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Nearest pattern interaction and global pattern formation
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We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space,
where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our
approach is general, we found that this study is relevant in particular to the pattern formation on a periodically
vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such
as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and
decoration.

PACS numbe(s): 05.65:+b, 47.54:+r, 45.70.Qj, 47.35ti

Pattern formation in nonlinear systems, and especially thgeneralize this model to capture also the dynamic phenom-
patterns arising in parametrically forced extended medianology of the patterng) and(ii).
such as Faraday systems, vibrated granular layers, and elec-We start by presenting and briefly outlining the nearest
trically driven liquid crystals have drawn interests in recentpattern interaction model that we proposed earlier to study
years[1,2]. From a dynamic point of view, it is noteworthy oscillons. For more details, readers may refer to IRE5):
that recent experimental studies of the patterns arising in a
vertically vibrated thin granular layer have led to the discov- - - >
ery of the so-called oscillons, a fluidlike localized nonlinear ~ M:Pn+a(r) =F[hn(r)+aG(Ahy(r))], n=12,...
wave [3,4]. Following the discovery of oscillons, patterns @
with different dynamic characteristics in a periodically vi-
brated granular layer were also reported. These(iarthe  with
patterns featuring the skew-varicose and crossroll instabili-
ties in a fluid convectiof5] and(ii) the kinks, the interfaces
or fronts that separate domains of different values of phases Ahn(r)=
[4,6].

An understanding of the fundamental nonlinear dynamical
behavior of granular materials remains a serious challeng@here r’ runs over entire space bW; is a weighting
[7,8]. Several theoretical approaches, including moleculag nction being 1 ifR<|r_7—F|$3R but 0 otherwise, and S

dynamics s_|mulat|ons, order parameter equations, and.otes the area of the concentric region whate 1. We
hydrodynamic-type models, have been proposed to describe — o . .
th,(r") to be coupled with its neighbors in terms of the

this phenomenology. Direct molecular dynamics simulations® 2
[6,9] reproduced a majority of patterns observed in experiintroduced averaged fluctuatiahh,(r), which effectively
ments and many features of the bifurcation diagram, alallows the interaction only with its nearest pattefrefer to
though until now have not yielded oscillons and interfacesFig. 1(&]. This model employs a discrete mapping for time
Hydrodynamic and phenomenological modgl$-13 re-  evolution. For a periodically forced oscillator, the discrete
produced certain experimental features; however, neither dfime step often corresponds to the period of forcing.
them offered a systematic description of the whole rich va- We assume that patterns are to grow from a noise, subject
riety of the observed phenomef#]. to a statistical constraint that a rise>*0) or a fall (h<0)
Earlier, we proposed a nearest pattern interaction moddtom the reference flat surfacé € 0) is equally likely over
to capture the essential phenomenology of the birth of osciltime. Such constraint satisfies the mass conservation. To
lons[15]. As this model was proposed before the experimenimplement such assumption in the model, we took the fol-
tal reports of the other types of pattefiisand(ii) mentioned lowing odd function as our functional form d¥ [see Fig.
above, it remains primitive. In this study we would like to 1(b)]:

1

A—Sf W dha(r) —hy(D]dr, ()

F(h) . G(ah)

FIG. 1. (a) A nearest pattern interaction ap-
: : : proximation. The field aP is coupled with the
-h, : ; : fields at other locations only within the shaded
h h 2h ah, Ah region. HereR represents the domain size of an
: : excitation. The functiongb) F and(c) G used in
Ref.[15] are presented.
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FIG. 2. Secondary instabilitiega) skew-varicose instability(b) L ‘
crossroll instability.

FIG. 3. The functiorF (8>1). The slope3, which changes the

< . . ; .
h for |h| ho local dynamics oh, influences the overall pattern dynamics drasti-

F(h)=4 ho for h>h, (3) cally. See the text for details.
—hy for h<—hy.
Bh  for Blh|<h,
With such functional form of, the noise does not grow and F(h)={ hg for Bh>h, (5)
Leergatr)l(s)g? iéef_l,xﬁt;d Ec();.nt if there is no nonlinear coupling with —hy for Bh<—hy.
For the following specific form ofs [see Fig. 1c)], we For B>1, h=0 becomes an unstable equilibrium, while

learned in our earlier study that the model is capable of prop— 1 1y andh= —h, become stable equilibricsee Fig. 3,
ducing the oscillons, and by varying the coupling constant  making the system bistable. Conceivably, as there are now
the model could capture the formation of stripes, oscillonyyo stable attractors separated by an unstable one, the do-

chains, and oscillon lattice, etc15], main may be divided into two parts, one with high elevation
corresponding tdh= +hgy and the other with low depletion
e corresponding toh=—h,, separated by a phase front,

G(ah) taanh/(zhO)' @ namely, a kink. The model now contains two control param-

eters,a, B, which have a definite role, respectively. That is,

The significance associated with other form&=adindG was  a measures the degree of nonlinear coupling with the neigh-
a question in our earlier study that we could not answer irbors, leading into self-organization, amgl determines the
the absence of other forms of pattefisand(ii). With more  degree of nonequilibrium of the system.
patterns available now, we may proceed to generalize the For 8>1, and for the tangent function of E¢) for G,
model as follows. the results are summarized in Fig. 4. Whenis below a

Let us start with the functio®. The functionG is meant  certain critical valuea,,, indicated by the filled circles in
to incorporate the interaction between neighboring excita-

tions, so we can change the nonlinearity of the interaction by
using another function fo®. Earlier, we had chosen highly 10/
nonlinear function Eq(4) for G, to give sufficient hysteresis 50 L
for stable oscillon structures. What if we choose a less non- pran
linear function forG? In such a case, the model exhibits -

. . s . . 44 -
skew-varicose and crossroll instabilities, while the stability
region of oscillons becomes narrower. For example, using a 40 -
simple linear functionG(Ah)=Ah, and settingr=1.5, we 36 o
obtain the pattern dynamics as shown in Fig. 2. We have 321 =
checked many forms d& such as piecewise linear functions 28 L .

. . - . Stripe

and simple nonlinear polynomials. In these cases, we obtain 2ql o"
in general the patterns as featured in Fig. 2 as lon® &s =
odd and monotonically increasing. However, these instabili- 20 - 0"
ties do not occur if5 is highly nonlinear as in the case of Eq. 16 - DD"“ esmumn
(4), for the stability boundary becomes too wide. We note 12 8%, g g ' peees iy
that the stability of convection rolls in a fluid heated from 8l Flat : o Dn(ffﬁﬁfated
below is limited by these secondary instabilities. Recently, 4 | (Wo kink) i Flat

. . - i (Linear kink)
an experimental study has shown that such pattern dynamics L
are also found in granular systerfts. 0.002040608101214161820 §

Next, we turn to the role of the functioR. We notice

immediately that by changing the slope of the functigrwe FIG. 4. Phase diagram in general. The open circles and squares

can make the system a bistable system. For that purpose, wfe to indicate the region of hysteresis. Conditions for numerical
introduce a new parametg as follows: simulations are the same with R¢L5]. See the text for details.
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(a)

FIG. 5. Various types of kinksfa) linear kinks (@=8.0,3 FIG. 6. (a) Kinks under kink to stripe transitiona(=16.08
=1.5); (b,0 decorated kinks¢=13.08=1.5). =1.5).(b,0 Oscillon chains from decorated kinks in Figgbband
5(c) («=13.08=0.95).
Fig. 4, the map synchronizdss with their neighbors, so

flats occur. In this case, however, there now emerge tWes not merely a simple curvature of interfaces, but related
possible phases of flats that are separated by an interfag@th oscillons[17]. This aspect is similar to the stripes turn-
called a “kink” [4]. Figure §a) shows a typical kink solu- jng into a chain of oscillons as conformed experimentally.
tion of our model. As we increase aboveacy, the inter-  Here, o corresponds to the acceleration of the granular layer
faces are decorated by periodic undulations as shown in Figgg|ative to the plate during the time of collisiop,n Ref.[2].

5(b) and Jc). We found that the areas embedded within theag I'=aw?/g (wherew is the driving frequencya the am-
region of the opposite phase as in Figbjsare unstable and  pjitude of oscillation, andy is the gravity accelerationin-
shrink, while fronts that extend to the w4lis in Fig. §)]  creasesy also increases so that standing waves occur. How-
are stable. We point out that the undulated kinks shown iNver, asl" is increased further to thé&/2 flat state, which
Figs. §b) and Hc) resemble the decorated kinks reportedmean58>1 in our model,y is decreased abruptly and stand-
recently in shaken granular befi$,6]. In our model, deco- ing waves disapped®]. In this case, lowering’ means in-
rated parts oscillate &at=1/2 while flats aref=1. But in creasinga.

experiments, both flats and decorations are oscillating at 5, method also applies to the patterns reported dn 2
=1/2. This is because, in real experiments, flat regions Unaxperimental work$18].

dergo a period doubling while a front separating these re- | conclusion, we have constructed a dynamical model to
gions does nof4]. _ understand the key mechanism for the pattern formation in a
Associated with the kinks, the present model furtherarametrically forced spatially extended medium. The near-
shows the followings. First, as exceeds.,, corresponding et pattern interaction model here contains two control pa-
to the region denoted by the filled squares in Fig. 4, th§ametersy and 8; 8 controls the number of stable equilib-
decorated kinks begin to be elongated to generate stripe§,m, states of the system, andmonitors the nearest pattern
Figure Ga) shows the decorations elongating into Stripes asnieraction. Despite its extreme mathematical simplicity, our
a is raised to the stripe regiorw(= 16). The same phenom- el turns out to provide a unified perspective of the vari-

enology is observed in experimeii€s16]. Second, the deco- o5 patterns observed experimentally in periodically vibrated
ration can be converted into oscillon chains when we de,egia.

creaseB below unity, as in Figs. ®) and &c). This point

implies that oscillon chains can emerge from the decorated The authors thank H. K. Pak for useful discussions and
kinks when vibrational acceleration is decreased abruptly t@roviding valuable experimental information. This work was
the oscillon region, and we have confirmed that this phenomsupported in part by the Interdisciplinary Research Program
enology is indeed observed in a laboratory experini&ft. (Grant No. 1999-2-112-002)®f KOSEF and in part by the
This point is noteworthy because the undulation in our modeBK21 Program of the Ministry of Education in Korea.
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