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Rayleigh-Taylor instability with magnetic fluids: Experiment and theory
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1UniversitéParis 7–Denis Diderot, UFR de Physique (Case 7008), 2 place Jussieu, 75251 Paris Cedex 05, France
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We present experiments showing the Rayleigh-Taylor instability at the interface between a dense magnetic
liquid and an immiscible less dense liquid. The liquids are confined in a Hele-Shaw cell and a magnetic field
is applied perpendicular to the cell. We measure the wavelength and the growth rate at the onset of the
instability as a function of the external magnetic field. The wavelength decreases as the field increases. The
amplitude of the interface deformation grows exponentially with time in the early stage, and the growth rate is
an increasing function of the field. These results are compared to theoretical predictions given in the framework
of linear stability analysis.

PACS number~s!: 47.20.Ma, 75.50.Mm
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I. INTRODUCTION

When a dense fluid lies above a less dense fluid, a gr
tational instability, called the Rayleigh-Taylor instabilit
~RTI! @1,2#, causes fingering at the interface between
fluids. Rising fingers of the lighter fluid penetrate the heav
fluid and, conversely, fingers of the heavier fluid fall into t
lighter one. In three dimensions, the fingers of each fluid t
place at the vertices of a hexagonal lattice on the tw
dimensional interface@3#. In a Hele-Shaw cell, modeling
quasi-two-dimensional system, the one-dimensional interf
is destabilized by the growth of fingers regularly spaced o
line with a well-defined wavelength. This wavelength resu
from the competition between the stabilizing capillary forc
and the destabilizing gravitational force. At the threshold
the instability, the wavelength,l0 is proportional to the cap
illary length l052)p l c, with l c5Ag/Drg whereg is the
surface tension,Dr.0 is the density difference between th
two fluids, andg is the gravitational acceleration. This inst
bility plays an important role in subjects such as astroph
ics, fusion and turbulence@4–6#. Although the phenomenon
has been studied for decades, much remains to be lea
about it.

The development of patterns resulting from the RTI c
be divided into three stages: the early linear stage, where
lengths of the rising and falling fingers are small compa
to the wavelength, the middle, weakly nonlinear stage,
the strongly nonlinear late stage. The linear stage is w
described but to our knowledge, no experiment has b
achieved to verify this behavior. The nonlinear stages are
fully understood.

Several theoretical studies start from the Navier-Sto
equation and perform a linear analysis of the instability@7,8#.
Particular issues studied address the compressibility of
fluids @9,10#, density gradients@7,11#, and viscosity effects
@7,8,12–14#. In the nonlinear regime, Ott@15#, Baker and
Freeman@16#, and Crowley@17# describe the motion of the
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fingers. Studies using miscible fluids, performed
Petitjeans and Kurowski@18# observe similarities with im-
miscible fluids in the development of the instability, eve
though the wavelength and the growth rate differ grea
They believe the similarity arises because the density gr
ent between the two fluids acts like an equivalent surf
tension at the onset of the instability. Authelin, Brocha
and de Gennes@19# describe the interface melting of tw
miscible fluids by the RTI. This instability generates micro
sized drops that then dissipate by diffusion.

One of us@20#, used a mode-coupling analysis of Darcy
law to describe the weakly nonlinear evolution of the visco
fingering patterns obtained in a Hele-Shaw cell. This stu
describing the RTI is also applicable for the Saffman-Tay
instability ~STI! @21#, with a low viscosity fluid pushing a
more viscous one in a Hele-Shaw cell.

Recent works@22# determine the length scale of the fin
gers, show a difference between the width of the rising fi
gers and the width of the falling fingers, and explain th
amalgamation in terms of spatial modulations. For misci
fluids, the turbulent mixing zone is numerically studied
Youngs in 2D@23# and 3D@24#, and experimentally by Read
@25#. Ratafia @26# studied the nonlinear regime, and d
scribed the destabilization of fingers by the presence
Kelvin-Helmholtz instability~KHI ! @27#, resulting from the
jump of the tangential velocity between the two fluids at t
edges of the fingers. This interpretation can explain the fr
tal structure obtained after nonlinear evolution, which is t
result of a KHI cascade.

Recent Rayleigh-Taylor experiments using a mixture
water and sand@28#, modeled as a Newtonian fluid, dete
mine the viscosity of the suspension, and find results
agreement with other experimental measurements. To
knowledge, this RTI experiment is the only experiment th
uses complex media.

Magnetic fluids~MF, also called ferrofluids! are stable
colloidal suspensions of magnetic nanoparticles. An app
magnetic field provides a new external parameter that
stabilize or destabilize the fluid interface, causing interest
hydrodynamic instabilities. One can distinguish two kinds
7941 ©2000 The American Physical Society
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instabilities in ferrofluids: static instabilities caused by t
magnetic field, which are not present in ordinary fluids; a
dynamic instabilities that appear or are modified by appl
fields.

The first static instability observed in MF is the peak i
stability @29#. A static magnetic external fieldHext applied
tangent to a free surface generally stabilizes the surf
However,Hext applied normal to a horizontal surface caus
the peak instability to rise above a critical value ofHext. A
line ~in 2D! or a lattice ~in 3D! of spikes arises from the
competition between the destabilizing magnetic forces
the stabilizing capillary and gravitational forces.

Now, let the MF be confined in a two-dimensional Hel
Shaw cell. Another instability can appear if the external fie
is applied in the direction perpendicular to the cell. Th
phenomenon, called the labyrinthine instability@30,31#, oc-
curs above a critical value of the applied field and with
critical wavelength. The threshold value ofHext results from
a balance between the destabilizing magnetic dipole-dip
repulsion and the stabilizing surface tension~and possibly
gravity in a vertical cell!.

MF can be used as a dynamic system if a time-depen
magnetic field is applied. Different surface phenomena
observed such as surface waves@32,33#, the Faraday insta
bility @34#, or a period doubling in the case of the peak
stability @35#.

Hydrodynamic instabilities may occur when the M
flows. For example, Saffman-Taylor fingering has been st
ied, both experimentally and theoretically, with an MF.
this configuration, the external magnetic field can be app
normal to, or within the plane of the cell. The situation
stabilizing if Hext is tangent to the interface within the plan
of the cell @36#. Experiments performed with a field applie
in a direction perpendicular to a circular Hele-Shaw c
show a destabilizing behavior@37#.

The aim of this paper is to study the influence of a hom
geneous magnetic field applied perpendicular to a vert
Hele-Shaw cell filled with a dense water-based ferrofl
above a lighter oil. In a recent paper@38#, one of us describes
theoretically the general viscous fingering pattern obtaine
this configuration. In this dynamic situation, the magne
force is added to the gravitational force to destabilize
interface, while the capillary effects stabilize it.

II. LINEAR STABILITY ANALYSIS

Consider a vertical Hele-Shaw cell of gaph filled with oil
of densityr2 and viscosityh2 at the bottom and an immis
cible MF of densityr1 and viscosityh1 on top. We use a
coordinate system in which the Hele-Shaw cell lies para
to thexy plane, they axis is vertically upward, and thez axis
is perpendicular to the Hele-Shaw cell. Gravity acts dow
ward parallel to they axis and a uniform external magnet
field HW ext5Hextẑ, is parallel to thez axis ~see Fig. 1!. We
present equations of motion and boundary conditions
then we perform a linear stability analysis of these equatio
We show that both gravitational~provided r1.r2) and
magnetic instabilities deform an initially flat interface.

To begin, we derive Darcy’s law for the flow of MF. Th
analysis begins with the basic equation governing the th
dimensional fluid flowvW (x,y,z), the Navier-Stokes equatio
d
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52¹W p1rgW 1hDW vW 1 fWm . ~1!

From this equation, we derive Darcy’s law assuming su
ciently high viscosity so that the flow velocity is small, s
the inertial term on the left-hand side may be neglected. T
idea is to average Eq.~1! over the gap, resulting in a 2D flow
equation for the gap-averaged velocityuW . The gap average o
the three-dimensional pressure gradient yields a tw
dimensional gradient of the gap-averaged pressure, which
continue to represent as¹W p . As is usual in derivations of
Darcy’s law, the gap average of the viscous drag force, s
ject to no-slip boundary conditions imposed atz56h/2, is
2(12h/h2)uW .

The final term in Eq.~1!, fWm5m0(MW •¹W )HW , represents the
magnetic body force on a fluid element, neglecting co
pressibility and self-induction of the fluid@39#. In this ap-
proximation, MW is constant and parallel toz, and the gap
average of f m reduces to (m0M /h)@H(x,y,h/2)2H(x,y,
2h/2)#. Because the applied fieldHW ext is spatially uniform,
it drops out of this difference and the magnetic force ari
entirely from the demagnetizing fieldHW d5HW 2HW ext caused
by the surface magnetic poles. Express the demagneti
field as the gradient of a magnetic scalar potential,HW d5

2¹W c(x,y,z), and takec as an odd function ofz. The gap
average of the magnetic force is fWm5

2(2m0M /h)¹W c(x,y,h/2), where now the gradient acts on
on x andy coordinates@40#.

Collect all averaged terms and isolate the velocityuW on
the left-hand side,

12h

h2 uW 52¹W p2rgŷ2m0

2M

h
¹W c~x,y!. ~2!

Here all vectors lie in thexy plane, and the scalar potentia
c(x,y)[c(x,y,h/2) is evaluated at the top plate. Furth

FIG. 1. The experimental setup consists in a cell located ve
cally between two coils. The external magnetic field obtained
horizontal and perpendicular to the cell. The cell that contains
both liquids can be rotated around a horizontal axis.
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simplification of Darcy’s law~2! occurs if we exploit the
irrotational flow to introduce the velocity potentialuW 5

2¹W f so that

12h

h2 f5p1rgy1m0

2M

h
c~x,y!. ~3!

Now we apply Darcy’s law~3! within each fluid evalu-
ated at the interface between the two fluids,y5z(x). Sub-
tract Eq.~3! for the oil ~fluid 2! from the same equation fo
MF ~fluid 1! and find

AS f11f2

2 D1S f12f2

2 D
5

h2

12~h21h1! S ~p12p2!1m0

2M

h
c D

1
h2~r12r2!g

12~h11h2!
z ~4!

for the viscosity contrastA5(h12h2)/(h11h2). The
pressure jump across the interface,p12p2 , is the surface
tensiong times the mean interface curvaturek. For a thin
gap h, we need only consider the curvature ofz(x), which
we may approximatek']2z/]x2 for the purpose of linear
stability analysis@38#.

Represent the net perturbationz(x,t) in the form of a
Fourier mode

z~x,t !5zk8~ t !cos~kx!. ~5!

The velocity potentialsf6 must obey Laplace’s equatio
¹2f650, because the fluids are incompressible. The bou
ary conditions aty→6`, so that¹f650. We givef6 the
appropriate wavevector and phase to be consistent with
perturbationz. The general velocity potentials obeying the
requirements are

f6~x,y,t !5f6k exp~7ky!cos~kx!. ~6!

In order to substitute expansions~6! into the equation of
motion ~4!, we need to evaluate them at the perturbed in
face. To first order in the perturbation, it suffices to simp
sety50 in Eq. ~6!.

To close Eq.~4! we need additional relations expressi
the velocity potentials in terms of the perturbation amp
tudes. To find these, consider the kinematic boundary co
tion that the interface moves according to the local flu
velocities. To first order inz, we simply note]z/]t5
2]f i /]y @38#. Substituting Eq.~6! for f6 and Fourier
transforming yieldsżk52kfk2

5kfk1
. Then Eq.~4! reads

1

k

]zk

]t
5

h2

12~h21h1! S 2gk2zk1m0

2M

h
ckD

1
h2~r12r2!g

12~h21h1!
zk ~7!

To obtain the Fourier transform of the magnetic sca
potential,ck , we write the magnetic scalar potential
d-

he

r-

-
i-

r

c~x,y!5
M

4p E
2`

`

dx8E
z~x8!

`

dy8F 1

A~x2x8!21~y2y8!2

2
1

A~x2x8!21~y2y8!21h2G . ~8!

The expansion ofc„x,z(x)… to first order inz is

c~x!5c01
M

4p E
2`

`

dx8S 1

A~x2x8!2
2

1

A~x2x8!21h2D
3@§~x8!2§~x!# ~9!

and its Fourier transformck52MJ(kh)zk , where

J~x![ ln~x/2!1K0~x!1CEuler ~10!

with whereK0 a Bessel function andCEuler50.5772 . . . is
the Euler constant@41#.

Inserting ck into Eq. ~7! for the growth of the cosine
mode, the differential equation of the interface is

żk5s~k!zk , ~11!

where

s~k!5kVc@BG12BMJ~kh!2~kh!2# ~12!

is the linear growth rate multiplying the first-order term inz
with Vc5g/12(h11h2) as the capillary velocity,BG
5(r12r2)gh2/g the gravitational Bond number, and

BM5S m0

4p D 2M2h

g

is the magnetic Bond number. An asymptotic expression
kh!1 that is more convenient for the data analysis can
obtained by expandingJ(kh) for small kh @42#:

J~kh!'
~kh!2

4
@12CEuler2 ln~kh/2!#. ~13!

III. EXPERIMENTAL SETUP

The experimental geometry is sketched in Fig. 1. The c
is located in a gap between two coils in the Helmholtz co
figuration to achieve good axial homogeneity for the ma
netic fieldHW ext. The radial homogeneity of the field is bette
than 3%. The amplitude of the external field is nearly co
stant. The cell is mounted so it can be rotated around th
axis, which passes through the middle of the gap.

We use an ionic magnetic fluid made of cobalt ferr
particles (CoFe2O4) dispersed in a mixture of water an
glycerol. This MF is synthesized by Neveu@43# following
the Massart’s method@44#. The magnetization of the MF as
function of Hext is obtained by the use of a calibrate
fluxmeter.

The rectangular cell consists of two parallel plates ma
of altuglass~Plexiglas! with a spacing between the two plate
of h5500mm. The cell is initially filled with an oil~White
Spirit or WS! of low density~compared to the MF! that wets



he

f
e
we

a
C
-
ar

i

-
an

th
te
ge
te
lit
is

pl
h
th
n

ity
s
T

se
a

iliz-

wn
F

es

ith

,

ce

of

eld
eak

7944 PRE 62G. PACITTO, C. FLAMENT, J.-C. BACRI, AND M. WIDOM
the altuglass walls. A thin film~of micron width! of WS
separates the MF from the walls, avoiding pinning of t
MF-WS contact line on the walls.

The mass density of MF isr151686685 kg m23, com-
pared tor25800 kg m23 for WS. The dynamic viscosity o
the MF is h150.14 kg m21 s21 at room temperature. Th
viscosity of the WS is two orders of magnitude lower, so
may takeh2'0.

Image processing is used to measure the wavelength
the growth increment. The images are recorded by a C
camera~charge-coupled device! and digitized by an acquisi
tion card in a computer. We use the public domain softw
NIH Image @45# to analyze the images.

IV. RESULTS

A. Wavelength measurements

The experiments are conceptually simple: the cell
placed vertically with the heavier liquid~MF! below. We
rotate the cell by 180° around thex axis and apply the mag
netic field. The selected wavelength depends on how
when the magnetic field is applied. IfHext is applied during
the rotation, we get a different measurement than ifHext is
switched on at the end of the rotation. The response of
MF-WS interface to the magnetic field is usually much fas
than its response to a gravitational field. That is, a lon
time is needed to observe the classical RTI without an ex
nal magnetic field than to observe the labyrinthine instabi
@30,31#. If Hext is applied during rotation when the cell
momentarily horizontal, the normal field instability@29# ap-
pears before the RTI. To avoid these difficulties, we ap
the field only after the rotation is complete, but before t
RTI appears. The duration of rotation is about 1 s, and
time constant for ramping up the magnetic field is less tha
s.

We collected data for 13 different values ofHext, with
two independent runs for each value ofHext. The wave-
lengthl052p/k0 , is measured at the onset of the instabil
until the amplitudez of the interface deformation remain
small:k0z,0.1. We compared two different methods: a FF
of the interface gives the fundamental modek0 , a direct
measurement of the average peak to peak distance givesl0 .
In the second approach, we reject the peaks located clo
the edges of the cell, and we omit certain peaks that
dominated by others~‘‘finger competition’’!. Both methods
give similar results within the errors bars.

FIG. 2. Several pictures of the destabilizing MF-WS interfa
for different times~a! t50; ~b! t55 s; ~c! t58 s; ~d! t511 s for
Hext57.9 kA/m. The gray bar equals 1 cm.
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Figure 2 displays a sequence of pictures of the destab
ing MF-WS interface forHext57.9 kA/m. A comparison of
interfaces for different values of the external field is sho
in Fig. 3. Both the wavelength and the width of the M
fingers decrease asHext increases. The experimental valu
of l0 as a function of the external fieldHext are reported in
Fig. 4.

To compare experimentally observed wavelengths w
the linear stability analysis, consider the growth rate,s(k).
Maximizing expression~12! for s(k) versus the wavevector
gives the fastest growing modek0 :

S ]s

]k D
k5k0

50⇔l05
2p

k0
.

We get the following nonalgebraic equation:

BG

4p2 x0
21BM@a1 3

2 ln~x0!#2350, ~14!

with, a512 3
2 CEuler2

3
2 ln(p)'20.79, andx05l0 /h. To

determine the value of

FIG. 3. Several destabilizing interfaces for different values
the applied field ~a! Hext54.1 kA/m and t58 s; ~b! Hext

511.9 kA/m and t59 s; ~c! Hext517.8 kA/m and t56 s; Hext

531.6 kA/m andt51 s. The gray bar equals 1 cm.

FIG. 4. Wavelength as a function of the external applied fi
Hext . Experimental data are measured by the direct peak-to-p
method, at the onset of the instability.
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BM5
m0

4p

2M2h

g

for a given value ofHext8, we need to know the MF-WS
surface tensiong. The value ofg can be deduced from th
wavelength at the onset of the RTI withHext50 using for-
mula~12!. We findg58.663.8 mN m21 by this method. We
can also determine the value ofg from the wavelength at the
threshold of the normal field instability, which is linked wit
the capillary length @46#. This method yieldsg512.0
61.3 mN m21, which is closed to the previous value. Th
value of the magnetizationM (Hext) is directly deduced from
the magnetization curve of the MF. Taking the latter value
g, we deduce a capillary lengthl c50.12 cm, and the gravi
tational Bond numberBG50.18. The roots of Eq.~14! are
reported in Fig. 4 for comparison with the experimental da
Both are qualitatively coherent. We get a good agreemen
low values and high values ofHext. The discrepancy for the
intermediate values should result from the omission of
demagnetizing effect in the magnetic forces.

To take into account this demagnetizing effect, we have
consider an infinite plane with an external field applied p
pendicular to the plane. The demagnetizing factor is equa
D51. Consequently, the local field is:HW 5HW ext2DMW 8

5HW ext2MW 8. The magnetizationMW 8, is linked to the local
field by the relation MW 85xHW , it leads to MW 85(x/@1
1x#)HW ext. A local susceptibility can be determined by th
use of the magnetization curve:x(Hext)5M (Hext)/Hext @47#,
and subsequently a magnetic Bond number including the
magnetizing effect is

BM8 5
m0

4p

2M 82h

g

We can calculate the contribution of the demagnetizing
fects to the theoretical roots. The results are also show
Fig. 4. The experimental values are between the theore
predictionsD50 ~demagnetizing effects neglected! and D
51 ~demagnetizing effects maximized!. An exact calcula-
tion would have to deal with the nonuniform fringe fields
the edge of a paramagnetic slab.

B. Growth rates

Now, let us study the growth rates of the instability. We
measure the lengthz of the falling fingers, and divided by
z05z(t5t0); t0 corresponds to the first time where the i
terface deformation is detectable and is actually given by
resolution of the video recorder. We use a direct meas
ment of the length instead of a Fourier analysis since it gi
results with a huge scattering. Moreover, we have chec
that both methods give similar results within the error b
for the wavelength at the onset of the RTI. Plotting this re
tive depth to which the instability penetrates the lighter flu
as a function of time, we can clearly separate two disti
stages~Fig. 5!.

Just after the onset of the instability, when the amplitu
of the growth~the length of the spikes! is small compared to
the wavelength, we see an exponential growth over ti
This occurs for all values of the external applied field. W
f
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observe an augmentation in the growth rate values as
field increases, as is predicted by the linear analysis given
the formula~12!. In this equation, the growth rate is a fun
tion of Hext8 and also a function ofx0 . As we have seen in
the previous part,x0 is an implicit function ofHext8, and we
cannot find an explicit expression ofs(Hext). Nevertheless,
Eq. ~12! can be written

s2s*

s̃
5BM ~15!

with the growth rate for the mode of wavelengthl05hx0 in
the absence of magnetic field

s* 5
b

x0
S BG

4p22x0
22D

and a characteristic inverse of time

s̃5
b

2x0
3 ~a81 ln x0!.

We define b52p3g/3h1h and a8512CEuler2 ln p5
20.72, andx0 is defined previously.

If we insert the theoretical values of the wavelengthx0
th ,

in the expressions ofs* ands̃ we can compare the theore
ical linear analysis to the experimental measurements
sexp.

These experimental results of the growth ratesexp mea-
sured near the onset of the instability for different values
the external applied field are shown in Fig. 6, where we p
(sexp2s* )/s̃ versus the magnetic Bond number. The the
retical continuous line results from the linear analysis@Eq.
~15!# and is the first bisectrix of the Fig. 6. The experimen
results are below the theoretical curve, but are included
the error bars. These experimental uncertainties are large
to the difficulty of measuring the amplitudez.

To reduce the systematic discrepancy between the
curves, we can, as with the wavelength treatment, take
account the demagnetizing field effect. The plot of (sexp

2s* )/s̃ versusBM8 is also reported in Fig. 6. In contrast t
the previous case, the data are above the first bisectrix. S

FIG. 5. Growth rates forHext523.6 kA/m in the exponential
regime and in the linear regime~shown in the inset! as a function of
time.
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we have crudely included the demagnetizing fields throug
demagnetizing factorD51, the demagnetizing effects ar
naturally overestimated, and this explains the intermed
position of the theoretical prediction between the points w
D50 and the ones withD51. A fully three-dimensional
calculation is needed to properly treat the demagnetiza
fields at the MF-WS interface.

After the initial exponential growth of the disturbance
we enter a new growth regime shown in the inset of Fig. 5
linear growth is observed for each value of the applied m
netic field. This behavior is observed for long times, up
the secondary instabilities, where the finger tips split a
start to compete with each other. As the magnetic field
creases, we observe an increase in the linear coefficient
example, forHext50, we getz5z0$1.912.0(t2t0)%, and
for Hext539.3 kA/m, we get z5z0$10.8120.1(t2t0)%.
Saturation of the exponential growth is predicted by wea
nonlinear analysis@38#. Crossover from exponential to linea
has been found in numerical simulations for nonmagn
fluids @51#.

C. Far from the threshold

This study emphasized the downward propagating
fingers, but upward fingers made of WS also exist. As
matter of fact, the heavier liquid, i.e., the MF, falls down d
to the buoyancy forces and consequently, the lighter liq
that is the less viscous fluid has to penetrate into the visc
one. A finger of WS grows between each spike of MF. Th
WS fingers rise like the ST finger propagating in a narr
channel@21#. In fact, both instabilities~RTI and STI! can be
described by the same set of equations@38#. The width of the
WS fingers is greater than the MF fingers, but a comm
feature is that the width is a decreasing function of the
ternal magnetic field. Such a symmetry breaking of the
terface is related to the viscosity contrast between MF
WS @38#.

The tip of the WS fingers splits into two fingers~the so-
called ‘‘tip-splitting’’ phenomenon! and the angle betwee
these new fingers is roughly equal to 90°. The evolution
the system exhibits a cascade of tip splitting: each new fin
divides itself into two fingers that destabilize themselv
while they remain upward. Let us notice that the fing

FIG. 6. Magnetic field dependence of the growth rate; bla
circles represent the experimental data~see text! without demagne-
tizing effects; white squares maximize the demagnetizing effect
the expression of the magnetic Bond number.
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changes its direction slightly after each tip splitting: it see
to undulate like a narrow finger confined in a channel in
‘‘oscillating-tip’’ regime @48#. No other secondary instability
such as the ‘‘side-branching’’ phenomenon is observed. T
tip-splitting cascades acting on a finger give a pattern t
looks like a tree as it is illustrated in Fig. 7. This pattern
somewhat similar to the radial viscous fingering obtain
with the STI @37# with the difference that the system is a
isotropic due to the gravity field.

The MF fingers always remain stable because the visc
ity contrast is opposite~a viscous fluid penetrating a les
viscous one is stable situation!. When the MF fingers are
sufficiently far from each other and for high values of t
magnetic field, a bending instability occurs@49#. When the
distance between the fingers is comparable to the fin
width, long range magnetic interactions between fingers
visible: they undulate together for high magnetic field in t
same manner than the MF parallel stripes in the bend
instability @50#. Finally, the pattern is very non-symmetr
@Fig. 7~b!# because of all these features. For high amplitud
of the external field and at long times the top of the c
becomes a labyrinthine and the bottom is rather well or
nized as the MF smectic@50#.

At very long times, the MF accumulates in the bottom
the cell, displacing the WS to the top. The limiting pattern
a conventional MF labyrinth@39# with a reservoir MF at the
bottom of the cell~Fig. 8!. We investigated whether a hier
archical dynamical behavior@52# emerges because of th
treelike structure of highly bifurcated fingers of WS. Retra
tion of bifurcated fingers cannot occur because their point
bifurcation represent points of force balance and are th
fore immobile. To undo a bifurcation requires retraction of
least one of the branches~inset of Fig. 8!. However, each
branch may itself be bifurcated, further slowing down t
pattern evolution. Only at finger tips are forces unbalanc
and dynamics unfrozen. Hierarchically constrained dynam
leads to glassy behavior@52#. A Kohlrausch stretched expo

k

in

FIG. 7. Pictures of the RTI far from the threshold~see text! and
for high value of the applied field:Hext540 kA/m. The black bar
equals 1 cm.
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nential law should govern the evolution in this regime. Ho
ever, our experiments are consistent with a conventional
ponential behavior, at least at short times. In particular,
measured the total interface contour length as a function
time. Over a period of 120 s it fits well to an exponent
relaxation with a time constant of 25 s.

FIG. 8. Final state of the RTI at high fieldsHext540 kA/m. In
the inset, intermediate stage evolution of the RTI~at long time!: ~a!
Arrow points to branched finger about to disappear.~b! 0.5 s later,
one branch has retracted.~c! 4 s later, the entire finger disappear
The black bar equals 1 cm.
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V. CONCLUSION

We perform the Rayleigh-Taylor instability experime
using magnetic fluid. Near the onset of the instability,
describe the pattern, we measure, for different values of
magnetic field, the wavelength and the growth rate of
observed fingers. The magnetic field destabilizes the in
face, decreasing the wavelength and increasing the gro
rate as it is predicted by the linear analysis of the ferro
drodynamics equations. We get a good agreement betw
experiments and theory. At long times, a comparison w
numerical simulations for different values of the fields w
be of great interest. Other experiments can be perform
using a magnetic field applied parallel to the interface
order to stabilize the interface.
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