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Stabilization of the lattice Boltzmann method by theH theorem: A numerical test
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For a one-dimensional benchmark shock tube problem, we implement the lattice Boltzmann method based
on theH theorem[l. Karlin, A. Ferrante, and H. C. finger, Europhys. Lett47, 182 (1999]. Results of
simulation demonstrate significant improvement of stability, as compared to realizations without explicit en-
tropic estimations.

PACS numbgs): 47.11:+j, 05.20.Dd

. INTRODUCTION lision integral A based solely on the knowledge of the en-
tropy function, and how to stabilize the updates on the basis
Since the invention of the lattice-gas model, lattice-  of the discrete-timed theorem[6,8]. In the sequel, we term
based methods for simulations of complex hydrodynamiahe LBM based on thél theorem the entropic lattice Boltz-
phenomena received much attention over the past decade. fitann methodELBM).
these methods, hydrodynamic equations are not addressed byt is the goal of this paper to test the aforementioned the-
a direct discretization procedure, rather, a simple pseudopasretical developments for a shock tube problem. This one-
ticle kinetics is introduced in such a way that the hydrody-dimensional benchmark problem has been suggested some
namic equations are obtained on the large space and tim@gne ago[9] for testing various ideas in the LBM. Though
scale. Particularly promising is the well-known lattice Bolt- this model is based on a very simple three-velocity lattice, it
zmann methodLBM) [2]. It is based on the fully discrete provides a stringent test of stability. Implementation of the

velocity-space-time kinetic equation of the form, ELBM demonstrated a large improvement of stability in this
benchmark problem. In fact, we were able to reach the values
N(X+c,t+1) = N(x,t) = A[N(X,t)]. (1) of the kinematic viscosity as low as 18 without any sign

of numerical instabilities. The most important part of the
HereN(x,t) is theb-component vector of populatioM; of  realization is a robust root-finding procedure which imple-
the pseudoparticles with velocities, at the sitesx of a  ments theHd theorem.
lattice at discrete timé& The system of discrete velocities at
any site is formed by the outgoing links of the lattice, and it
also may include the zero vector.

One of the most important problems related to the LBM, An advantage of the LBM in comparison to the lattice-gas
recognized by many authors, is the problem of numericaimethod is that the Galilean invariance of the Navier-Stokes
stability. For the LBM related to incompressible flow simu- equation is easier to control in the former than in the latter.
lations, numerical instabilities preclude so far a study of highin order that this advantage should not get lost in the ELBM,
Reynolds number flow situations. Instabilities become everentropy functions should be found for each lattice separately.
more annoying for compressible flof3]. We here consider the one-dimensional lattice with spacjng

It has been discussed for some time in the literature thadind the population vector at each sithas three compo-
stability of the LBM could be improved if the method could nents, N=(N_ ,No,N_)", corresponding to velocities
be equipped with an analog of the BoltzmaHntheorem. =c, c,=0, andc_= —c, respectively. For this model, the
Recently, theoretical progress in this direction has beemntropy function has been found [if]
achieved[4—8|. In particular, for the isothermal LBM, the
hydrodynamic fields are the densify=(1,N), and the av- H=Ng In(Ng/4)+N_ In(N_)+N, In(N,). 2
erage momentumpu,=(c,,N), where (,-) denotes the
standard scalar product in theedimensional space of popu- Realizations of the ELBM based on the entropy functian
lation vectors. In this case, one can construct entropy funcresult in the one-dimensional Navier-Stokes equation with
tions in such a way that its local equilibrium implies the the sound speeck= \1/3c, within the accuracy of the order

I. CONSTRUCTION OF THE ELBM

crucial relation for the stress tensor, (u/cg)*. Construction of the ELBM involves the following
two steps(these steps are independent of the choice of the
(CaCp N®Y=C2p3, 5+ pUylpg, entropy.

First, we specifybare collision integralA in such a way
up to the admissible degree of accuracy of the LB6A as to satisfy the admissibility conditionA(1)=(A,c,)=0,
Furthermore, it has been suggested how to construct the cqlA,VH)<0, andA(N®%)=0. HereVH is the gradient oH
in the space of population vectors. The choice of the bare
collision integral is not unique. We here consider three cases,
*Corresponding author. FAX+41 01 632 10 76. Email address:
ikarlin@ifp.mat.ethz.ch A=(g"—g ){exd(VH,g)]—-exd (VH,g")]}, (33
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A=(g"—g )(VH,g —g"), (3p)  where M2=u?/c? is the Mach number squared. However,
result (7) is the exclusive case which does not happen in
A=N®Y(N)—N, (3¢ higher dimensions.
where g"=(1,0,1)!, and g~ =(0,2,0)' are positive and lll. IDENTIFICATION OF VISCOSITY

negative parts of the vectge=g* —g~, the latter is orthogo- L . . N .
nal to the vectors of conserved fields,7)=0, and @,c) Identification of the viscosity coefficient in the ELBM is

= 0. Collision integral of the forni3a) has been suggested in 40n€ on the basis of the Chapman-Enskog anajistsin
Ref.[6], and is motivated by well-known models of chemical the vicinity of the local equilibrium, in the same way as in
kinetics in the framework of so-called Marcelin-De Donderthe standard lattice Boltzmann realizations. Let us do this
kinetic function[10]. Collision integral(3b) is a linearized ~derivation in some detail for the example given here.

form thereof, and it is motivated by recently introduced Linearization of the dressed collision integtd) may be
GENERIC models of nonequilibrium thermodynam[dd]. written as

Equation(3c) is the familiar Bhatnagar-Gross-KrogBGK) SA* = Ba(NEY(V Al yeq SN) + BV | ees SN)A(N)
- NE by Ne ly .

form. ®)
Second, the population vector is updated according to the
kinetic equation The last term on the right-hand side of the latter expression is
equal to zero by the construction of the bare collision inte-
N(x+c,t+1)=N(x,t)=A*[N(x,1)], (4 gral. In the sequel, we denote hshe matrix of the deriva-
tives of the bare collision integral at the local equilibrium,
whereA* is adressedor stabilized collision integral, and write = a (N9,
A*[N(x, ) ]= Ba[N(X,t) JALN(X,1)]. (5 SA* = Ba(N®HLSN. 9

Here B<[0,1] is a parameter related to viscosityee Eq. For the bare collision integral8a) and(3b), the components
(20) below], and « is the scalar function of the population of the matrixL have the form

vector. Functionw ensures the discrete-tinié theorem, and
is the nontrivial root of the scalar nonlinear equation,

c?NJ&Nk e Ok » (10)

q

Lij= —Kedi Ek:
H(N)=H(N+ aA[N]). (6)

) o ) where  positive  scalar functions Ky are  Kgq
Put differently, bare collision integrals are stripped of any— exf(VH|ye,g*)] and Keq=1 for the collision integrals
relaxation time parameters, and are merely directions in thesg) and (3b), respectively. Functiomre, is found upon ex-
space of populations, pointing towards the change of thganding Eq.(6) at equilibrium up to the quadratic i@N
state in the collision event. Parametedefines the maximal  terms_ [Note that a substitution dfi®d into Eq. (6) does not
admissible collision step along this direction so that the eNyive an equation foreg). This results in the following qua-
tropy will not decrease. The combinatigB is thus the  gratic equation:
effective relaxation time in the fully discrete kinetic picture.

An advantage of the bare BGK collision integral in the 1 2
ELBM scheme is not obvious: In most cases, the local equi- Qeq Ea’eqz oNiZSan. | LikoNk
librium is not known as an explicit function of the hydrody- ik T Inea
namic fields, and has to be evaluated numerically on each 52
iteration of the method for each lattice cite. However, after +Z LijoNj ——— Lk|5N|) =0. (11
the local equilibrium is found, the resulting bare BGK colli- I IN;INK eq

sion integral must be dressed by numerically solving (By. L )
Thus, in comparison to bare collision integréds) and (3b) For the bare BGK collision integrdBo), it h_ag been a_lready
which only require the knowledge of the entropy but not ofdeémonstrated elsewhefé] that the nontrivial solution to
the local equilibrium, numerical efforts roughly double. In thiS eguation results iwe,=2, so we shall discuss only the
the example considered here we were able to find analyti€2S€33a and(3b). Using the explicit form of the linearized
cally the local equilibrium of the4 function (2), bare coI_I|5|(_)n integra(10), and the _epr|C|t form qf _the sec-
ond derivative of the entropy function, the nontrivial root of
Eqg. (11) is found to be

2
No= "2 [2— V1+M?],

2

, Xeq= . (12

uc—c K (N~ 1g.

+—£ S+ 1+M ’ (7) eqizj gl( |q) gi

3| 2c¢?
Thus, Eq.(12) together with Eq(10) defines the linearized
uc+c? dressed collision integral,
:g{ —+\1+M?|,

2¢5 SA* =—2BL* 5N, (13
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2
where c3(1-B)
V= —7f17-".

(20)
_ 2p
Lx gi(N{) g, (14

i a1 Thus, the ELBM is able to retain full control over the vis-
% Im(Nm) ™ m cosity, while variation of the parametg® in the interval

[0,1] covers the full linear stability interval, and the limit
Now it is important to notice that operatb has the same B—1 corresponds to the zero velocity linit,6].

projector propertyas the linearized BGK operator, Several remarks to the derivation just given are in order:
While the local equilibriumN®9 formally appears at the in-
L*L*=L%*. (15) termediate state of computation, and, in particular, in the

formula for ar¢q (12), the result for the viscositg20) is inde-
The image of the operatdr* is the linear subspace spanned pendent of it, and, in fact, the derivation has circumvented
by the vectorg. the explicit use ofN® This is a direct consequence of the
With this description of the linearized dressed collision projector property(15). In our example, the projector prop-
integral, we now follow the standard Chapman-Enskogerty, in turn, follows from the fact that the kinetic subspace
analysis, and seek the solution to the kinetic equat#®rin ~ of the model is one dimensional. Thus, all the admissible
the form, N=N°®% SN" where the nonequilibrium part collision integrals like Eq.(3), and any others, become
SN is orthogonal to the hydrodynamic subspacksN") equivalent near the local equilibrium, and they all result in
=(c,6N") =0, and is found in terms of the expansion, the same viscosity coefficient. This is not the case when the
SN"=esSNM + €26N(@ + O(€%), subject to the multiscale dimension of the kinetic subspace is larger than one. In that
expansion of the time and space derivatives=eg{)  case, various admissible bare collision integrals may lead to
+ 20+ 0(e3), dy=edMV+0(e?). Then, different expressions for the viscosity. Nevertheless, it is al-
ways possible to construct bare collision integrals which, un-
like the BGK, do not use the local equilibrium explicitly, and
—2B2, L} oNW=[oM+c;9,IN, (16)  at the same time their linearization satisfies the projector
y property (15). This construction will be reported in a sepa-
rate publication14]. Finally, it should be stressed that the
—2,32 Li’} 5NJ(2):égz)Niequ[(?%l)JrCiax] the_oretical Qerivation of _th_e viscosity qoefficier_]t_is always
] strictly applicable only within the domain of validity of the
Chapman-Enskog analysis in the vicinity of the local equi-

x| =B LESN®M+sNM |, librium.
J

(17) IV. IMPLEMENTATION

The ELBM algorithm differs from the standard LBM in

By the Fredholm alternative, the solution to E#g6) is writ- that the nonlinear equatidi®) has to be solved at each time

n ; X ; :
e step on each lattice site. Although the time required for solv-
SN = sND + sND ing this equation does not contribute too much to the total
spec hom: run time, a robust algorithm is required for solving this

highly nonlinear equation. Near the local equilibrium, the
Newton-Raphson method fails because the first derivative
tends to zero very rapidly. For this reason, we have con-
structed an algorithm which uses successive substitutions
near the local equilibriuntif possiblg, and it uses a combi-
nation of the Newton-Raphson and of the bisection method
[15] far away from the local equilibrium. The initial approxi-
mation, in most cases, was taken as the solution obtained
from the quadratic expansion, but very far away from the
local equilibrium, the solution to the equatioN+ aA=0,
a>0, is a better gued$]. Details of the code are available
from the authors.

where 6N(L) is the general solution to the homogenous
equationL* SN{g)=0, andsN{}..is a special solution to the
inhomogeneous equatiqh6). The homogeneous solution is
equal to zero by the orthogonality condition mentioned
above. The special solution has the form

SNG).=Ag.

Thus, by the projector properiyl5), Eqgs.(16) and (17) are
equivalent to the following two equations for the special so-
lution (we omit the subscript spgc

_ (D—1 H1) eq
2BONT =L+ cid,IN, a8 V. SHOCK TUBE TESTS
—2B6NP)= 0PN (1— B)[aM+cia,]oND . (19 We have studied the time evolution of a one-dimensional
front in a shock tube, a very classical problem in which it
The latter set of equations coincides with the well knownappears a compressive shock front, moving in the low den-
case of the LBGK, in which the BGK relaxation parametersity, and a rarefaction front moving in the high-density re-
71 is replaced by B, and we are immediately led to the gion[9]. These two fronts leave an intermediate region in the
following viscosity coefficient for each of the bare collision central portion of the tube with uniform densjty, and uni-
integrals(3): form velocityu.. The tube is filled at timé=0 with a gas at
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FIG. 1. Density profile(dimensionless lattice unijtsat t=500 FIG. 2. Velocity profile. Simulation setup and notation same as
for viscosity »=3.3333< 10 2. Thin line: Exact solution. Symbol: in Fig. 1.

Simulation.

) ) ) significant decrease of in the simulation, its deviations
rest with uniform density (u_=0) for x<0, andp.(us  from Eq.(6) may explain smoothening of the density and of
=0) for x>0. For the inviscid casey=0, the density and e velocity profiles at the shocks. On the other hand, we

velocity profiles present a discontinuity across the shockpaye not observed a development of postshock oscillations
The shock speefB] is given by the Rankine-Hugoniot rela- y the ELBM algorithm.

tions, In the ELBM based on the entroggg), the sound velocity,
1 cs=V1/3c, is not kept constant by imposing a constraint.
vier 2 = Te o =Pe Deviations of the effective sound velocity,
S C¥s C \/r— Sy C p+
Cc
. . . . [ —-1.2 eq eq _ ,2

andr, and be obtained by using the Navier-Stokes relation, Cs=[p T NN —u?],
logr .+ re-1 _ |ng_—_ from cg measure the influence of anomalous te.[me note
Jre [ that these terms are of the ordet by the choice of the

entropy(2)]. The errorE=(c,—cg/cs was evaluated using
Simulations were performed in order to compare the stabilitthe exact local equilibriuni?). In Fig. 3 the error is given for
of the three LBM algorithms: the nonlinear LBE] (LBE  the simulation with the viscosityy=1.6x10 3 It was
hereaftey, the LBGK method with the polynomial equilib- found that the error was of the order of 0.1% even though the

rium ansat413], and the present ELBM algorithm with the Mach number was as high as 0.3464 in the present simula-
bare collision integra(3a). tion.

Runs were performed on the lattice with 800 nodest At
=0 the lattice was populated as to give the dengity B
=1.5 for 0=x=<400, andp, =0.75 for 406<x=<800. Stan- 0 - \ . . .
dard bounce back boundary conditions were applied at both — 500
ends of the tube. Results for the three algorithms are demon- _,| o =500 ° ]
strated in Figs. 1 and 2 for a relatively high value of viscosity - =300 . °
v=3.3333x 10 2. This value was taken in order to compare :
all the three algorithms because it is close to the instability of -2f
the LBE[9]. It has been found that the LBGK and the ELBM :
never showed divergence when the viscosity was smallery _s L
thany<10~3. However, in contrast to the ELBM, the results e
of the LBGK demonstrate large fluctuations alreadyvat
<1. For this reason, results of the ELBM were always better
in comparison to the LBGK at low viscosity. It should be
also stressed that because the theoretical derivation of the -s-
viscosity coefficient(20) is valid only in the vicinity of the
local equilibrium, it may become invalid at the shocks where

oo o
L. P ‘ .. .
[} o 000 o0 oo
|

-6

the populations may be far away from the local equilibrium. 0 100 200 300 4)(20 500 600 700 800
Increase in the effective viscosity near shocks would mean
that the evaluated parameter(6) is smaller than the near- FIG. 3. Deviation of effective sound velocity from the exact

equilibrium bound(12). While we have not observed a very sound velocityE=(c.—cg/cs, at v=1.6x 10713,
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VI. DISCUSSION AND CONCLUSIONS sion integrals like Egs(3a) or (3b) requires working with
The numerical test of the entropic lattice Boltzmannloganthmlc functions which makes them more vulnerable to

- . . the round-off errors. Finally, since the whole construction is
method demonstrated much better stability of this method in 2 )
comparison to the LBM without thel theorem. The natural largely based on convexity of the entropy functions, and can

working window of this approach is low velocityu(0) not tolerate any nonpositivity of the populatioamlike the

. L . ; standard realizations which may tolerate negative popula-
and low kinematic viscosity§—1). Low values of velocity y g bop

re required in order o k mall the anomalous term Qtt'ons to some exteptcare must be taken when implementing
are req e4 0 0 Keep small th€ anomalous terms Qi entropy-based estimations of the collision step like
the orderu®, whereas the entropic estimatigf) allowed

. i : S Eqg. (6) in order not to violate these properties. All these
implementations very close to the zero viscosity limit. a. © prop

. . questions require a further detailed study, which is the sub-
While the entropy-based lattice Boltzmann methods are&.t of our current work.

per construction, unconditionally stable, a word of cautiornJ
about their realizations is in order. On the one hand, the

t_heoretica}l I.imit of zero kinematic viscosity is at the same ACKNOWLEDGMENT

time the limit of no convergence to the local equilibrium, the .
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entropy function. Furthermore, implementation of the colli-and valuable discussions of results.
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