PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Generalized synchronization versus phase synchronization
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The relation between generalized synchronization and phase synchronization is investigated. It was claimed
that generalized synchronization always leads to phase synchronization, and phase synchronization is a weaker
form than generalized synchronization. We propose examples that generalized synchronization can be weaker
than phase synchronization, depending on parameter misfits. Moreover, generalized synchronization does not
always lead to phase synchronization.

PACS numbeis): 05.45.Xt, 05.45.Pq

Synchronization phenomena in coupled or driven chaotidRossler oscillators with mismatched parameters. In dimen-
systems have been extensively studied in the context of lassionless form, the equation of motion of this system can be
dynamicg[1], electronic circuit§2], chemical and biological ~written as
systems[3], and secure communicatiofd]. The entrain-

ment of coupled or driven limit cycles has long been a well- Xd= ~ @dYd ™ Zd

studied topic, while synchronization of chaotic oscillators )

was an open area due to the presence of the intrinsic nonlin- Va= wgXq+0.15/,

earity[5]. Pecora and CarrdlB6] showed that two interacting

identical chaotic oscillators can achieve synchronization, i.e., 24= 0.2+ z4(x4— 10.0),

they evolve with the same orbig; (t) =x,(t), even though )
they possess the well-known exponential instability of neigh- X = — Y, —Z+e(Xg—X,),

boring orbits. This study arouses extensive interest in syn-

chronized entrainment of chaotic oscillators, and different Y=o, % +0.15/
degrees of synchronizations were found, for example, com- oo e
plete synchronizationCS [6,7], generalized synchroniza-
tion (G9) [8], phase synchronizatid®S [9], lag synchroni-
zatlo_n (L.S) [10], and even measure synchronlzatlon NHere the subscriptd andr denote the coordinates for the
Hamiltonian sy_stem_Ell]. CS appears (_)nly when interacting rive and response systems, respectively, atite coupling
systems are identical. Otherwise, if the parameters Ogtrength.wd and o, are usually nonidentical. For Rossler

coupled oscillatqrs s!ightly mismatch, t_he states can be Ve€N¥scillators with parameters given above, a temporal phase
close, but remain different. GS was introduced for dnve—can be well defined on they plane[13] as

response systems, and it is defined as the emergence of some

functional relation between the states of response and drive, o(t) =tan [y(t)/x(t)]. @)

i.e., Xo(t) =F[x4(t)]. PS means the entrainment of phases of

chaotic oscillators, whereas their amplitudes remain chaotighen the average winding number can be defined as the tem-

and generally noncorrelated. poral average of the phase velocity
Though a number of researches have been made on these

synchronizations, studies of their relations and the scenarios 1.

of transitions among them have not been well addressed. CS Q=lm =] “otdt E)

is usually considered as the strongest form among these syn- T

chroniza_ti_ons. A weaker_ form sho_uld be GS, which calls for,o 1.1 phase lockingPS of the drive and response sys-

the stability of the fur_wctlonal man'fOI'#Z(t.):F[Xl(t_)]' PS  tems can be defined as the temporal localization of the

does not adq restrictions on the o_scnlat_|on amplitudes, arlﬁhases lim 16,(t) — 64(t)| <const orQ, = Q.

only the locking of phases is crucial. It is usually accepte -

that PS is weaker than GS. Parliet al. first studied this The drive-response systed) exhibits rich dynamical be-

problem[12]. They claimed that in general GS leads alwayshaviors, depending on different parameters. For the ggse

to PS, and GS is stronger, i.e., PS may occur in cases whefe®@d, i-€., the two subsystems are identical, complete syn-

the coupled systems show no GS. In many cases this is coghronization can be achieved as the coupling strength ex-

rect. However, as we will address in this paper, GS is nofeeds a critical value. Whea,# wq, GS can usually be

necessarily stronger than PS for two interacting chaotic osobserved at a certain coupling strength. A necessary condi-

cillators with well-defined phases. In some cases, PS comdion for CS and GS is the negativeness of the maximum

after GS with increasing coupling strength, depending orfonditional Lyapunov exponerMCLE) [14]. The condi-

parameter mismatches. tional Lyapunov exponent spectrufn:=\2= ...} can be
The model we adopt in the context is a drive-responséumerically computed along the CS or GS manifold. For

system, where both the drive and response systems aveeak couplings, the maximum exponent>0, implying

z,=0.2+27,(x,—10.0).
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FIG. 1. () and (c) The average winding numbef, (dashed line), and the line for the boundary axfﬁ=0 (dot-dashed ling

and (), (solid) against the coupling for different parameter mis- . . . .

matchres(a) ©4=0.98, 0, =1.02. (b) wy=0.8, w, = 1.0. (b) and(d) above it(the dashed line in Fig. 2, called t@S ling. To

The MCLE ! varies with the coupling strength, corresponding ~2nalyze the mechanism for previous results, we also 2p|°t a
to (a) and(c), respectively. dash-dot line that gives the maximum coupliag,, for Ng

=0. We name it theopological line When < N2
CS or GS between the drive and response, is not built. As polog &> Emaxi Bo

. 1 . . =0, and)\§<0 ase exceedse - By observing this dia-
one increases, \; becomes negative at a certain strength

then th uti fh | tfoll th 'gram, three bifurcation points are found. Tiirst bifurcation
en the evolution oT the response element 1olflows the manig .., . atA;;~0.02. WhenA<A_;, the PS line and the

fold of the drive, |.e.,x;(t) :.XZ(t) for identical cases and topological line coincide, where PS implies the second con-
Xp(t) =Fx,(t)] for nonidentical cases. On the (_Jther hand’ditional Lyapunov exponent becomes negative. In this re-
for casesw, # wq, PS can pe found if a well-defined phase gime, the emergence of PS leads directly téopological
can be introduced according to E(). Hence a problem changeof the phase space. When>A.,, these two lines
arises: for the cases #wq, PS and GS are all present, qonqrat6 The second conditional exponent becomes negative
which one comes first as one increases the coupling? Tgy 5 weaker coupling than that for PS. The coincidence of the
check this problem, we computddy and{}, againste for  pg ang topological lines is thus broken. This broken coinci-
different parameter mismatches. P'g Figall @4=0.98, @;  gence in consequence leads to a topological change of the
=1.02. It can be found that at=5,°~0.08,,=Qq, i.e., G5 (note that the GS line is horizontal fak<A,, and
the response system is phase_ entralned_by the drive. Let Y8 .creases wheA>A,). At A.,~0.028, thesecondbifur-
check whether GS is also achieved at this point by COMpUteation is observed, where the PS and GS lines merge to-
ing the MCLE\; againste, as shown in Fig. (b). GS is  gether. For a parameter misfik lying in the regime
implemented when:>eJ°~0.18>&[°. This result agrees [0.028,0.035, PS and GS are achieved at the same critical
with the conclusion of Parlitet al. [12] that GS is stronger coupling. This regime is in agreement with the observation
than PS. However, this does not exclude the possibility thagf Parlitz et al. [12] that GS leads to PS. Thaird bifurca-
GS comes before PS as one increases the interactiqin is shown atA3~0.035, above which the PS line ex-
strength. For large parameter misfits, a lakgeshould be  ceeds and lies above the GS line. For parameter misfit
applied for the system to reach PS. If GS is achieved for & A ;, GS s first achieved, and PS comes with a stronger
larger coupling, then PS still comes before GS with increascoupling. In this regime, PS is a stronger form of synchroni-
ing couplings. On the contrary, ¥C° keeps unchanged or zation. Therefore from this phase diagram, we show a cas-
decreases with increasing parameter misfits, sooner or lateade of transitions from PS-GS to PS-GS merge and GS-PS.
PS will emerge after GS. To check this possibility, in Fig. More important is that this diagram exhibits the possibility
1(c) we give the average frequendy, varying againste, that PS may be stronger than GS. The key mechanism is due
and in Fig. 1d) the corresponding MCLE is also plotted. to the broken coincidence of the PS and topological lines.
Here w,=0.8 andwy=1.0. One finds quite a different pic- It is instructive to determine the functional form of GS. In
ture from Figs. 1a) and b). At e~0.13,\} becomes nega- Fig. 3 we show the relation between(t) andxy(t). In Fig.
tive, i.e., GS is reached at~0.13. On the other hand, it is 3(a) for A=0.01 ande =0.3, the projection of the attractor
found that Q,#Q4 even ate=0.4. In this case GS is on the plane is shown. In Fig(l3 this relation is exhibited
achieved before PS. This supports our argument and is cofty a delayed-coordinate plot, (t—7) vs x4(t), where 7
tradict to the conclusions of Parlie al.[12]. =0.12. It can be found thag, (t— 1) ~X4(t), i.e., a lag form

It should be intuitive to give a phase diagram for theis built for smallA. Hence for small parameter misfits, the
above picture. In Fig. 2, a diagram on tlee plane is GS is identified as LS. In Figs(® and 3d), we plot a case
shown, wherew, 4=1.0=A, with A being a measure of pa- of large parameter misfit =0.06 fore =0.3, where GS and
rameter misfit. Three lines are given in the diagram. The firsPS are both attained. A complicated relation betweg)
line is the critical coupling for PS¢, =) varying against and xy4(t) is built. A delay-coordinate plot shows that they
the parameter misfid, which gives the boundary of the PS cannot build a good LS. To get a better picture, we compute
and desynchronization regimfabeled by a solid link We  the lag function(called the similarity function if10]) be-
call this line thePS line The second line corresponds to the tween the response, (t) and the drivexy(t) taken with a
critical coupling for GS (\(13=0), which gives the GS regime time shift 7
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FIG. 3. (a) and(c) The relation betweer,(t) andx4(t) for A FIG. 5. (a) The evolution ofA 4(t) = 6,(t) — 64(t) for A=0.05
=0.01 [(a] and A=0.06. £¢=0.3. (b) and (d) The delayed- ande=0.1, 0.125, and 0.1%b) The statistics of the slip tim& for
coordinate plotx,(t—7) vs x4(t) corresponding to(@ and (c), A=0.05 ande=0.05, 0.075, 0.10, and 0.15. Multiple peaks can
wherer=0.12 in(b) and 7=0.84 in(d). be observed, where the interval among these peaks equé(3 2
Logarithm scale for thd axis is adopted to show these peals.
> and(d) The inverse mean slip timgr) ~* varying against the for
([x(t+7) = X4(1) ) @ A=0.01 and 0.05. Dashed and dotted lines are fitting functions.

VOR)Y(4(1)

scs, P(T) is expanded in a quantized manner, i.e., new

peaks appear with the intervalm2Q)4. Furthermore, as
shown in Fig. %b), the highest peaks shift to the right as the
'coupling is increased. For couplings very ne@rs, P(T)

has a large number of peaks. This type of slip-time distribu-
tion was not observed before, and a deep study is necessary,
which is beyond our scope in the present paper. For both
small and large\’s, we find the similar feature dP(T). In

F|gs Hc) and §d), we give the inverse mean slip tm(l@) !

where(-) is taken as a long time average. Wheit + 7)
~Xq(t), i.e., there is a time shift between the two signals
s(7)~0, implying a good LS. When two signals are noncor-
related, i.e., no LS is achieves(7)~ 2. In Fig. 4,s(7) is
plotted againstr for ¢=0.30 and differentA’s. It can be
found that whem\ is small,s(7) has a very small minimum
at somery, indicating a good LS. For larg®, s(7) also has

a minimum, but this minimum is very large. Thus one cannot

. - t the for A=0.01 and 0.05. Fo¢<s we
observe a good L$§see the line fos =0.06 in Fig. 4. varying agains

The transition to PS is accompanied by the temporal IofInOI f?/rz both small anéi large pﬁrameter mf'Sf'(§> (ISO
calization of the phase differenakd(t) = 6,(t) — 4(t). g)” 7% as shown in Fig. &), whereg, is a fitting value.

Fig. 5a) we give the evolution oft f(t) for A=0.05 and This scaling law is in agreement with that for coupled peri-
6=01. 0.125 and 0.15. It is found that ferfar from sPS,  0dic oscillators[15]. The scaling law ofT) near e ° for

A 6(t) evolves smoothly from 27 to 2(n+1) 7. While for small and largé\’s, howevP%r, are_S/>2<trem'er' dn‘ferent. In Fig.

& near to the critical point for P\ 4(t) exhibits a stick-slip 5(c), for A=0.01, g)‘x(g_cl —&) ™ while in Fig. Sd) for
feature. Furthermore, the stick-slip motion is irregular, i.e.,2A=0.05, (T)=(sc"—¢) " This difference reflects the
the slip timeT (the time interval between two adjacentr2 ~Competition of PS and GS. For smal, PS comes before
slips) is random. In Fig. ) the statistics ofT, P(T), is  GS, thus the scaling around > exhibits a chaotic feature.
shown forA =0.05 ande =0.05, 0.075, 0.10, and 0.15. Itis Note that the exponent 3/2 is typical for turbulence. In the
very interesting that all these distributions possess multipl€ase of large\, GS has already reached before PS, the chao-
peaks, composed of a central peak and a number of smdiFity is then suppressed.

peaks. The interval among these peaks equals the averageFinally, we should emphasize that the fact that PS could
period for a 2r rotation of the drive system,2/Qg4. This  be stronger than GS can be found in a variety of systems. For
gives an interesting picture that the rotation of the responséxample, we studied the response of a Lorenz oscillator to
is controlled by the drive in a quantized manner. A Compari.the drive of another Lorenz oscillator with mismatched pa-
son of subfigures in Fig.(b) indicates that as approaches rameters,

|5 JF=006——) Xg=0(Ya—Xq),
=1 0.020——)
0.01(——) / Ya=TaXd—Ya—XaZd,
§ L0y 0.005(——)
\\\ Z4=XaYq— b2y,
05 (5
X = U(Yr_xr)+ 8(Xd_Xr),

0.0 T T T
-1.0 -0.5 0.0 0.5 1.0 .
T V=X =Yy =Xz,
FIG. 4. The lag functions(7) is plotted fore=0.30 andA

~0.06, 0.02, 0.01, and 0.005. 2, =Xy, — bz,



PRE 62 GENERALIZED SYNCHRONIZATION VERSUS PHAE . .. 7885

10.2 2.0 o of the response system to the drive. In Figs. 6 we give the
10.0 @ 1.5 ®) relations(), 4~¢ [6(a)] and)\i~s [6(b)]. PS is achieved at
1.0 £~39, as seen in Fig.(8). GS occurs first at~3 and loses
a °3 &’ )JT 0.5 efs its stability ate~6.5, and then recurs at~10. Obviously
9.6 1 oo D/Al e$5<el®. This supports our result that GS is not necessarily
04 05 W\\ stronger than PS.
02 10 To conclude, in this paper we studied the relation between
“0 20 40 60 0 20 40 60 PS and GS. GS could be stronger than PS, and they can also
€ € occur at the same critical coupling. It is equally possible that

FIG. 6. The relatiort2, 4~¢ [(a)] and\1~¢ [(b)] for the Lo- PS_ can be stronger than GS. We show these_fgatures py
renz drive-response system, where: 10, b=8/3, andry=39,r,  USing a phase diagram. For small parameter misfits, GS is
=35, identified as LS. The stick-slip statistics is studied before the

onset of PS. The quantized feature of slip time is shown. For
where o= 10, b=8/3, andr4=39, r,=35. A definition of small and large parameter misfits, the average slip time vs
the phase for a Lorenz oscillator has been given as followsthe coupling obeys different scaling relations near the PS
threshold.

S INXE g+ yE g—2b(r, 4= 1)]
[Zr,d_(rr,d_ 1)]

0, 4(t)=tan (6)
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