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The main difficulty of statistical theories of fluid turbulence is the lack of an obvious small parameter. In this
paper we show that the formerly established fusion rules can be employed to develop a theory in which
Kolmogorov’s statistics of 1941K41) acts as the zero order, or background statistics, and the anomalous
corrections to the K41 scaling exponegtsof the nth-order structure functions can be computed analytically.
The crux of the method consists of renormalizing a four-point interaction amplitude on the basis of the fusion
rules. This amplitude includes a small dimensionless parameter, which is shown to be of the order of the
anomaly of{,, 6,={,—2/3~0.03. Higher-order interaction amplitudes are shown to be even smaller. The
corrections to K41 toO(d,) result from standard logarithmically divergent ladder diagrams in which the
four-point interaction acts as a “rung.” The theory allows a calculation of the anomalous expadfeints
powers of the small parametés. The n dependence of the scaling exponefjisstems from pure combina-
torics of the ladder diagrams. In this paper we calculate the expoggnip to O(83). Previously derived
bridge relations allow a calculation of the anomalous exponents of correlations of the dissipation field and of
dynamical correlations in terms of the same paraméjerThe actual evaluation of the small paramefgr
from first principles requires additional developments that are outside the scope of this paper.

PACS numbds): 47.27.Gs, 47.27.Jv, 05.40a

[. INTRODUCTION In addition, the K41 theory predicted the values{gfto be
n/3. Experimental measurements and computer simulations
The aim of this paper is to build on previous work to show that in some aspects K41 was remarkably close to the
achieve a controlled evaluation of the anomalous exponentsuth. The major aspect of its predictions, that the statistical
that characterize various correlation and structure functionguantities depend on the length scfeas power laws, is
in isotropic, homogeneous, and stationary Navier-Stokes turcorroborated by experiments. On the other hand, the pre-
bulence, and in particular the exponefjtsthat characterize dicted exponents seem not to be exactly realized. The nu-
nth-order structure functions. The main result of this paper isnerical values ot,, deviate progressively from/3 whenn
that given a single experimental inpdfor example, the increase§3—6]. K62 tried to improve on this prediction by
value of the anomalous exponent of the second-order stru¢aking into account the fluctuations in the rate of energy
ture function, the n dependence of all the other exponentsdissipation. On the basis of a phenomenological model, as-
that were reliably measured in experiments and simulationsuming the distributions function of energy dissipation to be

can be calculated analytically. lognormal, K62 reached the predictions

Decades of experimental and theoretical attentsae, for
example, Refs[1-7]) have been devoted to two types of _n un(n—3) @
simultaneous correlation functions; the first type includes the "3 118

structure functions of velocity differences N o )
In addition to the fact that these predictions did not follow

Sa(R)={(|u(r+R)—u(r)|", (1)  from fluid mechanical considerations, it was pointed lagt
that they violate basic inequalities that do not allow the ex-

where(- - ) stands for a suitably defined ensemble average?Onentst, to decrease, something that always happens with
A second type of correlations include gradients of the velocEd: (4 with n large enough. The quest for computing the
ity field. An important example is the rat(r,t) at which scaling exponents from the equations of fluid mechanics was

energy is dissipated into heat due to viscous damping. Thilnd, arduous, and on the whole pretty unsuccessful.
rate is roughly»|Vu(r,t)|2. An often-studied simultaneous ' thiS paper we present an approach that is based on our
own previous findings which culminates in the analytic cal-

culation of exponents such d@s and u. At present the cal-
. . culation is not completely from first principles. We need the
Kee(R)=(e(r+R)e(r)). (2 input of one number from experiment, say,={,—2/3.
Given this number we can calculate all the other exponents
It has been hypothesized by Kolmogorov in 19K41) and  systematically withd, being a small parameter that orga-
1962 (K62) that statistical objects of this type exhibit power- nizes our calculations. To first order # we recapture Eq.

correlation function ofe(r,t) = e(r,t) —€is

law dependence oR [1,8]: (4). We will show that the result t®(45,) is universal in-
dependent of the details of the calculations performed below.
S,(R)=Ré, K, (R)xR™#, (3)  To second order we find the results
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Cps exponents themselves, without any need to compute the zero
K41 modes or any other functions of many variables. Thus the
second method allows computationsQ@¢e?) [13,14 easily

and with some more effort to higher orders. The insight
gained is that one needs to focus on a quantity that offers the
} 06,) most feasible calculation, exposing the anomalous part of the
1 exponents as it appears with a dimensionless ratio of length
scales.

2 4 6 8 10 12 14y In Navier Stokes turbulence the situation is similar. On
the one hand we have a nonperturbative theory which in this
case is the infinite hierarchy formed by the equations of mo-
Shown is the K41 prediction which is zero order d, together tion of the correlation functiofl5]. We can use this_ hierar-
with our results to first and second order dp. To first order the chy to d(—::monstrate tha.t anomalous SOIUt'O_nS exist, but _the
results are the same as the phenomenological prediction of Ke£0MPputation of the scaling exponents requires a calculation
and to second order it is E¢5) with b,= —0.55 according to Eq. Of the correlation functions themselves. This is a very diffi-
(72). cult task that up to now has not been accomplished in a
satisfactory manner. The other approach will be described in
this paper. It will be a perturbative theory for the scaling

0@3)

FIG. 1. The scaling exponents as a function oh. The calcu-
lation is organized by the small parametés={,—2/3~0.03.

n n(n—3)

ln=5— ——=—08,[1+268,(n—2)b,]+0(&5), (5  exponents themselves, not requiring the computation of the
3 2 correlation function along the way. Similarly to the second
method in the Kraichnan problem it will be based on consid-
1n=98,(1+8b,8,)+0(53). (6)  ering limits of correlation functions whemcoordinates fuse.

In that limit we create, even when all the distances are in the

The curves of, vs n are shown in Fig. 1, using the experi- inertial range, a ratio of large and small lengthscales that
mentally accepted valué,~0.03 [6]. We show the K41 appears raised to the power of the anomalous expahent
prediction, the result of our calculation to one-loop order, The two previous findings that influence the present for-
and the two-loop result that is presented in £5). While the  mulation crucially are the mechanism for anomalous scaling
form of these results is universal, the numerical value of thehat was announced in Rdf16], and the fusion rules that
dimensionless parametér, depends on the details of the were discussed in Reff17]. In short, Ref[16] exposed lad-
calculations; we find thab, is always negative and of the der diagrams which appear in the theory of turbulence. These
order of unity. Note that the two-loop results correct thediagrams contain logarithmic divergences that are summable
unwanted down curving of the one-loop calculatievhich  to power laws with anomalous exponents. These ladder dia-
is the same malaise as in K62 grams contain “rungs” of the ladder, that are actually verti-

In thinking about the strategy for this work we were led ces with four, six, and more “legs,” representing four-point,
by some insights that developed in the context of understandsix-point, and higher-order interaction amplitudes. In Ref.
ing how to compute the scaling exponents of the Kraichnari16] these objects were represented in terms of infinite series
model of passive scalar advecti¢,10]. In that model a of diagrams that could not be resummed analytically. This is
scalar fieldT(r,t) is advected by a Gaussian velocity field where the fusion rules are now most useful. The fusion rules
u(r,t) which is s-correlated in time but which has a scaling determine the asymptotic properties @ipoint correlation
exponent;,= e. For e=0 the advected scalar has trivial sta- functions when subgroups gb coordinates coalesce to-
tistics, and fore small the model has a natural small param-gether. As such the fusion rules are nonperturbative, and are
eter. It turned out that the calculation of the exponents catelieved to be exact. We use the fusion rules to determine
proceed along two lines. The first, which is nonperturbativethe asymptotic properties of the rungs. This is done such that
was pioneered in Refl1]. It considers the differential equa- a calculation of ¢, from the theory will agree with the ex-
tions that thenth-order correlation functions satisfy, and perimental value of,. We then show that the knowledge of
identifies the anomalous scaling solutions as the zero modeke asymptotics suffices for constructing a calculation of all
of these differential equations. The calculation of the expothe other scaling exponents, and in particular{gffor n
nents then depends on the calculation of the zero modes 2 and ofu. The crux is that in the process of determining
themselves, a task that is not at all easy, and therefore suche analytic form of the rungs we discover that their ampli-
calculations were never done for any order @i). In this  tude contains powers of a dimensionless small parameter
method the renormalization scale is the outer staleot the  §,=(,—2/3~0.03 [6]. Using this small parameter in the
inner scalen, and the dimensionless ratio of scales that carrenormalized four-point interaction allows us to develop a
ries the anomalous part of the exponents of the structurgystematic expansion in orders®f. At the end of this paper
functions isL/R whereR is defined in Eq.(1). A second we sketch a way to understand the remaining task regarding
method that was discussed in detail in Rief2] considers the origin of the small parametés— 2/3.
instead of the correlation functions the averages of higher One should stress at this point that fundamental differ-
moments ofVT, i.e., (VT|"). These quantities diverge as ences exist with the Kraichnan problem. First, the second-
powers ofL/ 7, and the exponents of this power are the samerder correlation function has exactly one diagram in its dia-
as the anomalous part of the exponent ofritieorder struc- grammatic representation, and since the rung remains bare in
ture function. The great advantage of the second method ihe Kraichnan model, there is no way to dress the normal
that one can write a perturbative theorydrfor the scaling exponent. But once we go to higher-order objects the situa-



PRE 62 ANALYTIC CALCULATION OF THE ANOMALOU S. .. 8039

tion becomes very similar to the present Navier-Stokes casénfrared divergences. On the other hand, one can transform
Of course one cannot present in the Kraichnan case a solte new variables, and after the transformatigwhich
tion for £, in terms of{, or any lower orde¢,—the problem amounts to infinite partial resummations in the perturbation
is linear, decoupled, and therefore genuinely multiscalingtheory) one finds a renormalized perturbation theory that is
Our proposition is that in the case of Navier-Stokes the hifinite, without any divergences in any order of the expansion
erarchic coupling between various orders makes the problerisee Ref[23] and paper)l. One can achieve such a theory
less genuinely multiscaling. using Lagrangian variabld24]; we find it technically sim-

In Sec. Il we summarize past results that are necessary faler to employ the Belinicher-L'vov transformatid@3]
the present developments. In Sec. Il we show how the fu-
sion rules can be used to determine the properties of the v[ro|r,t]=ulr+p(re,t),t], (8)
rungs in the ladder diagrams appearing in le-order cor-
_relation functions. The_ first imp(_)r_tant result_ is de_monstratetherep(rO,t) is the Lagrangian trajectory of a fluid point
in _Sec. V—_the numerical coefficient contained in the four-, hich has started at poimt=r, at timet=t,
point rung is shown to bemall of the order of the anomaly
of £,. This result is crucial since it allowso our knowledge ‘
for the first timg the development of a perturbative calcula- p(ro.t)= f ufr+p(re,7),7]d7. (9)
tion of the anomalous parts of all the other exponents. The 0
physical reason for this result is théh Sec. IV) we are
developing the theory around the K41 solution instead of theThe natural variables for a divergence free theory are the
dissipative solution as was always attempted. In Sec. V wegelocity differences
pave the way for the calculation of all the other exponents. In
Sec. VI we calculate the scaling exponents by resumming the W(ro|r,H)=v[ro|r,t]—v[rolro.t]. (10)
logarithmically divergent ladder diagrams up ©(45,)

E)V;'Q;h ilﬁ i(r?e(:)vrvennl)r}rzg:?z_éze(r)&ﬁgg\}\%gmfi);] da(z(}ﬁtte%r;e'tlgc’p Since the averages of quantities that depend on one time only
y can be computed &t=0, it follows that the average mo-

our surpris¢that to this order the scaling exponents are iden- . ;
tical to K62. Similar to the latter they suffer from the viola- ments of these BL variables are the structure functions of the

. : . Eulerian fieldS,(R) defined by Eq(1). It was shown[23]

F%n I?w f g:ckr:/ci\llv\?vereg#é:’\elr?ﬁaﬂt :Qfgnzﬁﬂgggdggg’iglyé? thethat these variables satisfy the Navier Stokes equations, and
préblem of. K62, and we present the res@ for £, that in that one can dgveloﬁsge paper)la perturbation t'h.eory of
our theoretical éstimate i valid for< 12. The exp(;ner)& i the diagrammatic type in which the natural quantities are the

y : af ’ ’ i -
also computed in this section. If one wanted results ffpr ?reanaz funcu/orth}vl'(rolr,r ,Lt) and the correlation func
with higher values oh one would need to go to three-loop fon F3P(rolr,r"t,t):
order(and see Sec. VIl where the form gf to this order is

presentef but the current experimental situation does not B C W, (To|r,1)
warrant a theoretical prediction ¢f, for very high values of Ga(rolr,r' t,t')= St , (11
n. In Sec. VIl we summarize the paper, paying special at- B f—=0
tention to the range of validity of the theory and to demon-
strating that no uncontrolled approximations were made. Fgﬁ(ro|r,r’,t,t’)=(wa(ro|r,t)wﬁ(ro|r’,t’)). (12
Il. SUMMARY OF PERTINENT PREVIOUS RESULTS Physically the Green'’s function is the mean response of the

) ] . velocity difference to the action of a vanishingly small forc-
In this section we present a brief summary of some pasig. n stationary turbulence these quantities depend’on
work which is most pertinent. We refer to R¢L9] as paper _; only, and we can denote this time differencetadhe
l, to Ref.[16] as paper I, and to Ref18] as paper III. guantities satisfy the well-known and exact Dyson and Wyld
coupled equations. The Dyson equation reads
A. The basic perturbation theory

The starting point of the analysis are the Navier-Stokesfﬂ_VA}Gaﬁ(r Irr t)

equations for the velocity field of an incompressible fluid | ot LITOL
with kinematic viscosityr which is forced by an external
force f(r,t): :ngfﬁ(ro|r,r’,0*)5(t)+f dr,GY(ro|r,r2,0")

d PN o

——vA%|u+P(u-V)u=FPf 7 t

(ﬁt VA% JutP(u-V)u=Ft, @) XJdrlJOdtlzay(ro“z:rl:tl)Gﬁ(rohl,f’,t—tl),
where P is the transverse projection operat= —A =2V (13

XVX. It is well known (see, for example, pape)y that

developing a perturbative approal@0—-22 for the correla- WhereGgffﬁ(roh,r’,O*) is the bare Green'’s function deter-
tion functions and response functions in terms of the Eulemined by Eq.(3.20 in paper I. The Wyld equation has the
rian velocity u(r,t) results in a theory that is plagued with form
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o infinity. The conclusion is that indeed the infinite series for
Fgﬁ(fo“,r',t):f dfldfzj dt;dt,Gii(rolr,ry,ty) F, hides a divergence that could be exposed by an exact
0 resummation. The difficulty with the Navier-Stokes case is
X[D,s(r—rp,t—ty+1,) that no one knows how to resum the infinite expansion which
exhibits no obvious small parameter.
+ @ 5(rolry 2 t—ty+15)] In this paper we will propose a way out of this difficulty.

It is based on the fusion rules. Instead of considering fully
unfused correlation functions only, we will allow some co-
ordinates to be much closer together, say within a distance

viscosity” whereas in Eq(14) the “mass operator'® is the whereas the rest will be separated by_a much larger distance,
renormalized “nonlinear” noise which arises due to turbu- S8 Of the order oR wherer <R. We will show that we can

lent excitations. Both these quantities are dependent on tH‘grm a dimensionless ratio witR/r anc_i that such ratios
Green’s function and the correlator, and thus the equation§a/"Y @nomalous exponents that are going to survive the pro-
are coupled cess of fusion of coordinates in correlation functions when

The main result of Paper | is a demonstration of the propyve make structure functions. We will thus be able to recog-

erty of “locality” in the Dyson and Wyld equations. This nize the anomalous exponents even though at first sight there
property means that given a value|of-ro| in Eq. (13), the IS N0 obvious renormalization scale.

important contribution to the integral on the right-hand side To clarify how this mgchamsm works we need to remind
(RHS) comes from that region wherle,—ro| and|r,—ro| ourselves how ladder diagrams appear in the theory of cor-

are of the order ofr—r,|. In other words, all the integrals relations functions. Such diagrams appear in the most trans-

converge both in the upper and the lower limits. The same i arent way in nonlinear Green's fL.'nCt'OF'S’ and we review
true for the Wyld equation, meaning that in the limit of large riefly our past results on these objects.

L and smallyn these length scales disappear from the theory,

and there is no natural cutoff in the integrals in the perturba- B. The nonlinear Green’s functions

tive theory. In this case one cannot form a dimensionless The nonlinear Green'’s functioB, A ro|Xy,X2,X3,X,4) de-
parameter such ds/r or r/» to carry dimensionless correc- scribes the mean value of the product of two responses of the
tions to the K41 scaling exponents. Fgr|r—ro| <L scale  velocity differences taken at different space-time coordinates
invariance prevails, and one finds precisely the K41 scalingg the action of the forcé:

exponents

XGfﬁ(roh,,rz,tz). (14)

In Eg. (13) the “mass operator'?, is related to the “eddy

ap I\ zZ Bor ' Gaﬂyé(r |X Xo,X X): é\Na(r0|X1) MY(rlez)
GIANroI NN N2t =NP2GT(r|r,r' 1), (15 22 (TolX1,X2,X3,X4 5 (rolXs) O srolxa) |,

FEPOroNr T ) =NE2F 5P (ro|r,r ). a7

One can derive two scaling relations which hold order-by-ynere for brevity we use the notation={r; ,t;}. Similarly,
order, i.e., one defines the nonlinear Green’s functi@g, as the mean
value of the product oh such responses taken at distinct
22+ =2, 7+2{,=2. (16) points to the alloction o forces in diﬁzrent points. In particu-
lar the linear Green'’s functiofill) corresponds tm= 1.

In a Gaussian theorwvhich ours is notG, , would be the
roducts of two linear Green's functions such as
11°P(ro|X1,%3) G1.17(ro|X2,X4) . In @ non-Gaussian theory

one could assume that this quantity is a homogeneous func-
tion of its arguments when they are in the scaling regime.
This means that

The solution isz= {,=2/3. It was also shown that the scal-
ing exponent of the Green’s functidd5) is 8,=—3. Ex-
tending such considerations to the higher order structur
functions leads to the order-by order K41 prediction that
=n/3.

Of course, the order-by-order resylt5) which leads to
Eqg. (16) is not necessarily the correct one. If one could re-
sum all the diagrammatic expansion one could find nonper- aByé z z z z
turbative answers that may be different. The whole sum of G2  (TolAr1 A Ar2 Mt A3 Mt A M)
diagrams may diverge when the outer scale goes to infinity :)\ﬁ4eg§“/5(ro|xl,xz,xg,x4)_ (18
or the inner scale to zero, allowing a renormalization scale to '
creep in even though the order-by-order theory is converi-rom the Gaussian decomposition of this quantity we would
gent. Indeed, this mechanism was demonstrated explicitly iguess that3,=28,=—6. We know by now that the as-
the case of the Kraichnan mod@5]. The infinite series for sumption of homogeneity18) is wrong for different-time
the correlation functionk,, are convergent order-by-order as objects[26]. Notwithstanding, the proof of locality in paper
in the the Navier-Stokes case. In this case the perturbatioh means that there is no way from an order-by order ap-
expansions were resummed analytically, yielding equationproach to change the scaling index that follows from the
for F,, (that were the same as the equations that were origihomogeneity assumption. On the other hand, this quantity,
nally derived by Kraichnaf@]). These equations have forced which is a function of four space-time coordinateshas
solutions which are identical to the initial order-by-order ex-scaling properties that are not exhausted by the overall scal-
pansion, but in addition they have zero modes of nonperturing exponeniB,. In thinking about such objects one needs to
bative nature, which diverge when the outer scale goes teemember that in turbulence one forces the velocity field at
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interactions giving rise to the response to far away forcing.

[ ban—Fe 5 4 We thus are able to represent the response fun@ipgin
kb@Kd = @ + @ terms of integrals in which the integrands are consists of a
Foamn—% Foann— o number of the standard Green'’s function and a new four-
‘ g < point interaction amplitude. On the one hand we have no
+ V) VWV MWV idea at this point what this four-point object is. But on the
. -q @ x other hand we have eliminated from the problem the three-
A WA WA point standard hydrodynamic vertexi{)u. This is not a
ks R R ¥ X, minor feat, since this vertex is protected by Galilean invari-
ance. No renormalization can make it in “small” anyway,
+k q, q, @ © to.. and this has been one of the central difficulties of the theory
* ANV VW VW ¢ of turbulence for a long time. The elimination of te&plicit
o ko 3 ” b participation of .the three-point vertex from Fhe theory of
a anomalous scaling opens a possibility of having a small pa-
= é@ + @ + rameter in the higher-order interaction amplitudes. Indeed,
b K kS &, X we will show momentarily that this is the case: the four-point
vertex issmall giving us a way to present a systematic

theory with a small parameter.

FIG. 2. Diagrams forG, K, ,w, Ky, op Kk, 0¢ kg, 0q) () If the reader is puzzled by the physical arguments pre-
and of the rungR(k, k&, xg) (b). Diagram (1) in (a) is the  sented here, we should stress that the diagrammatic expan-
Gaussian contribution made of a product of two linear Green'ssion of Fig. 2 had been formally derived from standard per-
functions. Diagram(2) is the skeleton contribution, and diagrams turbation theory in paper Il. The simple ladder diagrams
(3) and (4) are the one-loop and two-loop contributions respec-shown here arall the termsthat appear irG, , as defined in
tively. In (b) we show the beginning of the infinite series expansionEq_ (17). There are other contributions with different topolo-
for the rung, with diagrantl) being the bare rung. gies that appear in similar quantites such as

(w, 82w,/ 5F46f,), but for the average product of two re-
the boundariegwith forces of characteristic scale), and  sponses Fig. (2) is everything It is easy to understand why
measures correlation functions at the interior. Universal scalthis is so: when we consider the average giraductof two
ing exponents are expected when all the distafgesrj[,1  responses, each response must contain one line of Green's
<i,j=n are of the order of <L. In this sense these corre- function connecting the point of response to the point of
lation functions are actually response functions. It should noforcing, with the orientation of the Green's function as
come as a surprise then that the same scaling exponents aligown in Fig. 2a). When we form the product, we must
also exhibited by the genuineth-order response functions have two “struts” to the ladder such that the Green’s func-
G,n Which are the average responsanafelocity differences  tion appear in pairs with the same orientation. Other 2-2
to n forces. For example, when we think abo@t, we  responses can contain inverted Green’s functions or correla-
should expect that whejm, —r,|—r andr is much smaller tors instead of Green’s function, but this is not possible for
than all the other five distances involved heBg,, scales as G, , as defined in Eq(17).
r¢2 and in general in the corresponding linGt, , scales as In paper Il the four-point rungs were presented in terms of
rén (a further discussion of the fusion limit is offered in Sec. an infinite series whose beginning is shown in Fifh)2In
[I1). It is thus natural to consider these nonlinear Green’serms of the physical explanation given above it is not sur-
function if one wants to evaluate the scaling exponents.  prising that the first contribution is a two-point correlation

The physics of response functions in hydrodynamics ifunction with two standard three-point vertices—this is pre-
the following. There is always an uncorrelated response atisely the origin of the correlated response that was dis-
the points of observation to the far away forcing. Thiis, cussed above. In addition we have shown in paper Il that
always has “Gaussian” contributions of the form when we consider the dependencesgf, on ratios of space-

G (ry,t1,r3,t3)Gya(ro,to,r4,t4).  This contribution is time coordinates in their asymptotic regimes we pick up a set
shown as a pair of half wavy and half straight lines in Fig. 2.o0f anomalous scaling exponents. The main result of paper I
(In the figureG, , is denoted irk,w representationn addi-  was that in the regime; ~r,<rz~r, the diagrammatic ex-
tion, there are contributions that arise due to hydrodynamipansion of this object produces logarithms such asslfr(;)
processes. The forcings &f,t; andr,,t, give rise to inter- to some power. It was explained that the sum of such loga-
mediate responses at intermediate pairs of space-time pointithmically large contributions is given byr{/r;)* with
affecting later responses at the points of observatigrnts ~ some anomalous exponeit Just from general properties
andr,,t,. Such contributions are shown as the skeleton diaene could show that the ladder withrungs contains a con-
gram in Fig. 2. The totality of such intermediate processes isribution which is exactly| A In(r3/r;)]"/n!. The summation
represented by the rectangle, and of course one needs &b all these contributions gives a term proportional to
integrate over all intermediate spatial positions and times. Irr3/r;)*, and this is the observation that we want to build on
addition, there are responses that are mitigated by more inn this paper. In later sections we will return to this mecha-
termediate space-time points, and these are shown as thém of logarithmic divergence and the ladder resummation
one-loop and two-loop diagrams in Fig. 2. The total responséo anomalous exponents in full detail, but at this point we
function is evidently the sum of all these contributions, tak-need to explain the connection of the observation to the fu-
ing into account all the possible intermediate hydrodynamicsion rules.



additional objects are also represented diagrammatically as
series of ladder diagrams, but their topology differs frGgy
of Eq. (17), with four-point rungs of different types.
We are interested in the fusion limit in whick<R. Due
to the property of diagrams called “rigidity” in paper Il one
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can show that the dominant contribution to the diagrams in
Fig. 3 comes from the region of integration in which the

\r )
R separation between the two last legs of fragméotsnect-

R ing to the body is of the order ofR. Accordingly, we can
~ analyze the dependence of each of the fragments using the
fusion rules wherr <R separately for the fragments them-

selves. Very importantly, all these contributions have the
same leading exponent i which is {5, in the fusing limit
r<R. This result follows from the fusion rulgd7]. For the

R R fragmentF, this is almost obvious; fusing two coordinates in
_ a fourth-order correlation function resultsiif¢ scaling. For
\" - \r +... the Green’s functions one needs to convince oneself that it
follows as well. The way to do it is to write the Green's
functions as sums and differences of two-point correlation
functions of velocity differences at different values of the

FIG. 3. A diagrammatic representation of the fusion process. Aorcing—each contribution will scale as2—multiplied by
typical nth-order correlation function is representedrbyavy lines  some function that depends on the large scales. These differ-
decorating a circle(a) The fusion of two coordinates to within a ent prefactor functions cannot possibly cancel the leading
distancer which is much smaller than the typical separatid®®s order scaling result. This natural conclusion can be supported
between the other coordinates. All the existing diagrams are showrby the full diagrammatic theory of paper Ill in which it is
(b) The fusion of three coordinates to within a distamegR from shown that the exact equations 85, G, andF, are all
each other. In _thls case we show only the diagram ith as the coupled together, giving rise to the same asymptotic expo-
fragment carrying the scaling exponefit nent for all these objects in the fusion limit.

Accordingly, if we want to calculate the anomalous con-
tribution to ¢, we can consider the ladder resummation of
any of these contributions, and in particular ®f , of Eq.

In this section we demonstrate how the anomalous expd-l7). Thus the anomaly af, is represented by the sum of the
nents of the correlation functions can be related to resummel@dder diagrams that we display in Fig. 2. We thus state that
ladder diagrams. The idea is to consider a typith-order ~whenever we are about to fuse two coordinates in any
correlation function and to almost fugecoordinatesp<<n,  nth-order correlation function we can expose a series of dia-
chosen from the available coordinates. The point to ob- grams that are the same as those that appear in the expansion
serve is that the diagrammatic theory allows us to write Of the nonlinear Green’s functio, (ro|X;,Xz,X3,Xs), to-
upon observation, all the topologically possible diagrams apgether with the logarithmic divergences that are associated
pearing in the expansion of a given object. Thus, for ex-with them. In doing so we really take into account all the
ample, consider Fig. 3 where we represent a generdlecessary contributions, leaving nothing uncontrolled.
nth-order correlation function, in which two coordinates are  Similarly, we can almost fuse 3, 4, prcoordinates, and
a distance from each other, and all the rest are a distaRce accordingly pull out of the diagram for theth-order corre-
from them and from each other. While coalescing the twdation functions fragments that have 3, 4,mwavy lines on
coordinates we pull out all the possible diagrammatic fragthe left, connected to the body of the diagrams with any
ments that are allowed by the topological rules, connectingiumber of wavy and straight lines such that this number
the two fusing coordinates with the body of the diagram forsums up to 3, 4, op, respectively. As before, we can argue
the nth-order correlation functions. To the reader who is lesghat in the fusion limit all these fragments have the same
familiar with diagrammatic representation we comment tha€exponent inr, ré, whenr<R. It is thus sufficient, for the
these fragments represent the totalithe sum of all the  consideration of says, to consider the fragment shown in
diagrams that have less than three legs at their end, befofdg. 2b), and to focus orG; 3 which is the average of the
entering the body of thath-order correlation function which product of three responses. This quantity has the relatively
by necessity must have more legs. The fragments pulled owimple ladder expansion which is shown explicitly in Fig. 4.
can connect to the body either with two straight lines, or onén a similar way toG; ; whose ladder diagrams have three
straight and one wavy, or two wavy lines. The last is nothingstruts, G, , will have ladder withp struts made of Greens’
but the fourth-order correlation function, whereas the firstfunction G, ; oriented from left to right. The fusion rules
two are thefull response functions of two velocities to two guarantee that thath-order correlation is a homogeneous
forcings, and three velocities to one forcing. The latter isfunction of thep fusing coordinates witlg,, being the homo-
known asGs ;. We should stress that the full response of twogeneity exponent. We will show that these more complex
velocities to two forcings contains one contribution that isladders also resum into power lawsRir, being responsible
preciselyG, , of Eq. (17). In addition it contains two addi- for the anomalous parts
tional 2-2 responses such s, 8°w,/5f35f,), etc. These At this point all this is a bit formal, since we do not have

( \\
o

Ill. FUSION RULES AND LADDER DIAGRAMS IN
HIGHER-ORDER CORRELATION FUNCTIONS
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FIG. 4. Diagrammatic expansion & 5 (a) Contributions with
no rungs,(diagram 0, one rung and two rungsb) Contributions
with three rungs.
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IV. BUILDING THE THEORY ON THE BACKGROUND
OF K41

In this section we reorganize the theory such that Kol-
mogorov's 41 theory serves as its “free” limit. In other
words, we aim at achieving a theory in which resummations
of divergent contributions would directly give tla@omalous
parts of the scaling exponents; the K41 parts should be ob-
vious order-by-order. This is done in two steps, that are cor-
respondingly presented in Secs. IVA and IV B.

A. Resummation into K41 propagators

It was explained in Sec. Il A that our theory is developed
in the BL representation, to eliminate spurious IR diver-
gences that stem from the sweeping interactions. The main
result of paper | was that after line resummation each dia-
gram in the BL-diagrammatic expansion of the propagators
(Green’s function and double correlation functionon-
verged in the infrared and the ultraviolet regimes. Accord-
ingly, K41 scaling is a solution of the order-by-order theory.
Nevertheless, the propagators in the BL representation lose
translational invariance, and are therefore not diagonal in
Fourier space. For the purpose of actual calculations it is
extremely advantageous to rearrange the theory such that the
BL propagators become again diagonal in Fourier space.

The actual resummation that is necessary is presented in
Appendix A. It results in a diagrammatic theory that is topo-
logically exactly the same as the standard Wyld diagram-
matic expansion before line resummation. There are two dif-
ferences as explained in Appendix A. For the purposes of our
considerations below the main issue is the simple form of the
the propagators that appear as lines in the diagrams: they
exhibit K41 scaling exponents

GA(k,w) =P 4Kg(kw), gkw) = praswit
(19)
k
Fgﬁ(k,a))zpaﬁ(k)f(k'w)' f(k,w):a)zf(—’yz)(k)
(20)

In these formulas the scaling exponents are carried by

y(K)=c,e¥,  p(k)=c, ek 3, (21)

Wherec,/ andc, are dimensionless constants.

B. Renormalization to K41 four-point rung

In this section we determine the form of the four-point
rungs of the ladder diagrams in two steps. These two steps
are based on the following observation: the diagrammatic
expansion of the rung includes many diagrams, some of
which contain in them additional subsets of ladder diagrams.
In the first step we will consider the rungs as if all the dia-

an explicit form of the rungs in the ladder diagrams, and wegrams appearing in their infinite series were resumnead,
can compute nothing without this knowledge. In the next twoceptfor their own internal subsets of ladder diagrams. In the
sections we will address this issue and demonstrate that second step we will consider also the ladder diagrams ap-
judicious use of the fusion rules dictates enough knowledg@earing in the series for the rung. We aim for a situation in

of the rungs to take us through a useful calculation.

which all the ladders that appear in the theory, as in Fig. 2,
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already contain renormalized rungs. However, instead ofhere the tensor indices of the rung were contracted for the
evaluating the rungs from actual resummations we are gointpngitudinal contribution. The superscrips™ is used here

to determine their form using the fusion rules. Thus in theand below to denote skeleton contributions. We note that in
first step we find the form of the rung that results, uponthe limit k>« the BL vertices are proportional to the small-
fusion, in K41 scaling exponents. In the second step we recest wave vectok. Thus the rung is proportional te?/k2>.
ognize that the rungs themselves have ladders, leading to antegrating over the frequencies of the two Green'’s functions
anomalous correction in the scaling properties of the rungg(k,,w,) in this rung[see Eqs(19), (21)] results in the

themselves. This being accomplished, we will have our finakyaluation 1/y(k,)k:*?|k; . Thus ther dependence of3
form of the rung. Then we turn to the ladder diagrams apis given by

pearing in the fused correlation functions, using the rung as a
basic building block of the theory. All anomalies of all the
measurable statistical objects will result from resummations T5(r, K)x f
of the remaining ladder diagrams.

Consider Fig. 2a), in which the rung appears as an object. o _ o ) .
It is given in terms of an infinite series of diagrams in Fig. Uzp to logarithmic corrections this integral is proportional to
2(b). It is in fact a four-point vertex depending on fokr ' which is the dls_,S|pat|V(_e so_lutlon. S|m|larly, if we use the
vectors and four frequencies. As a first step we consider thBare rung in the diagram in Fig(&9 to determine/; we will
value of the rung when all the frequencies are zero, denotin§nd ¢s=3. In general we will find;,,=n instead of the K41
it in this limit as R(Ks Ky , k¢, k). At a later point we will valu_e ofr_1/3. Now one could think that the c_orrect values of
explain that this is sufficient for our purposes. The bare valudn® inertial range exponents may be obtained from resum-
of this object can be read directly from diagra®) in Fig.  Ming all the ladder diagrams with the bare rungs. This was

2(b), with two bare BL verticed” and one double correlation the point of view proposed in paper Il. In such a case the
function. The answer is sought after correction to the scaling exponents is of the

order of unity, and it is unclear how to develop a controlled
R(‘)"B"s(ka,kb VKe  Kg) resummation. In this paper we point out a new way, based on
the existence of a renormalized rung which gives, upon fu-
T (Ky ke ko) TP27(Ky , Ky, — Ko) sion, K41 exponentbeforeladder resummations. The char-
K13/3 ' acteristics of the renormalized rung in such a scheme are
© dictated by the fusion rules.

(22 Next we want to determine thenormalizedform of the
rung. To this aim we repeat the exercise of integrating over
the two Green’s functions and the rung, with the vertices
, , determined as before in the limkig~ky> k.~ k4. But now
We demonstrate now that if we use this bare form of the, o jeave the exponent &, in the asymptotic evaluation of

rung the fusion rules would predidissipativeexponents  yhe 1ng free, andlemandthat the result of the integration
{n=n. We first demonstrate this in the context &f Con- will be k;5’3. We find that this requires thay k;3.

sider a generahth-order correlation function and fuse two We are now in a position to propose a renormalized form

::r?ort()jmqteg pu':";g oult”th\clavfragwent Gb,, as etxptlﬁlned Ilr'] of the rung which in a proper calculation could be obtained
€ eglr:nt;n%_ od' e(ih d € V(\j" nowfctcr)]r.np}u e the tscahlng by summing up all the nonladder diagrams that contribute to

thp?\lrJen ydl_n Itng € eperr: en%e c;h 1S ra?lrg_e? WREN this rung. This conforms with our basic hypothesis that all
e two coordinates approach each other tmlldistance 5 jqer diagrams contribute to K41, whereas the ladders

r<Rdyvhere RT'S ft_hg t%/pﬁal d|s(;ance between _aII the Otherare responsible for the anomalous scaling. Since K41 does
coordinates. To find the dependence we must integrate ac- J: aiiow L renormalization we propose the form

cording to the explanation in Appendix B, and to this aim we
introduce the objecT,(r, ) (which is “longitudinal” in the R¥BY(ky Ky , K¢ , Kg)
sense defined in Appendix)B

S 4sin?(%ka-r)%. (25)

dk,
(2m)

= 50?'/3

wherek.=k,— k.= k43— Kk, and &, is a dimensionless con-

L7 (Ky 1, Ke) TPO7(Kyy , beg , — Ke)

dk, 1 dw, = 5e'? 3 2/3 2/3
T2(r,K)=f (277)34SII”F<E ka'r)fEGZ,Z(ka!wa! keKc Ky
(26)
—Kky,— w,,K0,— K,0). (23

This form gives the K41 overall scaling exponédnihich is
We are interested in the dependence of this object in the the same as in the bare ruRg, and in addition agrees with
limit rk<1. To calculatel,(r, ) in this limit we return to  the fusion rules for the second-order correlation function
Fig. 2(a). Obviously the Gaussian contribution diagrélhis  with a K41 scaling exponent. In addition it is symmetric, as
irrelevant in this limit. The skeleton diagra(®) contributes it should be, for exchanging the indicasindb together with
the following integral: c andd. Note thats is now a renormalized unknown dimen-
sionless parameter which will be determined later.
s dws [ dk, To proceed, we note that our actual calculatisee be-
Tz(r,lc)%f 277]
rung, which are rigidly determined by the fusion rules. We

low) depends really only on the asymptotic properties of the
Xg(—Kg,— wa)Ro(Ka, —Kqa, k6, — k), (24)  can thus attempt to simplify the form of the rung as much as

4sinz<% ka~r)g(ka,wa)
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possible, preserving the asymptotic and parity properties un- To check that we get the right K41 scaling exponents with
changed. In particular we note that the BL verticesthe new renormalized rung we need to recalculate the one-
I'(ky, k. ,ks) have complicated structure which makes calcu-dimensional version of Eq24) with (30) for the rung

lations involving them rather difficult. Therefore we propose

to use instead Eulerian vertic®gk, , k. ,k.) corrected by a S(r, k)= f“ ﬂ 4 sinz(ﬁ) R(K, — K, k, — )
factor — 2 (ky- ) /[ K2+ k2+ «2]. The correction is aimed at 2 _27 2 oo

reproducing the asymptotic behavior of the BL vertex

vk, k. ,ke) ~min{k, ky , kc}. Thus instead of Eq(26) f“ d_“’ L
a1 K¢, Ke a c X _mz’n_g(k,w)g( K,—w). (33

one has
RBY(K, Ky , ke, ) Using Eq.(19) the frequency integral yields 1/2y(k). Thus
_ - 45?1/3( K Ke) (1 Ke) Sk |k|4/3| k— K|SI|’12(§>
[KE+ 2+ KEI[KE+ G+ k2] TS(r,x)= f dk . (39
CyT J - [K?>—kk+ «?]?
V7Kg, e ,ke)vﬁ’&r( Kp s ke, — Ke)
X EPPRYE - (27 In the limit k—0 the integral simplifies to
el Rcld
~ = dk kr
As a further simplification of the actual calculations we will T5(r k)= 25K2/3f T/gsmz(j)' (35)
use a one-dimension&lD) reduction of the problenfpre- 0k
serving the asymptotic scaling properties and parity where
which instead of three-dimensional integratigies’k/(27)3
we will use the one-dimensional ong  dk/27. Then we )
can disregard the vector indices and replace o= . (36)
V9K, , ke Ke) —Ka, (K-K')—kk" (keeping the signsand v

k3 in the denominator byk.| (because we replaced 3D by This integral is elementary, reading
1D integration. The one-dimensional version of the rung

(27) turns into S(rok)=— %’5(;«)2’31“

2\ -
- §) ~25(kr)?R, (37
— 48K Ky kgl

[K2+ k2 + K2 K2+ i3+ k2] | kil 23
(28

R(Ka,Kp, k¢, kg) =

wherelI'(x) is the gamma function.
The point to notice is that in the asymptotic limit—0
the only properties of the rung that guaranteed the appear-
, ) ance of the scaling exponent 2/3 are the asymptotic proper-
Note that herek, ky, k¢, xq are in the intervak= and eq that we preserg\j/ed Fi)n the series of simplif)i/ca?ions Igadpi)ng
that they carry SIgns in orqler to preserve the parity of the, Eq.(30). In general, we will show below that the series of
rungs. Herek, ,k;, are incoming wave vectors and kg ar¢  gimpjifications of the model form of the rung are of abso-
outgoing, and they conserve momentum lutely no import also for the calculation of thenomalous
scaling exponents up to one-loop order. We will show below
Katkp=rctKq. 29 that we getpreciselythe same exponents in this order with
any arbitrary analytic form of the rung, with tensor indices or
Substituting into Eq(28) ke=k,— .=k, —q one finally  without, in 3D form or 1D form or whatever, as long as the
obtains asymptotics are preserved, as they are. In two-loop order this
is no longer true. The actual numbers obtained in the two-
R(Ka Kk, k¢, Kkq) loop order are model dependent. We will show, however,
that the sensitivity of the predicted exponefitgo the model
B V& KaKp#crgKa— kol ~ forthe rung is small as long as<8. We need the two-loop
[K2—Kao+ k2] K2—kpkg+ k2]| kergl2e” Order mainly to make sure that it corrects for some unaccept-
able properties of the one-loop results for higher-order cor-
(30 relation functions.
Before we proceed we need to check the self-consistency

In particular, of our approach. We need to make sure that all higher-order
o nonlinear Green's functio, , (the response gf velocities
— 62k k— k| to p forcing) yield, upon fusion, the correct K41 exponent for
R(k,—k,xk,— k)= , (31 K41

pth order correlation functiong, "= p/3. For this aim we
have to consider the so calletteletondiagrams which are
—i3 ’ . the lowest order connected diagrams without loops. 08
Se " sgnkk’)| kK| this is diagram(2) in Fig. 2@ for Gs 3 the skeleton contri-
K| bution are shown as diagrart® in Fig. 4(@. We must make
(32 sure that the skeleton diagrams, upon fusion, yield K41 scal-

[kz— kk+ K2]2

R(k,—k,k,k")=

for «,k’'<k.
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ing ¢ *'= p/3 for the appropriateth-order correlation func- In the asymptotic limit defined byr —0 the main contribu-

tions, since our grand hypothesis is that the anomalous scdlfon to the integral comes from the two symmetric regions of

ing comes only from ladder resummations. theq integration in which «|<[qg| <[k,|. In these regions we

This test of self-consistency is presented in Appendix BUse the form32). We calculate

The important conclusion of this appendix is that the skel- dK . o

eton diagrams foiG,, ,({k;,«;}) (with asymptotics of the (1) oz o3 79K o[ L adq

rung defined by thept‘\)/vo-g)oir]n fusion rules witf“!=2/3) T2(rk)~25°% fo kg/gsmz(zkar) JK - 4D

automatically reproduces the K41 scaling expongpit*

=p/3 whenp points are fused. As expected the loop integral ovgrproduces a logarithmic
contribution. At this point we use the asymptotical identity

V. SANDING THE FLOOR IN ONE-LOOP ORDER % k 1 %
lim f d(kr)f(kr)ln(;) :In(ﬁ)f d(kr)f(kr),
0 0

In this section we demonstrate the most important new ., o
property of the resummed theory, i.e., that the rungs in the (42)
ladder diagrams appear with a small parameter. This will
allow us to develop @ontrolledladder resummation, some- Which produces, upon comparison with E@5) the final
thing that to our knowledge has never been available beforgesult
In fact, we will lay out in this section all that is needed to
calculate the scaling exponents in the one-loop order. In Sec. TO(r,k)=31In i
V A we demonstrate that the prefactérof the rung is the 2 KT
order of 5, which is the anomalous part g5 and thus small. _
In Sec. VB we consider the anomalous exponent of the runghe factoré that was introduced in Eq36) reappears here
itself, denoted ass,, and stemming from ladder resumma- in front of the logarithm as the effective parameter of expan-
tions within the rung infinite series representation. In Secsion.
V C we reconsider the contribution of the skeleton diagrams Analogously one computes the leading contribution of the
to the scaling exponents upon fusion, taking into account théwo-loop diagram(4) in Fig. 2(@). This is done explicitly in
anomaly of the rung. In Sec. V D we throw in the following Secs. VII A and Appendix C,
input: the fact thatt;=1 and the experimental value ¢.
The result is Eq(60) which states that in the one-loop order T(Z)(r K)= E
all the unknown parameters are numerically identical. From 2 2
this point the calculation of all the other scaling exponents in

TO(r, k). (43

- [11]%
5In(n” TO(r, k), (44)

one-loop order is straightforward. and, in general the leading contribution of thdoop dia-
gram
A. The four-point rung is small . 110 1\]" ©
n _ - S
Here we show that the coefficieatin front of the renor- Ta7(r )= n! 5'”( rK) T27(r k). 49
malized four-point rung26) is of the order of the correction
to K41 of the scaling exponerdt The sum of all these contributions is as follows:
8=~ {3 *~0.03. (39 -
e T 0 =T ) + 3, TE(r ) (46)
o
To this aim consider the one-dimensional version of the
quantity T,(r,«) of Eq. (23): RN 1\1m T(ZS)(T,K)
=T(25)(T,K)E vy Sinf — 2—3.

= dk 1| (= d
Tz(r,K):fi 2—;4sir?<§kar)fm§622(ka,wa,

We see that, as usual, resummation of the leading contribu-
tions from the logarithmic ladder diagrams results in the

power function with the exponemtwhich is the prefactor of

the logarithm in the one-loop diagram, see Ef). Because

the expected correctiof, to the K41 exponent, ! is small

—Kk,,— wa,%,0,— ,0). (39

We will examine the ratio of the contributions of the one-
loop diagram(3), denoted below a%$"(r, «), to the contri- -
bution of the skeleton diagram E¢83) [diagram(2) in Fig.  (92~=0.03) we conclude that the prefactor of the rufigs

2(a)]. After performing the frequency integrals the one-SMall as well. This allows us to begin with the one-loop
dimensional form Oﬂ-(zl)(r'K) [see diagrant3) in Fig. 2@)] approximation in computing the higher-order scaling expo-
is nentsg, with p>2.

B. Anomalous correction of the rung asymptotics

o B dk, 2 1 e [ _ &
T27(rw)= ok o 7 Kal L 2my(ky) So far we have disregarded the explicit appearance of
2 2 ladder diagrams in the infinite series that defines the rung
XR(ky,—ky,9,—q)R(q,—q,x,— k). (400 itself. As pointed out in paper Il the same kind of ladder
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resummation that is responsible for the anomaly of the exHere f(r,{k;}) are one-dimensional versions of the func-
ponents of the nonlinear Green’s functions will also contrib-tions f (r,{k;}) defined by Eq(B7). The sef «;} denotes all
ute an anomalous part to the scaling properties of the runghe outgoing wave vectors.

Nevertheless the outer and inner scale do not appear in the We consider the skeleton contributions to the nonlinear
rung either, and therefore the anomaly is explicit only in theGreen’s functionG, ,, denoted byG;p_ Similarly to the
asymptotic regime where we have a ratio of large and smalefinition (33) we introduceT,S)(r,{Kj}) as

scales. In this section we flush out this anomaly.

Instead of Eq(32) we expect » P dwdk
o= | T2 o)
5?Jasgr(KK/)|KK,|l/3+5a —=i=1 (2m)?
Ra(k, =k, x,x") = k|1 2%a X 8(ky+ - - ko) f (1 {k})
for k>«k,k', (47) *Cppllk;5,00). 0

Repeating the calculation of Appendix B in the asymptotic

with some anomalous exponed#j which is expectedand regime x;r <1 but with the redefined rung7) one gets

later demonstratédo be of the order ob as it stems from

the same origin. This correction to the asymptotics may be — o P Vs
achieved, for example by the following model form of the To(r.{xj})=Cpy(er)P=rP a_Hl || 5T 0a, (51)
rung (30): i=

Here C, are dimensionless constants that absorb all the nu-
merical factors. In fact, the resulbl) could be guessed di-
rectly by recognizing that every rung which is connected
(48  with the “outgoing” Green’s functionss(«;,0) contributes
to To(r.{x;}) a factor |«;|*"%. All together they give
As before, we will argue that the exact analytic form of the]‘[JP:l|Kj|1/3+ %, Convergence of the integrals ovef and ;
rung is not important for our calculations, and only theimplies that neither inner nor outer scales may appear, and
asymptotic scaling form is essential. This statement will beherefore dimensional consideration require a factor
shown to be exact in the one-loop order. We thus need at thig?(1/3+ )
point only to preserve the essential properties, i.e., that the

outer scald. cannot appear due to locality, that the rung hasp the second and third order correlation functions: relations
to be symmetric with respeet,b—c,d, etc. betweend,, &,, and 3
a y

53
|Kch|
Ra(Ka,Kp k¢, kg) =R(Ka Ky kckg) | —— | -

Consider first the scaling exponed. In Sec. VA we
showed that the resummation of the ladder diagrams leads to
an anomalous correction to the exponéf’= 2 which is

In this section we reconsider the skeleton diagrams ap-_3 [see Eq.(46)]. But according to Eq(51) the ladder in

pearing in the nonlinear Green's functio, , but taking the skeleton contribution brings in an additional correction
into account the anomaly of the rung. In other words we are, ¢ Altogether we have in the one-loop order
going to compute the scaling exponents accounting only for 2"

C. Contributions of the skeleton diagrams with the anomalous
four-point rung

the ladder resummatiomside the rung, but not the ladder ¢ —2_%49258 (52)
resummation with the anomalous renormalized rungs. This 273 ar
final step will be done in Secs. VI and VIL. Therefore the exponent, defined by Eq(38) may be ex-

We are interested in the scaling exponents of structurgressed as follows:
functions inr representation, and these are obtained from the
correlation functions irk representation as detailed in Ap- 5,=25,—9. (53
pendix B. Upon fusion we obtain automatically contributions
behaving as nonliner Green’s functions. Accordingly the ob- Another relation between the exponents will follow from
jects of interest in the analysis below are the nonlineathe analysis of the fusion of three points. To one-loop order
Green’s functions in which th& dependence of the fusing the nonlinear Green’s functioB; ; has the skeleton contri-
coordinates is transformed torepresentation. The outgoing bution diagram 3 in Fig. @), and the one-loop diagrams in
wave vectorsc are left as are, and the outgoing frequenciesFig. 4(b). The skeleton contribution can be read directly from
can be put to zero with impunity. This results in objectsEq. (51):
defined in a mixed,« representation, which we denote as

To(r{x{}): §(r,{Kl-})=C3:rr3‘sa|K1K2K3|1/3+‘sa. (54
» P dw.dk To discuss the other contributions we refer to Fig. 4 in which
Tp(r,{Kj'})=J H ) w1t wp) all the diagram ofG; ; with zero, one and two rungs are
—=i=1 (2m) represented. We have one diagram with no rung, three with
X S(ky+ - - ko) fo(r,{k}) one, nine with two. The multiplicity of 3 in the diagrams of

type (2) represent the three possible connections of two struts
X Gp p({Kj ,wj ,&;j,0}). (490 by two rungs. The multiplicity of 6 in the diagrams of type
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(3) represent the different pair permutations of three struts. Inwo Green’s functionsG(q,w)G(—(q,— ) is the same as
general there are"3diagrams withn rungs, out of which  Eq.(33) leading to— 1/2y(q). In total we have a logarithmic
three will have one disconnected strut. Diagrams with disintegral.
connected struts will not contribute in the asymptotic regime The diagram(1d) is very similar to(1b); it has the same
that interests us here. Thus out of the diagrams in Fi@. 4 rung structure at the left, and the rightmost rungRigdq,
only the skeleton diagrar8) remains in the asymptotic re- —q,«,,x.). This makes no difference to tredependence
gime. and thus to the logarithmic divergence or to the factor in
In general, withn rungs we have 3-3 fully linked dia-  front of the logarithm. Diagran(1c) is slightly different,
grams. This number is [63" 1—1)/2], and the number having the third rung on the same ladder as the second rung.
[(3""1—1)/2] counts the topologically distinct fully linked Nevertheless the runB,(q’,k.,q,—q) contributes exactly
diagrams withn rungs. Thus for example we represent inthe samey dependence as theo rungs in diagramslb) or
Fig. 4b) the four topologically distinct contributions with (1d). Thus it yields at the end the same factor with the same
three rungs. These are all the one-loop ladder diagrams cofegarithm. Finally, comparinglc) to diagram(3) in Fig. 2(a)
tributing to the third-order correlation function. We show we see that the loop structures are identical in both, and thus
now that of these four terms diagrare) does not contribute  if diagram 3 had a prefactat, we can immediately conclude

a logarithmic divergence, whereas the other three contributghat thethree diagramg(1b), (1¢), and(1d)] will result in a
the same logarithmic term. In fact, this is the beginning of &otal prefactor of -

systematic rule: the only diagrams that contribute logarith-
mic terms in the one-loop order are those in which the last _
rung appears to the right of the skeleton diagrams. Similar T(31)(r,{:<j})=35ln
rules will be established below for higher-loop contributions.

Consider then the one-loop diagrafte) in Fig. 4b) i \yhere k=[x, x,x5]" The leading contribution from the
which this rule is not obeyed. We focus on th‘? loop made byigher loop diagrams can be seen to contribute higher order
the two rungs and the Green's functionandq’, consider-  terms in the series of a power law, similarly to the mecha-
ing the asymptotic regimé, ,k,>q>k,,k,. This is the  [igm displayed in Eq943)—(46):
only regime in which a logarithmic divergence is possible. In

Ik

TO(r k), (56)

this regimeq’ ~q"~k,+kp . Thus the rundR,(kz .k, ,0,9") Tgs)(r,{,(_})
contributes to the loom*"%. The rungR,(q,q’,x4,,9") Ta(r {x})= —33' (57)
and the Green'’s functio®(q’) do not contribute any de- [r«]
pendence to the integrand. Theintegration over the prod- I e
uct of the Green'’s function&(q) andG(q’) gives approxi- Substituting Eq(54) we find finally
mately 1/(qg’) and again contributes nq dependence. W~ oy 1436, 33
Finally we have the evaluation Talr{xi}) = Caelr«] ' (58)
Accordingly to one-loop order we write
ka
T f _dag e (59) {5=1+308,~35. (59)

At this point we use the exact, nonperturbative result that
Clearly, this diagram does not exhibit a logarithmic diver-,.—1 to find the relationship betweed, andd:  5,=3.
gence and as such it does not contribute to the renormalizgogether with Eq(53) we get the important conclusion that

tion of the scaling exponent. all our 8's are the same:
The other three diagrams in Fig(b4 [namely,(1b), (10),
and (1d)] are different, they all have a logarithmic diver- Sp= 8,= 0=~ 2K4l%0_03. (60)

gence. The reason for the difference is that in these three

diagrams there are four Green’s functions, instead of five ifye should stress that this important result is obtained using
diagram(1a), which carry large wave vectors. This is the gnly the asymptotic scaling properties of the rung. Changing
same situation as in the skeleton diagrednin Fig. 2@). In  the explicit form of the rung without ruining the asymptotics
the loop we have now two Green'’s functions, instead of ongyj|| affect only the subleading terms in the analysis. The

in diagram(1a), that carry small wave vectors This differ-  |eading logarithmic terms are insensitive to the details of the
ence leads to a differenf dependence in the loop, and to a gnalytic form of the rung.

logarithmic divergence. We demonstrate this explicitly in the
next paragraph, but we already draw the conclusion which is
general: one-loop ladder diagrams with logarithmic diver-
gences are those in which the additional ryongmpared to

skeleton diagramhas been positioned to théght of the We are poised to compute now the anomalous corrections
skeleton structure. to all the scaling exponents of theeorder correlation func-

Explicitly, consider diagran{1lb) in Fig. 4b). The rung tions in the one-loop approximation. Start with the fourth-

Ra(Ka.kp,9,9") contributesg®* % as before. But now also order nonlinear Green’s function, and consider the skeleton
the rungR,(q’,ks,—q,«c) contributes the samg depen- diagrams in Fig. 5. In the one loop order, to obtain a loga-
dence. On the other hand, the ruRg(q,—q,«4,x,) con-  rithmic divergence in the asymptotic regime we must add the
tributes|q| ~1~2%. The w integration with the product of the additional rungon the rightof the skeleton structure. The

VI. ANOMALOUS SCALING EXPONENTS IN THE
ONE-LOOP APPROXIMATION
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p ~ P(p—1)

1 W gp:§+p5a_5 2 (64)

Using Eq.(60)

P p(p—3)
3 §p=§— 2 one-loop order. (65)
4 We note that this formula, which is valid in our case to

one-loop order only, is identical in prediction to Kolmogor-
ov's log-normal phenomenological mod@nown as K62.
This is interesting, as it stems from the nontrivial topology of

1 VNN the ladder diagrams, in which only the most leading were
considered. In other words, there are many diagrams without
5 AM— logarithmic divergences, but when we resum those that do
have logarithms in the leading order we find K62. The
+ present authors find the connection between lognormality
3AN— and ladder diagrams unexpected.
Nevertheless we should recognize that in the present ap-
4 ANN— proach this result has a limited region of validity. The analy-

sis of the two-loop order which is provided below will show
that Eq.(4) is only valid whenp§,<1. The two-loop order
will contribute positiveterms of the order oﬁ%pz(p—3),
o ] ] ) reducing the negative tendency of the correction to K41.
_ FIG. 5. The skeleton contributions in the diagrammatic eXpan'Accordingly the present theory will not suffer from the well
sion 0f Gy 4. know deficiencies of the K62 log-normal model which for us

. . i is only a first order result.
combinatorics are elementary: Each skeleton diagram can

host a new rung on the right in six different ways. Once a
rung has been put in place the leadithggarithmig contri-

bution to the loop integral is the same as the loop integrals
considered in the last section. It gives the same logarithm |n this section we calculate the two-loop contributions to
with the same prefactoiThe only difference is in the com- the scaling exponents,. Even though these contributions

=+ all permutations of ( 1,2,3,4) lines

VIl. ANOMALOUS SCALING EXPONENTS IN THE
TWO-LOOP APPROXIMATION

binatorics. We can thus write by inSpeCtion are very small Whem)52 is Sma”(forl Say’p<6)’ they be-

1 come important for larger values pfwhere K62 begins to

(1) P e YA Bl _ turn down then dependence of,,. In addition this calcula-
Ta(rixh)=60ln rK}T“ (r i), G tion allows to present clear ranges of validity for the one-

loop and two-loop calculations.
wherex is the geometric mean of all thg . Resumming the
leading contributions of the higher-order loop diagrams re- A. Two-loop contributions to &,

Its in th I
Stits In the power law We consider the two-loop diagrafd) in Fig. 2(a). Sub-

stituting it instead oG, , in Eq. (39) we obtain the quantity

(s)
Ta(rixj})= L{'ﬁ}) 62 T¥A(r.x). We want to compute the correction that this dia-
[rx]®® gram gives to the skeleton diagrai®), and to this aim we
divide it by T3(r,«). In the asymptotic regimer <1 the
Using Eq.(51) we reach the final result loop integrals over; andq, contribute mostly in the range

k>q,,0,> «. In this regime the integrals ové&y,w, cancel
{4=4I3+45,—66=4/3-265,, one-looporder.(63)  from the ratio of TS?)(r,x)/T5(r, ). In addition the Green’s
functions G(«.) and G(k4) cancel. Thus this ratio can be
The analysis of the one-loop-order contribution to theread from the ratio of the corresponding diagrams@ar,,
anomalous exponents of tipeorder correlation functions is or taking the diagrant4) and amputating the incoming and
as straightforward. There app—1)/2 possibilities to ap- outgoing legs. We still need to divide by the rung in diagram
pend an additional rung to the right of the skeleton structuré2) wherek,, is replaced by 1t
of thep-order nonlinear Green'’s function. All these diagrams
contribute identical leading order logarithmic terms, with theT(zz)(r,K) 1 © d0g,d0,J(q1)J(Q»)
same prefactor, summing up to an anomalous correction tol_s(r x) - R(l/r,—l/r,K,—K)f,x (27)010,
the scaling exponent of the skeleton diagrams which is 2'’
~’o“p(p—l)/Z. According to Eq(51) the scaling exponent of XR(r Y, -r1,9;,—9.)R(G1,— 91,92, — )
the skeleton contribution itself is corrected with respect to
K41 by pé,. Thus altogether XR(Qs,—qz,k,— K),
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* do 1 identical integral Eq(D1) with ﬁf—ﬂffz, where
J(Q)—jiw EG(q,w)G(—q._w)——m- (66) -~
W(d1,02)
In Appendix C we analyze this integral in the asymptotic 3 s
limit «xr<1 with the final result _ A2/q2[ a1+ 2| sgr(gy)
1 /1 1 (|01 |*+] a2l >+ a1+ 62| (a7 + 0o01 + 03)
2 _%2 2

T(2 )(I',K)—5 Eln (F +b1In(F” g(r,K), (67) (70)

whereb; is a dimensionless constant Following the procedure outlined in Appendix D we find the
coefficients of expansion
b,~—0.434. (68

a,=1, b,~—0.55. (72)
In Eq. (67) the Ir? term accounts for the exponentiation of
the one-loop contribution, whereas the In term provides thé&inally we get the two-loop form of:
two-loop correction to the scaling exponefyt. Instead of

Eg. (53 we now read {3=14+36,— 375—752(3b1+ 6b,). (72
5,=28,—6—b, 52 (69) Demanding agaid;=1 we find from Eqs(69), (72)
A second relation between these exponents will be derived in 3= 8, (by+4b,) 55+ 0(5), (73

the next section. N B
6,= 6 [1+(by+2b,)d]. (74
B. Two-loop contributions to {3

) 5 o These results are used in the next section to calcylafer
The calculation t&(&3) of the contributions td; and of >3 {0 two-loop order.

higher-order,, due to ladder resummations introduces six-
point irreducible interactions amplitudes. These appear in the
ladder diagrams as rungs with six legs, arising from dia-
grams that due to their topology cannot be resummed into The calculation of the contribution of four-point rungs to
reducible contributions consisting of two four-point rungs ¢, for higher values op does not necessitate the evaluation
and one Green’s function. The six-point rung is discussed i®f new integrals. In Appendix E we explain that all the two-
Appendix F. In particular we explained there why flumc-  loop integrals appearing in the ladders ®j , and higher-
tional dependencef {, onp can be understood completely order nonlinear Green's functions are identical in the
on the basis of the analysis of ladders with four-point rungsasymptotic regime to one of the two integrals appearing in
This stems from the fact that the reducible and irreduciblehe three-order quantity. The only differences are in the com-
contributions to the six-point rung are of the same order, an®inatorial factors that account for how many ways we can
their combinatorical factors are identical. choose the rungs to connect betweestruts.

There are many possible two loop diagrams involving If the second rung is connecting the same struts as the
four-point rungs that appear in the expansiorGaf;. How- ~ rung before it we have the same combinatorial factor as in
ever, we are only interested in those contributing a logariththe one-loop order, namelp{p—1)/2. This provides a con-
mic divergence in the asymptotic regime. As before, to getribution to{, which is p(p—1)8°b,/2. If the second rung is
the relevant diagrams we need to append the lasttoitige  not connecting the same struts as the rung before it, we have
right of the existing one-loop structure. Thus, we begin withp(p—1)(p—2) contributions. This is due to the existence of
the three logarithmic diagrams in Fig(b4 [i.e., (1b), (1c),  p(p—1)/2 ways connect two struts with the first rung, and
and(1d)] and consider all the diagrams that are obtained bythen 2(—2) ways to connect one of these two struts with
adding an additional rung on the right which connects twothe remaining p—2) struts. This leads to a contribution
struts. The nine resulting dl_a_gram§ are shown in Appendix _Ep(p_ 1)(p—2)b,32. We should stress that the loops must
These diagrams are subdivided into two groups: three digsaye 4 joint strut to give a In contribution. Two disconnected
grams in which the last rung connects the same struts as thg, s jead only to I contributions, which do not enter the

previous rung, and six diagrams in which the last rung conyq_1o0p corrections to the scaling exponents. In total we
nects different struts. In Appendix E we explain that the firstg 4

group of diagrams gives exactly the same asymptotic integral
as the two-loop contribution té,. This statement should be n p(p—1) - ~ ~
reiterated because of its importance to the structure of thep=3 *Pda— —— —[d+b15°]—p(p—=1)(p—2)by6
theory: the integrals are different, but once the limilts
>(,,0,> k are taken, the resulting integrals coalesce with +o(”5\3)_ (75)
those computed in the previous section. Thus the contribu-
tion to 5 from these three diagrams will bé35? (whichis ~ Substituting Eqs(73), (74) we obtain finally
three times larger than the corresponding contributiog,jo b p(p-3)

The six diagrams of the second group look topologicall -
different, but a%ain in the asymptoticgregiene coalepscegi]nto gn PT3 5 Ol 1+255b2(p=2) 1+ 0(8). (76

C. Two-loop contributions to ¢,, p=4
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We should stress that the functional form presented in thisoordinates coalesce together. In the fusion likmit>0 it is
equation is solid. It is shown in Appendix F that the contri- advantageous to reorganize the theory in terms of one propa-
bution coming from six-point irreducible rungs is only renor- gator (K41 Green'’s functiopy and four-point, six-point ver-
malizing the value ob, which anyway depends on the pre- tices, etc(the rung$. The series of diagrams contributing to
cise analytic form of the four-point rung which is not the fusion limit are then simple ladder diagrams.

available at the present time. We estimatg the range of va- The crucial Step of the theory is achieved by two require-
lidity of this order of the calculation by the Hiter inequali-  ments: (i) the four-point rung should be consistent at the
ties, which disallow a nonlinear increase in ffjeas a func-  |evel of theskeleton diagramwith the fusion rules with K41

tion of p. The inflection point where this requirement is scaling exponentgii) The resummation of the ladder dia-
violated may serve as a good estimate for the range of validgrams that appear when two coordinates fuse together should
ity. This inflection point occurs ap~1.4-1/(6b,5,)~12.  |ead to thecorrect value of /,. These double requirements

In Fig. 1 we show, within this range, the K41 prediction, the accomplish two things at oncés) the theory is now devel-
one-loop approximatiorfequivalent to K62 and our two-  opedaround the K41 limitleading to the appearance of the
loop final result. It is obvious that the two-loop loop predic- small parametes, in front of the four-point rung ancb) all

tion goes considerably beyond the range of validity of thethe anomalies are coming from the ladder resummations. The
K62 formula which has an unphysical maximum Bt six-point rung is shown explicitlyAppendix B to be of
~11.5. We believe that all the reliably measured values okecond order in the small parameter, eight-point rungs are of

{p agree very well with this prediction. third order, etc.
Using the bridge relatiofi7] u=2—{¢ we predict We computed the anomalous exponents in one-loop order,
inputting the value ot, and requiring that;=1. The result
1=938,(1+8b,5). (77)  is that the scaling exponents are predicted to this order to

agree with the log normal model K62. We showed that to
Plugging in the numbers we gat=0.235+ O(483). Thisisto  this order the result is universal, independent of the simpli-
be contrasted with the K62 predictigi=0.27. We conclude fications and of the model form of the rung.
that the two-loop contribution is very significant for experi-  We computed the anomalous exponents in two-loop or-
mentally measured exponents. If one wishes to obtain theader. The difficulty of K62 is overcome, the two-loop contri-
retical results for{, with higher values ofp one needs to bution has a sign that lifts up the exponents from the down
consider the three-loop contributions, which pose no furthecurve of the K62 parabola. While the form of the two-loop
conceptual difficulties. Nevertheless the experimental situaresult is universal, the numerical value of the parambter
tion does not warrant at the present time the effort needed tappearing in the final result is model dependent, with contri-
accomplish such a calculation. butions for the four-point and six-point rungs.

One should stress before closing this section that the form For the reader who is more trained in renormalized per-
of Eq. (76) is universal, stemming from the structure of the turbation theory we should remark at this point that this pa-
ladder diagrams and from combinatorics only. However, theper represents an additional conceptual development com-
numerical value ob, is model dependent. We have checkedpared to the point of view proposed in papers Il and Ill. In
that changing the form of the rung keeping the asymptoticshose papers the rungs in the ladder were left undressed. As
unchanged results ih, remaining negative while its value shown in Sec. IV A the undressed rungs lead to viscous scal-
not changing by more than a factor of 2 or so. At this mo-ing of the skeleton diagrams/(=n). Accordingly, if one
ment in time one can determin®, using the value of, does not dress the vertices, the ladder resummatioGfor
from experiments, allowing us then to predict accurate valshould result in renormalizing the exponeft all the way
ues of{, for nup to 12. It is our plan, however, to develop from 2 to about 2/3. This amounts to havidg of the order
in the near future a theoretical equations for the four-pointof 4/3. While this was considered as a possibility in papers Il
and six-point rungs, leading to ab initio determination of and Ill the present development casts strong doubts on this
their analytic forms, and with them of the parametérand  scenario. Indeed, considerirg for example the same sce-
b,. nario gives in the one-loop ordég~ — 1 instead of the re-
quired + 1. This may be salvaged by requiring the full six-
point rung. But this will make the dimensionless coefficient
of the six-point rung of the order of 2. Now one will run into

The main steps of this and previous papers leading to theven worse troubles witlj, in two-loop order, requiring an
present results have been as follows. even bigger coefficient for the eight-point rung. Correspond-

The theory is developed using BL velocities to eliminateingly every higher-order scaling exponent will require a big-
the spurious infrared divergences that are due to sweepinger and biggen-point rung, without hope of analytic form
effects when Eulerian velocities are employed. for £,,. We propose that the present scenario offers simplic-

The Dyson-Wyld perturbation theory was line resummedity and elegance that appears very attractive.
in order to achieve order-by-order convergent perturbation To improve upon the present theory one needs to develop
theory with K41 propagators as the lines in the theory. Ata theory for the four-point and six-point interaction ampli-
this point the objects of the theory are two two-point propa-tudes. Here we determined only the asymptotic properties of
gators(Green’s function and correlatoand one three-point the four-point rung, and this allowed us to predict the form
vertex. The three-point vertex is in no way “small,” and of the scaling exponents, but an input of the value of the
renormalizing it does not change this fé2f]. anomalous part of, was needed to achieve one-loop order.

Multipoint correlation functions are considered whpn In fact we could use the value ¢f to fix the value ob, and

VIIl. SUMMARY AND DISCUSSION
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gain a solid prediction of all the exponents to two-loop order. - Ky + ks
Such a prediction for, would be valid up ton~12. It is Eaﬁ(r0|kl1k2vw)EEaB(rO“(l!kle)a-aB(T
very easy to generalize the result that we have to three-loop

order, with the introduction of yet one more parameter asso-

ciated with the three-loop integrals, shy, which included D, 5(rolky ko, @) =D (ol Ky Ko\ ) — g
also contributions from the irreducible eight-point rung. The

result would read

kit ks
2

For translationally invariant tensors in homogeneous and in-

n n(n—3) compressible turbulence one can write
§n=§— 752[14-252(”—2)*32
04p(K)=P,p(K) o (k), (A3)
+685b3(n—1)(n—2)]+0(83). (79)

We stress that this form stems from the structure of the lad- PasK)=Pagll) (k).

der diagrams, and we consider it very solid. From one pOinWherePaB(k) is the transverse projector

of view we can now use the value ¢f to fix b; to provide

a prediction that is valid for ang within experimental reach Kk Kk

for quite some time. But this is not the main point. The main Pop(K)= 8,5~ JaB (A4)

point is that we have identified the coefficients appearing in k?

this formula with particular objects, i.e., the four-point and

higher-order vertices which appear in the theory as the rungh is known[20] that (k) (which is the mass operator taken

of the ladders. Obviously, a calculation of the renormalizedat w=0) is purely imaginary

rungs from first principle would remove the need to input

experimental information altogether, affording us a complete a(k)=—iy(k), (A5)

theory of the scaling exponents of isotropic turbulence. At

this point this is still not available. with (k) real positive. On the other handi(k) is purely
real. The diagrammatic series expansion of bgtk) and

ACKNOWLEDGMENTS ¢(k) converge order-by-order, and using scaling relations as

shown in Eq.(16) one can find their scaling behavior. The

It is a pleasure to thank Anna Pomyalov for her patientorder-by-order theory dictates a K41 evaluation of these ob-
help with the diagrams in this paper. We thank her, Yoramects which is

Cohen, Ayse Erzan, Chris Stephens, and Massimo Vergas-

sola for useful comments on the man.uscript. This wprk was y(k)=c7[?k]2’3, (AB)
supported in part by the Israel Science Foundation, the

German-Isreali Foundation, the European Commission under = _a

Contract No. HPRN-CT-2000-00162*Nonideal Turbu- P(K)=cyek™", (A7)
lence”), and the Naftali and Anna Backenroth-Bronicki

Fund for Research in Chaos and Complexity. wherec, andc, are dimensionless constants.

The Dyson-Wyld equations can be written shortly as

APPENDIX A: RESUMMATION INTO DIAGONAL K41 (w+ivk2)G= P+3*G, (A8)
PROPAGATORS
The starting point of this rearrangement are the mass op- F=G*(®+D)*G, (A9)

erators in k,w representation X ,4(rolk; ,kp,®) and
® ,4(rolks ,ky,w). Define the “diagonal” part of the mass wherev is the molecular viscosity? is the transverse pro-

operators as jector, andD is the correlation function of the external force
which is localized in the energy containing interval. The as-
ki + ks d(k;—ks) terisk stands for summation over tensor indices and integra-
‘Taﬂ( 2 Ef (2m)° 2.p(Ki.k2,0), (AL} tion over intermediaté. Substituting2, from Eg. (A3) into
the Dyson equation we rewrite
ki +k d(k,—k . . =
sl ~ Ef ((2177)32) D5k k0).  (A2) [o+ivk2+iy(K)|G=P+3+G. (A10)

In the bulk of the inertial interval we can neglegk? with

In these definitions, disappears. The reason is that for ob-impunity. The zero order solution of this equation is obtained
jects which are time independent the Eulerian and BL repre;

sentations are equivalent and the designatipis unneeded. by neglecting®.
Here we have objects witlh=0, or time-integrated quanti-

ap af _
ties. It was shown in Ref26] that time integrated quantities GY1—Gri(k @) =Pas(k)g(k ), (AL1)
are related to simultaneous correlations, and as such they
lose ther, designation. g(k,w)= (A12)

Denote the rest of the mass operators as w+iyk)’
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The zero order solution df is obtained in three steps: first
replace® by ¢, secondly negledD in the inertial interval in
comparison with¢, and finally substitute instead ofG in
Eqg. (A9). The result is

F3P-F5P(k0) =P, sk f(k w), (A13)
oK)
flkw)=— (A14)

Iterating Egs.(A8), (A9) without the bare forcing and

viscosity results in a diagrammatic series which topologi-
cally is exactly the same as the old Wyld diagrammatic ex-

pansion before line resummation. The difference is twofold

First, instead of bare propagators we have K41 propaggtors
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= 2 dk;
Sp(r)=(277)3 7@1:[1 (277)35(k1+"'kp) (B4)
Xfo(r{kHFp({ki}). (B5)

Here

p
(2m)*Fp({igh) ket - ~kp>=<JH1 G(kj>;> . (86)

The functionsf ,(r,{k;}) are seen from EqB4) to be

andf, and every one-particle reducible fragment of any dia-

gram will have a counterterm which subtracts its “diagonal”

part. This counter term is of no consequence for our proce-
dure here since the diagrams involving it can be resummed

in the four-point verticegthe rung$ together with all the

p
fp(r,{kj})=]1;[1 [2i sin(k;-)]. (B7)
In the limit r—0
p
fp<r,{kj}><><j1j1 (kj-1). (B8)

other contributions as explained in the text. The resulting! "€ K41 scaling exponenig, as§cy)ci_ated withpth-order cor-
topological structure of the ladder diagrams is thus untelation functionZ,({kj,w;})ock™» in (k,») representation

changed in the formulation.

APPENDIX B: SELF-CONSISTENCY AT THE LEVEL
OF K41

Before establishing this self-consistency we need to pass pext

from correlation functions ik, representation to structure
functions. The theory is done naturally knw representation
but the experimental scaling exponents are measured in
multaneous structure functions. We first transform fram
representation gbth-order correlation functiod®,({k; ,w;})

to simultaneous correlation functidf),({k;}) by the integra-
tion

o P dwi
Fp({kj}): j—xﬂl Eé(wl+ T wp)-’"_p({kj ij})-
(B1)
Here {k;,w;} and {k;} are sets of corresponding variables

with j=1,... p. The transformation fronk representation
of Fy({kj}) to the pth-order structure function is done as

IS

Yp=4p—11/3. (B9)
This corresponds tSp(r)ocrp’3 under the condition of con-
vergence of integraléB1), (B5).

consider the third-order Green’s function,
G341k, «j}) in which we denoted b; the set of incoming
wave vectors and by; the set of outgoing wave vectors.

Sthe skeleton diagram @3 «{kj . «;}) which involves four-

point rungs is shown as diagraf8) in Fig. 4a). (The con-
tribution of six-point rungs to the skeleton is considered in
Appendix F and shown not to change the present consider-
ations) This skeleton has two rungs, and we consider it in
the limit that the incomingk; vectors are much larger than
the outgoing; . In this limit we have four Green’s functions
with large k, contributing 7y, 4 and one vertex with alk
large, contributingk. The two rungs have largle vector in
them[ks in Eq.(22)], giving k®. Finally, one of the rungs has
largek coming and going, and E¢22) requires for it ak?>.
Altogether this gives G 5({kj,«j})*k*s with x3=25/3
which is equal toy; given by Eq.(B9). This means that the

follows: define the longitudinal component of the velocity asSkeleton diagrams fdBs i({k;, «;}) (with asymptotics of the

{53

Each of the factors is Fourier transformed according to

faf--3))- ]

sp<r>=<[ (82)

dk,

(2m)®

(B3)

Accordingly,

rung defined by the two-point fusion ruleautomatically
reproduces the K41 scaling exponefy=1 in the three-
point fusion. This is true subject to the condition that the
integrals(B1), (B5) for p=3 converge. That this is so may
be shown by a direct calculation. For future purposes it is
extremely important to note that the principal contribution to
the k integral (B5) comes from the region wherk; ~k,
~k3~1/r.

Now let us compare diagraif8) in Fig. 4a and Fig. 5
with the skeleton diagrams fdB; 3 and G, 4. One recog-
nizes that in general foG, ,, we will have (p—1) rungs
with large incomingk, contributing k=3®~1) [originating
from k. in Eq. (22)]. We will have also —2 Green’s func-
tions with largek contributing k= (?P=223 Next we will
havep— 2 outgoing legs with largk contributingk ~ (P~2)2/3



8054

from Eq. (9). Finally we will have 2—2 vertices having
incoming and outgoing largk vectors, contributingc®™ 2.
All together we find thaG, ({K;,«;}) <k " with x,=4p
—11/3 which is equal ty,, given by Eq.(B9). Convergence

of the k integral (B5) for p=4 may be shown by direct

calculations. A proof of convergence of thentegrals(B5)

for p>4 is a tedious exercise which nevertheless may be
done, for example, iteratively. It is readily demonstrated that
the integral converges when &| vectors are of the same

order of magnituddsay, k). ThenG, ,~k* " After (p
—1) w integrations(each of them giving a factde®®) one
hask3®~1~P8 which is enough for convergence gb€ 1)
d3k integrals in the UV regiork;~k>1/r. In the IR region
kj~k<1/r the functionsf, provide the integral with addi-

tional kP factor[according to Eq(B8)] which guarantees the

convergence.
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FIG. 6. Numerically computed dependence mfA) with A
=exp).

APPENDIX D: EXTRACTION OF THE SUBLEADING
LOGARITHMIC TERM FROM THE TWO-LOOP
INTEGRALS

The considerations of the six-point and higher-order rungs The two-loop integrals have the characteristic structure
leave these conclusions invariant. appearing in Eq(C1)

Adg; (AdQ,
— | —Y(q1,02),
L) @ (d1,92)

APPENDIX C: ANALYSIS OF TWO-LOOP INTEGRALS
CONTRIBUTING TO &,

I(A)=8? (D1)
The integrand in the integr&66) is a function ofg, and
g, and it depends ok and k as parameters. The integration

range is theg; —q, infinite plane, but in the limik>« the =1 thenI(A)=In?A. In general only the leading term of

main contribution comes from the four finite quadramts I(A) is proportional to IRA and we expect the following
<|qa|,|a.| <k. Well inside the quadrants we are allowed to sybleading terms:

use the asymptotic form in whick</|q,/,|q,|<k. In this
regime the integrand is, « independent, and the dependence
of the integrals ork, x appears only via the limits of integra-
tion. By changing the dummy variableg and g, we can

now project all four quadrants into one of them, sgyand  Qur goal is to find the coefficiertt in the limit A— . Tak-

g2 positive. In this asymptotic regime we can use for thejng the first derivative of Eq(D2) with respect toA and
rungs in the integrand of Eq66) that include eithek or « multiplying by A we find
their asymptotic form(32). This results in

where A>1 and¥(q,,q,) are homogeneous functions of
degree zero:W(\Qq,AQ2)=Y(q;,0,). When ¥(q4,q5)

I(A)=8?

a|2A+b| A+ +d+ D2
>In n ctyto (D2)

d Adg, Adg,
~. (kdq; (kda, aInA+b—K—...:J —\P(l,q2)+f —W¥(q,1)
K(k,K):52f _f —W(q1,0y), (C1) 1 02 1 01
p d1 Jp Q2
1dx 1dy
_ _ =f 7\P<x,1)+f/ 5 vay.
W (01,02) =¥ (01,02) —¥(—0y,0p)- (€2 VA VA

(D3)
In Appendix D we show how to analyze this kind of integral _
with the aim of extracting the coefficients of the leading andwhere we changed the dummy variablgs=xA and g,
first subleading logarithmic terms, i.e., =yA. Taking another derivative and multiplying by we
find for largeA

K,(k,k)= ﬂ|n2(|</,<)+|o In(k/ k) (C3 1 1
S 2 1 ‘ a=Vv 1,—) +\If(—,1). (D4)
A A
~Using the results there (D4) with W(qy,qs) Substituting this result in EqD3), and representing A as
=V4(d1,92), J1adx/x we find
3 b= limb(A), (D5)
~ d1/d1—d2lsgn(ds) e
V(0r,00)= = (C4) A

2(q2—q10,+93)? Ly
X

o= [
(A) 1A X

If the expansion assumed in E@2) is valid, this limit must
exist.

1 1
S . . - Y(x,)+V(1x)—V|—=1] -V 1~-]|]|.
one find immediatelya—a;=1 as required by the antici- oD (1) (A ) ( A”
pated expansion employed in E§44)—(46). To computed;
we examine the integrdd,(A) numerically, see Fig. 6. We

see that the requested limit exists and that —0.434.
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(1a)

(lc)

FIG. 7. The first group of three two-loop diagrams appearing in
the loop expansion 0B; 3.

APPENDIX E: THE NINE TWO-LOOP DIAGRAMS OF Ggj3;

Consider diagranila) in Fig. 7. We are interested in the
ratio of TS,/ TS, where T3, is obtained by substituting the
diagram(1a) instead ofG; 3 in EQ. (49). In the asymptotic
regime kr <1 the loop integrals oveq; andq, contribute
mostly in the regim&k>q,,q,> k. In this regime the inte-
grals ovelk, , w4, Ky, w, cancel in the desired ratio. Similarly
the Green’s function&(«y), G(ke), andG(«;¢) also cancel
in the ratio. AccordinegTg?l)a/Tg can be calculated from the
amputateddiagram(2) in Fig. 9, in which the explicit depen-

dence onk; and «; has disappeared. These wave vectors

remain only in the limits of the integrals ovg; andq,, with
k replaced by /. In this diagram every black dot contributes

a factor ofql/3 % whereq; is the wave vector on the right of

the black dot. This is a remnant of the corresponding rung

before the amputation. The thin line connecting these dots i
just a reminder that we have loop integrals to perform.

The point to understand now is that if we use diagrams

(1b) and (10) in Fig. 7 to form T, and T, the ratio of

these toT3 can be again calculated from the amputation of
their own diagrams. This will lead to thdenticalamputated
diagram(2) of Fig. 9. In addition, and most importantly, the
integral that needs to be computed is the same ag@s).
Thus one recaptures E(7) but with the combinatorial fac-
tor 3 in front of the RHS:

1 1
fln ( ; +blln( r”Tg(r,K),
(ED

T 104 16(1, &) =382

with b, of Eq. (68).
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(2a)

20

(k]

S

FIG. 8. The second group of six two-loop diagrams appearing in
the loop expansion 063 ;.

The second group of six diagram@a—(3c)] shown in
Fig. 8 yields a similar analysis, but the amputated diagram is
shown as diagrar(8) in Fig. 9. All six diagrams result in the
very same amputation, up to permutations of the three struts.
Analyzing the amputated diagraf3) one brings it to the

canonical form(C1) with \Tf(ql,q—Z) given by Eq.(70).
Accordingly we write
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with b, of Eq. (72).

The analysis of the two-loop diagrams that involve four-
point rungs in the context d&, , follows exactly the same FIG. 10. A sketch of the equations for the four-point rugajy
lines, with the amputated diagrams being those of Fig. 9. Thand six-point rung(b). The shading of rungs is used to identify
only thing to mind is the combinatorics, which are presentediifferent pieces of the same object. In the same manner we shade
explicitly in Fig. 9, leading to the numbers in E(.5). the loops to identify one or two loop integrals.

e

FIG. 9. The amputated diagrams that appear up to two-loop in
the loop expansion ofs with the appropriate combinatorial
factors.

p.p

i

+
N

T, «lr,x)=68

®

1 1
—In?l —
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©
3
M
=

APPENDIX F: RESUMMED EQUATIONS FOR THE

FOUR-POINT AND SIX-POINT RUNGS supply us with a functional form of the four-point rung, and

with it a substantial part of the value of the paramdigr

In this appendix we sketch a theory for the four-point andwhich appears in the final result for the scaling exponents.
six-point rungs. Our main aim here is to explain why the In Fig. 10b) we present the resummed form of the equa-
six-point rung is quadratic in the smallness, but we use theion of the six-point rung, to the same level of qualitative
opportunity to indicate how a future theory of these objectsdiscussion. Again we discard in the asymptotic limit the bare
may be formulated. contribution of diagram(1), but we cannot neglect diagram

Consider the beginning of the series expansion of th€2) since it has the same asymptotic behavior as the re-
four-point rung which is shown in Fig.(B). Diagram(2) ~ summed six-point rung. Diagrai®) is of the order ofé3.
contains a cross of correlators each attached to two thre@iagram (3) is of the order ofed,l, wherel, is the loop
point vertices. This is exactly diagraft), and therefore the integral. This integral is very similar th, and we therefore
equation can lend itself to resummation resulting in the equaestimatd ,~|,~1/5,, and thus diagrar(B) is of the order of
tion shown in Fig. 1(e). We note that this is not the full the left-hand side. Diagrart¥) is of the order ofe?l5l,,
equation for the four-point rung even in one-loop order sincgyherel, andl, each refer to one of the loop integrals. With
we did not take into account the ladders with a correlator anghe same level of approximation we estimate it thus to be of
Green’s function in a cross section. Taking into account alb(ez/(gg)_ Denotingx= ¢/ 52 we thus represent the order of

the_ neede_d contribgtions is not difficult, but. is r?olt the_ mai”magnitude relations that result from pafiel by the equation
point of this appendix, and we proceed for simplicity without

the additional terms.

In the asymptotic regime the bare contribution diagram
(1) in Fig. 10a) is negligible. With this contribution dis-
carded, the remaining equation is homogeneous, calling fowhere a and b are dimensionless constants ©{1). It is
finding a zero mode of the equation. Since we have alreadgbvious that onlyx~1 is a consistent solution of this equa-
demonstrated that the four-point rung is small, of the order ofion, and we thus conclude that the six-point rung is qua-
6, we can conclude that the loop integral which we denote agiratic in the smallness,.

I, must be large, or the order of &/ (the homogeneous We therefore understand that the six-point rung appears in
equation can be only solved if,~ 5§I1). In fact, in the our considerations only at the level of tii 5%) order. In
future it would be extremely worthwhile to solve the full this order it appears in addition to the two-loop integrals
equation in one-loop order and demonstrate that this is thevhich are formed by two four-point rungs, as discussed in
case, and thus to lend further weight to the theory presentedetail in the text of the paper. But since the six-point rung
in this paper. Of course solving such an equation will alsoconnects three struts, exactly as the structure madevof

x=1+ax+bx? (F1)
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four-point rungs, the combinatorical factors appearing in the A similar consideration applies to the eight-point rung
pth order scaling exponentare identical Accordingly we — which begins to affect the theory only i®(53). It will
understand that the effect of the six-point rung is only inrenormalize the value of the parametes in Eq. (78).
renormalizing the value of the parameterwhich is model  Higher-order rungs are even less relevant for the calculation

dependent anyway. at hand.
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