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Generalized synchronization versus phase synchronization

Zhigang Zheng and Gang Hu
Department of Physics, Beijing Normal University, Beijing 100875, China

~Received 17 July 2000!

The relation between generalized synchronization and phase synchronization is investigated. It was claimed
that generalized synchronization always leads to phase synchronization, and phase synchronization is a weaker
form than generalized synchronization. We propose examples that generalized synchronization can be weaker
than phase synchronization, depending on parameter misfits. Moreover, generalized synchronization does not
always lead to phase synchronization.

PACS number~s!: 05.45.Xt, 05.45.Pq
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Synchronization phenomena in coupled or driven cha
systems have been extensively studied in the context of l
dynamics@1#, electronic circuits@2#, chemical and biologica
systems@3#, and secure communications@4#. The entrain-
ment of coupled or driven limit cycles has long been a we
studied topic, while synchronization of chaotic oscillato
was an open area due to the presence of the intrinsic no
earity@5#. Pecora and Carroll@6# showed that two interacting
identical chaotic oscillators can achieve synchronization,
they evolve with the same orbit,x1(t)5x2(t), even though
they possess the well-known exponential instability of nei
boring orbits. This study arouses extensive interest in s
chronized entrainment of chaotic oscillators, and differ
degrees of synchronizations were found, for example, c
plete synchronization~CS! @6,7#, generalized synchroniza
tion ~GS! @8#, phase synchronization~PS! @9#, lag synchroni-
zation ~LS! @10#, and even measure synchronization
Hamiltonian systems@11#. CS appears only when interactin
systems are identical. Otherwise, if the parameters
coupled oscillators slightly mismatch, the states can be v
close, but remain different. GS was introduced for driv
response systems, and it is defined as the emergence of
functional relation between the states of response and d
i.e., x2(t)5F@x1(t)#. PS means the entrainment of phases
chaotic oscillators, whereas their amplitudes remain cha
and generally noncorrelated.

Though a number of researches have been made on
synchronizations, studies of their relations and the scena
of transitions among them have not been well addressed
is usually considered as the strongest form among these
chronizations. A weaker form should be GS, which calls
the stability of the functional manifoldx2(t)5F@x1(t)#. PS
does not add restrictions on the oscillation amplitudes,
only the locking of phases is crucial. It is usually accep
that PS is weaker than GS. Parlitzet al. first studied this
problem@12#. They claimed that in general GS leads alwa
to PS, and GS is stronger, i.e., PS may occur in cases w
the coupled systems show no GS. In many cases this is
rect. However, as we will address in this paper, GS is
necessarily stronger than PS for two interacting chaotic
cillators with well-defined phases. In some cases, PS co
after GS with increasing coupling strength, depending
parameter mismatches.

The model we adopt in the context is a drive-respo
system, where both the drive and response systems
PRE 621063-651X/2000/62~6!/7882~4!/$15.00
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Rossler oscillators with mismatched parameters. In dim
sionless form, the equation of motion of this system can
written as

ẋd52vdyd2zd ,

ẏd5vdxd10.15yd ,

żd50.21zd~xd210.0!,
~1!

ẋr52v ryr2zr1«~xd2xr !,

ẏr5v rxr10.15yr ,

żr50.21zr~xr210.0!.

Here the subscriptsd and r denote the coordinates for th
drive and response systems, respectively, and« the coupling
strength.vd and v r are usually nonidentical. For Rossle
oscillators with parameters given above, a temporal ph
can be well defined on thex-y plane@13# as

u~ t !5tan21@y~ t !/x~ t !#. ~2!

Then the average winding number can be defined as the
poral average of the phase velocity

V5 lim
T→`

1

TE0

T

u̇~ t !dt. ~3!

The 1:1 phase locking~PS! of the drive and response sys
tems can be defined as the temporal localization of
phases lim

t→`
uu r(t)2ud(t)u,const orV r5Vd .

The drive-response system~1! exhibits rich dynamical be-
haviors, depending on different parameters. For the casev r
5vd , i.e., the two subsystems are identical, complete s
chronization can be achieved as the coupling strength
ceeds a critical value. Whenv rÞvd , GS can usually be
observed at a certain coupling strength. A necessary co
tion for CS and GS is the negativeness of the maxim
conditional Lyapunov exponent~MCLE! @14#. The condi-
tional Lyapunov exponent spectrum$lc

1>lc
2> . . . % can be

numerically computed along the CS or GS manifold. F
weak couplings, the maximum exponentlc

1.0, implying
7882 ©2000 The American Physical Society
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CS or GS between the drive and response, is not built.
one increases«, lc

1 becomes negative at a certain streng
then the evolution of the response element follows the m
fold of the drive, i.e.,x1(t)5x2(t) for identical cases and
x2(t)5F@x1(t)# for nonidentical cases. On the other han
for casesv rÞvd , PS can be found if a well-defined pha
can be introduced according to Eq.~2!. Hence a problem
arises: for the casev rÞvd , PS and GS are all presen
which one comes first as one increases the coupling?
check this problem, we computedVd and V r against« for
different parameter mismatches. In Fig. 1~a!, vd50.98, v r

51.02. It can be found that at«5«c
PS'0.08, V r5Vd , i.e.,

the response system is phase entrained by the drive. Le
check whether GS is also achieved at this point by comp
ing the MCLE lc

1 against«, as shown in Fig. 1~b!. GS is
implemented when«.«c

GS'0.18.«c
PS. This result agrees

with the conclusion of Parlitzet al. @12# that GS is stronger
than PS. However, this does not exclude the possibility
GS comes before PS as one increases the intera
strength. For large parameter misfits, a large« should be
applied for the system to reach PS. If GS is achieved fo
larger coupling, then PS still comes before GS with incre
ing couplings. On the contrary, if«c

GS keeps unchanged o
decreases with increasing parameter misfits, sooner or
PS will emerge after GS. To check this possibility, in F
1~c! we give the average frequencyV r varying against«,
and in Fig. 1~d! the corresponding MCLE is also plotted
Here v r50.8 andvd51.0. One finds quite a different pic
ture from Figs. 1~a! and 1~b!. At «'0.13,lc

1 becomes nega
tive, i.e., GS is reached at«'0.13. On the other hand, it i
found that V rÞVd even at «50.4. In this case GS is
achieved before PS. This supports our argument and is
tradict to the conclusions of Parlitzet al. @12#.

It should be intuitive to give a phase diagram for t
above picture. In Fig. 2, a diagram on theD-« plane is
shown, wherev r ,d51.06D, with D being a measure of pa
rameter misfit. Three lines are given in the diagram. The fi
line is the critical coupling for PS (V r5Vd) varying against
the parameter misfitD, which gives the boundary of the P
and desynchronization regimes@labeled by a solid line#. We
call this line thePS line. The second line corresponds to th
critical coupling for GS (lc

150), which gives the GS regime

FIG. 1. ~a! and ~c! The average winding numbersVd ~dashed!
andV r ~solid! against the coupling« for different parameter mis-
matches.~a! vd50.98,v r51.02. ~b! vd50.8, v r51.0. ~b! and~d!
The MCLE lc

1 varies with the coupling strength«, corresponding
to ~a! and ~c!, respectively.
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above it ~the dashed line in Fig. 2, called theGS line!. To
analyze the mechanism for previous results, we also plo
dash-dot line that gives the maximum coupling«max for lc

2

50. We name it thetopological line. When «,«max, lc
2

50, andlc
2,0 as« exceeds«max. By observing this dia-

gram, three bifurcation points are found. Thefirst bifurcation
occurs atDc1'0.02. WhenD<Dc1, the PS line and the
topological line coincide, where PS implies the second c
ditional Lyapunov exponent becomes negative. In this
gime, the emergence of PS leads directly to atopological
changeof the phase space. WhenD.Dc1, these two lines
separate. The second conditional exponent becomes neg
at a weaker coupling than that for PS. The coincidence of
PS and topological lines is thus broken. This broken coin
dence in consequence leads to a topological change of
GS ~note that the GS line is horizontal forD<Dc1, and
decreases whenD.Dc1). At Dc2'0.028, thesecondbifur-
cation is observed, where the PS and GS lines merge
gether. For a parameter misfitD lying in the regime
@0.028,0.035#, PS and GS are achieved at the same criti
coupling. This regime is in agreement with the observat
of Parlitz et al. @12# that GS leads to PS. Thethird bifurca-
tion is shown atDc3'0.035, above which the PS line ex
ceeds and lies above the GS line. For parameter misfiD
>Dc3, GS is first achieved, and PS comes with a stron
coupling. In this regime, PS is a stronger form of synchro
zation. Therefore from this phase diagram, we show a c
cade of transitions from PS-GS to PS-GS merge and GS
More important is that this diagram exhibits the possibil
that PS may be stronger than GS. The key mechanism is
to the broken coincidence of the PS and topological lines

It is instructive to determine the functional form of GS.
Fig. 3 we show the relation betweenxr(t) andxd(t). In Fig.
3~a! for D50.01 and«50.3, the projection of the attracto
on the plane is shown. In Fig. 3~b! this relation is exhibited
by a delayed-coordinate plotxr(t2t) vs xd(t), where t
50.12. It can be found thatxr(t2t)'xd(t), i.e., a lag form
is built for small D. Hence for small parameter misfits, th
GS is identified as LS. In Figs. 3~c! and 3~d!, we plot a case
of large parameter misfitD50.06 for«50.3, where GS and
PS are both attained. A complicated relation betweenxr(t)
and xd(t) is built. A delay-coordinate plot shows that the
cannot build a good LS. To get a better picture, we comp
the lag function~called the similarity function in@10#! be-
tween the responsexr(t) and the drivexd(t) taken with a
time shift t

FIG. 2. The phase diagram on theD-« plane withD being a
measure of parameter misfit. Three lines: the critical line for
(V r5Vd) ~solid line!, the critical line for GS (lc

150) ~dashed
line!, and the line for the boundary oflc

250 ~dot-dashed line!.
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s~t!5A^@xr~ t1t!2xd~ t !#2&

A^xr
2~ t !&^xd

2~ t !&
, ~4!

where ^•& is taken as a long time average. Whenxr(t1t)
'xd(t), i.e., there is a time shift between the two signa
s(t)'0, implying a good LS. When two signals are nonco
related, i.e., no LS is achieved,s(t)'A2. In Fig. 4,s(t) is
plotted againstt for «50.30 and differentD ’s. It can be
found that whenD is small,s(t) has a very small minimum
at somet0, indicating a good LS. For largeD, s(t) also has
a minimum, but this minimum is very large. Thus one can
observe a good LS@see the line forD50.06 in Fig. 4#.

The transition to PS is accompanied by the temporal
calization of the phase differenceDu(t)5u r(t)2ud(t). In
Fig. 5~a! we give the evolution ofDu(t) for D50.05 and
«50.1, 0.125, and 0.15. It is found that for« far from «c

PS,
Du(t) evolves smoothly from 2np to 2(n11)p. While for
« near to the critical point for PS,Du(t) exhibits a stick-slip
feature. Furthermore, the stick-slip motion is irregular, i.
the slip timeT ~the time interval between two adjacent 2p
slips! is random. In Fig. 5~b! the statistics ofT, P(T), is
shown forD50.05 and«50.05, 0.075, 0.10, and 0.15. It i
very interesting that all these distributions possess mult
peaks, composed of a central peak and a number of s
peaks. The interval among these peaks equals the ave
period for a 2p rotation of the drive system, 2p/Vd . This
gives an interesting picture that the rotation of the respo
is controlled by the drive in a quantized manner. A compa
son of subfigures in Fig. 5~b! indicates that as« approaches

FIG. 3. ~a! and ~c! The relation betweenxr(t) andxd(t) for D
50.01 @~a!# and D50.06. «50.3. ~b! and ~d! The delayed-
coordinate plotxr(t2t) vs xd(t) corresponding to~a! and ~c!,
wheret50.12 in ~b! andt50.84 in ~d!.

FIG. 4. The lag functions(t) is plotted for «50.30 andD
50.06, 0.02, 0.01, and 0.005.
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«c
PS, P(T) is expanded in a quantized manner, i.e., n

peaks appear with the interval 2p/Vd . Furthermore, as
shown in Fig. 5~b!, the highest peaks shift to the right as th
coupling is increased. For couplings very near«c

PS, P(T)
has a large number of peaks. This type of slip-time distrib
tion was not observed before, and a deep study is neces
which is beyond our scope in the present paper. For b
small and largeD ’s, we find the similar feature ofP(T). In
Figs. 5~c! and 5~d!, we give the inverse mean slip time^T&21

varying against the« for D50.01 and 0.05. For«!«c
PS, we

find for both small and large parameter misfits,^T&}(«0
2«)21/2, as shown in Fig. 5~c!, where«0 is a fitting value.
This scaling law is in agreement with that for coupled pe
odic oscillators@15#. The scaling law of̂ T& near «c

PS for
small and largeD ’s, however, are extremely different. In Fig
5~c!, for D50.01, ^T&}(«c

PS2«)23/2, while in Fig. 5~d! for
D50.05, ^T&}(«c

PS2«)21. This difference reflects the
competition of PS and GS. For smallD, PS comes before
GS, thus the scaling around«c

PS exhibits a chaotic feature
Note that the exponent23/2 is typical for turbulence. In the
case of largeD, GS has already reached before PS, the ch
ticity is then suppressed.

Finally, we should emphasize that the fact that PS co
be stronger than GS can be found in a variety of systems.
example, we studied the response of a Lorenz oscillato
the drive of another Lorenz oscillator with mismatched p
rameters,

ẋd5s~yd2xd!,

ẏd5r dxd2yd2xdzd ,

żd5xdyd2bzd ,
~5!

ẋr5s~yr2xr !1«~xd2xr !,

ẏr5r rxr2yr2xrzr ,

żr5xryr2bzd ,

FIG. 5. ~a! The evolution ofDu(t)5u r(t)2ud(t) for D50.05
and«50.1, 0.125, and 0.15.~b! The statistics of the slip timeT for
D50.05 and«50.05, 0.075, 0.10, and 0.15. Multiple peaks c
be observed, where the interval among these peaks equals 2p/Vd .
Logarithm scale for theT axis is adopted to show these peaks.~c!
and~d! The inverse mean slip timêT&21 varying against the« for
D50.01 and 0.05. Dashed and dotted lines are fitting functions



w

-
en

the
t

rily

en
also

hat
s by
S is
the
For

vs
PS

ce
a-
ey

PRE 62 7885GENERALIZED SYNCHRONIZATION VERSUS PHASE . . .
wheres510, b58/3, andr d539, r r535. A definition of
the phase for a Lorenz oscillator has been given as follo

u r ,d~ t !5tan21H @Axr ,d
2 1yr ,d

2 2A2b~r r ,d21!#

@zr ,d2~r r ,d21!#
J . ~6!

Then similar average frequenciesV r ,d can be defined ac
cording to Eq.~3!, and one may study the phase entrainm

FIG. 6. The relationV r ,d;« @~a!# andlc
1;« @~b!# for the Lo-

renz drive-response system, wheres510, b58/3, andr d539, r r

535.
.
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of the response system to the drive. In Figs. 6 we give
relationsV r ,d;« @6~a!# andlc

1;« @6~b!#. PS is achieved a
«'39, as seen in Fig. 6~a!. GS occurs first at«'3 and loses
its stability at«'6.5, and then recurs at«'10. Obviously
«c

GS,«c
PS. This supports our result that GS is not necessa

stronger than PS.
To conclude, in this paper we studied the relation betwe

PS and GS. GS could be stronger than PS, and they can
occur at the same critical coupling. It is equally possible t
PS can be stronger than GS. We show these feature
using a phase diagram. For small parameter misfits, G
identified as LS. The stick-slip statistics is studied before
onset of PS. The quantized feature of slip time is shown.
small and large parameter misfits, the average slip time
the coupling obeys different scaling relations near the
threshold.
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