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Phase diagram of an Ising model with long-range frustrating interactions: A theoretical analysis

M. Groussort, G. Tarjus® and P. Viot?
ILaboratoire de Physique Theque des Liquides, Universiteierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
2Laboratoire de Physique Theque, Batiment 210, Universitearis—-Sud, 91405 Orsay Cedex, France
(Received 16 June 20p0

We present a theoretical study of the phase diagram of a frustrated Ising model with nearest-neighbor
ferromagnetic interactions and long-ran@oulombig antiferromagnetic interactions. For nonzero frustration,
long-range ferromagnetic order is forbidden, and the ground state of the system consists of phases character-
ized by periodically modulated structures. At finite temperatures, the phase diagram is calculated within the
mean-field approximation. Below the transition line that separates the disordered and the ordered phases, the
frustration-temperature phase diagram displays an infinite number of “flowers,” each flower being made by an
infinite number of modulated phases generated by structure combination branching processes. The specificities
introduced by the long-range nature of the frustrating interaction and the limitation of the mean-field approach
are finally discussed.

PACS numbegs): 05.50+q, 05.70.Fh, 64.60.Cn

[. INTRODUCTION situations involves lattice or continuum models with com-
peting short-range and Coulombic interactions. The purpose
of the present work is to study the phase diagram of such a

There are many physical examples in which a shorty,,qe| “namely the Coulomb frustrated Ising ferromagnet in

ranged tendency to order is opposed by a long-range frustrafhich |sing spins placed on a three-dimensional cubic lattice
ing interaction. In diblock copolymers formed by two mutu- jneract via both nearest-neighbor ferromagnetic couplings
ally incompatible polymer chains attached to each other, thgng long-range Coulomb-like antiferromagnetic terms. The
repulsive short-range forces between the two types Ofodel is introduced in more detail in Sec. Il and its ground
components tend to induce phase separation of the melt, bytate as a function of the frustration parameter, i.e., of the
total segregation is forbidden by the covalent bonds that linkatio of the antiferromagnetic coupling strength over the fer-
the subchains together. A microphase separation transitioomagnetic one, is studied in Sec. Ill. In Sec. IV, we inves-
occurs instead at low enough temperature, and the systetigate the finite-temperature phase diagram in the mean-field
then forms phases with a periodical modulation of structuresipproximation. Finally, the effect of the long-range nature of
rich in one component or the other, such as lamellarthe frustrating force§when comparing to the phase behavior
hexagonal, or cubic phas¢4,2]. In a similar way, self- of the prototypical model with competing, but short-ranged
assembly in water-oil-surfactant mixtures results from thdnteractions, the axial next-nearest-neighbor ISiAQINNI)
competition between the short-range tendency of water an@odel[10-12), as well as the limitations of the mean-field
oil to phase separate and the stoichiometric constraints ge@PProach are discussed in Sec. V.
erated by the presence of surfactant molecules, constraints
that act as the electroneutrality condition in a system of Il. THE COULOMB FRUSTRATED ISING
charged particleg3—5]. The same kind of physics also arises FERROMAGNET
in quite different fields. For instance, stripe formation in
doped antiferromagnets like cuprates has been ascribed to a
frustrated electronic phase separation, by which a strong lo- Q
cal tendency of the holes to phase separate into a hole-rich H=-J> SS+ > v(rij)SS;, (1)
“metallic” phase and a hole-poor antiferromagnetic phase is (i 2 17
prohibited by the long-range Coulombic repulsion between ) ) _
the holeg6,7]. A last example is provided by the structural WNere,J,Q>0 are the ferromagnetic and antiferromagnetic
or topological frustration in glass-forming liquids: the dra- coupllng_ strengthss; = i.l are Ising spin va_rl_a_lbles placed
matic slowing down of the relaxation that leads to the glas$" the sites ofa three-d|mens!0nal cu.b|c lattige) d.en_ofces
formation has been interpreted as resulting from the presen(,aesur_n rest_ncted to nearest neighboygis the vector joining
of frustration-limited domains whose formation comes fromStesi andj, andu(r) represents a Coulomb-like interaction
the inability of the locally preferred arrangement of the mol- €M withv (r)~1/r| when|r|—¢. (Throughout the paper,
ecules in the liquid to tile space periodical]; topological the lattice spacing is taken as the unit lengthhe above
frustration may also lead to low-temperature defect-ordered
phases, such as the Frank-Kasp@} phases in bimetallic
systems. 1additional examples include cross-linked polymer mixtures, in-
A coarse-grained description of the above-mentionederpenetrating networks, and ultrathin films.

The model is described by the Hamiltonian
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Hamiltonian is essentially the “hard-spin” version of the constant and is equal t60.873 78 . . . ,whereas the lattice
coarse-grained free-energy functional derived by Ohta an@Green’s-function expression gives1.064 356 992.
Kawasaki[13] for symmetric diblock copolymer systems,  The second point worth mentioning is that thér) ex-
with §;==*1 characterizing whether the system is locally pressed in terms of the lattice Green’s function has the same
rich in one type of monomer or anothelfkgT playing the discrete symmetry as the nearest-neighbor ferromagnetic in-
role of the Flory-Huggins interaction parameter, aQdJ teraction, whereas the true Coulombic form has continuous
being proportional to N2, whereN is the overall degree of rotational symmetry instead. The consequences are negli-
polymerization of a copolymer. gible for the ground-state and for mean-field analyses, but
In addition to considering the true Coulombic tersfr) may become important for the finite-temperature behavior of
=1/|r|, we have also studied, for mathematical convenienc¢he system in other approximatiofis7].
in the analytical treatment, an expressiorv¢f) in terms of

the lattice Green’s function that satisfies the Poisson equa- || PHASE DIAGRAM AT ZERO TEMPERATURE
tion on the three-dimensional cubic lattice. In the latter case,
v(r) is then simply given, up to a multiplying factor of# In the absence of the antiferromagnetic interactiéh (
as the inverse Fourier transform of the inverse lattice Laplac=0) the model reduces to the standard Ising ferromagnet,
ian, and the ground state of the system is obtained when all spins
are aligned in a ferromagnetic state. Oppositely, when the
A exp(—ik-r) ferromagnetic interaction is set to zerd=0), the model is
v(D=- > : (2)  equivalent to a Coulomb lattice gas and the ground-state of
<2 > [1-cogk,)] the system is a N antiferromagnetic state. Whé 0, the
a=Xy.z Coulombic interaction prevents the existence of a ferromag-

] ) ) netic phase, and in the thermodynamic limit, the total mag-
whereN is the number of lattice sites and the sum oker petization(charge is constrained to be zero. Instead, phases
= (kg Ky k;) is restricted to the first Brillouin zone. For jth modulated order, i.e., with periodic patterns of “up”
large Mthe lattice Green’s function behaves as #{#),  and “down” spins subject to the constraint of zero magne-
so that the expression in E(R) has the proper asymptotic tjzation, are formed. We have studied these phases both ana-
behavior. In practice, even at the next-neighbor distance, thl%tically with the long-range interactions modeled by the lat-
difference between the true Coulombic form and E).is  tice Green’s function and numerically with the true
very small[14]. One has, however, to be careful about twocoulombic form.
points. The first one is that the(r) defined in Eq(2) has a For small values of the frustration paramet@tJ, the
nonzero, finite value at=0,v(0)=0.2527310098...,a ground state consists of lamellar phases in which parallel
value that must of course be excluded when Considering ths|anes of ferromagnetica”y a|igned Spins form a periodic
Hamiltonian in Eq.(1).? For instance, Eq(1) when ex-  structure along the orthogonal direction. The system in such

pressed in Fourier space, can be written as a state can be mapped onto a finite one-dimensional system
] of length 2n, wherem denotes the width of the lamellae
_J - PUINT: [18,19.
H= 2 zk: VISkI%, ®) The short-range ferromagnetic contribution to the energy
per spin of a lamellar phase can be readily calculated, and
- 47Q _ 2
V()=-2 > cogk,)+—— Esr=—J| 3~ | ®)
a=Xx,y,z J
1 The Coulombic energy due to the long-range competing
X —v(0) (4 forces can be calculated in reciprocal space by using the
2 2 [1—-cogk,)] expression in terms of the inverse lattice Lapladisge Sec.
a=xXy.z II). For a lamellar phase of periodi® the wave vectors to be

R considered have only one nonzero component that takes the
and S(k) is the lattice Fourier transform of the Ising spin values k= 7(2n+1)/m with 0<n<m-1. Correspond-
variable S;. To assess the quantitative difference betweeningly, the lattice Fourier transform of the Ising spin variable,
the Coulombic form and that involving the lattice Green'’s é(k)z(l/JN)EN_lsieprk~ri), whereN is the total number
function, we have calculated the energy of the system iny o+ice site hlz;s its modulus given by
several periodic configurations of the spins. For periodic la- '
mellar patterns of large widtim, the differepce is negligible, N
but it increases whem decreases. For a Bkeantiferromag- |“s(|<)| = |§(k)| =
netic state, the Coulombic energy is related to the Madelung msin(k/2)

(6

Using then the identities

2The correction term involving (0) in Eq. (4) has been omitted in m-1 1
previous papergl5,16), but it leads only to very small corrections Z =m? (7)
when the paramete®/J is small. n=0 sin w(2n+1/(2m)]?
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IV 7 I ' 7] ferromagnetic energy. For a given frustration parameter,
i the ground state is given by the straight line that has the
105 . smallest energy. Whe®/J— 0, the ground state consists of
i lamellar phases whose period becomes larger and larger and
15 i whose range of stability decreases. The valueQ/df corre-
_ sponding to transitions between two successive ground-state
1.75 . structures are obtained by solving the equatiBm)
5 - =E(m+1). Therefore, wheiQ/J goes to zerom is asymp-
o . totically given by
225 - m~(Q/J)~ %, (13)
-2.5?» - a behavior that is analogous to that observed for lamellar

e phases of diblock copolymer systems at low temperature in

275 ° 0005 00T 0018 the so-called strong segregation lifit3]. (Recall thatQ/J
- Qu 1 plays the role of M? whereN is the total number of seg-
B s s ments on a polymer.Note that for a large widthm, the
difference between Eq10) and the value obtained from the
oy true Coulombic term is only weakly varying witin and can

FIG. 1. Ground-state energy of the lamellar phases with P& taken as a constant, so that Erl) also provides a very
=1,2,...,7 as dunction of the frustration paramet@/J for the ~ ACccUrate estimate both for the sequence of lamellar phases

inverse lattice Laplacian expression ofr). When Q/J goes to  and for the transition values @/J for the true Coulombic

zero, the period of the lamellar phases increases. The inset zoomsR®tential. _ _
on the region of vanishing frustration parameters, which corre- When Q/J increases, the period of the lamellar phases

sponds to the lower left region of the figure. decreases until one reachms=1 for Q/J=0.637. For a re-
gion of the frustration parameter between 0.637 and 1.800,
m-1 1 m*  2m2 this lamellar phase is then the most stable phase. In a narrow
> =+ —, (8) interval betweerQ/J=1.800 andQ/J=2.122 there is a cas-
n=0 sin (m(2n+1/(2m)]* 3 3 cade of phases (dm,x =), with m, decreasing untim,

. =2 as the frustration parameter increase=e Fig. 2a)]. For
one finds that the sum rug,|S(k)|*>=N is properly satis- 2 122 Q/J<3.820, the stable phase is X2x ). Note
fied and that the Coulombic energy per sk, is equal to  that tubular phases of the type{xm,x ) with both m;
and my,>1 are never stable. For 3.82@/J<6.237, the
9) ground state is a X1X tube. In another interval 6.237
<Q/J<6.611, the system loses translational invariance in
the third direction, and one observes a cascade of orthorhom-
m? . bic phases (X 1Xmj3), with m; decreasing as the frustra-
:Q[TJ”T[E_ZU(O)]}- (100 tion increases untimz=2. Between 6.611 and 9.549, the
stable phase is (11X 2). ForQ/J>9.549, the ground state
In Appendix A, we show that the same expression for thes the standard Ne state (X1x1) [see Fig. 8a)]. It is
Coulombic energy is obtained when performing the calculahoticeable that periodic structures of the type;&m,
tion in real space with an effective one-dimensional poten-<Xmz) with m;,m,,m;>1 and at least one of tha,’s finite
tial; this latter includes a convergence factor that helps hanalways have higher energies than those of the sequences
dling conditionally convergent sums appearing as a result ofm; X« X®), (oXm,X®), (XwXms), whatever the
the long-range nature of the forces and that is taken to zero aglue of the frustration parametésee Appendix B
the end of the calculation. It is worth mentioning that the The same analysis can be repeated with) given by the
above calculation in reciprocal space implicitly assumes thatrue Coulomb interaction. The exact same sequence of
the contribution from thé&=0 term is zero; physically, this ground states as before is obtained, but the values of the
means that the periodic system is embedded in a mediulfiustration parameter at the transition points are somewhat
with infinite dielectric constantFor a more detailed discus- shifted: For instance, the lamellar phase=1 is the most
sion, see Reff20].) Since for simulations on ionic systems, a stable phase when 0.6210Q/J<5.21, the cascade of “tubu-
similar choice is generally adopt¢d0], both numerical and lar” phases (IXm,X®) occurs around)/J=5.22, and (1
analytical calculations for our model have been performedx 2Xx«) is stable for 5.23Q/J<6.17 [see Fig. 0)]. The
using such metallic boundary conditions. cascade of “orthorhombic” phases Xl1Xmjs), with my
Figure 1 shows the total energy per spitlJ, which is  >1, appears aroun®/J=14.63[see Fig. 8)]. The stan-
the sum of the two contributions in Eq®) and(10) for the  dard Nel state is stable fo@/J>15.33. It is worth mention-
inverse lattice Laplacian expression, as a functio@bJ for ing that the counterparts of the lamellar, tubular, and ortho-
small values of the frustration paramet@fJ. (The plot for  rhombic phases in diblock copolymer systef$ [systems
the true Coulombic potential is very similaiThe slope of that are described at a coarse-grained level by the scalar field
each straight line corresponds to the Coulombic energy antheory associated with the Hamiltonian in Ed)] are the
the intercept with they axis corresponds to the short-range lamellar, columnar, and cubic phases, respectively.

m—1

E=Q nzo 2sifm(2n+1)/(2m)]*

w

27v(0)
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FIG. 3. Energy of the orthorhombic phases witim;
B : - ) ] =1,2,...,7 as dunction of the frustration paramet€/J. (a) For
=1,2,...,7(full lines) andm,=ce (dashed lingas a function of ¢ jyyerse attice Laplacian expression, the orthorhombic phases
the frust_ratlon parameté)/J. (a) For the inverse lattice Laplacian (1X1xmg) with my>1 are stable for frustration parameters
expression, the tubular phasesX(th, X =) with m,>1, are stable g >32- < 9.549.(b) For the true Coulombic potential, the ortho-
for frl_Jstratlon parameters 1.860Q/J< 3.820.(b) For the true Cou- rhombic phases are for 14.6%/J<15.33.(1x 1) is a short-hand
lombic potential, the tubular phases are stable for SQLJ  iation for(1x 1x ). The vertical dot-dashed lines are visual

<6.17.(1), (1x2) and(1x1) are short-hand notations fdl g iges for denoting the stability region of the phases.
XooXoo), (1X2Xw), and(1X1Xw»), respectively. The vertical

dot-dashed lines are visual guides for denoting the stability region ) ) ) ) )
of the phases. Fisher in their study of the axial next-nearest-neighbor Ising

(ANNNI) model[11] we denote(1"2P), consists of a peri-

In the region of stability of the lamellar phases, we haveodic repetition of a fundamental pattern formed by a succes-
also investigated if more complex structures involving sev-sion of n lamellae of width 1 followed byp lamellae of
eral one-dimensional modulations of ferromagnetically or-width 2. (When n=0, one recovers the simple lamellar
dered layers could be present and if multiphase transitiophase of width 2, denotg@), and wherp=0, one recovers
points at which more than simply two phases coexist couldhe simple lamellar phase of width 1, denotdd.) It is easy
occur. For both questions, the answer is negative. As an exe check that such mixed lamellar phases are never stable at
ample, we give in Appendix C the analytical expressions forzero temperature. In particular, they havéstictly) higher
the energy of the mixed lamellar phases that are formed bgnergy than the pure lamellar phases at the zero-temperature
mixing lamellae of widthm=1 and lamellae of widthm  transition point between th€l) and the(2) phases, aQ/J
=2 with some given periodic modulation. The simplest of =2/, so that this latter is a simple two-phase coexistence
such phases, which following the notation used by Selke angoint. This conclusion remains unchanged when one consid-

FIG. 2. Ground-state energy of the tubular phases with
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ers even more complex mixed lamellar phases, such dsor a given value of the frustration parameter, the critical
(1M2P11"22P2 1"2Ps) with n,,p, integers for a  temperaturel(Q) is then given by

=1,2,...s, whose fundamental period is formed by one- R

layer lamellae followed by, two-layer lamellae, then by, T.(Q)=—minV(k), (16)
one-layer lamellae, and by, two-layer lamellae, etc., two )

successive lamellae being composed of spins of oppositehere the minimum o¥ (k) is attained for a set of nonzero
signs. We have also studied one-dimensional quasi crystawave vectors{k.(Q)} that characterize the ordering at
line arrangements of lamellae: by using binary substitutionl,(Q). For the inverse lattice Laplacian expression of the
rules,[21] we have built quasi periodic structures by itera- long-range frustrating interaction, thke(Q)’s vary continu-
tion, but we have always founghumerically that their en-  ously with Q as follows:

ergy is higher than that of the pure lamellar phases. Note

finally that from the calculation of the energy of the mixed ke=(+arccogl—\7Q),0,00 for 0<Q<4/m, (17
lamellar phases at zero temperature, one can also study the

change of energy induced by adding defects in the pure la- k.= (,=arcco$3— \/ﬁ),O) for 4/7<Q<16/m,

mellar phasd2). As shown in Appendix C, adding defects (18
always costs energy, the dominant effect being the increase

in the short-range energy. The same analysis, leading to a k.= (m, 7, =arccog5—mQ)) for 16/m<Q<36/m,
similar conclusion, can be repeated for the whole range 0 (19

<Q/J<0.637 over which lamellar phases are favored.
ke=(m,7,7) for 36/7<Q. (20

IV. MEAN-FIELD THEORY One should of course add all vectors obtained by permuting

To describe phases with a spatial modulation of the magtheX.y,z coordinates in Eq17)—(20). The above ordering
netization, we consider a local mean-field approximation. |fvv?)v?-veétorslcgrrespﬁndﬁ resgecgvelyl,;o Iam%&'ﬂ E)l.m'
m;=(S,) denotes the local magnetization at sitandm(k) tubular [Eq. (18)], orthorhombic[Eg. (19)], and cubic or

: . : , Neel [Eq. (20)] phases. Whe®— 0 the ordering wave vec-
its lattice Fourier transform, the mean-field free eneFgy tor of[thc(]a farr:gel?ar structure gn?)es a4 which isganalogous

's given by to the result predicted for diblock copolymer systems in the
BF 8J 1 weak-segregation limit1,22].
N"”: ~5N E V(k)|ﬁ1(k)|2— N E In[2 costiBH,)], _ The corresponding critical temperatufie,(Q) _is then
k#0 [ 12 given by (recall that bothT andQ are expressed in units of
J)
whereB=1/kgT and the effective field on siieH;, is equal T.(Q)=6-4 /’7TQ+47TQU(0) for 0<Q<=36/m,
to —JZ;.;Vim;, or in Fourier transformed space, (22)
H(k)=—JV(k)m(k). (13

TC(Q):—6+47TQ(U(0)— 1i2) for 36/7<Q.
Minimization of the free energy with respect to the local (22
magnetizations leads to the self-consistent set of equations:
The mean-field approximation gives a line of second-order
m; =tanh BH;), (14 phase transition from the disordered to the modulated phases,
with T,(Q) first decreasing witl®Q, reaching a minimum for
for each lattice site. One must then solve the coupled equa® ,i,=1[4mv(0)?]=1.245871 at T¢(Qmin) =6— 1/v(0)
tions, Eqgs.(13) and (14), simultaneously, and subsequently and then increasing again for finally reaching a regime of
insert the solution in the expression of the free energy, Edlinear increase witlQ) whenQ=36/. It is worth noting that
(12). One finally searches for the configuration of tinds  the term 47Qu(0) is important for large frustration: indeed,
that leads to the deepest minimum of the free energy for aincev(0)>1/6, it allows one to obtain a positive critical
given temperature and a given value of the frustration paramtemperature for alQ’s. [In general,v (0) should be larger
eter. than the inverse of the number of nearest neighbors on the
To simplify the notation in the rest of the paper, units of |attice, e.g., 6 on a simple cubic latti¢eFor vanishingly
temperature, energy, etc. will be chosen such thatJ small frustration, the critical temperature goes continuously
=1. to TS, the critical temperature of the pure Ising ferromagnet.

A. Order-disorder transition line B. Structure combination branching processes

Close to the transition between the disordered and the At zero temperature, we showed that the system exists in
ordered phases, the magnetizatiopsare small and Eq14) pure modulated phases, whose modulation is commensurate
can be linearized, with the underlying lattice. At the transition between the
modulated and disordered phases, we have just seen that the
ordering wave vector varies continuously with the frustration

i~ 15 PR X )
M (15) parameter, hence indicating that a succession of incommen-
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R L B L L I L ML R MR The (2) phase corresponds to an alternate sequence of

pairs of ferromagnetically ordered layers and is characterized
by a wave vector whose only nonzero componentkis
=1/2. The corresponding order parameisy satisfies the
following equation:

Em2=tam‘{ \/Emz[z_ 7TQ+27TQU(O)]}: (26)

. 2 T
15 which has a nonzero solution when
] T<2—7Q+2mQu(0). (27
05 The associated free energy is

%.

04 05 06 07 08 09 1 1. N 2
Q

w

P PP PP T PP PP P PP B P E=(1—7T—Q-|—77'Qv(0))m§

, . N —TIn
FIG. 4. Mean-field phase diagram: structure combination

branching processes occurring at finite temperatures for a region of
frustration parameter where the ground states consigt)oénd(2)
phases. The dashed line corresponds to the soliton-approach pred
tion for the (uppe) stability of the(2) phase. The units are chosen
such thatkkg=J=1.

2 cosr( szﬁ[z— 7Q+ 277Qv(0)]) }
(28)

¥he line of first-order transition at which the two phases
coexist is defined byF ;y=F . In the T-Q phase dia-
gram, this line is almost vertical wit=2/7. As we have

. .. ... already stressed, no mixed phases coexist with( fheand
surate modulated phases is observed along the critical I|n?2> phases al =0 andQ=2/. However, the mixed12)

As the temperature increases fror: O. 10 T(Q), one ex- hlase may become more stable at a nonzero temperature.
pects a cascade of ordered phases with commensurate spa

dulati £ ) lexit il inti hed is phase is characterized by the modulation;
modulations of increasing complexity until a point is reache _ (24/3/3)my,c08(2ri/3+ /2), with the order parameter

at which incommensurate phases appear; this is what is ob- . . .
served for instance in the much studied axial next-nearef2 determined through the self-consistent equation

neighbor Ising moddl12], in which the cascade of phases is My, A

produced by “structure combination branching processes” mlzztan)'{—(s— —Q+477Qv(0)”, (29
[12]. To illustrate how such branching processes proceed, we T 3

consider first the low-temperature region of the phase dia- , . :

gram in which the simplest modulated phases, (the and “Wwhich has a nonzero solution for

(2) lamellar phases, are stabigee Fig. 4 Equations(13) 4

and (14) must now be solved beyond the linear approxima- T<3—- ?Q+47TQU(O). (30
tion. The(1) phase corresponds to an alternate configuration

of layers of up and down spins, wittm;=m;(—1)', which The corresponding free energy is given by

implies that the wave vector characterizing the modulation

has only one nonzero component equaktes. Using Eq. Fay 1 47Q )

(13) and Eq.(14), one gets ~N 5( 3 va(O)) mi,

m
m1=tan|‘{7l[2—wQ+4WQv(0)] , (23 —glnlz cos%mle(S—%QJrMQv(O))“-

which has a nonzero solution when (31)

Comparing now the free energy of the three phases,
T<2-7Q+4mQu(0). (24 (1), (2), (12), one can show that th¢l2) phase becomes
more stable than the other two in a wedge above a branching
From Eq.(12), the corresponding free energy is obtained agpoint at T,=1.03 andQ=0.63, at which the three phases
coexist. This represents the first step of a structure combina-
= 7Q tion branching process by which two adjacent phases, here
0 ( 1- —+277Qv(0)) m? (1) and(2), get separated above a given branching point at
N 2 finite temperature by a phase corresponding to the simplest
m, combination structure, here th&2) phase. A careful exami-
2 cosl{?[z—wQ+4va(O)]”. nation of the thermodynamic quantities shows that the en-
tropy of the(12) phase increases more rapidly with tempera-
(25  ture than that of thé1) and(2) phases; although it has an

—TlIn
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=T o B B (1) and(2) phases. Th€12) and(1) phases are separated
by the(122) phase, which itself is separated at higher tem-
perature from thé1) phase by thé132) phase, and so on,
until one presumably reaches an accumulation point of the
branching process along the transition line above which the
(1) phase melts. Beyond this accumulation point corre-
sponding to a sequence ("2) phases when—«, devil's
staircases and incommensurate phases are expgtfd
Figure 5 provides a broader picture of the phase diagram in
the region where the modulated phases are lamellar: the
phase diagram appears as a succession of flowers of complex
modulated phases, separated by regions in which the pure
lamellar phaseg1),(2), etc., are stable; the flowers get
closer and closer when the frustration decreases. Note that
the first branching point at which the simplest mixed phase
appears is always at a nonzero temperature.

3% 7

1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
00 0.2 0.4 0.6 0.8 1 C. Soliton approach

Q At high enough temperature, near the critical line, the
modulated phases are incommensurate, since we saw in Sec.
FIG. 5. Mean-field phase diagram(zartia) view of the infinite |\ A that the ordering wave vector varies continuously with
sequence of “flowers” of complex modulated phases appearing afrstration. More insight in the phase behavior can then be
finite temperatures for the range of the frustration parameter Wherﬁrovided by employing the soliton approach developed by
the ground states are lamellar phases. The dashed and dotted qugék and co-worker$23,24. More precisely, this approach
correspond to the soliton-approach prediction for (iygpe) stabil- allows one to study analytically the melting of a commensu-
ity of the (2) and(3) phases, respectively. The units are chosen .. phase to incommensurate phases by focusing on the be-
such thakg=J=1. havior of the domain walls that separate commensurate re-

unfavorable energy contribution, thel2) phase becomes gions, dor_nain walls that can pe considered as “soIi_tons.” In
thermodynamically stable when the temperature become&€ following, we use the soliton method to investigate the
high enough T,=1.03). Moreover, for all temperatures be- Stability of commensurate phases at high temperature.
tweenT=0 andT,,, both the entropy and the energy of the N the vicinity of the(uppe) melting line of the(2) phase,
(1) and(2) phases are identical along the coexistence linéN€ can expand the mean-field equations in the appropriate
between the two phases. order_ variables, which leads to the following free-energy
To study in more detail the branching processes, one cafynctional:
no longer rely on explicit analytical calculations as done 1 1
above, because they become rapidly intractable. To obtain— = — — E (V(k)+ —
the phase diagram in a more systematic way, the mean-fiel 2% B
equations, Eq912)—(14), can be solved iteratively for finite
lattices with periodic boundary conditions. The thermody- XE 2 S(Kq+ Ko+ kgt ky— 7M. MM, my
namically stable solution corresponds to that with the small- T k e
est free energy. For each temperature it is assumed that the

T
A2,
|mk| + 12

spin structure repeats itself aftiirlayers(only commensu- =2 > 8(kytkot+kstkstks+kg—7)
rate lamellar structures are considerethe iterative proce- 307 kT ke

dure converges whenever the initial configuration is not too A A A A A

far from the equilibrium one. The iterative sequence is as < M, Mi,Mic;Mi, Mic My + - -, (32

follows. The effective field$l; are calculated from the set of
initial magnetizationgm?} via Eq. (14). One computes the where a constant term has been discarded ani a
Fourier transform of the fields;, and using Eq(13) yields  reciprocal-lattice vector. The above expression, EP),
then a new set of magnetizatiofis'} that is used as the contains both regular and “umklapp” terms; these latter,
input for the next iteration. The calculation should be per-represented by the second and third contributions in the
formed for various values dfl for examining many different right-hand side of Eq(32), correspond to terms in which the
commensurate structures. We have carried out the calculsum of the wave vectors is equal to a reciprocal-lattice vec-
tion for N up to 16. The phases with largé-periodicities, tor, i.e., they keep track of the underlying lattice structure
like in the ANNNI phase diagrarfil2], are only stable in a and are responsible for the stability of the commensurate
small neighborhood of the critical line. Therefore, the mostphases.
of the phase diagram, except in the region close to the criti- For studying the stability of thé2) phase near the critical
cal line, can be drawn by considering simple commensuratine, we consider wave vectors that are close to the ordering
wave vectors. wave vectok . ,= (7/2,0,0) with small fluctuationg, in the

The results are shown in Figs. 4 and 5. Figure 4 illustrateslirection of the modulation, here along tkewxis, andqg, in
the structure combination process in the region between thidae perpendicular layer. For the present case, it is sufficient
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to truncate Eq.32) after the fourth ordef23], and after
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the commensurat¢é2) phase. The overall minimization of

expanding the interaction term to second order in the flucF[ ¢] is attained when the phase functi@i{x) obeys the

tuations, the free-energy functional can be rewritten as

= 1 20 12\ | 2
N:—E(F%qi, (r+aqx+cqx+c ql)|mkﬂ/2+q|
+T D 8(ky+kyt+kst+ky)
d1029394

14 A A A
X[2 M ota M pta,M—k ot agM—k 1+ ay

+
sl=
>

Kot A1 Mot 0ot agMi gy
TNk gy Mok ayM—k o+ agM—k o+ q4)] , (33

where r=T—-4+27Q—-47Qu(0)<0, a=2-27Q, c
=27Q, andc’'=—7Q+ 1. Now introducing two continu-
ous order parameters,

d3
m+<r>=ﬁj (qu);xrxiqw)mkﬁ,ﬁq, (34
dq
m,<r>=ﬁj o SHIADM g,

wherem_(r) is the complex conjugate ah, (r), one can
express the free-energy functional in
Ginzburg-Landau form:

F_st 110 a 2+1 v
N a5 ox i M| F e IVamy]
1 a? T T
- o _ 4, 4 4
+2 r 4C)|m+| +8|m+| +8(m++m_),

(39

whereV | =(0,d/dy,d/ 9z) and the last term is generated by

the umklapp terms. Following Bak and von Boeh23], we
choose the following ansatz for the order parameters:
m.. =Aexd *ig(x)], (36)

where the amplitudd is a constant. Note thab(x) is con-
stant in the commensura{@) phase and thah can be ob-

tained by minimizing the free energy in that phase, which

givesA%=3|r|/T. Inserting the above expression in E85)

the following

sine-Gordon equation:
¢"(x) +4v sinf4¢(x)]=0,

where v =TA?/(24c). The solution consists of regions of
constant phase separated by solitons in whkidhcreases by
/2 over a short distance. More generally, one can look for a
solution over a(large distancelL that consists of equally
spaced solitons whenew/2=L ¢'. The corresponding free
energy is given by25,26|

(39

F :[i 12 |8
cAZL

(ZS/ + 1_601/2(25/8)(% _ 2_7701/2) ,
m ¢’
(39

v _-
T 2c

where¢’ =nmx/(2L). The first term, proportional to the soli-
ton density, is the formation energy; the second term corre-
sponds to a weak repulsion between solitons. The commen-
surate phase is stable as long as the first term remains
positive; otherwise, thé2) phase becomes unstable with the
respect to soliton formation. The critical temperature corre-
sponding to this melting transition is given by

1— 2
T<2>,|C:4_27TQ+47TQU(O)_ ; %,

and is shown as a dashed line in Figs. 4 and 5.

A similar analysis can be performed to study, for instance,
the stability of the(3) phase near the critical line. The main
changes are that the relevant ordering wave vector is how
(7r/3,0,0) and that the sixth-order umklapp terms should be
kept in Eg.(32). A transition between thé3) phase and
incommensurate phases is found for

(40)

T<3>_|C:5_47TQ+47TQU(O)

5(5—4mQ)

1+207Q ° “D

3’Trl 4
— 4 11-4mQ]

The result is shown as dotted curves in Fig. 5. The deviation
from the numerical solution of the mean-field equations that
is seen when moving further away from the critical line
comes from the truncation of the free-energy functional that
is used in the soliton approach.

V. DISCUSSION

The fact that spin models with competing interactions can

leads, up to a constant, to the following free-energy funcyive rise to complex spatially modulated phases has been

tional per unit area perpendicular to tkelirection:

s a | TA?
¢ (X)—E¢(X)—1—2C[1

A2
F[¢]=C7f dx

—cos4p(x)]|, (37

where the first term is minimized fap(x) = Ax/(2c), which

known for several decades. The ANNNI model is one of the
simplest and best-studied such system, in which Ising spin
variables situated on a lattice are coupled via nearest-
neighbor ferromagnetic interactions i - 1)-dimensional
layers orthogonal to, say, the axis and via next-nearest-
neighbor antiferromagnetic interactions along xrexis[12].

The major additional ingredient that is present in the Cou-
lomb frustrated Ising ferromagnet and not the previously
studied models is the long-range nature of the competing

corresponds to an incommensurate spatial modulatiorantiferromagnetic interaction. It is then worth reviewing

whereas the second term is minimized t#fx)=0, i.e., in

some of the differences between the phase behavior of the
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three-dimensional Coulomb frustrated ferromagnet and that +e o 2m

of the three-dimensional ANNNI and related modfs]. Ec=7 > 2 W(i—j+2mN'|)SS;, (A2)
First, the long 27 range of the frustrating interaction forbids My=—w =1

ferromagnetic ordering for any nonzero value of the frustra-

tion pargmeteQ, and,gas a re}s/ult, there is no Lifshitz point yv_hereN’ is the ind_ex_for labeling the right and left <_:e||s and
[28] in the model. Second, there is no highly degeneraté:) _deno_te sites within the pell. The energy per S|te_ can be
multiphase point at zero temperature: this is in contrast wittfllvideéd into two parts: the first one comes from the interac-

the ANNNI model that possesses an infinitely degeneratdon Petween the spins within the cell and the second one
multiphase point at zero temperature, a point from whichcomes from the interaction between a spin and its images in

springs an infinite number of distinct commensurate modu!he other cells; this reads

lated phase§29]. Third, the phase diagram of the Coulomb | om

frustrated Ising ferromagnet, as illustrated in Fig. 5, displays _ _ T C_ihea

an infinite number of distinct flowers of complex spatially Ee=E1tB=7 ”2:1 W(li-iDsS

modulated phases that emerge from zero-temperature two- o

phase coexistence points, the extent of the flowers inlthe 1 2 E o ,

—Q phase diagram decreasing as the frustration parameter tam e W(li—j+2mN)SS;. (A3)
decreases.

The long range of the antiferromagnetic interaction in thegy considering all contributions between pairs of sites within
Coulomb frustrated ferromagnet also brings about additionaie cell, one gets foE;,

limitations on the mean-field approach. On general grounds,

one can expect the mean-field description to reproduce the 1 m-1

topology of the phase diagram correctly, but to become in- Elz—( m(W(0)—W(m))+ 2 [2(m—n)—n]W(n)
n=1

creasingly inaccurate as one approaches the transition line, 2m

both from below and from above, because it overlooks the 2m-1

role of fluctuations. In the present case, the fluctuations have - > [(2m—n)—n]W(n)) ) (A4)
a major effect on the transition line: as argued by BrazovskKii n=m+1

[30] on the basis of a self-consistent Hartree treatment of a

field-theoretical model with properties similar to that of Cou- After some calculation, and taking the limit—0 at the end,
lomb frustrated Ising ferromagn&gnd confirmed by Monte One gets

Carlo simulations[15], the fluctuations drive the order- 5
disorder transition from second to first order. The mean-field E :Q( 2mm j)
approach is thus questionable in the vicinity of the transition 1 3 3/
line (which is why it may not be worth pursuing the search

for devil's staircases as was done for the ANNNI model The sum over the right and the left cells can also be per-
[23,32). However, the main points reviewed above are notformed, ancE, is then given by

affected.

(A5)

7Q 2m - a(2mti-j) 4 o= a(2m+j—i)

E, SS,. (A6)

APPENDIX A: CALCULATION OF THE COULOMBIC
ENERGY OF LAMELLAR PHASES IN REAL SPACE

:ﬁw&l a(l—e M)

: ) y using the electro-neutrality conditiorE(S;=0), and in
The calculation of the ground-state energy due to thétie limit «— 0, one obtaing,, which has a finite value:

long-range Coulombic interaction can be performed as fol-
lows. For lamellar phases, the sum over the reciprocal vec-

2m 2

tors is performed along one direction. One then obtains theE :ﬂ E (i—j)?SS=— ﬂ 2 is| —_ 7Qn?
one-dimensional potential corresponding to the inverse lat- 2 4m2 i J ! om2list 2
tice Laplacian14], (A7)

exp(—ali|)—1 This gives for the Coulombic enerdgy,
W(i)=2mQ———, (A1)

@ e mm? A8
Q5 *3/ (A8)

wherea is a convergence factor that will be taken to zero at
the end of the calculation. The introduction @50 in the
calculation allows one to handle conditionally convergent
sums. The average Coulombic energy per site of a ¢ell®2
given by

By subtracting the self-energy of the inverse lattice Laplac-
ian potential to Eq(A8), one exactly recovers E¢10).

APPENDIX B: GROUND-STATE ENERGY
OF TUBULAR AND ORTHORHOMBIC PHASES

®Itis worth pointing out that the field-theoretical description of the ~ Let us calculate the energy per site for configurations
symmetric diblock copolymer systems has also been shown to bavhose phases are periodic with a orthorhombic cetl (
long to the class of “Brazovskii” Hamiltoniangl3,22,31. X m,Xmjs). The short-range energy per spin is obtained as
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s T B1)

In the reciprocal space, the allowed wave vectors have compopgtig+ 1)m/my,(2n,+1)m7/m,,(2n3+ 1)7/mg], with
0=n;<m;—1, 0<n,<m,—1, 0<nz<my—1, so that the Coulombic energy per sjipis given by

m;—1 my—1 mg—1

>

n1=0 ny,=0 n3=0

E.=Q —2mv(0) (B2)

S ((Zna+ 1)77)2
2m

o

When bothm, andms; go to infinity, one obtains lamellar 1. The (1"2P) phases

phases of periodr®, and Eq.(B2) reduces to Eq(10). The(1"2P) phases are the simplest mixed phases that one

When the periodic structure loses translational invarianc@n, construct with the two elementary bricks formed by la-
in a second direction, one obtains a lattice of tubes Whosg,q|iae of widthm=1 andm=2: they are formed by a pe-
perpendicular section is a rectangular eejix m,. Although o ic sequence of ferromagnetically aligned layers whose
we have not obtained a fully analytical expression for sucty,nqamental period consists nbne-layer lamellae followed
phases, some rgsults can pe derived. The Coulombic energy n two-layer lamellae, two successive lamellae being
for tubes of sectiom, X m, is bounded as follows: formed by spins of opposite signs. Because of the electro-
neutrality (zero magnetizationcondition, one has to distin-
guish three different families: n(=2q,p=2r), (n=2q
+1,p=2r), and (=2qg,p=2r+1), whereg andr are inte-
gers. The(129+12271) phases are not allowed at zero tem-
perature because they it does not satisfy the electroneutrality
condition. Because of the two-dimensional in-layer ferro-
magnetic ordering, the wave vectors characterizing lamellar
phases have only one nonzero component.

Ec(inf(my,my))<E(m;,m,)<E (supgm;,my)).
(B3)

If pXm;=m,=m, wherep is a positive integer, the energy
E.(m) behaves as

Ec(m?)=C(p)m*+0O(m), (B4)

a. The(1°%?" phases

where the numerical coefficienS(p) are summarized in The size of the one-dimensional unit celllis=2q+ 4r

Table I.
We have also calculated numerically, via Eq81) and

and the allowed values of the nonzero components of the
wave vector aré&=21/(2q+4r) wherel is an integer such

(B2) the total energy of modulated orthorhombic phaseghatl=0,...,20+4r—1. Summing over all sites of the lat-

(myXmyXmgz) whenoo>m;,m,,ms>1. It is always higher

tice, one finds

than that of the phases Kim,Xmj3) or (1X1Xm,).

APPENDIX C: MIXED LAMELLAR PHASES

The inverse Laplacian approximation allows one to calcu-
late exactly the energy of a large number of periodic struc-
tures at zero temperature. As an illustration we present here
the results for mixed lamellar phases that are potential
ground-state candidates in the region@f where the most
stable among the simple lamellar phases involve lamellae of
width m=1 (phase(1)) andm=2 (phase(2)).

VN

2q+4r

[sin(2rk)|
cos(k)cos(%)
|sin(qk)|
cos(k)cos{z

1S(k)|=

JN

:2q+4r

: (C1

if k# = m/2 andk# . Otherwise, one obtainkS(* w/2)|

TABLE I. Coefficient of the leading term of the Coulombic =[VN/(2q+4r)]y8r and|S()|=[yN/(2q+4r)]2q.

energy per site for periodic tubular structuges 1,2,3,5¢°.

C(p) C(p)* p?

Using the identities

2

P [ qal

1 0.22208 0.22208 a+2r-1 SN g+ 2r

2 0.089 083 0.356 33 “ s(WI 25{ o z-8r(r+a)
3 0.045 957 0.41361 co co

4 0.027 568 0.44109 a+2r 2(q+2n) 2
5 0.018 304 0.4576

oo 0 7/6=0.523% . ..

and
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[ qml \? . B ) 2n
q+2r—1 SIN q+2r <1n22r>_J _ +2n+8r
2 S 2 (ra, (C3
1 sin — 0 2n2+ 64r2+32rn , (0)) -
q r ™ — 2TV .
(2n+8r)?
one can express the Coulombic energy per spin as The (1%92™) phase withm=2r +1 is characterized by the
sequence
2%+ 16r°+ 16qr
E.=Q|m >— —2mv(0)|. (C4) TITL o TETTHL LU LT T L 1T
(2g9+4r) * ~ S A
The short-range contribution can be easily calculated and th@nd the nonzero components of the wave vector are given by
total energy per spin is equal to k=2wl/(4m+4q) with =1 ...4m+4qg—1. This leads to
. VN 2Jsin(gk)|
B q 1S(k)|= (C9
E<12q22r>—J -2+ 4q+4m k
q+2r cogkjcog 5

( 202+ 16r2+ 16qr
v

(2q+4r)? 2””(0))- if k#+w/2, and|§(i 7r/2)|=\/N/(4q+4m)2\/§q_ The to-

tal energy per spin is finally given by

(CH
q
. E<12q2m>:J -2+ —
It is now easy to show that the above energy, whatever the g+m
strictly positive values ofj andr and whatever the value of ) )
Q/J, cannot be less than either the energy of(thephase or n 329°+64m“+32mq —2m0(0)
that of the(2) phase. Indeed, for the conditiors2q,2r (49+4m)? '
<E(y) andE;2qp2ry<E ) to be simultaneously satisfied, one
(C10
must have
As before, there is no range of the frustration param@tdr
2q+4r _ _ q+2r c6 for which these phases become ground states of the system.
mq < m(qtr)’ (€0
2. Energy of defects in the(2) phase
which is impossible. The issue of the stability of the mixed versus simple
lamellar phases can be addressed in a different way. Starting
b. The (129*Y) and (12922 *) phases from the (2) phase, one can calculate the energy change

brought by inserting one or several defects of typpwithin

the periodic structure. The creation of one such defect results
from the flip of a pair of up-down spins. This corresponds to
the simplest excitation that one expects in {{& phase:

FUTL o LU oo LU 0L o LTTLL oo 11U o TTLLTTLL o= . 1TLTLTLL ... The resulting de-
%n,_/ — - pi? _

To satisfy the requirement of the global electroneutrality,
the unit cell of such phases is built as follows. For the
(1"2%) phases, wittm=2q+1, the unit cell is

fective structure can also be viewed agH?2?™ phase
wherem—o. The Coulombic energy of &422™) structure
for a cell of size 4-4m is derived from Eq(C4) and reads
and the nonzero components of the wave vector are given by

2r n 2r

k=2wl/(8r+2n) wherel=1...8+2n—1. After some €c(1422m = (4+4mM)E(1402m,
algebra, the Fourier transform of the spin variabl) is 24 Am2+8m
obtained as =Q wT—Zwv(O)(4+4m) )
%
2|cos — )
\/N 2 If one subtracts the Coulombic energy of @ phase for

|S(k)l= (€7 the same unit celllE4+4m) from the above equation, one

k
COSk)CO{ 5)‘ obtains the Coulombic energy for one excitation if2)
phase. Strikingly, this energy goes to zero wimemgoes to
A infinity, which means that the presence of one defect in the
if k=7 and|S(ar)|=[N/(2n+8r)]2n. The total energy (2) phase does not change at all the Coulombic energy of
per spin is then this phase(This is not a result of the macroscopic limit.

2n+8r
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Conversely, this defect has a short-range energy cost that gthases that are identical. Settifg=q=2, whereasn,m
easily obtained a&sg=4. In all the region of frustration —o°, one obtains the energy of ti2) phase in the presence
parameter€)/J where the(2) phase is more stable than any of two defects. We have also found that the introduction of
other simple lamellar phase, the presence of one defect the two defects is energetically unfavorable for the system
then energetically unfavorable for the system. for any value of the frustration. Although we have not ob-

We have also calculated the energy gf2a phase where tained a general proof, the phase-locking into simple lamellar
two defects have been introduced. We have first calculateghases at zero temperature seems to be well established for
the energy of the(22M12P22M12d) and (22M*2112P*24)  the model.
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