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Synchronization of hyperchaotic harmonics in time-delay systems and its application
to secure communication
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We present a predictor-feedback method for synchronizing chaotic systems in this paper. By using this
method, two structurally equivalent or nonequivalent systems can be synchronized very effectively and
quickly. Moreover, the feedback perturbation can be switched on even if trajectories of the two systems are far
from each other. Therefore, this method is applicable to real-world experimental systems, especially to some
fast experimental systems. The validity of this method is demonstrated by synchronizing hyperchaotic har-
monics in a time-delay system. As an application, we introduce how messages can be encoded, transmitted,
and decoded using this technique. We suggest taking use of the multistability of time-delay systems to improve
the performance of the secure communication.

PACS numbegps): 05.45-a, 42.55.Px

I. INTRODUCTION tion method[10], which is based on the Ott-Grebogi-Yorke

(OGY) [11] scheme for controlling unstable periodic orbits.

Synchronization of periodic signals is widely used in However, this technique is only available when the chaotic
physical, engineering, and technical systems. Recently, chdrajectory points of two systems come close to each other
otic synchronizatior{1] has become an issue of active re- Within a small region. Therefore, how to develop a more
search in light of its potential applications to secure commu#®ractical synchronization method for a chaotic experimental
nications [2—6]. An information signal containing some System, especially a fast or/and high-dimensional system, is
messages is transmitted using a chaotic signal as a broadbafiy/ays considered to be a particularly interesting subject. In
carrier. The scalar signal that is transmitted from the transtiS Paper, we will present a parameter perturbation tech-

mitter to the receiver is a function of the transmitter stateN'due based on the OGY method to synchronize a high-

variables and the information signal. If the receiver synchro—d'mens'on‘f"I system. .
Now let us return to the problem of secure communica-

nizes with the transmitter, the information signal can be de-. : I
coded exactly. Therefore, the key of secure communicatiort{on' Some_examples based on chaotic synchro_nlzatlon were
' ' resented in Refs[2,3] that were based on simple low-

is how to design a receiver system that can synchronize W'tgimensional chaotic systems with only one positive

the transmitter. _ o Lyapunov exponent. Recently, it has been shown that the
Different approaches of chaotic synchronization have,igden message can be decoded in such simple systems us-

been proposed. Pecora and Carfal investigated the syn- ing some methodgs,12]. In order to improve security, syn-

chronization effect in a chaotic system that can be divideqtnronization of high-dimensional systems having multiple

into a drive and a response subsystems, and they showed thggsitive Lyapunov exponentse., hyperchaotic systems

a necessary condition for chaotic synchronization is that alpreferable[4,5,13. More recently, chaotic time-delay sys-

the conditional Lyapunov exponents for the response systefigms described by delay differential equatiéB®E’s) have

be negative. Another type of technique of synchronizatiorbeen considered as good candidates for secure communica-

was proposed by Pyraggg| to synchronize two chaotic sys- tion [6,14] because these systems can produce chaotic attrac-

temsA andB by using an external feedbask—y,, where tors with an arbitrarily large number of positive Lyapunov

X, is the output ofA andy, is that of B. Because this ap- exponentg15], and some examples of synchronization of

proach is easily implemented in experiment, it is preferablehese systems have been offefd6,17. A communication

in applications[8]. For some fast systems,,; andy,, 1, scheme based on the synchronization of chaotic laser diodes

however, may be far from, andy,, thus this method still with delay feedback has recently been implemented experi-

needs an amplitude limitation of feedback perturbation tamentally[6].

solve the problem of large transient. More recently, Oliveira Generally, a time-delay system related to an optical bi-

et al. [9] extended this technique using a predicted signal oftable or hybrid optical bistable device is described by

B to synchronize two low-dimensional identical chaotic net-

works. The third type of method is the parameter perturba- 7'X(t) = —x(t) +F(X(t—tR), 1), (1)
wherex(t) is the dimensionless output of the system at time
*Electronic address: chaosun@Izu.edu.cn t, tr is the time delay of the feedback loog, is the response
TAuthor to whom correspondence should be addressed. time of the nonlinear medium, and the parameieis pro-
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portional to the intensity of the incident light. In E¢l), (a) FS
f(x,w) is a nonlinear function of, characterizing the differ-
ent system, e.gf(x,u) = pum[1—{ cosik—xy)] for the Ikeda
model [18], f(x,u)=m[A— u Sirf(x—xo)] for the Vallee

model [19], and f(x,u) = u sif(x—X,) for the sine-square
model[20]. Measuring the delay time in units of, one can ’ 0 5 4 6 8 10 12 14
rewrite Eq.(1) as

x (1)

()= —x(t) + f(x(t— 1), w), 2

x (b

where 7= 7'/tg characterizes the effect of the time delay -1 —T— y y y y
when 7' is fixed. In this paper, we study Eq@2) with a 0 2 4 6 t 8 1 12 14
special feedback functiofi(x,u)=1—ux?. Thus Eq.(2) (c) Sth

can be rewritten as

x(t)

()= —x(t)+ 1— ux?(t—1). (3)

This special feedback function can be considered as the first

T
10

T
12

(d) 7th

nonlinear term of the Taylor expansion of the general non-
linear functionf(x,u) in the vicinity of a steady state. It
should keep the general nonlinear properties of DDE’s, as
shown in Refs.[21,22. lkeda, Daido, and Akimotd18]
have reported odd-harmonic solutions in the lkeda model in y ; y y y
the long-time delayed cagee., the delaytg is much greater 0 2 4 6 8 10 12 14
than the response time of the systery where each har- t
monic coexists with others and their oscillation periods are g 1. The different solutions of Eq3) corresponding to the
given by Tg/n, whereTr is the period of the fundamental ifferent harmonics for=0.02 andu=1.50. (@) Fundamental so-
solution andn is an odd integer. About the systef®), we |ution (FS). (b) Third harmonic(3rd). (c) Fifth harmonic(5th). (d)
have investigated in detail the stable regions of these oddeventh harmoni¢7th).
harmonics in our previous woilk2].

Equation(3) can be solved numerically and a fourth-orderjgea to develop a practical synchronization technique using
Adams’ interpolation is suitable for that. Figure 1 illustrates parameter perturbation.
the different chaotic harmonics at=0.02 and u=1.5. Most experimental systems are essentially “black boxes”
These CoeXiSting S0|uti0nS are Obtained from different initialfor which one can 0n|y get a series of Output Signa's
functions at fixed parameters. In order to show the hyperchag  x, ., ..., andmeasure some adjustable system param-
otic characters of the syste(8), we calculate the ten largest eters. Let us consider two almost identical chaotic experi-
Lyapunov exponents at=0.02, andu is varied from 1.2 10 mental systems that we callandB,
1.65, shown in Fig. 2. A= 1.5, the Kaplan-Yorke dimen-
sion of the system is 18.1, therefore it is hyperchaotic.

This paper is organized as follows. In Sec. I, the idea of
the predictor-feedback method is presented. Then we apply .
this technique to a time-delay system and show some nu-
merical results of the synchronization of hyperchaotic trajec-
tories in Sec. Ill. Our numerical experiments show that this
synchronization method is very efficient. In Sec. IV, we
demonstrate how the message signals can be encoded, tran; 3
mitted, and decoded by using this synchronization method in z -

x(t)

e

Xn+1:f(Xn,p0), A, (4)

Exponents

secure communication. Finally, a summary of this paper is §
concluded in Sec. V. &
—
Il. SYNCHRONIZATION METHOD ]
In 1992, Schwartz and Triandaf23] proposed a e L A S
predictor-corrector method to control and track unstable or- ' ' ' u ' ’

bits based on the OGY method. Using a prediction step to

determine parameter perturbation, they successfully ensured FIG. 2. Ten largest Lyapunov exponents of E8) versus bi-
the next iterate of the system to accurately fall on the stabléurcation parameter at 7=0.02. Atx=1.50, the system is hyper-
manifold of the desired object. Here we introduce a similarchaotic.
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FIG. 3. Schematic illustrations of our strategy to synchronize 0 2 4 6 8 10 12 14
two chaotic systemsA is the object systenB is the response sys- 15.] 1 t
tem, andB1 is the predictor systenx andy are the corresponding 1'0_- (c)
measured outputs & andB. y’ is the prediction signal. For sys- -
temsA andB1, p=p,. For systenB, p is the adjustable parameter. "=, 0'5‘_|
' 0.0 -
Ra¥ i
Ynr1=f(yn.p), B, ) w 057 '
-1.0
N 1 L 1 N 1 N 1 L | L 1 N |
whereA is an object system aridl is a response system. To 0 2 4 6 8 10 12 14
synchronizeB with A starting on different initial conditions,
we imagine thap, for systemA is a fixed parameter value t

andp for systemB .iS an externally a_djus_table parar_net_er. Our FIG. 4. Synchronizing two time-delay syster(® at 7=0.02
experimental design is schemed in Fig. 3. In this figure, and = 1.50. Time traces ofa) the objector outpuk(t), (b) the
andy are the externally measured outputs\aindB, respec-  response outpuy(t), and (c) the differences(x—y) before and
tively. From this figure, one can see that there is anothejgier the feedback perturbation is activated. Initially, the object sys-
identical chaotic systerB1 besidesA andB. In our design,  tem is located in the third harmonic and the response system in the
B1 is the systenB in the case of no feedback perturbations fundamental solution. The arrows mark the moment of switching
(i.e., the value of parameterin B1 ispg). That is, the input  onto the perturbation.
of B1 is as the same as the input®&nd the output iy, ,, 5
which can be used to construct parameter perturbation tc l
modify the response systeB) so we callB used in this way . (a) 5th
a predictor system and denote itB&. In a real-world ex- /\AA/W

1

4

!

periment, we could use a computer to complete the task o n

il m A
’"‘J"u" v v

(=]

B1. In the next section, we will find that because this pre-
dictor system is added in the design, one can avoid the limi-

3 (x-y)

tation that the trajectory points of systemdsand B must
come close to each other when the feedback perturbation i

T
2

activated[10]. 2 T
6 8 10 12 14

As schemed in Fig. 3, the parameter perturbation for sys- 0

tem B can be configured as

s

pn+1:p0+k(yr’1+1_xn+1) (6)

(x-y)

h
t
(b) 7th
0 o
from the outputs ofA andB1, wherek is the feedback co- (o NL‘
efficient. Oncek is suitably selected, the response sys&m -1
will synchronize with the object systed The suitable co-
efficientk can be obtained by scanning the coefficient inter- T T
val, as done by Pyrag4g] in his control law. In addition, we 0 2 4 6 t 8 10 12 14
have illustrated 24] another practical technique for experi-
mental systems to select the coefficients in controlling chaos. kg, 5. Synchronizing results for different harmonics. Time
In the case of chaotic synchronization, we can also use @aces of differenceS(x—y) before and after the feedback pertur-
similar teChanUl_E to obtaik. o bation is activated. Initially, the object system is locatedanthe
Here let us discuss the characteristic of feedback pertusifth harmonic,(b) the seventh harmonic, and the response system is
bation (6). A fundamental feature of perturbation signé$ located in the fundamental solution. Heke=2.0 and the arrows
is that it does not change the solution of response syBtem denote the same as in Fig. 4.
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FIG. 6. Synchronizing result for the object system switching __ 0.5
among different harmonics versus timeHerek=2.0. N i
= 004 w
because when synchronization is achieve®&nd B become o 5_‘
completely uncoupled and at this timpds equal top,. Fur- '
thermore, this method has other advantage©ne can eas- o 2 4 & 8 10 12 1a
ily construct the feedback perturbati@6) only using the 1 t
time series of the predictor and object systems and does nc 157 l ( )
Cc
require Taken’s delay-coordinate embedding technique or= 1.0
maximal correlation techniqy&5]. Thus it is well-suited for s 0.5
a “black-box” experimental system(ii) This technique Z 0.0
needs neither the trajectory points close to each other north  -0.5 -
amplitude limitation of perturbation when the feedback per- 1.0 '
turbation is activated. This gives us a convenient way for — T+ T+ 1 ' T+ T T 1
synchronizing real-world experimentsee the examples of 0 2 4 6 8 10 12 14
the next section (iii) This method can also be used to syn- t

chronize two structurally nonequivalent systemsg., sys-
tems generating chaotic attractors with high and different
fractal dimensions[16].

FIG. 8. Synchronizing results for two structurally nonequivalent
systems(3). Time traces of(a) the objector outpuk(t) with D

=18.1 at7=0.02 andu=1.50, (b) the response outpyt(t) with
D=14.3 at7=0.025 andw=1.50, and(c) the differences(x—y)

before and after the feedback perturbation is activated. The arrows
mark the moment of switching onto the perturbation. Hére

IIl. SYNCHRONIZATION OF CHAOTIC HARMONICS

IN TIME-DELAY SYSTEMS

In order to introduce the above technique to a high dimen-
sional time-delay syster8), we use

(t+h)=puo+k[y'(t+h)—x(t+h)] (7)

to configure the parameter of response sysBwhereh is
the integrated stefin this paperh=0.01) andy’(t+h) is

1] 5th 3rd 5th FS (@)
AR ‘ | ‘\ | i ‘ =2.0.
8 0 i | \ It
= \
1 T T T T T T T T T 1
0 10 20 ¢ 30 40 50
1_{( 3rd 5th Fs (D)
= 1 [ “ ‘ “\ “
-1 I I ' I ' I ' 1
0 10 20 30 40 50
| t ©
]
7
3 0 11.|wl|.5'|.“
2=}
-1
I T T T T T T T T 1
0 10 20 30 40 50
t

the prediction signals of the predictor system.

As shown in Fig. 1, different solutions of E(B) coexist
at 7=0.02 andu = 1.5 (for the coexisting regions, interested
readers are referred to R¢22]). Obviously, the fundamen-
tal solution and harmonics are located in the chaotic states.
We configure the response system as described in the pre-
ceding section and use E(,) as the parameter perturbation.
Figure 4 shows time traces of the object outp(t), re-
sponse outpuy(t), and the differenceS(x—y) before and
after the parameter perturbation is turned on. An arbitrary
value in the interval0.6,5.9 can be used as the value of
coefficientk to construct the feedback. In this figure, the
initial state for the response system is selected at the funda-
mental solution and the object system is located in the third

FIG. 7. Synchronizing result for the object system switching onchaotic harmonic. Att=4, the feedback perturbatio(y)

the chaotic itinerancy solution at=0.04 andu=1.90. Herek

=2.0.

with k=2.0 for the response system is activated, and the
output of the response system quickly synchronizes with that
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FIG. 9. (@) The encoded binary messagés) the transmitted chaotic time seriéhird harmonig, (c) the synchronized chaotic time
series, andd) the decoded messages versus timEhe binary sequence (16) is produced at every=10, masked in the third chaotic
harmonic, and transmittedd) is the deviation of the transmitter signal and synchronization signal. Each spike corresponds to a binary

signal “1.”

of the object system. Unlike the method in RELQ], the
initial difference of the two chaotic systems is quite lafoe
Fig. 4(c), 8(x—y)=1.0] when the perturbation is activated. level of security. On the other side, switching of different
Figure 5 illustrates similar synchronization results, where the&oexisting harmonics can also provide us with a multichan-
object system is located in the different harmorji@ fifth

harmonic andb) seventh harmonicand the response system

sponse can also be chosen as other initial st@ags, the
third harmonic or the fifth harmonic, ejicOnce the pertur-

quickly tends towards zero.

by synchronizing two identical delay systems. On the one

side, a

hyperchaotic transmitter ensures a highly efficient

nel way to transmit messages.

Another idea that can be used in secure communication is
always starts at the fundamental solution. In fact, the rethe chaotic itinerancy solution of time-delay systems. Cha-
otic itinerancy means that a dynamical system switches
among different unstable local chaotic orbits on a time scale,
bation with a suitable feedback coefficient is activated, thecompared to the dynamics on each attractor ruin. 7At
response quickly switches onto the corresponding state of the 0.04 andu=1.9, we can observe a chaotic itinerancy so-
object system automatically and the difference between therution among the fundamental solution, third harmonic, and
fifth harmonic(see Ref[22]). In Fig. 7, the object system is

To show that, in Fig. 6, the response and object systemaitially located in the chaotic itinerancy solution and the
are located in the fundamental and the third-harmonic statesesponse system starts from the fundamental solution. Once
respectively, and then the perturbation is activated. One catie feedback perturbation is activated, the response system
see that the response system quickly synchronizes with th&/nchronizes with the object quickly and is also found in the
object system to the third-harmonic state.tAt8, we shift

itinerancy solution, as shown in Fig. 7.

the object system onto the fifth-harmonic state, the response At the end of this section, we should point out this
system also synchronizes with it to the fifth harmonic autopredictor-feedback method can also be used to synchronize
matically, and at=16 the object is switched onto the sev- two structurally nonequivalent systerfis6]. In Fig. 8, we
enth harmonic; the response follows, as shown in Fig. 6initially configure the object system to the third harmonic
Here what we should emphasize is that the different harwith D=18.1 (hereD is the Kaplan-Yorke dimensiorat 7
monic states in Fig. 6 coexist with other harmonics in the=0.02 andu=1.50, and the response system to a fundamen-
tal solution withD=14.3 at7=0.025 andu=1.50. Once
stability and hyperchaos of time-delay systems, we expedhe predictor-feedback perturbation is activated=a#, the

that a more secret way for communication may be obtainedesponse system quickly follows the object system to the

same parameter§.e., 7=0.02u=1.5). Due to the multi-
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third harmonic as shown in Fig(I®. Figure &c) illustrates V. CONCLUSIONS

the difference of the two nonequivalent systems. In conclusion, we presented a practical perturbation tech-

nique (i.e., predictor-feedback methpdor synchronizing
IV. APPLICATIONS TO SECURE COMMUNICATIONS fast or/and high-dimensional systems. First, this method is
designed for experimental situations in which we have no

possible applications of the chaotic synchronization is secur nalytmal knowledge of the system dynam(c;s., “black-
communication. In experiment, we add a signal generatoP°* system). We only used a series of experimental outputs

and an information-encoding system as accessory systemstl‘ﬁ construct the pargmeter-perturbation to s_,ynchronize two
the object systen®, and all of them are organized as the €N20otic systems easily. Second, with a predictor system, the
transmitter system. The receiver system is made up of a gdesponse system can quickly synchronize with the Obje(.:t Sys-
coding system, the predictd@1, and the responsB. The tem automatically whenever the parameter perturbation is
information sig,nal containing rrl1essag(é$., a series of bi- activated. That_ls, even though.the trajectolry point of re-
nary signaly is encoded in the output @, and all of them sponse system is far from the trajectory of Ob]E.BCt system, the
are transmitted. In general, the information signal is Verypredlctor feedback method is still highly effective because it
small compared to the amplitude of the chaotic output. Wher‘EJOes hot require I|m|tat|9n of p(_arturbatlon amp"t.“de.- We
B synchronizes with, we can then decode the binary mes-Showed the validity of this technique by synchronization of

sages by detecting deviation between output8aind the high frequency harmonics in at|me-d(_alay system. Third, this
transmitter. method can also be used to synchronize two structurally non-

In Fig. 9, the information signal to be transmitted is aequalent systems. _ L
binary sequencé.e., 1,1,0,1,0,1,1,1..) and each binary el- In order to apply this technique to secure communication,

ement is transmitted at evemy=10. In this example, the we designed_a strategy to encode, transmit,.and_ decode the
binary sequence is encoded in the third chaotic harmonic anl@formatmn signal by using this method. Considering that the

; - ; : odd harmonics of time-delay system are not only hypercha-
the amplitude of the sequence is~f0 Figure 9b) s the ﬁ}ic but also coexist with each other, we believe that chaotic

transmitter signal that contains the message signals. Clear ) ; :
the small binary sequence is masked by the chaotic hal _m_e-delay system is a good candidate fo_r secure communi-
cation. On the one hand, the hyperchaotic attractors with a

monic. Figure @) shows the synchronization signal of the large number of positive Lyapunov exponents improve the
Fig. h h iati - . T
response systerB and Fig. 9d) shows the deviation be secure ability for communication. On the other hand, the

tween the transmitter signal and synchronization signal ver=~>"."~. . . ;
sus time. From Fig. @), one can see that each spike corre-Coexisting behavior of odd harmonics can provide us a new

sponds to a binary signal “1.” Thus one can accurately\év.?y foihchaﬁs i?Wth‘“”'Ca“O” VI‘”tth IOW (:_etec;aklnllty. Intad-
decode the message signals by detecting the spikes. tion, the chaolic itineéranCy solution in ime-delay Systems

We should emphasize that the synchronization results Oz?lso give us another way for secure communication.
the pre(_:edlng section _regardlng switching among different ACKNOWLEDGMENTS
harmonics and chaotic itinerancy can be used in secure com-
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