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Steady states of a Boltzmann equation for driven granular media
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We study a three-dimensional model for driven granular media in which particles interact inelastically while
they follow Brownian dynamics in between collisions. A steady Boltzmann-type kinetic equation associated
with a pseudo-Maxwellian model is analyzed. Homogeneous steady states are found by a small inelasticity
expansion. These states are given by a Maxwellian distribution corrected by the second Sonine polynomial up
to third order in the expansion. The resulting correction is a quartic polynomial in velocity space. This result
agrees qualitatively with the molecular dynamics simulation in C. Bizon, M. D. Shattuck, J. B. Swift, and H.
L. Swinney, Phys. Rev. B0, 4340(1999.

PACS numbgs): 05.10.Gg, 05.20.Dd

I. INTRODUCTION classical Boltzmann elastic operator.
In particular, the stationary solution, to second order ac-

In recent years significant interest has been focused on theuracy in energy dissipation rate, is given by a Maxwellian
study of kinetic models for rapid granular flows. Experimen-distribution multiplied by a factor proportional to a quartic
tal and numerical data from molecular dynamiitD) simu-  Polynomial in velocity space. Such a solution qualitatively
lations indicate that particle distribution functions are faragrees with the one computed in Rgt], Fig. 3. Let us
from Gaussian distributions when particles collide inelasti-"emark that our computation of the solution is rigorous once
cally. Our work is motivated by a recent o], where the expansion in the dissipation rate is performed.
molecular dynamics simulations of a homogeneous granular Being more precise, we perform a statistical mechanics
flow, driven by a heat bath, show a clear deviation fromanalysis of the dynamics of perfect spheres of diameter
Gaussian states. As a consequence, we look for Steady d|§_0 COIIIdIng in6|astica”y in a thermal bath of infinite tem-
tributions of granular flows driven by random accelerationserature. Because the inelastic collision particles are con-
Our aim is to find an approximate steady solution for a sim-stantly losing energy, the inclusion of an energy input
plified homogeneous inelastic Boltzmann-Enskog modelMechanism allows us to achieve a steady state. Then, a uni-
Our expansion parameter is the energy dissipation rate. ~ formly heated system is obtained by assuming Brownian mo-

Following the initial work of Ref.[2], to simplify we tion of the particles between collisions. The corresponding
assume the Boltzmann-Enskog inelastic collision operatofdquation of motion can be written as the Langevin equation
introduced as an analog to the case of Maxwellian molecules .
in the classical elastic Boltzmann equation. This pseudo- x'=T'(v),

Maxwellian approximation assumes a collision frequency iN\yhereT'(t) is a white noise stochastic force with indepen-

dependent of the relative velocities, but proportional to thejen: identically Gaussian distributed processes of variance
square root of the kinetic temperature through a consfant g 4+ is (T(t),T(t"))=2F 8(t—t").

This constantS is fixed in such a way that the energy loss Concerning the collision mechanism, ) and
coincides with t_he one from the hard-spheres collision opera- on,w) are the states of two particles before a collision,
tor Qus- In particular this model reproduces the steady tem

ding t three-di a8 where ne S? is the unit vector along the center of both
perature according to a recent three- |mens_|c( &) mo- spheres, the post-collisional velocities are found by assuming
lecular dynamics simulation. Such a reduction allows th

I . ; ) ; &hat the total momentum is preserved, but part of the normal
explicit computation of stationary isotropic homogeneous so-

! S . relative velocity is lost, that is,
lutions for small energy dissipation perturbations. Then we
find that the corrections to these perturbations can only be n-(v'—w')=—e[(v—w)-n],

Gaussian distributions multiplied by a factor given by the

second Sonine polynomial. The second Sonine polynomial igvhere 0<e<1 is called the restitution coefficient.

related to the second isotropic eigenvalue of the linearized We can then easily construct the post-collisional veloci-

ties as

!

* f ; . 1
On leave from the Departamento de Matéice Aplicada, Uni o' = E(v +w)+ R (1.1
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1 \V& 12
w =§(v+w)—7, 1.2
10t
where V'=V—(1+e)(V-n)n, V=v—w, and V'=v’

—w’. Let us denote by* andw* the precollisional veloci-
ties corresponding to andw.

Therefore, following the standard procedures of kinetic
theory[3-6], we can find a Boltzmann-Enskog equation for @86-
inelastic hard spheres in a thermal bath. This equation read

of
E:QHS(fyf)"_LFPfa (1.3

whereQys is the collision operator for inelastic hard spheres
[4,5] and Lgp is the Fokker-Planck operator. This operator

takes into account the white noise interaction between colli- %
sions and using Ito’s stochastic calculus is given by
Lpr = FAvf .

(1.9 FIG

Kinetic temperature versus (le

The corresponding homogeneous Boltzmann equation for
inelastic particles under the pseudo-Maxwellian approxima-

14

4 6 8
(1-6%)23

. 1. Validation of formula(2.11) by a 3D MD simulation.

2) - 2/3.

tion in a heat bath is given by

of
E:B(p!t)Qs(f!f)—’—LFPf! (15)

where

1
Q. (f.f )=EJHSLZ[f(t,v*)f(t,W*)J

—f(t,v)f(t,w)]dn dw (1.6
with

1 |jo—w|

@ —w

and

B(p,t)=mSa*G(p) V(1)
=B(p)vo(t) 1.7

and the labek refers to the temperature dissipation rate
=(1—e€?)/4. Here,v* ,w* are the precollisional velocities
associated with the postcollisional velocities

,_1 N +1—e +1+e L8
v'=5+tw)+ ——@v-w)+ ——[v-wln, (1.8
,_l 1-e 1+e 19
w _E(IH—W)_ ) (v—w)— 7 [v—w[n. (1.9

Equation (16) corrects the strong form of the pseudo-
Maxwellian collision integral given if2].

Also, p, u, and 6(t) are the density, mean velocity, and
temperature of the distributioh Since bothQ,(f,f) and

Lepf preserve density and mean velocity, these quantities art

just constants. The functio@(p) takes into account dense
gas effectg5,1].
The operatoiQ,(f,f) acts on functions) e C§(R3) as

1
QU= 5= | | ftw o)

R3x R3x S2

—¢(v)]dv dw dn,

wherev’ is computed by

4

+e
4

(v—w)+

1
v’ E(U+W)+ |[v—w|n.

(1.10

The existence of such steady states in heated granular
media was proved in the one-dimensional case for a different
collision operator in Ref[7] and discussed for a discrete
number of particles in Ref8]; see also Ref9,10]. As a first
result we find the equation of state for the steady state which

is given by
) 2/3
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FIG. 2. Validation of formula(2.11) by a 3D MD simulation.
Kinetic temperature versus®>,
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Precisely, this prediction coincides with the results shown
in Figs. 1 and 2, corresponding to a recent three-dimensional
molecular dynamics simulation. Figures 1 and 2 show the
steady state kinetic temperature as a function of the heat batly i,
temperaturd- and as a function of the energy dissipation rate
e=(1—e?/4, which clearly coincide with the above for- 1-e 1+4e
mula for 6... These simulations are performed in a finite box v'=v+ TV+ T|V| ‘n (2.9
with a fixed number of particles. In addition we point out
that this dependence @f. on p, &, andF coincides with the hen
one-dimensional molecular dynamics results shown in Reft.
[8] (Figs. 3, 4, and b 1+e? 1—

_ vt+wW
(U,V):(T,U—W),

Though our work has been strongly motivated by the MD lv’|?=v]?+ IV|2+ -V
simulation of a 2D hard-spheres model in a finite hbk we 8
performed it in 3D were the collision operator has a natural 1+e _e2
invariance in spherical coordinates that yields the represen- + T|V|v_~ n+—g [VIV-n.

tation (1.6). Similar data corresponding to 3D MD simula-
tions are not available, but those simulations are currentl

under way. Xince the integral on the unit vectargoes through in Eq.

(2.3), the integrals containing/|v-n and|V|V-n will van-
ish. On the other hand, due@eV=1/2(|v|>—|w|?) and Eq.
(2.1) the integral containing -V vanishes too. In addition,

We first find the equation for the evolution of the second"€Wnting v andV in the original variables yields
moment of the distribution function. Let us consigen, and 14 ¢2 342 1- ¢

Il. TEMPERATURE DISSIPATION

0(t) the density, mean velocity, and temperaturef @fv).
Thus, f must satisfy

fdv=p, vfdv=pu, lv—ul|?fdv=3p6.
RS R3 RS
(2.1

Let us remark that the computation of the second moment
without the Fokker-Planck operator was done for isotropic
solutions in Ref[2] using Fourier transform techniques. We
include here this computation in a different way which is

valid for general distributions.
Computing the integral ofQ.(f,f) multiplied by |v
—ul? we deduce

’ d 2
3pb (t):aﬁﬂh}_ul f(v)dv

_Bb F(u)F(w)

A JR3xR3x 2

X (Jv"—=ul?~|v—u|?)dv dw dn+ 6Fp.
(2.2

We change variables in the collision integral finding
f f(v)f(w)(Jo’—ul?>~|v—u|?>)dv dw dn
R3x R3x &2

=f f(o+u)f(w+u)(Jo'|?—|v|?)dv dw dn
R3xR3x 2

(2.3

Now, we need to comput’|2. In order to simplify this

v-W;
(2.9

therefore the collision integral of E¢2.2) can be computed
as

2 2_ 2 2
B2+ o V2= (ol WD)+ =

B(p) 01’2L%3XR3f(v +u)f(w+u)

3+e?
X[ s (lv|?+w|®)—|v]?|dwdv  (2.6)

since the term withv-w vanishes too due to Eq2.1).
Again, using propertie€2.1), (2.6) results in

=B(p)t91/2f f(v+u)f(w+u)
R3xR3

[(—5+e2) 3+¢€?

3 lv|?+ g |w|?|dv dw

1-¢€?
=- 3B(P)P2—4 %2

=—3B(p)p?c - (2.7
Therefore combining Eq$2.2) and(2.7) yields the equation
pb' (t)=—B(p)p2c 6°°+2Fp (2.9
or equivalently the temperature dissipation equation
0'=—B(p)pe 8%+ 2F. (2.9

Now, we fix the value of the consta The dissipation

computation we use the unitary linear change of variableserm in temperature arising from the collision operafyris
given by the velocity of the center-of-mass—relative-velocitygiven by y, = 7So?G(p) pe =B(p) pe while the dissipation

system

term arising from the hard-spheres original oper&eg is
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given by[5,1] yus=8\ma?G(p)pe. We setShy y,=y,s  dissipation term for the temperature equation, on the other

and thenS=8/\/=. Thus, finally the temperature equation hand,e appears as a small eigenvalue of the linearized op-
can be written as eratorQ, about Dirac’s delta distribution which has a lot of

important consequences in the asymptotic behavior of the
0'=—v,6%%+2F. (2.10  distribution for small inelasticity in the unheated cagg
=0, see Ref[2].

spheres case. . _ Q. since it is easier to evaluate it in this form. The postcol-
The equilibrium point corresponds to a possible steadygional velocityv’ is given by

statef,ju whose temperaturé..(p) is explicitly given by

1 1-e l+e
0. ):( 2F )2/3 v' =3 FW)+ —— (v =wW)+ ——[v—w|n
“P) 7\ B(p)pe
1 1 1
2 \%B =—(v+W)+ =|v—w|n+ =(e+&?)(v—
:(_F) . (2.1 2(v W) 2|v w|n 2(8 £%)(v—w)
Ye
1
This temperature is asymptotically stable for Eg.10. —§(8+82)|U—W|n
Moreover, it is easy to see that a steady slf:%tg can be
obtained from a normalized steady staig=f* by the self- =vo+(e+&?)vy. (3.3

similar relation

. B s s _Herev0=% (v +_w)+% |[v—w|n is the postcollisional veloc-

fou(®)=pAlp) " FIA(p) " (v—w]l, (212 jty corresponding to an elastic collision ang=2 (V
—|V|n) the dissipated part of the postcollisional velocity,

where which depends only on the relative velocity and the collision
G(1)\23 angle.
A( p):p—2/3( _) We look for the steady state as aA perturbation of a
G(p) Maxwellian distribution with temperature,, ; therefore

_6u(p) _ 0.G(1) f5(0)=M,_(1+e%g)

0 p\6.(p)G(p)

and 6,,=06.,(1). In this sense we can say that the steady

states are self-similar solutions. with [gdv =0. LinearizingQ,(f,f) aboutM, on Eq.(3.2
Let us also finally point out that the dependency maf ields an equation fo *

0..(p) (2.11) and the relatiori2.12 for G=1 coincides with y q 9

the one-dimensional granular media models developed in ~

Refs.[7,10]. Let us remark again that the formu(2.11) B‘/H—WQE(M"w’M"xHZB\/a—wQS(M@x’g)

appears in Ref.8] for a one-dimensional problem. +LeMy )+ Lee()=0. (3.4)

=My, +G

Ill. AN APPROXIMATION FORMULA

FOR THE STEADY STATE On the other hand, sind@, depends on the restitution coef-

ficient e~1—2¢—2&2 we expandQ, expressed in a weak
Assuming the existence of a steady state solutippwe  form by using a Taylor series ia for ¢(v'), that is, fory

shall perform a small inelasticity expansion and a lineariza- Cy(R) andv=(v+w)/2,

tion of the operator to compute a small inelasticity approxi-

mation of this steady state. Let us take unit density and zero P(v') =Y vo+ (e +e)v,]

mean velocity and focus on an expansionfdfsince using _ 2 .

Eq. (2.12 we produce an expansion 6} ,. Let us remem- =¢lvo)F (e v (Vi) #(vo)

ber thatf® has temperature g2 92 3
—I—?vl -(Hy¥) (vg) + O(e®), (3.5
2F) 2/3

900: B_S

(3.9

whereH;1/(v,) denotes the Hessian gfwith respect ta at
vo. Then inserting Eq(3.5) in the weak formulation of the
collision integral and integrating by parts we have

(Qa(f, 1), ) =(Qo(f.f),4)

with B=8/m¢?G(1) and assumed to satisfy
B0, Q,(fS,f9)+LepfS=0. 3.2

The expansion parameter is given hby=(1—e?)/4. &2
Therefore, we can approximate the restitution coefficient by +(e+&2)(R(f,f),y)+ ?<S(f,f ), ),
e=\1-4e~1-2¢—2¢% The reason for this choice is
twofold: on one handg is the parameter involved in the (3.6
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where Q) is the classical elastic Boltzmann collision opera-

tor for Maxwellian molecules

(RO ="g2 R3x R3x S2 ~IVim
VA F(v)f(W) i) do dwdn (3.7)
and
<S(faf),lﬂ):EJH3XR3Xs2(V_|V|n)®2'Hv_

X[f(v)f(w)]¥(vg)dv dwdn (3.8

J. A. CARRILLO, C. CERCIGNANI, AND I. M. GAMBA
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This shows that the term of order ! vanishes in Eq.
(3.11). Next, we can replace Eq$3.12 and (3.13 in the
weak formulation of the equation fay; given by Eq.(3.12),
obtaining the following equation fag:

—2Bv6..Qo(M,_,gM, ) —Les(gM,, )

1 w|?)  Jol* 7 [v]?
_B\lawMgw[E(\?)—a—w)‘i‘@g—ga—m-f—l
4 2
1%
=—B\/ 0M,_ |— 1' +15|=—h(v).
(3.19

Since all the Maxwellian distributions are in the kernel of Next, let us consider the linear operator actinggon

the classical operatd®, we haveQy(M,_,M, )=0. There-
fore,§ must satisfy the equation

0= BJo—m< (e+£%)[R(My M, )+2R(M, ,G)]

2
+ %[S(M Hw,ng)+25(Mam,§)],¢>

+2BV0.(Qo(My_8) ) +(LeeM ., )

+(Led, )+ O(£). (3.9
It is straightforward to find
F lv]?
LFPMHQC(U):G_ _3“‘0_00 My, (v)
B |v]?
———B\/—M 3-- (310

Next, replacing Eq(3.10 into Eq. (3.9) and taking into ac-
count thafj=&2M 0.9 the following equation is valid fog:

2
0:8718\/0—00 <R(M(9x7M0x)1lp>_<1 (3_u 1¢>}
+B\/0—w< R+%S (ng,Mgw),¢>

+2B0.(Qo(M,_,gM, ), %)
+(Lee(My,9),4) +O(¢) (3.11

The termsR andSevaluated onM, ,M, ) can be com-

L(gM, ) =2B\0..Qo(M,_,gM, ) +Les(gM,).
(3.15

We need to solve the problem

£(gM,,)=h(v). (3.16

We first discuss the eigenvalue problem associated with
the operatorZ(gMy ), that is,

We restrict ourselves to the case of isotropic eigenfunctions.
We recall from Refs[3,11] that the isotropic eigenfunctions
of the operatorQy(M,_,gM, ) are given by Sonine poly-
nomials multiplied byM, (v). We recall that the second
order Sonine polynomidll1] is

ST 24<15 20¢+4¢%) (3.18
for any ¢ R, and if we define the function
|v|?
()= -
3 10v |2 lv]*
= 2—4( 15— o 02 (3.19
then, the functiorh(v) is given by
4
h(v)=— §BJa—wl\A o P. (3.20

puted exactly. The computation is given in the Appendix and  \y/e also recal[12,13 that

yields
1 v]?
(R(My_,My ), )= My, (v) 3—0—30,(# (3.12
and
lv|* 7 v]?
S(My_ My )=My (v) 37 §0_w+2 (3.13

Jo/?

vl
M0 151/2(20

—A2 1/2(7) 0(0)
(3.2

2Qq )Mo

with \,g=1/3.
Next, we show that the functioM, P=M, S{3(|v|%

26, is an eigenvector with zero elgenvalue for the operator
Lep=FA, up to an order o2, We first compute
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lv|? 1 v , 2 30, 2
Lep(My )=FMy | P 0——3 ———V,P+A,P 0 +;0=—y€0 +;0b. 4.9

0. 0
1 v]? ll*  [v]® Also, the mean velocity is no longer preserved and is dissi-
=g, ™™ 9m2_4< —105+857—~ 17?5"' 62 | pated according ta(t)=e""7u(0).
The equilibrium point corresponds to a possible steady
(3.22 stateff, with zero mean velocity where,.(p) is given by the

Now, by Eq. (3.1) 6,'=0(¢%3 and thus, Lee(M 5. P) unigue positive solution of the equation

= 0(82/3). T
To finish we come back to Ed3.16), take into account Op=0+ 35 ¥, 6%, (4.2
Eq. (3.20 and the previous results for the eigenvalues of the
operators to find out that This temperature is globally asymptotically stable for the
ol evolution of Eq.(4.1). In this case we do not have a simple
v lation betweerf® and the normalized®.
=4s<s><—> M re p an . :
9(v) 12\ 20, 0.(0) The same expansion procedure can be applied to this op-

_ _ erator. The main differences are that we do not have a rela-
is a solution of Eq(3.16 up to orders. We conclude by tion as Eq.(2.12 to reduce the computation t and the

writing the expansion of the stationary solution computation oﬂ_'Z:P(M o.(»)P) With P given by
fS(v)=M, (v)| 1+4&2S7) ﬁ) +0(&%) _qo P
0., 112\ 5 . P(v)=S% 20.(p)
Now, we use the self-similar relatiof2.12 to obtain the 3 10v]2  |v]*
main result of this paper. = ﬁ( - m + mi)
Theorem IIl.1 The steady staté; , for Eq. (1.5), up to
ordere3, is given by The first one is easily solved by directly expandl’rjg Now,
we compute
§s _ 2a(2) |v—U|2 3
p,u(v)_pMﬂw(P)(U_u) 1+4e S1/2 2l9x(p) +O(8 ) ) ng(p) |U|2 0,
HrMo.P)= H?’_ T) - 0x(p>)

with

+ol1 26b)VP+49AP 4.3
U ax(p) v AW . .

2F 2/3 2 2/3
-0~ =57

- il
(p)pe Ve Now, by Eq.(4.2) we haved..(p) = 8,+ O(e) and there-

and S&) given by formula(3.18). fore, we can estimate the right-hand side of Ef3) as
Mo, (p) M
[O(e)—vV, P+ 6,A,P]=—4

T T

0..(p)

IV. HEAT BATH WITH FRICTION P+O(e)

We may also include friction on the particles between
collisions assuming that the particles are in some sort ofhus
surrounding heat bath with a fixed finite temperatége In 4
this case, the paths of the particles are governed by the LZ4M, WP)=—=My ,P+O(e).
Langevin equation ” T

As a consequence, the expansion for the steady state in this

1 )
X"+ ;x’zl‘(t), case is

. . . . L s 28 a(2) Jo/? 3
whereI'(t) is a white noise stochastic force with indepen-  f (v)=pMy_,)(v)| 1+e°AS}), 20.(p) +0(e”)
dent, identically Gaussian distributed processes of variance *
F, that is,(T'(t),T'(t"))=2F8(t—t') with F=6y/7 and 7  with
>0 the relaxation time corresponding to the damping force.
The Fokker-Planck operator now reads — (TpB(p)@oc(p)+3

1 7pB(p) 0-(p)
2 ¢ T
Leef = —div,(vT+ 65V, 1). 6..(p) being the unique solution of

In this case, we can perform the same computations as before a0 T e
and the temperature dissipation equation becomes 2
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andS{?) given by formula(3.18. Formally, we recover theo- 1 v
rem Ill.1 by taking the limitr—o, 6,—« in such a way f My (V2u)My | —
that F= 6, /7 remains constant. A0 J RO ROxS? V2
o _ |VIn| _
V. CONCLUSIONS X(V-u=[V[o-nyg| v+ ——|dvdVdn
We have found that a reduced model to the inelastic hard- (A2)

spheres Boltzmann-Enskog equation, has stationary isotropic

homogeneous solutions for small energy dissipation pertuNow, considering spherical coordinatds=|V|k with k
bations. These solutions are explicitly given and they must S?, swapping the roles df andn, interchanging the inte-
be, to quadratic order, Maxwellian distributions multiplied grals overdn by the one overdk and rewritingV=|V|n,
by a factor given by the second Sonine polynomial evaluatedA2) becomes

at the temperature of the Maxwellian. The second Sonine

polynomial is related to the second eigenvalue of the linear- 1

ized classical Boltzmann elastic operator. Moreover, we have 470, Jﬁsx]ﬁsxszM 0.(VZUIM,, N

obtained rigorously the equation for the temperature of the

steady state2.11). X (|V[v-k=v-V)¢(v)dv dV dk (A3)
Though our work has been strongly motivated by the MD

simulation of a 2D hard-spheres model in a finite bk we The integration with respect toon S? can be performed

performed it in 3D. Thus, our results are not directly compa-and the integral of the termo-k vanishes. Returning to
rable to those in Ref.1]. Nevertheless, it reproduces quali- (v,w) coordinates and taking into accoumt V=(|v|?
tatively the difference of the steady state distribution func-—|w|?)/2, Eq.(A3) becomes

tion with respect to a Maxwellian as shown in REf], Fig.

3. Moreover, Figs. 1 and 2 show that formya11) agrees _ i 2 |\wl2
very well with the molecular dynamics simulation. 26, ]R3><R3M 0. ()M (W)(Jo[*~ W) (v)dv dw.
Let us finally remark that very recent papdiisi—16, (A4)

dealing with the homogeneous inelastic hard-spheres

Boltzmann-Enskog model uniformly heated by a bath, show Therefore the operatd®(M,_,M,) can be expressed as
that there can be solutions given by Maxwellians multiplied 1

by a factor depending on the second Sonine polynomial. In 1 f -+ 2 1l2

these papers different additional assumptions are made in 2 Jr30 M“’w(v)M"M(W)qv' [wl%)dw

order to compute this factor depending on the energy dissi- 1

pation rate. One one hand, the present paper shows a more _ Mgm(v)(lvlz—Sﬁx), (A5)

rigorous approach to find an approximation to the steady 20,

solution for the pseudo-Maxwellian model showing that it = )

must be a Maxwellian distribution modified by a factor con-Which finally gives Eq.(3.12.

taining the second Sonine polynomial. However, these pa- We proceed similarly in order to compu&M, ,My ).
pers show that the coefficient corresponding to this polynoExpressing the first integral ddin (v,V) variables, comput-
mial correction is not necessarily positive as a function of theng
energy dissipation rate. This may indicate that a solution for
the stationary inelastic pseudo-Maxwellian model might be
better approximated by a double expansion in energy dissi-
pation rate at all orders and higher order Sonine polynomials
as well. Also, the validity of the pseudo-Maxwellian model and swapping the role af andk as done folR we have
should be examined. These tasks are presently under way.

2 4
HiMy (V20)]= M@(@( - 0_| + —_®2) (AB)

> U
oo 0,

1 1 2
. . _ 2
APPENDIX 87 j]ﬁsx]ﬁsxszM"w V2 M"w(ﬁm( 6. 7Y )
Here, we calculate Eq$3.7) and(3.8) in order to replace X (IV[?k®2=2|V|Vek+V®2)y(v)dkdo dV.

in Eq. (3.11). First from Eq.(3.7), using @,V) coordinates
Now, performing the integration with respect ke S?, re-

1 a calling [gk®2dk=(4m/3)l, [Vekdk=0 and [gdk
(R(My, My,). )=~ 8w Rsstxsz(V_Nm)'Vv =41 and reducing the matrices, EGA6) becomes
x| M, (VZo)M, | — lJ M, | —|M, (vV20) —EJF 2 ]3| V|?
0, 0, 2 Jpe Ol Yy | O v 6, gg v
_|vin\ V|2 2 _
Xy| v+ ——|dvdVdn (A1) —0—+52—F®2~V®2 (v)dv dV,

SinceV,M,_(vV2v)=—(2v/6..)M,_(v2v) we have thus, rewriting thus integral in the original coordinates
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f 6Max(U)M 9, (W) Mem(v)f 3M 9, (W)
R R
lo—w]®  Jo-wPlo+w? Jo-w]? " o2+ |w|?  Jol*+|w|* 22| g
20, 1262 20, 6. 32 gg2 lvlwldw.
1 (A8)
®2 ®2
+W(U+W) (v—w) Y(v)dv dw
N Taking moments oM ,_(w) one finally proves Eq.3.13. In
:f eM o (V)M (W) particular
R
2 2 2 2\2 2
v+ |wlc=2vw  (|v|*+|w|%) —4(vw)
— | | | 0| | | | ]|-202 R(Mgw,Mgm)dv=0= S(Mgw,Mgw)dU.
2_ 2\2
(o] |;N| ) Y(v)dv dw. (A7) Thus, we have checked our computations in the sense that
46z the first two order terms in the expansion Qf preserve

Now, we have to integrate with respectwowe make use of
the integral

fMg(W)(vW)de
RS
= [ "My cololwialw [ g7,
0 S
41
=S| Mo wloPhwlalw
R

=3[ Mo wlolwaw,
R3

and of the fact that the integral iw of the termv -w van-
ishes. Therefore, the ter®M, ,M, ) becomes

mass.
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