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Carnot’s cycle for small systems: Irreversibility and cost of operations
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In the thermodynamic limit, the existence of a maximal efficiency of energy conversion attainable by a
Carnot cycle consisting of quasistatic isothermal and adiabatic processes precludes the existence of a perpetual
machine of the second kind, whose cycles yield positive work in an isothermal environment. We employ the
recently developed framework of the energetics of stochastic procésséed “stochastic energeticg’to
reanalyze the Carnot cycle in detail, taking account of fluctuations, without taking the thermodynamic limit.
We find that in this nonmacroscopic situation both processes of connection to and disconnection from heat
baths and adiabatic processes that cause distortion of the energy distribution are sources of inevitable irrevers-
ibility within the cycle. Also, the so-called null-recurrence property of the cumulative efficiency of energy
conversion over many cycles and the irreversible property of isolated, purely mechanical processes under
external “macroscopic” operations are discussed in relation to the impossibility of a perpetual machine, or
Maxwell’'s demon. This analysis may serve as the basis for the design and analysis of mesoscopic energy
converters in the near future.

PACS numbd(s): 05.90+m, 05.40—a, 05.70-a, 02.50-r

[. INTRODUCTION frictional forcesandthe random force in the Langevin equa-
tion. The theoretical framework resulting from this realiza-
tion widens the scope of application of Langevin dynamics
The principles of thermodynamics were established in théo the extent that it can be used to describe not merely equi-
last century as the universal laws characterizing the thermdibrium states of system in contact with heat baths, but also
and mechanical behavior of macroscopic systems. The fagieneral thermodynamigrocessesonnecting different equi-

that we cannot control all the details of energy transfer leadiPrium states. As a result, we can derive the first and the
to the concept oheatas a form of energy flow, and the second laws of thermodynami€8,4] from stochastic ener-

Carnot cyclehas played a crucial role in the course of inves-9€tics. This formalism, together with projection methods,

tigation leading to the introduction of entropy as a state vari-brldges a long-standing gap between microscopic Hamil-

able in addition to energfi]. On the other hand, Brownian tonian mechanics and macroscopic thermodynamics. In this

motion and the stochastic dynamics of mesoscopic syste aper we apply the method of stochastic energetics to the

in general have also been studied for many years, and pr(lerfivestlgatlon of the Carnot cycle in the context of small sys-

jection methods have allowed for the derivation of Langevin ems. To make this paper self-contained, we briefly summa-

. . . S . rize the framework of stochastic energetics in Sec. Il.
d?/gaé?;csa;;i?] rg d T:acrzoz(\:/(i)nplg S:;ﬁlr:totrr]::?n fTJeeCnréaenéﬁhénus. Stochastic energetics has also been applied to the study of
pregictgble microscog ic d n?amics ’which essentially re re'_[hermodynamic processes under nonequilibrium conditions,
P pic dy ’ Y TP ch as processes including two heat ba®jsnd processes

sent the heat, is taken into account by Markovian rando_rri1n the presence of steadily driving forcE). In particular,

forces obeying the fluctuation-dissipation relationship. In thlsthe ratchet model of Feynmaet al. [6] has been analyzed

manner, such an equation describes the canonical equilibys . .
rium distribution of the variables in questiga]. tI]-Qegardmg this model, doubt has been cast by Parrondo and

Very recently, the concept of heat on mesoscopic scaleESpano[?]’ and later by SekimotfB] independently, on the

has been unambiguously defined in terms of Langevin dy’ ttainability of reversible energy conversion with the “Car-

namics[3]. We refer to the formalism providing this defini- ngzaizf:gserc])?{helgo-lt—)ﬁ /;nH 4 r:,\cl) ?ir:;LbZ?hdsTZnaa:F Stir;eutseirr:"n- sto-
tion asstochastic energeticI he essential point of the think- P : y 9

ing behind this formalism is that the heat transferred to th ghastic energetics has shown explicitly that the efficiency of

system is nothing but the microscopic work done by both thzzeyn_man § ratchet is much less than the Carnot efficiency
mentioned abovEs].

A. Background

*Email address: sekimoto@yukawa.kyoto-u.ac.jp B. Problems
"Email address: fumiko@hcs.ibaraki.ac.jp With the descriptive power of stochastic energetics in
*Email address: hondou@cmpt.phys.tohoku.ac.jp hand, we wish to reconsider the Carnot cycle. We consider
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the Carnot cycle as aobjectof analysis within the theoret- sent the influence of the heat baths by a frictional force and
ical framework of stochastic energetics. Note that, since wéhe random force of a Langevin equation, and we control the
can derive the laws of thermodynamics directly using sto-strength of the coupling between the system and the heat
chastic energetics based on the Langevin description, thaths by controlling the values of the corresponding interac-
Carnot cycle in our study isota source of theoretical results tion potentials. We call these interaction potentials “cou-
from which one derives the laws of thermodynamics, as waglers.” (In an actual mechanical system, the control of such
its historical role.(Of course both the Langevin description & coupler could be exercised by a system of clutghes.
and thermodynamics have a microscopic basis in mechan- One could also imagine such control exercised through
ics) change of the friction constants that appear in the Langevin

We now describe our viewpoint in more detail. Usually €quation. Because of the absence of a definition of the re-
the Carnot heat engine is considered in an ideally macroquired work to change these friction constants, however, this
scopic context, working in the thermodynamic limit. There, idea is not pursued in the present paper.
the small relative fluctuations of the variables, typically on
the order of the inverse square root of the system size, arg The reversible and irreversible work of operating the couplers
neglected. Also, the cost involved in the operations of . . o

The operation of the couplers can, principle, never be

attaching/detaching the system under study to/from heat . d out istaticallv. but. at th " th
baths is neglected, since this is not an the extensive quantit arried out quasistatically, but, at the same ime, the accom-

It is important to note that the second law of thermodynam anying irreversi_ble Work.can be made arbitrarily sr_nall. The
former part of this assertion is based on the following argu-

ics, which is consistent with such a macroscopic Carnot en i : .

gine, can excludenly marginallythe existence of a per- ment: When the interaction between the system and a heat
petual machine of the second kind whose cycles yielabath IS strong, Fhe energy transfer petween them occurs with
positive work in an isothermal environment. Thus we maya short relaxation time. However, if we gradually weaken

gain a deeper insight into the nature of statistical thermodyth's. interaction, this relaxation time increases more and more
ntil it diverges when the system is completely detached

namics and mechanics if we can formulate a method to tali

account of the finiteness of the system under study as well om ttr;]e hea_tt br?th' As Ipng?_ a.f thfht.'me Sca't? of the operation
the cost involved in operations of changing its interaction 1€, | 9; SW',(,: 'ng off is ninite, this operation can never
remain “slow” in comparison to the diverging relaxation

with heat baths, in particular considering reversibility and thet. Thus th itchi ff is b .
second law of thermodynamics. ime. Thus the switching-off process is by no means quasi-

The approach of the present work is to construct the Sim_static, or quasiequilibriun{This is analogous to the nonadia-

plest model of the Carnot heat engine with a finite number oPat'C'ty (_ancountered. n chgm!cal _reactions; the Bom-
degrees of freedortactually only threg including the appa- O_ppenhemer approximation is mewtaply invalid when the
ratus connecting/disconnecting it with heat baths, and to d distance between nuclei is neither sufficiently large nor suf-

termine the effect of the finiteness of the system and th iciently small) Inevitable irreversibility can also exist in the
change resulting from operations of the type mentioned®rCess of strengthening the interaction between the system

above. As the system of studgr the “working material’) and the heat bath. Such extreme strengthening of the inter-
we choose a single harmonic oscillator. We show that thergction Iegds to_the fregzmg of some degs.benf freedom .

is an inevitable source of dissipation due to thiinsically mvoIvgd n the interaction, and the mean first-passage time

irreversible nature of the operations of connecting and disgssomated with these degrees of freedom may become larger

connecting it with heat baths, and that, with the exception than the time sc_ale of the operatl(Jrg., the strengthening .
such loss, our model can attain the Carnot maximal effi- such a S'tl.Jat'on alsq, the Ope@“"_” can never be carried
ciency defined as a properly defined average over infinitel)pm quaS|s_tat|c§IIy. Unlike the §W|tch|ng—off Process, .hOW'
many cycles, each of which is performed infinitely slowly. ever, the. indefinite strengthening of the interaction is not
At the same time this study reveals several basic problem@ece.sdsan,% alpgrt of the Carnotthcycle. t.Desthhe :hfls”fact, t\)N €
that should be further scrutinized in the future: one concern§°"s! ?tq e” atter prtoces_s_ln_ (:hsec IlonT i at fo OV(;/’ dEt>-
the smooth connection between the adiabatic process and tﬁ@usﬁ IS a OV;'S us IO minimize the caiculations heeded 1o
isothermal processes, and the other concerns the irreversiplfach @ generai conclusion.

ity of adiabatic processes. In the last section we discuss these t\Ne S??ﬁld’ howsver, ante .tgaé tht? |ne\é|tably |rtreverS|bIe.|
problems as well as the problem of energy conversion witf1ature orthe operations described above does not necessarily

no help from external operations Imply an associated large amount of irreversible work. In
In the remaining part of this section we give a qualitativesec' IV we analyze the work involved in operating the cou-

description of the aspects of the Carnot cycle that we stud?Ier and ShO.W th_at the_amoun'; of irrevers_ible work resulting
in detail in the later sections rom these inevitably irreversible operations can be made

arbitrarily small in the limit that the time scale of the opera-
1. The operations of connection to and disconnection tion becomes large. We also show that the reversible part of
from the heat bath the work associated with these operations remains finite in

. ) ] this limit, but that it cancels out within a cycle.
We ask first how we can descrilmeechanicallythe con-

nection and disconnection of the system to/from the heat
baths. In an idealized picture, this description essentially
consists of the switching on and off of the interaction be-
tween the system and each heat bath. In Sec. Ill we describe Temporarily putting aside the concept of irreversibility in

explicitly a model that realizes these operations. We reprethe sense described in Sec. | B 2 above, we can scrutinize the

3. The condition for reversible contact between the system
and a heat bath
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remaining part of the cycle and ask if and how the Carnofphase point on a given energy surface, @ndwe are inter-
maximum efficiency can be attained. With regard to a macested only in the statistical average over such an initial en-
roscopic Carnot cycle, according to textbook descriptions, irsemble at a given energy.

order to realize a reversible cycle, “the temperature of the

system should be the same as that of the heat bath with|; BrRIEF SUMMARY OF STOCHASTIC ENERGETICS

which the system is to make contact after an adiabatic pro-

cess.” Strictly speaking, however, the energy, rather than the We consider a Langevin equation that represents a system
temperature, takes a definite value in a thermally isolated? contact with a heat bath at temperatdie

system, and the above statement needs to be refined in terms

of the language of probability. We argue in Sec. V that re- d_X: P

versible contact requires the probability distribution of the dt m’

energy of the system just before interaction with a heat bath (1)
to be identical to the canonical distribution at the temperature dp p dU(x,a)

of the heat bath. This condition can be satisfied if the system 9t "mT T ax +&(1).

consists of harmonic oscillators, like the model described

below. Generally, however, this is not the case, and in thgjere we denote by and p the dynamical variable of the
general situation an irreversible process takes place whengystem and its conjugate momentum, whileepresents the
system contacts a heat bath, even though there occurs no fifihss, y the friction constant, antd the potential energy for
irreversible energy transfer between the @ec. VIIA). In x we assume that) may depend on, in addition t the

Sec. VIA we summarize the necessary conditions for th&ariable (or variable$ a, which is controlled by an external
Carnot cycle to realize the maximal efficiency-T,/T,  agent(or agents The function &(t) represents, as usual,

without assuming the thermodynamic limit. We show at thegaussian white noise obeying the relatiofhereafter we
same time that this actually is the case for the model deadopt units in whictkg=1)

scribed in Sec. Il

(£(1))=0, (&O&M))=2yTo(t—t"). (2)

The second relatiofEinstein’s relatioh insures a canonical

The efficiency of the energy conversion of mdividual  istribution ofx andp at temperaturd if the parametea is
cycle is statistically distributed, because the energy pospeld fixed for an infinitely long time.

sgssed by the system is different. each time the system is Multiplication of each term in the second equation(ip
d|§connected from a heat.bath. This fact refle_cts the mdeteBy the displacemerdx yields the equatiofig]

minate nature of the details of the microscopic states of the
system and of the heat bath upon disconnection. As a conse- d ([ p?
guence, if we define the cumulative “bonus” work as the a(
difference between the cumulative work obtained ower

cycles and what we would expect from the Carnot maxima\Nhere we have used the first equation of Ef. and also

efficiency, this bonus work takes the form of a discrete rans ; ; _
' . . the identity dp/dt)dx=(dp/dt)(p/m)dt. We note that
dom walk as a function oh. We show in Sec. VIB and —[— y(dx/dt)+ £(t)] is the reaction force exerted by the

Appendix B that the so-called null-recurrence property of asystem against the heat bath, since the frictional force

one-dimensional random walk ensures that, although if we” ¥(dx/dt) and the random forcé(t) are both due to the

actually carry out a sequence of these cycles the CumUIatiVﬁeat bath. We identify the work done by the reaction force as
bonus work we obtain will with probability 1 first become

v " s ber of titiond - the statistical the heattransferred from the system to the heat bath, which
positive after a finite number of repetitions, the statistical | . jonote by € dQ) [3]:

average oh* is infinite.

4. Statistics of the efficiency of a finite number of cycles

aU(x,a)d

X x

p
om dt=( — 'ya-i- f(t))dx—

dx
5. Irreversibility of adiabatic processes —dQ=- ( BT + §(t)) dx. 4

The Carnot cycle includes an adiabatic process that is ) o o
purely mechanical. We are interested in determining whatThe minus sign in front ofliQ is included to conform to the
work can be obtained through the cycle including nonquasiconvention of thermodynamics textbook$he key point of
static adiabatic processes. If the efficiency in this case igtroducing the concept of heat is that, although the heat bath
increased in comparison to the quasistatic case, the existent§eidealized and not affected by the system’s dynamics, it can
of a perpetual machine of the second kind is inspired, pestill be subject to a reaction force exerted by the system.
cause our Carnot cycle can attain the maxirfraversible Adding the total differentiatlU to both sides of Eq(3), we
limit) efficiency under certain conditions specified in Sec.obtain the general expression for taeergy balanceis
VIA. In Sec. VII B we show that, in relation to the impos-
sibility of a perpetual machine, there emerges the concept of d
the irreversibility of purely mechanical procesdegth no
assumption of the thermodynamic limit or mixing properties
necessanyunder the influence of “macroscopic” operations Now, because the left-hand sideHS) is the total increase
by an external agent. Here, designation of an operation agf the energy, andlQ is the energy input to the system as
“macroscopic” implies that(i) we are ignorant of the initial heat, the first term on the RHS of E¢) must be identified

p2

—aUd d 5
m =gdat Q. 5

+U
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as thework done by the external systemyV, on the system T, o
through the change of variabse

0 g )

Za da. (6)

dw=

We conclude that the law of energy balance expressed as

2 L —_
dE=dW+dQ, LY @) IM?M p

2m XH XL

is satisfied for anginglerealization of the stochastic process  F|G. 1. Schematic view of a Carnot heat engine. The spring and
described by Eq(1). the shaded linear “gear” represent the harmonic oscillator as the
For a quasistatic process, in whi¢tha/dt| is arbitrarily ~ system. The left end of the sprinthe black box is fixed. Heat
small, the work is reversible and is equal to the change in théaths of temperatureg, and T, (the square shaded boyesxert
Helmholtz free energy(T,a) with probability 1. That is, in  forces on the vane@he star-shaped symbols inside the heat baths
an ensemble of infinitely many realizations of such a pro-whose angles of rotation are denotedygyandy, , respectively.
cess, the probability distribution of the work becomes a poiniThese vanes are tightly connected to the circular gears. These cir-

distribution concentrated at the value lfT,a): cular gears can interact with the system in a manner that depends on
the control parametergy and y, of the couplers.

W=dF(T f i i ithfi
dW=dF(T,a)  (fora quasistatic process with |xed)(,8) holds, and an explicit formula for thé@reversible work

(dW)—dF(T,a) has been obtained up to the second order in
with da/dt.

Ill. MODEL
f f e ETdxdp|. 9)
Figure 1 schematizes the idea of our model. We employ a

single harmonic oscillator with masa and spring constant

k (>0) as the system under study, which we call simply the
“system.” We denote byx andp the position and momen-
tum of the system. Increasin@ecreasingthe value ofk

F(T,a)=—TIn

The derivation of Eq(8) is as follows. We first note that, for
a to change by any small but finite amouth, it takes a
time |da|/|da/dt|, which is indefinitely large in the quasi-

static limit. During this time interval the state poirnt,) corresponds to compressiridecompressingthe ideal gas.

comes arbl'Frar_lly glose to almost all poss_lble values, and It%elow, we considek to be a quantity that can be controlled,
empirical distribution becomes asymptotically equal to the

canonical  distribution, Pey(x;T.a)=exp([F(T.a)—EJT}. ngtlr:oet\(/:?/lc?I:se of a gas system is controlled in macroscopic
(The exception here is the case in which the intefsh '

+da] includes a point at which the equilibration time di In order to allow independent and variable interaction
" with each heat bath, we represent each such interaction in the
verges. See Sec. IB2 and Sec. | B and § IV beldole can P

AR . form of a mechanical force, which subsumes the correspond-
then evaluate ‘(U/ &g)dg using Its average with respect to ing frictional and Gaussian random forces. Such mechanical
Peqin the quasistatic limit. Using the identity forces should be related in some way to the degrees of free-

aU(x,a) JF(T,a) dom that directly interaqt Wif[h_ the heat bqths, Wh?C-h we de-
J dX————Pe(x;T,a)=———— (T fixed), (100  note byyy andy_ . For simplicity, we do this by writing the
Ja Ja mechanical forces as interaction forces,d¢y/dx and
we reach the result EG8). —d¢ 1dx. As interaction potentials, we choose functions
In fact Eq.(8) is a stronger statement than the usual sec®H(X~Yn.xn) andé (x—y.,x.), wherey,, andy, are the
ond law of thermodynamics for extensive systems. Note thatntrol parameters. We caly and ¢, the couplers, because
for a thermodynamic system constituted by an ensemble of 41€ir values directly indicate the strength of the coupling
large number of independent stochastic systems obeying E§Etween the system and the corresponding heat bath. We use

(1), the first law of thermodynamics is obtained from Eg, ~ €xPressions like “control the coupley” in reference to
changes made in the values of these control parameters. We

(dE)=(dW)+(dQ), (1)  assume that the functiong, (a=H, L) are 27-periodic
functions ofx—y,. (For details, see Sec. IV and Fig. 3
and the second law of thermodynamics for quasistatic propelow) The degrees of freedogy, andy, are subject to the
cesses is obtained from E@) [4,9], frictional forces — yy(dyy/dt) and — y, (dy, /dt) and the
_ L N random forcesty(t) and ¢, (t) exerted by the heat baths at
(dW)=dF(T.a) (for a quasistatic process wmhflxe(dl).z) temperature3 andT, , respectively, as well as the interac-
tion forces from the systems-d¢y/dyy and —d¢ /dy, .
These relations are concerned with only the ensemble aveHere, y; and y,_ are the friction constants, angl(t) and
ages denoted by-). It has also been showw] that, for a  &.(t) are the white Gaussian random forces satisfying
finite rate of change od(t), the Clausius inequality (G Eu(t"))=2yuTat—t"), (EL()E_L(t)) =2y T a(t
—t’), and(&x(t)£.(t'))=0. The equations of motion fo,
(dW)=dF(T,a) (13 p,y4, andy, are given as follows:
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Y >
Z
» D, 0 T 21
FIG. 3. The profiles of the interaction potentia), are given as
CH functions ofz=x-y,, for three typical values of the maximum of
g XL Gor Dy, @y, and®,,, where®,<T, <P, <D, (see the teyt

(xu,-xL)=(1,0) and {,x.)=(0,1) correspond to isother-
mal processes. The values kfcorresponding to the four
horizontal paths are the parameters.

/1 IV. REVERSIBLE AND IRREVERSIBLE WORK
XH OF OPERATING THE COUPLERS
As we discussed in Sec. |, the operation of the couplers
FIG. 2. The cycle undergone by the control parameters. Thean never be made quasistatic, because the time scale of this
various legs of this cycle correspond to the following processes obperation inevitably becomes shorter than the equilibration
the system: isothermal process&g;{~Cy, andD, —A,), adiabatic  time for the system when the coupling between the system
processes A;—B, and Co—Dg), and the remaining processes and a heat bath becomes either absent or extremely tight. In

where only one of the two control parameters of the couplers iyqgition to the work due to these irreversible processes, there
changedi.e. x.,# 0 exclusively ory, #0) whilekis kept constant. 5 g150 reversible work associated with operation of the cou-

plers.
d_X_ P (149 Figure 3 illustrates the generic features of the potential
dt m’ b.(2,x,) for three different values of,. Here ®,, &,
and @, represent the height of each potential profile. We
dp ddy I, assume that the height @f,(z,x,) is @a monotonically in-
P TIRR A air vt (14b  creasing function of y, and satisfies ma#(z0)=0,
maxzd)(Z!Xa O) = (DO(<Ta) ’ ma)&d)(z!)(al) = ®1(>Ta) ’ and
dy I maxp(z,1)=d (> P ;) with 0<y,o<x1<1.
yH_H: — —H+§H(t), (140 There are two situations in which the time scale of mea-
dt Y surement and/or operation cannot exceed the equilibration
time of the system. One is when the heightdf is very
dy, . dpL Lt 14 small, and the other is when the heightgf is very large.
LO TR &ut). (149 |t us assume that the regime<@,,< x.o corresponds to

the former case; that is, for mak,(z x,.)<®P,, the interac-

We consider the gears of the heat bath and the system t®n ¢, is so weak that the equilibration time of the system
be “tightly connected” (i.e., completely engagedor y,  with the heat bathT=T,) is beyond the time scale of mea-
=1, that is, the interactiog,,(x—V,,1) is so strong that the surement and/or operation. We call this tl®se regime
differencex—vy, is fixed except for a small thermal fluctua- Then we assume that the regimg;<yx,<1 corresponds to
tion around its mean value, while these gears are “disconthe latter case; that is, for mak,(z x.)=®;, the interaction
nected” (i.e., completely disengaggdor x,=0, that is, ¢, is so strong that the equilibration time characterized by
¢.(x—y,,00=0. We have neglected the inertia effect re-the over-barrier transition of (see Fig. 3 is again beyond
lated toy,, andy, , as they would play only a secondary role the time scale of measurement and/or operation. In particu-
for our analysis. lar, we assume that fox,=1 there occur essentially no

The protocol by which we control the parameters is rep-thermal activation events over the barrier,. We call this
resented in the space vy, x.) as shown in Fig. 2. In the thetight regime In the remaining regimey ,o=< X o= Xa1 W€
figure, the paths along the axig(,x.)=(0,0) correspond assume that the operation can be carried out in a manner that
to adiabatic processes, while the vertical paths witharbitrarily closely approximates the quasistatic limit. Note
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that what Kramers calls the “small viscosity” and “large Note that herey, =0 and the factor 2 in front of the inte-
viscosity” cases in Ref[10] correspond, respectively, to the gration on the RHS comes from the phase integration over
limits of the loose and tight regimes. y. . Performing the integration over, first, we have
We now evaluate the work
Ty, (2m*Tw’m

F(TH ,k,XH,O): - 7 |n #4_ F(TH ;XH:O)y

Yoz Iha[X(D) = Yal(t), Xa(D)] 17)

Ay (t _
XD ith B defined by
(15

W, (Xa1— X 2)Ef
a a a P (9)((1

~ 2
e F(TH xH.0)/Th= f 7sze* Pr(ZXxH) T (18
0

for the loose and tight regimes usin . We will de-
scribe the case 0&2 H fogr] concreter?esaé?‘)rhe case ofa Th? fiLSt_ te_rm on the RHS of Ecﬁl?) is independent Ok,
=L can be treated similarly.In the loose regiméthe pro- while F is independent ok. Using the notatlgn of Eq.15),
cesses neaB, andC, in Fig. 2), Wy(0— xno) is of order  we find from Eq.(17) that Wy(xno— xr1) =F (T, XH1,0)
®, and is small €T, although this work may be mostly —F(Ty,xn0.0) along By—By in Fig. 2, and Wy(xu;
irrevgrsib_le. Since_l)o is ass_ociated with the lower Ii_mit _of —xr0) =F(Th x10,0)—F(Ty,xn,0) along Cy—Co.
quasistatic operation, the time scale of the operation is refhese two cancel exactly:
quired to be large enough to satisfy the conditbp<Ty.

In the tight regime(the processes ne8, andCy, in Fig. Wh(XHo— XH1) + Wh(XH1— XHo) = 0. (19

2), the situation is more subtle. The contribution 10 The actual time interval required to changg betweeny o
Wh(xr—1) consists ofi) the contribution produced when andy . is finite, say,te,. The irreversible work due to this

z moves around the valley regions @f(z,xn) With ¢y finiteness has been shown to®éty; 1) quite generally4].
=®; and (i) the contribution produced whenvisits, by  Thus the irreversible work associated with the process in
rare thermal excitation, the barrier regions ¢f;. To sim-  which y, is changed betweeg,, and xy,; can be made as
plify the analysis we exclude the former contribution by as-small as we wish by making the time scale of operation
suming that¢y(z, xn)/ dxn=0 for zin the valley regions of  sufficiently long.

¢ (Fig. 3 in the tight regime.(This assumption is only For later use, we now also estimate the heat exchanged
technical; one can reach the conclusion of this paragrapbpon the operation of the couplers. As we have shown
without it.) The evaluation of the contributiofii) above is above, the amount of work in the loose and tight regimes can
carried out as follows. The probability of findirgin the  be made arbitrarily small. Also, changes in the parameters
barrier region is~e~®1/T, and for such values of the  X. lead to only small changes of the internal energy of the
change ofyy from yu; to 1 results in an amount of work COMPOSite system. These facts together with the energy bal-
~(d,—d,;). Thus we haveWy(yy—1)~e ®2/T(®,  ance principle[see Eq.(7)] lead to the conclusion that the
—®,)~e ®1/Td, . Because the time scale of operation is heat gxchanged in these two regimes can be made as sm.gll as
sufficiently large to allow large values df,, the conditions we wish. Next, the heat exchanged during the quasiequilib-

Z - . rium processes wit <y< is assessed as follows.
e P1'Tdp <T andd..>T can be satisfied simultaneously. P a0 =X = Xa1

) . : ; rom Eq.(17) the ensemble average of the internal energy of
In conclusion, the irreversible part of the work associate he composite system is  given by Ty+[1

with both the loose regime and the tight regime can be made

as small as we wish by making the time scale of the opera- 1 H(?/dTH)IF(Th.xn.0). If we define by(Q(Bo—Biy))

tion sufficiently long in these regimes. The same conclusio he average _heat |nflux_ to the composite system (_jurlng the
holds for the case ofi=L. quasiequilibrium operation along,— By, the condition of

The quasistatic work associated with the changeypf < = &Y balance, Eqg. (11), yields <Q(B_O_’BH)>:
within the regiony ,o= x.=< x.1 can be evaluated using Eq. _ 1 H(¥/ITRIF(Th.x11,.0)=F(Tw,x0,0)]. This heat can-

(8). Below we show that such quasistatic work cancels ex-Cels exactly the average heat ing@(Cn— Co)) similarly

actly when summed over the consecutive operations ogefined alongC—Co:
connection to and disconnection from a heat bath. Again, (Q(By—B))+{Q(Cy—Cy))=0. (20)
considering the <case ofa=H, we denote by

F(Ty, K, xu,0(= x)) the Helmholtz free energy of the com- |n the same manner, we can show the cancellation of both

posite system of the harmonic oscillator and the couplersh® work and the heat during the quasistatic part of the op-

SRR eration of coupler alon®,—D, andA —A,.

V. MATCHING THE “TEMPERATURE” OF THE SYSTEM
AND A HEAT BATH

o s 2m
e_F(T“’k’X“’O)/THEZﬂf_wdpf_mdxfo dyn Here we study the meaning of the idea of matching the
“temperature” of the small system with that of a heat bath.
1
Xexp[—_l_— erT for an isolated macroscopic thermodynamic system, for
H which the energy and the temperature are simultaneously
well-defined quantities, and, in order to realize a reversible

p?2  kx? For comparison, we note that this meaning is unambiguous
+¢H(x—yH,XH)”. (16 Carnot cycle, the temperature of the system should be the
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same as that of the heat bath with which it makes contact. Ithe same as that of the heat bath in question. The reason is
contrast, for isolated small systems, the energy takes a defihat, under these conditions, the system upon connection be-
nite value, while the temperature is not generally well de-haves statisticallyas if it had been in contact with the heat
fined. We will show in this section that if the small system isbath for a long time. Note that the connection should be
a harmonic oscillator the concept of the temperature is stilbegun through a sufficiently weak interactien, (see Sec.
useful, and reversibility can be obtained as in macroscopitV). In our case with the protocol described by Fig. 2, we
systems. Discussion regarding the general case is given mequire thafT’ =T, atBy andT'=T_ atD, hold. Denoting
Sec. VII A. the value ofk betweenA, and A, ask,, that betweerB,
Suppose that a coupler is operated quasistatically up tand B as kg, etc., the condition for a quasiequilibrium
the edge of a loose regimey (= x o alongA, —Aq or xy connection to the heat bath is given explicitly as follows:
= XHo alongCp— Cy in Fig. 2). The energy of the oscillator

in this situation fluctuates as a function of time and, although T Ty Tw  To 23
the temporal fluctuation of the energy is very slow, it still \/k_A \/k—s, \/k—c \/E.

obeys the canonical distribution at the temperature of the

heat bath T, for A; and T for Cy) up to a small error of

O(®P,)(<T,). By the definition of the loose regime, further VI. EFFICIENCY
weakening the connection results in a situation in which A. How is the Carnot limit approached?

there is no appreciable exchange of energy between the sys- ) .
We now evaluate the maximal overall efficiency. We

tem and the heat batfsee Sec. | and IV Then complete X ) N
disconnection leaves an isolated system whose energy is diglUst take into accourii) the operation of the couplersij)
tributed according to the canonical distribution correspond!€ isothermal processes, afiid) the adiabatic processes.

ing to the temperature of the heat bath. This is in fact true () We assume that, by making the time in the loose and
even if the small system is not a harmonic oscillator. tight regimes sufficiently long, the intrinsically irreversible

For a harmonic oscillator, however, both the energy disWOrk and heat flow can be made as small as we wish. The

tribution in the canonical ensemble and the transformation ofé™Maining part of the operation of the couplers is assumed to
the system’s energy through the quasistatic adiabatic proce2€ made under quasiequilibrium conditions. The accompany-
have special features. The energy distribution in the canonid Work and heat flow cancel exactly when summed over an

cal ensemble at temperatufeP..(E:T), is independent of infinite number of consecutive connections and disconnec-
the parametek: P BPeal E:T) P tions from the heat batfsee Eqs(19) and (20)].

(i) For the isothermal parts of the cyclB,—C, and
1 D,—A,, we assume a quasistatic change&olhe accom-
Pead B T)= ?efE/T- (21)  panying work is then given using the general formula Eq.
(8). For the parBy—Cy, F(T,a) in Eq. (8) is replaced by
(See Appendix A for a derivationThus, atA, andCy, the  F(Tn.K xn,0) of Eq.(17), and the work done by the system
energy of the oscillator is distributed according toiS (Tw2)In(kg/ke), which we denote by-W(By—Cyy).
Pead E:TL) and P (E;Ty), respectively. If the oscillator Similarly, for the partD, —A, the work is —W(D —A,)
has a specifi¢initial) energyE and undergoes the quasistatic = (Ti/2)In(kp /ka). Then, from relation(23), we have

adiabatic process representedfgs— B, or Co— Dy in Fig. To—T K
2, its energyE(k) changes so that the valJéE k) given by —W(By—Cyy) —W(D| —A )= —= In(—B . (24
Eqg. (A3) remains constarjtl1]: 2 ke
E(k) [m (iii) For the adiabatic part of the cycld,—B, and Cy
‘](E(k),k):?\/;: const . (220  —Dg, we also assume a quasistatic changk. dihe energy

of the system then obeys the 1a®2) and the amounts of

The relation(22) determi the ch fth di t_Work done by the system in the adiabatic processes
! tQrea;:)n( tr)1 eer;mnes dec ange of the ein?rgyd_lsbn-t__W(AO_)Bo) and —W(Cy—D,) are given by —W(A,
ution when the system undergoes a quasistatic adia aﬁBo)=E(kA)(1—\/kBTkA_) and —W(CO—>DO)=_E(I_<C)(_1
the altered distributionP’(E') must obey P (E,T)dE  _ VKo/Kc). As the energie&, andEc obey the distribution
_P'(E')E’ with E'/(2m\K'Tm)=E/(2mykim). Thus Eqg. (21) with T=T_ andT=Ty, respectively, their statisti-
/ SN S cal averages arE,) =T and(Ec)=T, [up to a small error
we obtain the energy distribution of a canonical ensembl%f O(®,)]. Using Eq.(23), we then have
after the change irk, P'(E’')=P.{E’,T'), with T’ being o7& 9 =Q.(29),

process through the changelofFor a change fronk to k',

defined by T/\k=T'/\k’. However, we note that this —(W(A¢—Bp)) —(W(Co—Dy))
simple situation is due to the special nature of the harmonic
oscillator system. The general case is discussed in Sec. Ks Kp
=T |1—\/+|+Ty1-\/—[=0. (25
VIIA. Ka Ke

With these facts in mind, we can now characterize the
condition for a quasiequilibrium transition between adiabaticWhile we obtain this simple result in the present case, it is
processes and subsequent isothermal procegbeshe en-  important to note that the cancellation of the contributions
ergy distribution of the system before the connection withfrom the adiabatic processes on the average is not a generic
the heat bath must be that of a canonical ensenfBjethe  feature of the Carnot cycleonsider, for example, nonideal
temperature characterizing this canonical ensemble must lmses
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The heat influx from t_he high tempergture hgat bath is 80={Q(By—By) +Q(Cx—Co)}
evaluated as follows. While the work during the isothermal
quasiequilibrium processes is a nonfluctuating quanfsge
Eq. (8)], both the energy influx from the heat bath and the
system’s energy fluctuate subject to the constraint of energy
balance described by E¢7). From Egs.(17) and (18) we  We first note several properties @f,..
can show that the average internal energy of the composite (1) The deviationss,, and 55 do not vanish, even in the
system with degrees of freedofp,x,yy,y, } is independent quasiequilibrium limit, since the system continues to ex-
of the parametek. Therefore, the statistical average of the change energy with a heat bath until the moment that it is
heat influx during the isothermal proceBs— Cy, which  disconnected from the heat bath.
we denote byQ(By—Cy)), satisfies (2) If we choose the initial point of an individual cycle to

be somewhere betwedh andA, , then the values ofy,
0=(Q(By—Cy))+W(By—Cy). (26)  —(me for different cycles are statistically independent. In
fact, the statistical deviations olV(Ay,—Bg) and W(C,
Thus we have —Dg) are mutually uncorrelated because of the intervening
isothermal Markov processé&,—Cy andD, — A, while
(Q(By—Cp)) = Eln(ﬁ> 27 W(A;—Bg) and Q(B,—B,) are statistically correlated
2 \ke)' through the shared poifgy, as areQ(Cy—Cp) andW(C,
—Dy) through the poinC,,.
As we have seen in Sec. IV, there is no net heat flow due to
the quasistatic part of the operation of the coupte Eq.

+ Q(BH—>CH)_7|H E . (31)

(3) One can define the excess outpuV?V by

(20)], while the heat transfer associated with the loose and Ty (ks
tight regimes can be made as small as we wish. —W=(910c— Tmax 7In = + 80 |=— Sw— Tmaxdo -
Collecting the above results, the maximal overall effi- c (32)

ciency nmax Of the cycles is reduced to the following for-

la: . o
muia A positive value of—W implies that we happened to get
W(B,—Cp) —W(D, —A,) more work than that expected from the Carnot maximal ef-
Mmax— By—Cp) (28 ficiency (i.e., — dw> 7maxdq). Such a situation can result
(Q(By—Cy through fluctuations, and it is not in contradiction with the

second law of thermodynamics. However, we may then ask
how many cycles on average we must carry out before we

T first obtain a cumulative excess outpun?vnEEi":l(—\?Vi),

a1 Th 9 Where—\7vi is the excess output of thi¢h cycle andn is the
total number of consecutive cycles. The point of this ques-
We would like to stress that the attainment of this effi-tion can be understood in terms of the following apparent
ciency (whose expression is familiar from textbook treat- ) .o .
paradox: Suppose one monitorav,, as a function oh and

ment is not due to the quasistatic operation of the whole ops when it becomes positive for the first time. If one could
system. In the situation we consider, we have seen that soneoP P '

parts of the cycle can never be carried out quasistaticall)fh?gﬁatti;L:acsh ;nffgiguégng;urgfgnoéraggj a?t?npaéﬂ?neglglft?:]ye
due to the intrinsically irreversible operation of the couplers y ! Perp

(Sec. IV), as well as the intrinsic irreversibility resulting tsr(]acond kandd'l Tvtll|s,fc>tfhccr)rt:1rs§,r\]/vor#ild bi\m |(t:19 r|1|tra;j|tc;i|onfv:/|th
from the noncanonical energy distribution of the system € second faw 0f thermodynamics. A pitfall of this false
caused by the adiabatic proceséec. Vj argument is that, although for a given sequence of cycles, the

Then, using Eqs(24) and(27), we have

condition —\7vn>0 will be satisfied at some finite with
probability 1, theaverageover separate sequences of the

smallest value oh with positive—\fvn is divergent. This fact

The maximal efficiency Eq(29) obtained above repre- . .
sents exclusively the rat)i/o o?‘(thze total work done bF;/ the!S closely related to the fact that the one-dimensional random
walk is “null recurrent” (see Appendix R

system to the total energy influx from the high temperature
heat bath through an infinite number of cycles. Here we con-

B. Statistics over a finite number of cycles

sider the efficiency for a single cyclep,., which can be VII. DISCUSSION
written as A. Irreversibility resulting from contact with a heat bath
[(Ty—=TL)/2]In(kg /kc) — Sy In Sec. V we used the fact that for the harmonic oscillator
Moc™ (Ta/2)In(kg ko) + 6 ' (30) system, as a result of quasistatic adiabatic process, the en-
Q ergy changes in such a manner that the energy distribution
with remains in canonical form, with simply a change of the tem-
perature,T—T'. However, the harmonic oscillator repre-
— Sw=—W(Ay;—Bp) —W(Cy—Dy) sents a special system, and this is not generically the case

with any Hamiltonian. More generally, the energy distribu-
and tion P.,{E,T) is distorted into some noncanonical form
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P’(E) as a result of the quasistatic adiabatic process. When It is desirable to obtain a general pro@r counterevi-

an ensemble of systems following the distributieh(E) is  dence of the irreversibility resulting from nonquasistatic
brought into (weak contact with a heat bath of arbitrary processes. A related analysis using path probabilities has
temperaturel’, the energy distributiorirreversibly relaxes  been performed for chaotic systefi$]. However, we sus-

to the canonical forn®P,{E,T'). This is the case evenT’  pect that the essential mechanism of the irreversibility re-
is chosen so thatEP'(E)dE= [EP.{E,T')dE, i.e., even |ated to the characterization of macroscopic operators, which
in the case that no net heat is transferred on the average frogge ignorant of the initial microscopic state of the system,
the bath to the system. The relevance of this irreversiblean be elucidated without resort to chaotic statistics. It is also
relaxation to the energetics of small systems requires furthey future problem to scrutinize the case in which the topology

scrutiny. This will be discussed in more detail in a separatgy ine energy contour surface in the phase spa¢ge=E)

paper(12]. changes at some parameter value, sgy In such cases,

_ - quasistatic processes cannot be extended aerofsk7].
B. Irreversible adiabatic process

The adiabatic process in the Carnot cycle is a mechanical
process. The ergodic invariant theorgb3] tells us that, un-
der quasistatic and adiabatic change of a system parameter,
saya, by a finite amount, the phase volume enclosed by the _
en)e/zrgy >;urface defined by thg system’s energy at eacK md’e have introduced control parametgksxy, x.j. We as-
ment, J(E,a) [see Eq.(A2) for a definitior], remains con- sumed that the values of these pargmeters are changed by
stant. The theorem does not assume the thermodynamic linf°Me external agent whose dynamics are external to the
nor the presence or absence of chaotic trajectories. Contragduation of motion of the system.
ingly, for a nonquasistatic proce3¢E,a) can either increase !N fact, however, there are many “self-controlled” energy
or decrease, depending on both the nature of the change oftransducers that contain their own control systems. In such
and the initial conditions of the system. cases, the identification of the control system is more or less
In the context of the present paper, however, it is mos@ matter of interpretation. In the macroscopic world, dc elec-
meaningful to confine ourselves to only “macroscopic” ex- tric motors and steam engines are examples, while motor
ternal operations, excluding “demonic” ones that depend orproteins, such as myosins, kinesins, and dyneins, etc., are
detailed information of the system. More precisely, we focugnicroscopic example§24,25. Theoretically, the so-called
on an unprejudiced choice of the initial conditions amongFeynman ratchet and paw! syst¢@} has been proposed as a
those with a given energy, and also focus only on statisticamicroscopic energy transducer working by itself between hot
averages of the energy, rather than considering particular ré&nd cool heat baths. In this model, the role of the control
sults obtained from particular initial conditions. Satd] has ~ system is played either by the pawl or by the ratchet, depend-
recently studied a harmonic oscillator under a time-ing on which of these two is in direct contact with the cool
dependent forcanx= —x-+a(t) as the simplest nontrivial heat bath. The stochastic energetics of this model have been

example of a system with only macroscopic external opera@nalyzed[3,18]. Buttiker's model [19] is another self-
tions. Here, the change af(t) amounts to a horizontal dis- controlled microscopic transducer. In this model a massive

placement of the potential. He showed analytically, as ondarticle moves while in contact with a heat path of position-
can easily confirm, that for an arbitrary functiaft) the dePendent temperatui(x)=T or T . In this model, the

. . . . inertia of the particle serves to switch the particle’s environ-
energy of the oscillatorni/2)x?+ 3(x—a)? is strictly non- P P

decreasindf the average is taken with respect to the initial ment fromT=T, to T=T, , or vice versa. The sgtogc|hastic
condition %ver all init%l conditions re reSented b Statesenergetics of this model have also been analyZ#j21,

: X . rep . y Some people have claimed that the Carnot limiting efficiency
with a given energy, i.e., over a microcanonical ensemble

. o o . Wmax=1—T, /Ty can be attained in Feynman'’s ratchet and
eor?gr/glg Lhneclk:g]r:tgz]:ja quasistatic procesf@/dt|—0) is the pawl system(see[6] and[22]) and in Biitiker's model(see

This example demonstrates the irreversibility of a me-[23])' With the exception of the original work by Feynman

: - . et al. [6], where no implementation details are given, these
chanical system of nonmacroscopic size with properly de-

fined macroscopic operation. A recent numerical WEkS] studies introduced into their analyses some ‘“gate” mecha-
. S pic operation. A . . nism. A study of the energetics of such systems, including
investigating a harmonic oscillator with time-dependent

) . the action of these gates, has not yet been made.
spring constantmx= —k(t)x reveals the same phenomena
whenk(t) is constrained to return to its initial value. In the
present context of the analysis of the efficiency of Carnot ACKNOWLEDGMENTS
cycle (Sec. V), these findings are both natural and impor-
tant, since, if the case were different, one could find a func- Discussions with K. Sato, S. Sasa, T. Komatsu, and T.
tional form for k(t) for which the adiabatic work on the Chawan-ya on the adiabatic processes of harmonic oscilla-
system would be less than what we expect for a quasistatirs are gratefully acknowledged. The helpful comments by
process, and the whole cycle could be used to construct @. Paquette on the manuscript are also acknowledged. This
perpetual machine of the second kindNote that in the work was supported in part by the Inamori Foundation
analysis of Sec. VI we have excluded only marginally the(T.H.), and by a Grant in Aid from the Ministry of Educa-
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C. Control of processes by the system itself

As in the case of the ordinary macroscopic Carnot cycle,
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APPENDIX A: DERIVATION OF EQ. (21) W(E,a) is, therefore, independent & Thus from Eq.(A1)
For a general Hamiltoniari{, with a parametem, the \éve rej;t‘fg(?Tl)-_'” gengral,l howeveMV(E,e_l;FdeipEe/?ds on
energy distributioer;ﬂE;T) corresponding to the canonical andPg(E;T) is not simply an exponentiat-e '
ensemble at temperatuieis APPENDIX B: NULL-RECURRENCE PROPERTY
Ha( - — - ° - .
P A(E;T,a)=W(E,a)elF(TA-EIT, (A1) As {—W,} are statistically independent of each other,
with —\(/)vn constitutes a one-dimensional discrete random walk.
To simplify the argument we assume thaﬁvi takes only
W(E. &)= dJ(E,a) the values+ 1 randomly. If we denote b¥,,, the probability
(E.a)= JE ' that at the (A—1)th step the random walker comes to the
position+1 for the first time, it is known that
J(E,a)zf dr, (A2) 1 (2n 1
E>H, fop=—"7— e
n22n+1 n \/En3/2
efF(T,a)/TEJ' e Ma/Tdr, The fact thatf,, is normalized E/_,f,,=1) implies that

this event occurs with probability 1 at someOn the other

where [dI' denotes the phase integral. Hedepr S=logJ, hand, it is also true that

is an adiabatic invariant. *
In the text,H, is that of an isolated harmonic oscillator, 2 (2n—1)f,, =,
p2/2m+kx?/2, and we take its spring constahiasa. The n=1
calculation ofJ(E,k) is straightforward, yielding which is referred to as the null-recurrence property. Thus if
we are to wait until the position of the walker becomes posi-
JE K= E\ﬁ (A3) j[ive for theMth tirrje,. vyith M=1, then the “waiting time”
’ 27 V Kk is, on the averageinfinite.
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