the same logarithmic term. In fact, this is the beginning o
systematic rule: the only diagrams that contribute logar
mic terms in the one-loop order are those in which the
rung appears to the right of the skeleton diagrams. Sim
rules will be established below for higher-loop contribution

Consider then the one-loop diagram~1a! in Fig. 4~b! in
which this rule is not obeyed. We focus on the loop made
the two rungs and the Green’s functionsq andq8, consider-
ing the asymptotic regimeka ,kb@q@ka ,kb . This is the
only regime in which a logarithmic divergence is possible.
this regimeq8'q9'ka1kb . Thus the rungRa(ka ,kb ,q,q8)
contributes to the loopq1/31da. The rungRa(q,q8,ka ,q9)
and the Green’s functionG(q8) do not contribute anyq de-
pendence to the integrand. Thev integration over the prod
uct of the Green’s functionsG(q) andG(q8) gives approxi-
mately 1/g(q8) and again contributes noq dependence
Finally we have the evaluation

T3
(1a)}E

k

ka
dqq1/31da. ~55!

Clearly, this diagram does not exhibit a logarithmic dive
gence and as such it does not contribute to the renorma
tion of the scaling exponent.

The other three diagrams in Fig. 4~b! @namely,~1b!, ~1c!,
and ~1d!# are different, they all have a logarithmic dive
gence. The reason for the difference is that in these th
diagrams there are four Green’s functions, instead of five
diagram ~1a!, which carry large wave vectors. This is th
same situation as in the skeleton diagram~3! in Fig. 2~a!. In
the loop we have now two Green’s functions, instead of o
in diagram~1a!, that carry small wave vectorsq. This differ-
ence leads to a differentq dependence in the loop, and to
logarithmic divergence. We demonstrate this explicitly in t
next paragraph, but we already draw the conclusion whic
general: one-loop ladder diagrams with logarithmic div
gences are those in which the additional rung~compared to
skeleton diagram! has been positioned to theright of the
skeleton structure.

Explicitly, consider diagram~1b! in Fig. 4~b!. The rung
Ra(ka ,kb ,q,q8) contributesq1/31da as before. But now also
the rungRa(q8,kc ,2q,kc) contributes the sameq depen-
dence. On the other hand, the rungRa(q,2q,ka ,kb) con-
tributesuqu2122da. Thev integration with the product of the
In

-
e

n-

te
a
-
t
r

.

y

-
a-

ee
in

e

is
-

two Green’s functionsG(q,v)G(2q,2v) is the same as
Eq. ~33! leading to21/2g(q). In total we have a logarithmic
integral.

The diagram~1d! is very similar to~1b!; it has the same
rung structure at the left, and the rightmost rung isRa(q,
2q,ka ,kc). This makes no difference to theq dependence
and thus to the logarithmic divergence or to the factor
front of the logarithm. Diagram~1c! is slightly different,
having the third rung on the same ladder as the second r
Nevertheless the rungRa(q8,kc ,q,2q) contributes exactly
the sameq dependence as thetwo rungs in diagrams~1b! or
~1d!. Thus it yields at the end the same factor with the sa
logarithm. Finally, comparing~1c! to diagram~3! in Fig. 2~a!
we see that the loop structures are identical in both, and
if diagram 3 had a prefactord̃, we can immediately conclude
that thethreediagrams@~1b!, ~1c!, and~1d!# will result in a
total prefactor of 3d̃:

T3
(1)~r ,$k j%!53d̃ lnF 1

rkGT3
(s)~r ,$k j%!, ~56!

where k[@k1k2k3#1/3. The leading contribution from the
higher loop diagrams can be seen to contribute higher o
terms in the series of a power law, similarly to the mech
nism displayed in Eqs.~43!–~46!:

T3~r ,$k j%!5
T3

(s)~r ,$k j%!

@rk#3d̃
. ~57!

Substituting Eq.~54! we find finally

T3~r ,$k j%!5C3ē@rk#113da23d̃. ~58!

Accordingly to one-loop order we write

z35113da23d̃. ~59!

At this point we use the exact, nonperturbative result t
z351 to find the relationship betweenda and d̃: da5 d̃.
Together with Eq.~53! we get the important conclusion tha
all our d ’s are the same:

d25da5 d̃5z22z2
K41'0.03. ~60!

We should stress that this important result is obtained us
only the asymptotic scaling properties of the rung. Chang
the explicit form of the rung without ruining the asymptotic
will affect only the subleading terms in the analysis. T
leading logarithmic terms are insensitive to the details of
analytic form of the rung.

VI. ANOMALOUS SCALING EXPONENTS IN THE
ONE-LOOP APPROXIMATION

We are poised to compute now the anomalous correct
to all the scaling exponents of thep-order correlation func-
tions in the one-loop approximation. Start with the fourt
order nonlinear Green’s function, and consider the skele
diagrams in Fig. 5. In the one loop order, to obtain a log
rithmic divergence in the asymptotic regime we must add
additional rungon the right of the skeleton structure. Th
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combinatorics are elementary: Each skeleton diagram
host a new rung on the right in six different ways. Once
rung has been put in place the leading~logarithmic! contri-
bution to the loop integral is the same as the loop integ
considered in the last section. It gives the same logari
with the same prefactor. The only difference is in the com
binatorics. We can thus write by inspection

T4
(1)~r ,$k j%!56d̃ lnF 1

rkGT4
(s)~r ,$k j%!, ~61!

wherek is the geometric mean of all thek j . Resumming the
leading contributions of the higher-order loop diagrams
sults in the power law

T4~r ,$k j%!5
T4

(s)~r ,$k j%!

@rk#6d̃
. ~62!

Using Eq.~51! we reach the final result

z454/314da26d̃54/322d2 , one-loop order.~63!

The analysis of the one-loop-order contribution to t
anomalous exponents of thep-order correlation functions is
as straightforward. There arep(p21)/2 possibilities to ap-
pend an additional rung to the right of the skeleton struct
of thep-order nonlinear Green’s function. All these diagram
contribute identical leading order logarithmic terms, with t
same prefactor, summing up to an anomalous correctio
the scaling exponent of the skeleton diagrams which
d̃p(p21)/2. According to Eq.~51! the scaling exponent o
the skeleton contribution itself is corrected with respect
K41 by pda . Thus altogether

FIG. 5. The skeleton contributions in the diagrammatic exp
sion of G4,4.
an
a
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e
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o

zp5
p

3
1pda2 d̃

p~p21!

2
. ~64!

Using Eq.~60!

zp5
p

3
2d2

p~p23!

2
, one-loop order. ~65!

We note that this formula, which is valid in our case
one-loop order only, is identical in prediction to Kolmogo
ov’s log-normal phenomenological model~known as K62!.
This is interesting, as it stems from the nontrivial topology
the ladder diagrams, in which only the most leading we
considered. In other words, there are many diagrams with
logarithmic divergences, but when we resum those that
have logarithms in the leading order we find K62. T
present authors find the connection between lognorma
and ladder diagrams unexpected.

Nevertheless we should recognize that in the present
proach this result has a limited region of validity. The ana
sis of the two-loop order which is provided below will sho
that Eq.~4! is only valid whenpd2!1. The two-loop order
will contribute positive terms of the order ofd2

2p2(p23),
reducing the negative tendency of the correction to K4
Accordingly the present theory will not suffer from the we
know deficiencies of the K62 log-normal model which for
is only a first order result.

VII. ANOMALOUS SCALING EXPONENTS IN THE
TWO-LOOP APPROXIMATION

In this section we calculate the two-loop contributions
the scaling exponentszp . Even though these contribution
are very small whenpd2 is small ~for, say,p,6), they be-
come important for larger values ofp where K62 begins to
turn down then dependence ofzn . In addition this calcula-
tion allows to present clear ranges of validity for the on
loop and two-loop calculations.

A. Two-loop contributions to z2

We consider the two-loop diagram~4! in Fig. 2~a!. Sub-
stituting it instead ofG2,2 in Eq. ~39! we obtain the quantity
T2

(2)(r ,k). We want to compute the correction that this di
gram gives to the skeleton diagram~2!, and to this aim we
divide it by T2

s(r ,k). In the asymptotic regimekr !1 the
loop integrals overq1 andq2 contribute mostly in the range
k@q1 ,q2@k. In this regime the integrals overka ,va cancel
from the ratio ofT2

(2)(r ,k)/T2
s(r ,k). In addition the Green’s

functionsG(kc) and G(kd) cancel. Thus this ratio can b
read from the ratio of the corresponding diagrams forG2,2,
or taking the diagram~4! and amputating the incoming an
outgoing legs. We still need to divide by the rung in diagra
~2! whereka is replaced by 1/r :

T2
(2)~r ,k!

T2
s~r ,k!

5
1

R~1/r ,21/r ,k,2k!
E

2`

` dq1dq2J~q1!J~q2!

~2p!q1q2

3R~r 21,2r 21,q1 ,2q1!R~q1 ,2q1 ,q2 ,2q2!

3R~q2 ,2q2 ,k,2k!,

-
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J~q!5E
2`

` dv

2p
G~q,v!G~2q,2v!52

1

2g~q!
. ~66!

In Appendix C we analyze this integral in the asympto
limit kr !1 with the final result

T2
(2)~r ,k!5 d̃ 2F1

2
ln2S 1

kr D1b1 lnS 1

kr D GT2
s~r ,k!, ~67!

whereb1 is a dimensionless constant

b1'20.434. ~68!

In Eq. ~67! the ln2 term accounts for the exponentiation
the one-loop contribution, whereas the ln term provides
two-loop correction to the scaling exponentz2. Instead of
Eq. ~53! we now read

d252da2 d̃2b1d̃2. ~69!

A second relation between these exponents will be derive
the next section.

B. Two-loop contributions to z3

The calculation toO(d2
2) of the contributions toz3 and of

higher-orderzp due to ladder resummations introduces s
point irreducible interactions amplitudes. These appear in
ladder diagrams as rungs with six legs, arising from d
grams that due to their topology cannot be resummed
reducible contributions consisting of two four-point run
and one Green’s function. The six-point rung is discusse
Appendix F. In particular we explained there why thefunc-
tional dependenceof zp on p can be understood complete
on the basis of the analysis of ladders with four-point run
This stems from the fact that the reducible and irreduci
contributions to the six-point rung are of the same order,
their combinatorical factors are identical.

There are many possible two loop diagrams involvi
four-point rungs that appear in the expansion ofG3,3. How-
ever, we are only interested in those contributing a logar
mic divergence in the asymptotic regime. As before, to
the relevant diagrams we need to append the last rungto the
right of the existing one-loop structure. Thus, we begin w
the three logarithmic diagrams in Fig. 4~b! @i.e., ~1b!, ~1c!,
and ~1d!# and consider all the diagrams that are obtained
adding an additional rung on the right which connects t
struts. The nine resulting diagrams are shown in Appendix
These diagrams are subdivided into two groups: three
grams in which the last rung connects the same struts as
previous rung, and six diagrams in which the last rung c
nects different struts. In Appendix E we explain that the fi
group of diagrams gives exactly the same asymptotic inte
as the two-loop contribution toz2. This statement should b
reiterated because of its importance to the structure of
theory: the integrals are different, but once the limitsk
@q1 ,q2@k are taken, the resulting integrals coalesce w
those computed in the previous section. Thus the contr
tion to z3 from these three diagrams will be 3b1d̃2 ~which is
three times larger than the corresponding contribution toz2).

The six diagrams of the second group look topologica
different, but again in the asymptotic regime coalesce into
e
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identical integral Eq.~D1! with C̃→C̃2, where

C̃2~q1 ,q2!

5
q1uq1u1/3uq11q2u4/3sgn~q2!

~ uq1u2/31uq2u2/31uq11q2u2/3!~q1
21q2q11q2

2!
.

~70!

Following the procedure outlined in Appendix D we find th
coefficients of expansion

a251, b2'20.55. ~71!

Finally we get the two-loop form ofz3:

z35113da23d̃2 d̃2~3b116b2!. ~72!

Demanding againz351 we find from Eqs.~69!, ~72!

d̃5d22~b114b2!d2
21O~d2

3!, ~73!

da5 d̃ @11~b112b2!d̃#. ~74!

These results are used in the next section to calculatezn for
n>3 to two-loop order.

C. Two-loop contributions to zp , pÐ4

The calculation of the contribution of four-point rungs
zp for higher values ofp does not necessitate the evaluati
of new integrals. In Appendix E we explain that all the tw
loop integrals appearing in the ladders ofG4,4 and higher-
order nonlinear Green’s functions are identical in t
asymptotic regime to one of the two integrals appearing
the three-order quantity. The only differences are in the co
binatorial factors that account for how many ways we c
choose the rungs to connect betweenp struts.

If the second rung is connecting the same struts as
rung before it we have the same combinatorial factor as
the one-loop order, namely,p(p21)/2. This provides a con-
tribution tozp which isp(p21)d̃2b1/2. If the second rung is
not connecting the same struts as the rung before it, we h
p(p21)(p22) contributions. This is due to the existence
p(p21)/2 ways connect two struts with the first rung, a
then 2(p22) ways to connect one of these two struts w
the remaining (p22) struts. This leads to a contributio
p(p21)(p22)b2d̃2. We should stress that the loops mu
have a joint strut to give a ln contribution. Two disconnect
loops lead only to ln2 contributions, which do not enter th
two-loop corrections to the scaling exponents. In total
find

zp5
n

3
1pda2

p~p21!

2
@ d̃1b1d̃2#2p~p21!~p22!b2d̃2

1O~ d̃3!. ~75!

Substituting Eqs.~73!, ~74! we obtain finally

zp5
p

3
2

p~p23!

2
d2@112d2b2~p22!#1O~d2

3!. ~76!
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We should stress that the functional form presented in
equation is solid. It is shown in Appendix F that the cont
bution coming from six-point irreducible rungs is only reno
malizing the value ofb2 which anyway depends on the pr
cise analytic form of the four-point rung which is no
available at the present time. We estimate the range of
lidity of this order of the calculation by the Ho¨lder inequali-
ties, which disallow a nonlinear increase in thezp as a func-
tion of p. The inflection point where this requirement
violated may serve as a good estimate for the range of va
ity. This inflection point occurs atp'1.421/(6b2d2)'12.
In Fig. 1 we show, within this range, the K41 prediction, t
one-loop approximation~equivalent to K62! and our two-
loop final result. It is obvious that the two-loop loop predi
tion goes considerably beyond the range of validity of
K62 formula which has an unphysical maximum atp
'11.5. We believe that all the reliably measured values
zp agree very well with this prediction.

Using the bridge relation@7# m522z6 we predict

m59d2~118b2d2!. ~77!

Plugging in the numbers we getm50.2351O(d2
3). This is to

be contrasted with the K62 predictionm'0.27. We conclude
that the two-loop contribution is very significant for expe
mentally measured exponents. If one wishes to obtain th
retical results forzp with higher values ofp one needs to
consider the three-loop contributions, which pose no furt
conceptual difficulties. Nevertheless the experimental sit
tion does not warrant at the present time the effort neede
accomplish such a calculation.

One should stress before closing this section that the f
of Eq. ~76! is universal, stemming from the structure of th
ladder diagrams and from combinatorics only. However,
numerical value ofb2 is model dependent. We have check
that changing the form of the rung keeping the asympto
unchanged results inb2 remaining negative while its valu
not changing by more than a factor of 2 or so. At this m
ment in time one can determineb2 using the value ofz4
from experiments, allowing us then to predict accurate v
ues ofzn for n up to 12. It is our plan, however, to develo
in the near future a theoretical equations for the four-po
and six-point rungs, leading to anab initio determination of
their analytic forms, and with them of the parametersd̃ and
b2.

VIII. SUMMARY AND DISCUSSION

The main steps of this and previous papers leading to
present results have been as follows.

The theory is developed using BL velocities to elimina
the spurious infrared divergences that are due to swee
effects when Eulerian velocities are employed.

The Dyson-Wyld perturbation theory was line resumm
in order to achieve order-by-order convergent perturba
theory with K41 propagators as the lines in the theory.
this point the objects of the theory are two two-point prop
gators~Green’s function and correlator! and one three-poin
vertex. The three-point vertex is in no way ‘‘small,’’ an
renormalizing it does not change this fact@27#.

Multipoint correlation functions are considered whenp
is
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coordinates coalesce together. In the fusion limitkr→0 it is
advantageous to reorganize the theory in terms of one pr
gator ~K41 Green’s function!, and four-point, six-point ver-
tices, etc.~the rungs!. The series of diagrams contributing t
the fusion limit are then simple ladder diagrams.

The crucial step of the theory is achieved by two requi
ments: ~i! the four-point rung should be consistent at t
level of theskeleton diagramswith the fusion rules with K41
scaling exponents.~ii ! The resummation of the ladder dia
grams that appear when two coordinates fuse together sh
lead to thecorrect value of z2. These double requirement
accomplish two things at once:~a! the theory is now devel-
opedaround the K41 limit, leading to the appearance of th
small parameterd2 in front of the four-point rung and~b! all
the anomalies are coming from the ladder resummations.
six-point rung is shown explicitly~Appendix F! to be of
second order in the small parameter, eight-point rungs ar
third order, etc.

We computed the anomalous exponents in one-loop or
inputting the value ofz2 and requiring thatz351. The result
is that the scaling exponents are predicted to this orde
agree with the log normal model K62. We showed that
this order the result is universal, independent of the sim
fications and of the model form of the rung.

We computed the anomalous exponents in two-loop
der. The difficulty of K62 is overcome, the two-loop contr
bution has a sign that lifts up the exponents from the do
curve of the K62 parabola. While the form of the two-loo
result is universal, the numerical value of the parameterb2
appearing in the final result is model dependent, with con
butions for the four-point and six-point rungs.

For the reader who is more trained in renormalized p
turbation theory we should remark at this point that this p
per represents an additional conceptual development c
pared to the point of view proposed in papers II and III.
those papers the rungs in the ladder were left undressed
shown in Sec. IV A the undressed rungs lead to viscous s
ing of the skeleton diagrams (zn5n). Accordingly, if one
does not dress the vertices, the ladder resummation forG2,2
should result in renormalizing the exponentz2 all the way
from 2 to about 2/3. This amounts to havingd2 of the order
of 4/3. While this was considered as a possibility in paper
and III the present development casts strong doubts on
scenario. Indeed, consideringz3 for example the same sce
nario gives in the one-loop orderz3'21 instead of the re-
quired 11. This may be salvaged by requiring the full si
point rung. But this will make the dimensionless coefficie
of the six-point rung of the order of 2. Now one will run int
even worse troubles withz4 in two-loop order, requiring an
even bigger coefficient for the eight-point rung. Correspon
ingly every higher-order scaling exponent will require a b
ger and biggern-point rung, without hope of analytic form
for zn . We propose that the present scenario offers simp
ity and elegance that appears very attractive.

To improve upon the present theory one needs to deve
a theory for the four-point and six-point interaction amp
tudes. Here we determined only the asymptotic propertie
the four-point rung, and this allowed us to predict the fo
of the scaling exponents, but an input of the value of
anomalous part ofz2 was needed to achieve one-loop ord
In fact we could use the value ofz4 to fix the value ofb2 and
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gain a solid prediction of all the exponents to two-loop ord
Such a prediction forzn would be valid up ton'12. It is
very easy to generalize the result that we have to three-
order, with the introduction of yet one more parameter as
ciated with the three-loop integrals, sayb3, which included
also contributions from the irreducible eight-point rung. T
result would read

zn5
n

3
2

n~n23!

2
d2@112d2~n22!b2

16d2
2b3~n21!~n22!#1O~d2

4!. ~78!

We stress that this form stems from the structure of the
der diagrams, and we consider it very solid. From one po
of view we can now use the value ofz5 to fix b3 to provide
a prediction that is valid for anyn within experimental reach
for quite some time. But this is not the main point. The ma
point is that we have identified the coefficients appearing
this formula with particular objects, i.e., the four-point a
higher-order vertices which appear in the theory as the ru
of the ladders. Obviously, a calculation of the renormaliz
rungs from first principle would remove the need to inp
experimental information altogether, affording us a compl
theory of the scaling exponents of isotropic turbulence.
this point this is still not available.
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APPENDIX A: RESUMMATION INTO DIAGONAL K41
PROPAGATORS

The starting point of this rearrangement are the mass
erators in k,v representation Sab(r0uk1 ,k2 ,v) and
Fab(r0uk1 ,k2 ,v). Define the ‘‘diagonal’’ part of the mas
operators as

sabS k11k2

2 D[E d~k12k2!

~2p!3
Sab~k1 ,k2,0!, ~A1!

fabS k11k2

2 D[E d~k12k2!

~2p!3
Fab~k1 ,k2,0!. ~A2!

In these definitionsr0 disappears. The reason is that for o
jects which are time independent the Eulerian and BL rep
sentations are equivalent and the designationr0 is unneeded.
Here we have objects withv50, or time-integrated quanti
ties. It was shown in Ref.@26# that time integrated quantitie
are related to simultaneous correlations, and as such
lose ther0 designation.

Denote the rest of the mass operators as
.

p
o-

-
t

n

gs
d
t
e
t

t

s-
s
e
er

p-

-
-

ey

S̃ab~r0uk1 ,k2 ,v![Sab~r0uk1 ,k2 ,v!sabS k11k2

2 D ,

F̃ab~r0uk1 ,k2 ,v![Fab~r0uk1 ,k2 ,v!2fabS k11k2

2 D .

For translationally invariant tensors in homogeneous and
compressible turbulence one can write

sab~k!5Pab~k!s~k!, ~A3!

fab~k!5Pab~k!f~k!,

wherePab(k) is the transverse projector

Pab~k!5dab2
kakb

k2
. ~A4!

It is known @20# thats(k) ~which is the mass operator take
at v50) is purely imaginary

s~k!52 ig~k!, ~A5!

with g(k) real positive. On the other handf(k) is purely
real. The diagrammatic series expansion of bothg(k) and
f(k) converge order-by-order, and using scaling relations
shown in Eq.~16! one can find their scaling behavior. Th
order-by-order theory dictates a K41 evaluation of these
jects which is

g~k!5cg@ ēk#2/3, ~A6!

f~k!5cfēk23, ~A7!

wherecg andcf are dimensionless constants.
The Dyson-Wyld equations can be written shortly as

~v1 ink2!G5P1S* G, ~A8!

F5G* ~F1D!* G, ~A9!

wheren is the molecular viscosity,P is the transverse pro
jector, andD is the correlation function of the external forc
which is localized in the energy containing interval. The a
terisk stands for summation over tensor indices and inte
tion over intermediatek. SubstitutingS from Eq. ~A3! into
the Dyson equation we rewrite

@v1 ink21 ig~k!#G5P1S̃* G. ~A10!

In the bulk of the inertial interval we can neglectnk2 with
impunity. The zero order solution of this equation is obtain

by neglectingS̃:

G1,1
ab→G1,1

ab~k,v!5Pab~k!g~k,v!, ~A11!

g~k,v!5
1

v1 ig~k!
. ~A12!
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The zero order solution ofF is obtained in three steps: firs
replaceF by f, secondly neglectD in the inertial interval in
comparison withf, and finally substituteg instead ofG in
Eq. ~A9!. The result is

F2
ab→F2

ab~k,v!5Pab~k! f ~k,v!, ~A13!

f ~k,v!5
f~k!

v21g2~k!
. ~A14!

Iterating Eqs.~A8!, ~A9! without the bare forcing and
viscosity results in a diagrammatic series which topolo
cally is exactly the same as the old Wyld diagrammatic
pansion before line resummation. The difference is twofo
First, instead of bare propagators we have K41 propagatog
and f, and every one-particle reducible fragment of any d
gram will have a counterterm which subtracts its ‘‘diagona
part. This counter term is of no consequence for our pro
dure here since the diagrams involving it can be resumm
in the four-point vertices~the rungs! together with all the
other contributions as explained in the text. The result
topological structure of the ladder diagrams is thus
changed in the formulation.

APPENDIX B: SELF-CONSISTENCY AT THE LEVEL
OF K41

Before establishing this self-consistency we need to p
from correlation functions ink,v representation to structur
functions. The theory is done naturally ink,v representation
but the experimental scaling exponents are measured i
multaneous structure functions. We first transform fromv
representation ofpth-order correlation functionFp($kj ,v j%)
to simultaneous correlation functionFp($kj%) by the integra-
tion

Fp~$kj%!5E
2`

`

)
i 51

p
dv i

2p
d~v11•••vp!Fp~$kj ,v j%!.

~B1!

Here $kj ,v j% and $kj% are sets of corresponding variabl
with j 51, . . . ,p. The transformation fromk representation
of Fp($kj%) to the pth-order structure function is done a
follows: define the longitudinal component of the velocity

Sp~r !5 K H FuS r

2D2uS 2
r

2D G r

r J pL . ~B2!

Each of the factors is Fourier transformed according to

FuS r

2D2uS 2
r

2D G5E dkj

~2p!3
û~kj !FexpS i

kj•r

2 D
2expS 2 i

kj•r

2 D G . ~B3!

Accordingly,
-
-
.

-

e-
d

g
-

ss

si-

Sp~r !5~2p!3E
2`

`

)
i 51

p
dki

~2p!3
d~k11•••kp! ~B4!

3 f p~r,$kj%!Fp~$kj%!. ~B5!

Here

~2p!3Fp~$kj%!d~k11•••kp!5K )
j 51

p

û~kj !
r

r L . ~B6!

The functionsf p(r,$kj%) are seen from Eq.~B4! to be

f p~r,$kj%!5)
j 51

p

@2i sin~ 1
2 kj•r!#. ~B7!

In the limit r→0

f p~r,$kj%!})
j 51

p

~kj•r!. ~B8!

The K41 scaling exponentsyp associated withpth-order cor-
relation functionFp($kj ,v j%)}k2yp in (k,v) representation
is

yp54p211/3. ~B9!

This corresponds toSp(r)}r p/3 under the condition of con-
vergence of integrals~B1!, ~B5!.

Next consider the third-order Green’s functio
G3,3($kj ,k j%) in which we denoted bykj the set of incoming
wave vectors and byk j the set of outgoing wave vectors
The skeleton diagram ofG3,3

s ($kj ,k j%) which involves four-
point rungs is shown as diagram~3! in Fig. 4~a!. ~The con-
tribution of six-point rungs to the skeleton is considered
Appendix F and shown not to change the present consi
ations.! This skeleton has two rungs, and we consider it
the limit that the incomingkj vectors are much larger tha
the outgoingk j . In this limit we have four Green’s function
with large k, contributing gk

24 , and one vertex with allk
large, contributingk. The two rungs have largek vector in
them@k5 in Eq. ~22!#, giving k6. Finally, one of the rungs ha
largek coming and going, and Eq.~22! requires for it ak2/3.
Altogether this gives G3,3($kj ,k j%)}kx3 with x3525/3
which is equal toy3 given by Eq.~B9!. This means that the
skeleton diagrams forG3,3($kj ,k j%) ~with asymptotics of the
rung defined by the two-point fusion rules! automatically
reproduces the K41 scaling exponentz351 in the three-
point fusion. This is true subject to the condition that t
integrals~B1!, ~B5! for p53 converge. That this is so ma
be shown by a direct calculation. For future purposes i
extremely important to note that the principal contribution
the k integral ~B5! comes from the region wherek1;k2
;k3;1/r .

Now let us compare diagram~3! in Fig. 4~a! and Fig. 5
with the skeleton diagrams forG3,3 and G4,4. One recog-
nizes that in general forGp,p , we will have (p21) rungs
with large incomingk, contributing k23(p21) @originating
from ke in Eq. ~22!#. We will have also 2p22 Green’s func-
tions with largek contributing k2(2p22)2/3. Next we will
havep22 outgoing legs with largek contributingk2(p22)2/3
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from Eq. ~9!. Finally we will have 2p22 vertices having
incoming and outgoing largek vectors, contributingkp22.
All together we find thatGp,p($kj ,k j%)}k2xp with xp54p
211/3 which is equal toyp given by Eq.~B9!. Convergence
of the k integral ~B5! for p54 may be shown by direc
calculations. A proof of convergence of thek integrals~B5!
for p.4 is a tedious exercise which nevertheless may
done, for example, iteratively. It is readily demonstrated t
the integral converges when allkj vectors are of the sam
order of magnitude~say,k). ThenGp,p;k11/324p. After (p
21) v integrations~each of them giving a factork2/3) one
hask3(p21)2p/3 which is enough for convergence of (p21)
d3k integrals in the UV regionkj;k@1/r . In the IR region
kj;k!1/r the functionsf p provide the integral with addi-
tional kp factor @according to Eq.~B8!# which guarantees the
convergence.

The considerations of the six-point and higher-order ru
leave these conclusions invariant.

APPENDIX C: ANALYSIS OF TWO-LOOP INTEGRALS
CONTRIBUTING TO z2

The integrand in the integral~66! is a function ofq1 and
q2 and it depends onk andk as parameters. The integratio
range is theq12q2 infinite plane, but in the limitk@k the
main contribution comes from the four finite quadrantsk
,uq1u,uq2u,k. Well inside the quadrants we are allowed
use the asymptotic form in whichk!uq1u,uq2u!k. In this
regime the integrand isk,k independent, and the dependen
of the integrals onk,k appears only via the limits of integra
tion. By changing the dummy variablesq1 and q2 we can
now project all four quadrants into one of them, sayq1 and
q2 positive. In this asymptotic regime we can use for t
rungs in the integrand of Eq.~66! that include eitherk or k
their asymptotic form~32!. This results in

K~k,k!5 d̃2E
p

kdq1

q1
E

p

kdq2

q2
C~q1 ,q2!, ~C1!

C~q1 ,q2!5C̃~q1 ,q2!2C̃~2q1 ,q2!. ~C2!

In Appendix D we show how to analyze this kind of integr
with the aim of extracting the coefficients of the leading a
first subleading logarithmic terms, i.e.,

K1~k,k!5
a1

2
ln2~k/k!1b1 ln~k/k!. ~C3!

Using the results there ~D4! with C̃(q1 ,q2)

5C̃1(q1 ,q2),

C̃1~q1 ,q2!5
q1

3uq12q2usgn~q2!

2~q1
22q1q21q2

2!2
, ~C4!

one find immediatelya→a151 as required by the antici
pated expansion employed in Eqs.~44!–~46!. To computeb1
we examine the integralb1(A) numerically, see Fig. 6. We
see that the requested limit exists and thatb1'20.434.
e
t

s

APPENDIX D: EXTRACTION OF THE SUBLEADING
LOGARITHMIC TERM FROM THE TWO-LOOP

INTEGRALS

The two-loop integrals have the characteristic struct
appearing in Eq.~C1!

I ~A!5 d̃2E
1

Adq1

q1
E

1

Adq2

q2
C~q1 ,q2!, ~D1!

where A@1 and C(q1 ,q2) are homogeneous functions o
degree zero:C(lq1 ,lq2)5C(q1 ,q2). When C(q1 ,q2)
51 then I (A)5 ln2 A. In general only the leading term o
I (A) is proportional to ln2A and we expect the following
subleading terms:

I ~A!5 d̃2Fa

2
ln2 A1b ln A1c1

d

A
1•••G . ~D2!

Our goal is to find the coefficientb in the limit A→`. Tak-
ing the first derivative of Eq.~D2! with respect toA and
multiplying by A we find

a ln A1b2
d

A
2•••5E

1

Adq2

q2
C~1,q2!1E

1

Adq1

q1
C~q1,1!

5E
1/A

1 dx

x
C~x,1!1E

1/A

1 dy

y
C~1,y!,

~D3!

where we changed the dummy variablesq15xA and q2
5yA. Taking another derivative and multiplying byA we
find for largeA

a5CS 1,
1

AD1CS 1

A
,1D . ~D4!

Substituting this result in Eq.~D3!, and representing lnA as
*1/A

1 dx/x we find

b5 lim
A→`

b~A!, ~D5!

b~A!5E
1/A

1 dx

x FC~x,1!1C~1,x!2CS 1

A
,1D2CS 1,

1

AD G .
If the expansion assumed in Eq.~D2! is valid, this limit must
exist.

FIG. 6. Numerically computed dependence ofb1(A) with A
5exp(x).
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APPENDIX E: THE NINE TWO-LOOP DIAGRAMS OF G3,3

Consider diagram~1a! in Fig. 7. We are interested in th
ratio of T3,1a

(2) /T3
s , whereT3,1a

(2) is obtained by substituting th
diagram~1a! instead ofG3,3 in Eq. ~49!. In the asymptotic
regimekr !1 the loop integrals overq1 and q2 contribute
mostly in the regimek@q1 ,q2@k. In this regime the inte-
grals overka ,va ,kb ,vb cancel in the desired ratio. Similarl
the Green’s functionsG(kd), G(ke), andG(k f) also cancel
in the ratio. AccordinglyT3,1a

(2) /T3
s can be calculated from th

amputateddiagram~2! in Fig. 9, in which the explicit depen
dence onkj and k j has disappeared. These wave vect
remain only in the limits of the integrals overq1 andq2, with
k replaced by 1/r . In this diagram every black dot contribute
a factor ofqj

1/31da whereqj is the wave vector on the right o
the black dot. This is a remnant of the corresponding ru
before the amputation. The thin line connecting these do
just a reminder that we have loop integrals to perform.

The point to understand now is that if we use diagra
~1b! and ~1c! in Fig. 7 to formT3,1b

(2) and T3,1c
(2) , the ratio of

these toT3
s can be again calculated from the amputation

their own diagrams. This will lead to theidenticalamputated
diagram~2! of Fig. 9. In addition, and most importantly, th
integral that needs to be computed is the same as Eq.~66!.
Thus one recaptures Eq.~67! but with the combinatorial fac-
tor 3 in front of the RHS:

T3,1a11b11c
(2) ~r ,k!53d̃2F1

2
ln2S 1

kr D1b1 lnS 1

kr D GT3
s~r ,k!,

~E1!

with b1 of Eq. ~68!.

FIG. 7. The first group of three two-loop diagrams appearing
the loop expansion ofG3,3.
s

g
is

s

f

The second group of six diagrams@~2a!–~3c!# shown in
Fig. 8 yields a similar analysis, but the amputated diagram
shown as diagram~3! in Fig. 9. All six diagrams result in the
very same amputation, up to permutations of the three str
Analyzing the amputated diagram~3! one brings it to the

canonical form~C1! with C̃(q1 ,q22) given by Eq.~70!.
Accordingly we write

n

FIG. 8. The second group of six two-loop diagrams appearing
the loop expansion ofG3,3.
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T3,2a, . . . ,3c
(2) ~r ,k!56d̃2F1

2
ln2S 1

kr D1b2 lnS 1

kr D GT3
s~r ,k!,

~E2!

with b2 of Eq. ~71!.
The analysis of the two-loop diagrams that involve fou

point rungs in the context ofGp,p follows exactly the same
lines, with the amputated diagrams being those of Fig. 9.
only thing to mind is the combinatorics, which are presen
explicitly in Fig. 9, leading to the numbers in Eq.~75!.

APPENDIX F: RESUMMED EQUATIONS FOR THE
FOUR-POINT AND SIX-POINT RUNGS

In this appendix we sketch a theory for the four-point a
six-point rungs. Our main aim here is to explain why t
six-point rung is quadratic in the smallness, but we use
opportunity to indicate how a future theory of these obje
may be formulated.

Consider the beginning of the series expansion of
four-point rung which is shown in Fig. 2~b!. Diagram ~2!
contains a cross of correlators each attached to two th
point vertices. This is exactly diagram~1!, and therefore the
equation can lend itself to resummation resulting in the eq
tion shown in Fig. 10~a!. We note that this is not the ful
equation for the four-point rung even in one-loop order sin
we did not take into account the ladders with a correlator
Green’s function in a cross section. Taking into account
the needed contributions is not difficult, but is not the ma
point of this appendix, and we proceed for simplicity witho
the additional terms.

In the asymptotic regime the bare contribution diagr
~1! in Fig. 10~a! is negligible. With this contribution dis-
carded, the remaining equation is homogeneous, calling
finding a zero mode of the equation. Since we have alre
demonstrated that the four-point rung is small, of the orde
d2 we can conclude that the loop integral which we denote
l 1 must be large, or the order of 1/d2 ~the homogeneous
equation can be only solved ifd2'd2

2l 1). In fact, in the
future it would be extremely worthwhile to solve the fu
equation in one-loop order and demonstrate that this is
case, and thus to lend further weight to the theory prese
in this paper. Of course solving such an equation will a

FIG. 9. The amputated diagrams that appear up to two-loo
the loop expansion ofGp,p , with the appropriate combinatoria
factors.
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supply us with a functional form of the four-point rung, an
with it a substantial part of the value of the parameterb2
which appears in the final result for the scaling exponent

In Fig. 10~b! we present the resummed form of the equ
tion of the six-point rung, to the same level of qualitativ
discussion. Again we discard in the asymptotic limit the ba
contribution of diagram~1!, but we cannot neglect diagram
~2! since it has the same asymptotic behavior as the
summed six-point rung. Diagram~2! is of the order ofd2

2.
Diagram ~3! is of the order ofed2l 2 where l 2 is the loop
integral. This integral is very similar tol 1, and we therefore
estimatel 2' l 1'1/d2, and thus diagram~3! is of the order of
the left-hand side. Diagram~4! is of the order ofe2l 3l 4,
wherel 3 and l 4 each refer to one of the loop integrals. Wi
the same level of approximation we estimate it thus to be
O(e2/d2

2). Denotingx[e/d2 we thus represent the order o
magnitude relations that result from panel~b! by the equation

x511ax1bx2, ~F1!

where a and b are dimensionless constants ofO(1). It is
obvious that onlyx'1 is a consistent solution of this equa
tion, and we thus conclude that the six-point rung is qu
dratic in the smallnessd2.

We therefore understand that the six-point rung appear
our considerations only at the level of theO(d2) order. In
this order it appears in addition to the two-loop integra
which are formed by two four-point rungs, as discussed
detail in the text of the paper. But since the six-point ru
connects three struts, exactly as the structure made oftwo

in

FIG. 10. A sketch of the equations for the four-point rung~a!
and six-point rung~b!. The shading of rungs is used to identif
different pieces of the same object. In the same manner we s
the loops to identify one or two loop integrals.
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four-point rungs, the combinatorical factors appearing in
pth order scaling exponentsare identical. Accordingly we
understand that the effect of the six-point rung is only
renormalizing the value of the parameterb2 which is model
dependent anyway.
, J

li

ia

v

v.

s.
e A similar consideration applies to the eight-point run
which begins to affect the theory only inO(d2

3). It will
renormalize the value of the parameterb3 in Eq. ~78!.
Higher-order rungs are even less relevant for the calcula
at hand.
J.
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