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Rayleigh-Taylor instability with magnetic fluids: Experiment and theory
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We present experiments showing the Rayleigh-Taylor instability at the interface between a dense magnetic
liquid and an immiscible less dense liquid. The liquids are confined in a Hele-Shaw cell and a magnetic field
is applied perpendicular to the cell. We measure the wavelength and the growth rate at the onset of the
instability as a function of the external magnetic field. The wavelength decreases as the field increases. The
amplitude of the interface deformation grows exponentially with time in the early stage, and the growth rate is
an increasing function of the field. These results are compared to theoretical predictions given in the framework
of linear stability analysis.

PACS numbsgps): 47.20.Ma, 75.50.Mm

I. INTRODUCTION fingers. Studies using miscible fluids, performed by
Petitieans and KurowsKil8] observe similarities with im-
When a dense fluid lies above a less dense fluid, a gravimiscible fluids in the development of the instability, even
tational instability, called the Rayleigh-Taylor instability though the wavelength and the growth rate differ greatly.
(RTI) [1,2], causes fingering at the interface between theThey believe the similarity arises because the density gradi-
fluids. Rising fingers of the lighter fluid penetrate the heavierent between the two fluids acts like an equivalent surface
fluid and, conversely, fingers of the heavier fluid fall into thetension at the onset of the instability. Authelin, Brochard,
lighter one. In three dimensions, the fingers of each fluid takeind de Gennef19] describe the interface melting of two
place at the vertices of a hexagonal lattice on the twomiscible fluids by the RTI. This instability generates micron-
dimensional interfac¢3]. In a Hele-Shaw cell, modeling a sjzed drops that then dissipate by diffusion.
guasi-two-dimensional system, the one-dimensional interface QOne of ug 20], used a mode-coupling analysis of Darcy’s
is destabilized by the growth of fingers regularly spaced on gaw to describe the weakly nonlinear evolution of the viscous
line with a well-defined wavelength. This wavelength resultsfingering patterns obtained in a Hele-Shaw cell. This study,
from the competition between the stabilizing capillary force,describing the RTI is also applicable for the Saffman-Taylor
and the destabilizing gravitational force. At the threshold Ofinstability (STI) [21], with a low viscosity fluid pushing a
the instability, the wavelength,, is proportional to the cap- more viscous one in a Hele-Shaw cell.
illary length A g=2v3l,, with |.=\y/Apg wherevy is the Recent workg22] determine the length scale of the fin-
surface tensiond p>0 is the density difference between the gers, show a difference between the width of the rising fin-
two fluids, andg is the gravitational acceleration. This insta- gers and the width of the falling fingers, and explain their
bility plays an important role in subjects such as astrophysamalgamation in terms of spatial modulations. For miscible
ics, fusion and turbulendet—6]. Although the phenomenon fluids, the turbulent mixing zone is numerically studied by
has been studied for decades, much remains to be learn&@ungs in 2D[23] and 3D[24], and experimentally by Read
about it. [25]. Ratafia[26] studied the nonlinear regime, and de-
The development of patterns resulting from the RTI canscribed the destabilization of fingers by the presence of
be divided into three stages: the early linear stage, where thelvin-Helmholtz instability(KHI) [27], resulting from the
lengths of the rising and falling fingers are small comparedump of the tangential velocity between the two fluids at the
to the wavelength, the middle, weakly nonlinear stage, anédges of the fingers. This interpretation can explain the frac-
the strongly nonlinear late stage. The linear stage is weltal structure obtained after nonlinear evolution, which is the
described but to our knowledge, no experiment has beeresult of a KHI cascade.
achieved to verify this behavior. The nonlinear stages are not Recent Rayleigh-Taylor experiments using a mixture of
fully understood. water and san@28], modeled as a Newtonian fluid, deter-
Several theoretical studies start from the Navier-Stokesnine the viscosity of the suspension, and find results in
equation and perform a linear analysis of the instabfilit$]. ~ agreement with other experimental measurements. To our
Particular issues studied address the compressibility of thenowledge, this RTI experiment is the only experiment that
fluids [9,10], density gradient$7,11], and viscosity effects uses complex media.
[7,8,12—-14. In the nonlinear regime, Oftl5], Baker and Magnetic fluids(MF, also called ferrofluidsare stable
Freemar16], and Crowley[17] describe the motion of the colloidal suspensions of magnetic nanoparticles. An applied
magnetic field provides a new external parameter that can
stabilize or destabilize the fluid interface, causing interesting
*Email address: pacitto@ccr.jussieu.fr hydrodynamic instabilities. One can distinguish two kinds of
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instabilities in ferrofluids: static instabilities caused by the
magnetic field, which are not present in ordinary fluids; and
dynamic instabilities that appear or are modified by applied
fields.

The first static instability observed in MF is the peak in-
stability [29]. A static magnetic external fielti.,,; applied
tangent to a free surface generally stabilizes the surface.
However,H,; applied normal to a horizontal surface causes
the peak instability to rise above a critical valuetbf,;. A
line (in 2D) or a lattice(in 3D) of spikes arises from the
competition between the destabilizing magnetic forces and
the stabilizing capillary and gravitational forces.

Now, let the MF be confined in a two-dimensional Hele-
Shaw cell. Another instability can appear if the external field
is applied in the direction perpendicular to the cell. This
phenomenon, called the labyrinthine instabili80,31], oc-
curs above a critical value of the applied field and with a
critical wavelength. The threshold value lg,; results from
a balance between the destabilizing magnetic dipole-dipole FIG. 1. The experimental setup consists in a cell located verti-
repulsion and the stabilizing surface tensi@nd possibly cally between two coils. The external magnetic field obtained is
gravity in a vertical ce)l horizontal and perpendicular to the cell. The cell that contains the

MF can be used as a dynamic system if a time-dependemoth liquids can be rotated around a horizontal axis.
magnetic field is applied. Different surface phenomena are
observed such as surface way82,33, the Faraday insta- Dov - .
bility [34], or a period doubling in the case of the peak in- Por = " VPTGt nAvH Ty @
stability [35].

Hydrodynamic instabilities may occur when the MF From this equation, we derive Darcy’s law assuming suffi-
flows. For example, Saffman-Taylor fingering has been studgiently high viscosity so that the flow velocity is small, so
ied, both experimentally and theoretically, with an MF. In the inertial term on the left-hand side may be neglected. The
this Configuration, the external magnetic field can be app”eqhea is to average Eq:]_) over the gap, resumng in a 2D flow
normal tO, or within the plane of the cell. The situation is equation for the gap_averaged Ve'oaﬁty'rhe gap average of
Stab|||Z|ng if Hext is tangent to the interface within the plane the three-dimensional pressure gradient y|e|ds a two-
of the cell[36]. Experiments performed with a field applied gimensional gradient of the gap-averaged pressure, which we
in a direction perpendicular to a circular Hele-Shaw Ce”continue to represent a@p. As is usual in derivations of

show a destabilizing behavi¢87]. , . )
The aim of this paper is to study the influence of a homo Darcy's law, the gap average of the viscous drag force, sub

e ; . . ;Fct to no-slip boundary conditions imposedzat +h/2, is

geneous magnetic field applied perpendicular to a vertical 127/h2)d
Hele-Shaw cell filled with a dense water-based ferrofluid (127 o i - I
above a lighter oil. In a recent pag@g], one of us describes 1 he finalterm in Eq(1), fn=po(M - V)H, represents the
theoretically the general viscous fingering pattern obtained if@gnetic body force on a fluid element, neglecting com-
this configuration. In this dynamic situation, the magneticPressibility and self-induction of the fluif39]. In this ap-
force is added to the gravitational force to destabilize theproximation, M is constant and parallel ta and the gap
interface, while the capillary effects stabilize it. average off,, reduces to foM/h)[H(x,y,h/2)—H(x,y,
—h/2)]. Because the applied fieIElext is spatially uniform,
it drops out of this difference and the magnetic force arises
entirely from the demagnetizing field 4= H — H,,, caused

Consider a vertical Hele-Shaw cell of ghfilled with ol py the surface magnetic poles. Express the demagnetizing
of densityp_ and viscosityn_ at the bottom and an immis- field as the gradient of a magnetic scalar potenli?a(g,z

cible MF of densityp, and viscosityn, on top. We use a = .
coordinate system in which the Hele-Shaw cell lies paraIIeI_V"”(X’y'Z)’ and takey as an odd function of. The gap

to thexy plane, they axis is vertically upward, and theaxis ~ average ~ of  the  magnetic ~ force s fro=
is perpendicular to the Hele-Shaw cell. Gravity acts down-—(2uoM/h)V ¢(x,y,h/2), where now the gradient acts only
ward parallel to they axis and a uniform external magnetic on x andy coordinateg40].

field l:iextzHext%v is parallel to thez axis (see Fig. 1 We Collect all averaged terms and isolate the velocitgpn
present equations of motion and boundary conditions anéhe left-hand side,
then we perform a linear stability analysis of these equations. 12 oM
We show that both gravitationdjprovided p . >p_) and N, = - =
magnetic instabilities deform an initially fla{[)inte’?face. T2 U= VP PGy~ popm Vi (xy). 2
To begin, we derive Darcy’s law for the flow of MF. The
analysis begins with the basic equation governing the three-ere all vectors lie in they plane, and the scalar potential
dimensional fluid flows (X,y,z), the Navier-Stokes equation ¢(x,y)=(x,y,h/2) is evaluated at the top plate. Further

II. LINEAR STABILITY ANALYSIS
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simplification of Darcy’s law(2) occurs if we exploit the

M [ e 1
irrotational flow to introduce the velocity potential= zp(x,y):—f dx’f dy’
—V ¢ so that am ) e &) VX=x")2+(y-y’)?
12 oM _ ! , ®
Tz P=PF POyt mo H(XY). () Vx=x")Z+(y—y")2+h?

Now we apply Darcy’s law(3) within each fluid evalu- 1€ expansion ofi(x,£(x)) to first order inZ is

ated at the interface between the two fluigs; {(x). Sub- B
tract Eq.(3) for the oil (fluid —) from the same equation for W)= o+ Mf dx’ 1 1
MF (fluid +) and find " am ) _.

\/(x—x’)z_ J(x—=x")%2+h?

A ¢++¢_)+(¢+—¢_) X[s(x")=s(x)] 9)
2 2 and its Fourier transforng,=2MJ(kh) ¢, where
h? 2M
= — — J(X)=In(x/2) +Ky(x)+C 10
12(77+77+)((p+ Pt ¢) ()=In(x12) + Ko(3) + Ceyer 10
h2(p. —p_)g with whereK, a Bessel function an€g,=0.572 ... is
n Lg (4)  the Euler constarfi1].
12n.+n-) Inserting ¢ into Eq. (7) for the growth of the cosine

) ] mode, the differential equation of the interface is
for the viscosity contrastA=(n,—7n_)/(n.+7n_). The

pressure jump across the interfape,—p_, is the surface L= (K&, (12)
tension y times the mean interface curvatuke For a thin

gaph, we need only consider the curvature &), which  where

we may approximatec~ 32/ x> for the purpose of linear

stability analysig38]. (k) =kV[Bg+2ByJ(kh)—(kh)?] (12)
Represent the net perturbatidifx,t) in the form of a ) o )
Fourier mode is the linear growth rate multiplying the first-order termgin
with V. =vy/12(n,. +n_) as the capillary velocity,Bg
L(x,t)= ¢ (t)cogkx). (5) =(p,—p_)gh?/y the gravitational Bond number, and
The velocity potentials. must obey Laplace’s equation _ @) 2M*h
V2¢. =0, because the fluids are incompressible. The bound- M7\ 4xm)

ary conditions ay— ==, so thatV¢. =0. We give¢.. the . . _
appropriate wavevector and phase to be consistent with thé the magnetic Bond number. An asymptotic expression for
perturbation. The general velocity potentials obeying thesekh<1 that is more convenient for the data analysis can be

requirements are obtained by expanding(kh) for smallkh [42]:
_ — kh)?
b (X,Y,t)= ¢ exp Fky)cog kx). (6) J(kh)%( 4) [1- Coup In(kN2)]. 13

In order to substitute expansiori6) into the equation of
motion (4), we need to evaluate them at the perturbed inter-
face. To first order in the perturbation, it suffices to simply
sety=0 in Eq. (6). The experimental geometry is sketched in Fig. 1. The cell
To close Eq.(4) we need additional relations expressingis located in a gap between two coils in the Helmholtz con-
the velocity potentials in terms of the perturbation ampli-figuration to achieve good axial homogeneity for the mag-
tudes. To find these, consider the kinematic boundary condisetic fieldH,,. The radial homogeneity of the field is better
tion that the interface moves according to the local fluidinan 39 The amplitude of the external field is nearly con-

IIl. EXPERIMENTAL SETUP

velocities. To first order in{, we simply noted{/dt=  gtant. The cell is mounted so it can be rotated around the x
—d¢ildy [38]. Substituting Eq.(6) for ¢. and Fourier  axjs which passes through the middle of the gap.
transforming yields,= —k¢y_=kd . Then Eq.(4) reads We use an ionic magnetic fluid made of cobalt ferrite
particles (CoFgD,) dispersed in a mixture of water and
1ol h? ) 2M glycerol. This MF is synthesized by Nevé¢d3] following
kgt 129 +n9.)\ 7k §k+'“0T Y the Massart’s methodt4]. The magnetization of the MF as a
5 function of Hgy, is obtained by the use of a calibrated
h“(p+—p-)g 0 fluxmeter.
12(n_+mny) & The rectangular cell consists of two parallel plates made

of altuglasgPlexiglag with a spacing between the two plates
To obtain the Fourier transform of the magnetic scalarof h=500um. The cell is initially filled with an oil(White
potential, ¢, , we write the magnetic scalar potential Spirit or W9 of low density(compared to the MFthat wets
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FIG. 2. Several pictures of the destabilizing MF-WS interface
for different times(a) t=0; (b) t=5s; (c) t=8s; (d) t=11s for
Hexi= 7.9 KA/m. The gray bar equals 1 cm.

S A

1 !

the altuglass walls. A thin film{of micron width of WS d —
separates the MF from the walls, avoiding pinning of the
ME-WS contact line on the walls. FIG. 3. Several destabilizing interfaces for different values of

The mass density of MF ip, =1686+85kgm 3, com- the applied field () Heq=4.1kA/m and t=8s; (b) Hey
pared top_ =800 kg ni 3 for WS. The dynamic viscosity of =11.9kA/m andt=9s; (c) He=17.8KA/M andt=6s; Hex
the MF is 5, =0.14kgn s ! at room temperature. The —31.6kA/mandt=1s. The gray bar equals 1 cm.
viscosity of the WS is two orders of magnitude lower, so we
may takern_~0.

Image processing is used to measure the wavelength a
the growth increment. The images are recorded by a CC
camera(charge-coupled devigand digitized by an acquisi-
tion card in a computer. We use the public domain softwar
NIH Image[45] to analyze the images.

Figure 2 displays a sequence of pictures of the destabiliz-
r%g MF-WS interface foH = 7.9 kA/m. A comparison of
ﬂfpterfaces for different values of the external field is shown
in Fig. 3. Both the wavelength and the width of the MF
dingers decrease as,,; increases. The experimental values
of A¢ as a function of the external field,; are reported in

Fig. 4.
To compare experimentally observed wavelengths with
IV. RESULTS the linear stability analysis, consider the growth raték).
A. Wavelength measurements Maximizing expressior12) for o(k) versus the wavevector,

) } _ gives the fastest growing modg:
The experiments are conceptually simple: the cell is

placed vertically with the heavier liquidF) below. We do 2
rotate the cell by 180° around thxeaxis and apply the mag- (W) :Oﬁ?\o=k—o-
netic field. The selected wavelength depends on how and k=ko

when the magnetic field is applied. K., is applied during
the rotation, we get a different measurement thaH df; is
switched on at the end of the rotation. The response of the B

MF-WS interface to the magnetic field is usually much faster Fx§+ Bu[a+ 2 In(xg)]—3=0, (19
than its response to a gravitational field. That is, a longer ™

time is needed to observe the classical RTI without an exter- . _ 3 3 — _

nal magnetic field than to observe the labyrinthine instabiIity\(ljvg,[ré’rne:inelth2 Ceuer 2 IN(m)==0.79, andxo=ho/h. To
[30,31. If Hey is applied during rotation when the cell is
momentarily horizontal, the normal field instabilit29] ap- X

We get the following nonalgebraic equation:

e value of

pears before the RTI. To avoid these difficulties, we apply — ° % ' ' ‘ i ‘ ‘ '

the field only after the rotation is complete, but before the 25 K X x, experiments | |
RTI appears. The duration of rotation is about 1 s, and the I~ | X, :eory (gfo)
time constant for ramping up the magnetic field is less than 1 20 - X, theory (D=1)
s.

We collected data for 13 different values Hif.,, with o

two independent runs for each value ldt,;. The wave-

lengthhg=2m/kq, is measured at the onset of the instability % %

until the amplitude? of the interface deformation remains 5 e T Ty S *X*

small: ky{<0.1. We compared two different methods: a FFT

of the interface gives the fundamental mok_i@ a dlre_:ct 00 s 10 15 20 25 a0 35 40

measurement of the average peak to peak distance gives H . (kA /m)
ex

In the second approach, we reject the peaks located close to
the edges of the cell, and we omit certain peaks that are FIG. 4. Wavelength as a function of the external applied field

dominated by other§‘finger competition”). Both methods  H,,,. Experimental data are measured by the direct peak-to-peak
give similar results within the errors bars. method, at the onset of the instability.
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for a given value ofH,,,, we need to know the MF-WS ) &
surface tensiory. The value ofy can be deduced from the TT@ 100
wavelength at the onset of the RTI with.,~= 0 using for- 1T 80f . 9%
mula(12). We find y=8.6+ 3.8 mN m ! by this method. We 105 ;T 7 60 o
can also determine the value from the wavelength at the [ Bt > 4of .,.0"
threshold of the normal field instability, which is linked with r T{‘ 20 o
the capillary length[46]. This method yieldsy=12.0 0 %T L poee®® )
+1.3mNni?, which is closed to the previous value. The % % 12 3 45 6 7 §
value of the magnetizatioM (H.,, is directly deduced from o , , , Y
the magnetization curve of the MF. Taking the latter value of 0 2 4 6 8
v, we deduce a capillary lenglh=0.12 cm, and the gravi- t-t, ©)

tational Bond numbeB;=0.18. The roots of Eq(14) are

reported in Fig. 4 for comparison with the experimental data. FIG. 5. Growth rates foH.,=23.6 kA/m in the exponential

Both are qualitatively coherent. We get a good agreement fatregime and in the linear regimishown in the insetas a function of

low values and high values éf,;. The discrepancy for the time.

intermediate values should result from the omission of the

demagnetizing effect in the magnetic forces. observe an augmentation in the growth rate values as the
To take into account this demagnetizing effect, we have tdield increases, as is predicted by the linear analysis given by

consider an infinite plane with an external field applied perthe formula(12). In this equation, the growth rate is a func-

pendicular to the plane. The demagnetizing factor is equal t§on of He,y and also a function ok,. As we have seen in

D=1. Consequently, the local field iSﬂ:ﬁext—DM' the previous partx, is an implicit function ofH ¢y, and we
cannot find an explicit expression ofH.,). Nevertheless,

=Hgx—M’. The magnetizatioM’, is linked to the local Eq. (12) can be written

field by the relationM'=yH, it leads to M'=(x/[1

+X])Hext- A local susceptibility can be determined by the o—o* _B (15
use of the magnetization curvg(H ) = M (Hgy)/H ey [47], T M

and subsequently a magnetic Bond number including the de-

magnetizing effect is with the growth rate for the mode of wavelength=hxg in

the absence of magnetic field
2M"?h
M:f_g Y U*:B BG—X_2
Xo | 4m? 0

We can calculate the contribution of the demagnetizing ef-and a characteristic inverse of time
fects to the theoretical roots. The results are also shown in
Fig. 4. The experimental values are between the theoretical b
predictionsD=0 (demagnetizing effects neglecjednd D o=-—=(a’'+Inxgp).
- .. L 2X

=1 (demagnetizing effects maximizedAn exact calcula- 0

tion would have to deal with the nonuniform fringe fields at

] —_ 3 r_q_ _ —
the edge of a paramagnetic slab. We _define b=2m"y/3p.h and a'=1-Cegye—Inm

—0.72, andx, is defined previously.

If we insert the theoretical values of the wavelenggh

B. Growth rates in the expressions af* andd we can compare the theoret-

Now, let us study the growth rate of the instability. We ical linear analysis to the experimental measurements of
measure the lengtti of the falling fingers, and divided by o®*.
Lo=L(t=t); t, corresponds to the first time where the in- These experimental results of the growth rafé” mea-
terface deformation is detectable and is actually given by théured near the onset of the instability for different values of
resolution of the video recorder. We use a direct measurethe external applied field are shown in Fig. 6, where we plot
ment of the length instead of a Fourier analysis since it give§o®"—c*)/G versus the magnetic Bond number. The theo-
results with a huge scattering. Moreover, we have checketetical continuous line results from the linear analyis.
that both methods give similar results within the error barg(15)] and is the first bisectrix of the Fig. 6. The experimental
for the wavelength at the onset of the RTI. Plotting this rela-results are below the theoretical curve, but are included in
tive depth to which the instability penetrates the lighter fluidthe error bars. These experimental uncertainties are large due
as a function of time, we can clearly separate two distincto the difficulty of measuring the amplitude
stageqFig. 5. To reduce the systematic discrepancy between the two

Just after the onset of the instability, when the amplitudecurves, we can, as with the wavelength treatment, take into
of the growth(the length of the spikéss small compared to account the demagnetizing field effect. The plot of*f
the wavelength, we see an exponential growth over time—o*)/a versusBy, is also reported in Fig. 6. In contrast to
This occurs for all values of the external applied field. Wethe previous case, the data are above the first bisectrix. Since
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FIG. 6. Magnetic field dependence of the growth rate; black | »c;&'} \ ‘Q{ FS 7 Jj’x\'
circles represent the experimental dégae text without demagne- )\ \ \
tizing effects; white squares maximize the demagnetizing effects in
the expression of the magnetic Bond number. |
/ |

we have crudely included the demagnetizing fields through a
demagnetizing factoD =1, the demagnetizing effects are  F|G. 7. Pictures of the RTI far from the threshdkke textand
naturally overestimated, and this explains the intermediatéor high value of the applied fieldH o= 40 kA/m. The black bar
position of the theoretical prediction between the points withequals 1 cm.
D=0 and the ones witiD=1. A fully three-dimensional
calculation is needed to properly treat the demagnetization
fields at the ME-WS interface. changes its direction slightly after each tip splitting: it seems
After the initial exponential growth of the disturbances, to undulate like a narrow finger confined in a channel in the
we enter a new growth regime shown in the inset of Fig. 5. A"0scillating-tip” regime [48]. No other secondary instability
linear growth is observed for each value of the applied magsuch as the “side-branching” phenomenon is observed. The
netic field. This behavior is observed for long times, up totip-splitting cascades acting on a finger give a pattern that
the secondary instabilities, where the finger tips split andooks like a tree as it is illustrated in Fig. 7. This pattern is
start to compete with each other. As the magnetic field insomewhat similar to the radial viscous fingering obtained
creases, we observe an increase in the linear coefficient. F#fith the STI[37] with the difference that the system is an-
example, forHq=0, we get{={{1.9+2.0(t—ty)}, and isotropic due to the gravity field. .
for Heq=39.3kA/m, we get {={0{10.8+20.1t—t,)}.  The MF fingers always remain stable because the viscos-
Saturation of the exponential growth is predicted by weaklyity contrast is oppositéa viscous fluid penetrating a less
nonlinear analysif38]. Crossover from exponential to linear Viscous one is stable situatibiwhen the MF fingers are
has been found in numerical simulations for nonmagnetigufficiently far from each other and for high values of the
fluids [51]. magnetic field, a bending instability occU49]. When the
distance between the fingers is comparable to the finger
width, long range magnetic interactions between fingers are
visible: they undulate together for high magnetic field in the
This study emphasized the downward propagating MFsame manner than the MF parallel stripes in the bending
fingers, but upward fingers made of WS also exist. As dnstability [50]. Finally, the pattern is very non-symmetric
matter of fact, the heavier liquid, i.e., the MF, falls down due[Fig. 7(b)] because of all these features. For high amplitudes
to the buoyancy forces and consequently, the lighter liquicbf the external field and at long times the top of the cell
that is the less viscous fluid has to penetrate into the viscousecomes a labyrinthine and the bottom is rather well orga-
one. A finger of WS grows between each spike of MF. Thesaized as the MF smect{&0].
WS fingers rise like the ST finger propagating in a narrow At very long times, the MF accumulates in the bottom of
channel21]. In fact, both instabilitiedRTI and ST) can be  the cell, displacing the WS to the top. The limiting pattern is
described by the same set of equatif88]. The width of the  a conventional MF labyrinth39] with a reservoir MF at the
WS fingers is greater than the MF fingers, but a commorbottom of the cell(Fig. 8. We investigated whether a hier-
feature is that the width is a decreasing function of the exarchical dynamical behavidi52] emerges because of the
ternal magnetic field. Such a symmetry breaking of the intreelike structure of highly bifurcated fingers of WS. Retrac-
terface is related to the viscosity contrast between MF andion of bifurcated fingers cannot occur because their points of
WS [38]. bifurcation represent points of force balance and are there-
The tip of the WS fingers splits into two fingefthe so-  fore immobile. To undo a bifurcation requires retraction of at
called “tip-splitting” phenomenoh and the angle between least one of the branchdmset of Fig. 8. However, each
these new fingers is roughly equal to 90°. The evolution obranch may itself be bifurcated, further slowing down the
the system exhibits a cascade of tip splitting: each new finggpattern evolution. Only at finger tips are forces unbalanced
divides itself into two fingers that destabilize themselvesand dynamics unfrozen. Hierarchically constrained dynamics
while they remain upward. Let us notice that the fingerleads to glassy behavi¢2]. A Kohlrausch stretched expo-

C. Far from the threshold
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V. CONCLUSION

We perform the Rayleigh-Taylor instability experiment

/[ &Y ?( 6 Z) using magnetic fluid. Near the onset of the instability, to
| Cec‘] 1) }S{f/ U ‘% l{i ﬁ describe the pattern, we measure, for different values of the
) \ L Q magnetic field, the wavelength and the growth rate of the
g Rt | observed fingers. The magnetic field destabilizes the inter-
ey ./ face, decreasing the wavelength and increasing the growth

rate as it is predicted by the linear analysis of the ferrohy-
FIG. 8. Final state of the RTI at high field$.,,=40kA/m. In  drodynamics equations. We get a good agreement between
the inset, intermediate stage evolution of the Ratllong time: (a) experiments and theory. At long times, a comparison with
Arrow points to branched finger about to disappehy.0.5 s later,  nymerical simulations for different values of the fields will
one branch has retracte@) 4 s later, the entire finger disappears. pe of great interest. Other experiments can be performed
The black bar equals 1 cm. using a magnetic field applied parallel to the interface in
order to stabilize the interface.
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