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Nearest pattern interaction and global pattern formation
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Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 16 May 2000!

We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space,
where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our
approach is general, we found that this study is relevant in particular to the pattern formation on a periodically
vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such
as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and
decoration.

PACS number~s!: 05.65.1b, 47.54.1r, 45.70.Qj, 47.35.1i
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Pattern formation in nonlinear systems, and especially
patterns arising in parametrically forced extended me
such as Faraday systems, vibrated granular layers, and
trically driven liquid crystals have drawn interests in rece
years@1,2#. From a dynamic point of view, it is noteworth
that recent experimental studies of the patterns arising
vertically vibrated thin granular layer have led to the disco
ery of the so-called oscillons, a fluidlike localized nonline
wave @3,4#. Following the discovery of oscillons, pattern
with different dynamic characteristics in a periodically v
brated granular layer were also reported. These are~i! the
patterns featuring the skew-varicose and crossroll insta
ties in a fluid convection@5# and~ii ! the kinks, the interfaces
or fronts that separate domains of different values of pha
@4,6#.

An understanding of the fundamental nonlinear dynam
behavior of granular materials remains a serious challe
@7,8#. Several theoretical approaches, including molecu
dynamics simulations, order parameter equations,
hydrodynamic-type models, have been proposed to desc
this phenomenology. Direct molecular dynamics simulatio
@6,9# reproduced a majority of patterns observed in exp
ments and many features of the bifurcation diagram,
though until now have not yielded oscillons and interfac
Hydrodynamic and phenomenological models@10–13# re-
produced certain experimental features; however, neithe
them offered a systematic description of the whole rich
riety of the observed phenomena@14#.

Earlier, we proposed a nearest pattern interaction mo
to capture the essential phenomenology of the birth of os
lons @15#. As this model was proposed before the experim
tal reports of the other types of patterns~i! and~ii ! mentioned
above, it remains primitive. In this study we would like
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generalize this model to capture also the dynamic phen
enology of the patterns~i! and ~ii !.

We start by presenting and briefly outlining the near
pattern interaction model that we proposed earlier to st
oscillons. For more details, readers may refer to Ref.@15#:

M :hn11~rW !5F@hn~rW !1aG~Dhn~rW !!#, n51,2, . . .
~1!

with

Dhn~rW ![
1

DSE Wr 8W rW@hn~r 8W !2hn~rW !#d2r 8W , ~2!

where r 8W runs over entire space butWr 8W rW is a weighting
function being 1 ifR<ur 8W2rWu<3R but 0 otherwise, andDS
denotes the area of the concentric region whereW51. We
set hn(r 8W ) to be coupled with its neighbors in terms of th

introduced averaged fluctuationDhn(rW), which effectively
allows the interaction only with its nearest patterns@refer to
Fig. 1~a!#. This model employs a discrete mapping for tim
evolution. For a periodically forced oscillator, the discre
time step often corresponds to the period of forcing.

We assume that patterns are to grow from a noise, sub
to a statistical constraint that a rise (h.0) or a fall (h,0)
from the reference flat surface (h50) is equally likely over
time. Such constraint satisfies the mass conservation.
implement such assumption in the model, we took the f
lowing odd function as our functional form ofF @see Fig.
1~b!#:
-

d
n

FIG. 1. ~a! A nearest pattern interaction ap
proximation. The field atP is coupled with the
fields at other locations only within the shade
region. HereR represents the domain size of a
excitation. The functions~b! F and~c! G used in
Ref. @15# are presented.
7778 ©2000 The American Physical Society
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F~h!5H h for uhu<h0

h0 for h.h0

2h0 for h,2h0 .

~3!

With such functional form ofF, the noise does not grow an
remains as a fixed point if there is no nonlinear coupling w
neighbors, i.e., ifG50.

For the following specific form ofG @see Fig. 1~c!#, we
learned in our earlier study that the model is capable of p
ducing the oscillons, and by varying the coupling constana,
the model could capture the formation of stripes, oscil
chains, and oscillon lattice, etc.@15#,

G~Dh!5tan
p

2
Dh/~2h0!. ~4!

The significance associated with other forms ofF andG was
a question in our earlier study that we could not answe
the absence of other forms of patterns~i! and~ii !. With more
patterns available now, we may proceed to generalize
model as follows.

Let us start with the functionG. The functionG is meant
to incorporate the interaction between neighboring exc
tions, so we can change the nonlinearity of the interaction
using another function forG. Earlier, we had chosen highl
nonlinear function Eq.~4! for G, to give sufficient hysteresis
for stable oscillon structures. What if we choose a less n
linear function forG? In such a case, the model exhib
skew-varicose and crossroll instabilities, while the stabi
region of oscillons becomes narrower. For example, usin
simple linear functionG(Dh)5Dh, and settinga51.5, we
obtain the pattern dynamics as shown in Fig. 2. We h
checked many forms ofG such as piecewise linear function
and simple nonlinear polynomials. In these cases, we ob
in general the patterns as featured in Fig. 2 as long asG is
odd and monotonically increasing. However, these instab
ties do not occur ifG is highly nonlinear as in the case of E
~4!, for the stability boundary becomes too wide. We no
that the stability of convection rolls in a fluid heated fro
below is limited by these secondary instabilities. Recen
an experimental study has shown that such pattern dyna
are also found in granular systems@5#.

Next, we turn to the role of the functionF. We notice
immediately that by changing the slope of the functionF, we
can make the system a bistable system. For that purpose
introduce a new parameterb as follows:

FIG. 2. Secondary instabilities;~a! skew-varicose instability;~b!
crossroll instability.
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F~h!5H bh for buhu<h0

h0 for bh.h0

2h0 for bh,2h0 .

~5!

For b.1, h50 becomes an unstable equilibrium, whi
h51h0 andh52h0 become stable equilibria~see Fig. 3!,
making the system bistable. Conceivably, as there are
two stable attractors separated by an unstable one, the
main may be divided into two parts, one with high elevati
corresponding toh51h0 and the other with low depletion
corresponding toh52h0, separated by a phase fron
namely, a kink. The model now contains two control para
eters,a,b, which have a definite role, respectively. That
a measures the degree of nonlinear coupling with the ne
bors, leading into self-organization, andb determines the
degree of nonequilibrium of the system.

For b.1, and for the tangent function of Eq.~4! for G,
the results are summarized in Fig. 4. Whena is below a
certain critical valueac1, indicated by the filled circles in

FIG. 3. The functionF (b.1). The slopeb, which changes the
local dynamics ofh, influences the overall pattern dynamics dras
cally. See the text for details.

FIG. 4. Phase diagram in general. The open circles and squ
are to indicate the region of hysteresis. Conditions for numer
simulations are the same with Ref.@15#. See the text for details.
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Fig. 4, the map synchronizesh’s with their neighbors, so
flats occur. In this case, however, there now emerge
possible phases of flats that are separated by an inte
called a ‘‘kink’’ @4#. Figure 5~a! shows a typical kink solu-
tion of our model. As we increasea aboveac1, the inter-
faces are decorated by periodic undulations as shown in F
5~b! and 5~c!. We found that the areas embedded within t
region of the opposite phase as in Fig. 5~b! are unstable and
shrink, while fronts that extend to the wall@as in Fig. 5~c!#
are stable. We point out that the undulated kinks shown
Figs. 5~b! and 5~c! resemble the decorated kinks report
recently in shaken granular beds@4,6#. In our model, deco-
rated parts oscillate atf 51/2 while flats aref 51. But in
experiments, both flats and decorations are oscillatingf
51/2. This is because, in real experiments, flat regions
dergo a period doubling while a front separating these
gions does not@4#.

Associated with the kinks, the present model furth
shows the followings. First, asa exceedsac2, corresponding
to the region denoted by the filled squares in Fig. 4,
decorated kinks begin to be elongated to generate stri
Figure 6~a! shows the decorations elongating into stripes
a is raised to the stripe region (a516). The same phenom
enology is observed in experiments@6,16#. Second, the deco
ration can be converted into oscillon chains when we
creaseb below unity, as in Figs. 6~b! and 6~c!. This point
implies that oscillon chains can emerge from the decora
kinks when vibrational acceleration is decreased abruptl
the oscillon region, and we have confirmed that this pheno
enology is indeed observed in a laboratory experiment@16#.
This point is noteworthy because the undulation in our mo

FIG. 5. Various types of kinks;~a! linear kinks (a58.0,b
51.5); ~b,c! decorated kinks (a513.0,b51.5).
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is not merely a simple curvature of interfaces, but rela
with oscillons@17#. This aspect is similar to the stripes turn
ing into a chain of oscillons as conformed experimenta
Here,a corresponds to the acceleration of the granular la
relative to the plate during the time of collision,g in Ref. @2#.
As G5aw2/g ~wherew is the driving frequency,a the am-
plitude of oscillation, andg is the gravity acceleration! in-
creases,g also increases so that standing waves occur. H
ever, asG is increased further to thef /2 flat state, which
meansb.1 in our model,g is decreased abruptly and stan
ing waves disappear@2#. In this case, loweringG means in-
creasinga.

Our method also applies to the patterns reported ind
experimental works@18#.

In conclusion, we have constructed a dynamical mode
understand the key mechanism for the pattern formation
parametrically forced spatially extended medium. The ne
est pattern interaction model here contains two control
rametersa andb; b controls the number of stable equilib
rium states of the system, anda monitors the nearest patter
interaction. Despite its extreme mathematical simplicity, o
model turns out to provide a unified perspective of the va
ous patterns observed experimentally in periodically vibra
media.
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FIG. 6. ~a! Kinks under kink to stripe transition (a516.0,b
51.5). ~b,c! Oscillon chains from decorated kinks in Figs. 5~b! and
5~c! (a513.0,b50.95).
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