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Steady states of a Boltzmann equation for driven granular media
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We study a three-dimensional model for driven granular media in which particles interact inelastically while
they follow Brownian dynamics in between collisions. A steady Boltzmann-type kinetic equation associated
with a pseudo-Maxwellian model is analyzed. Homogeneous steady states are found by a small inelasticity
expansion. These states are given by a Maxwellian distribution corrected by the second Sonine polynomial up
to third order in the expansion. The resulting correction is a quartic polynomial in velocity space. This result
agrees qualitatively with the molecular dynamics simulation in C. Bizon, M. D. Shattuck, J. B. Swift, and H.
L. Swinney, Phys. Rev. E60, 4340~1999!.

PACS number~s!: 05.10.Gg, 05.20.Dd
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I. INTRODUCTION

In recent years significant interest has been focused on
study of kinetic models for rapid granular flows. Experime
tal and numerical data from molecular dynamics~MD! simu-
lations indicate that particle distribution functions are
from Gaussian distributions when particles collide inela
cally. Our work is motivated by a recent one@1#, where
molecular dynamics simulations of a homogeneous gran
flow, driven by a heat bath, show a clear deviation fro
Gaussian states. As a consequence, we look for steady
tributions of granular flows driven by random acceleratio
Our aim is to find an approximate steady solution for a s
plified homogeneous inelastic Boltzmann-Enskog mod
Our expansion parameter is the energy dissipation rate.

Following the initial work of Ref.@2#, to simplify we
assume the Boltzmann-Enskog inelastic collision opera
introduced as an analog to the case of Maxwellian molec
in the classical elastic Boltzmann equation. This pseu
Maxwellian approximation assumes a collision frequency
dependent of the relative velocities, but proportional to
square root of the kinetic temperature through a constanS.
This constantS is fixed in such a way that the energy lo
coincides with the one from the hard-spheres collision ope
tor QHS. In particular this model reproduces the steady te
perature according to a recent three-dimensional~3D! mo-
lecular dynamics simulation. Such a reduction allows
explicit computation of stationary isotropic homogeneous
lutions for small energy dissipation perturbations. Then
find that the corrections to these perturbations can only
Gaussian distributions multiplied by a factor given by t
second Sonine polynomial. The second Sonine polynomia
related to the second isotropic eigenvalue of the lineari

*On leave from the Departamento de Matema´tica Aplicada, Uni-
versidad de Granada, 18071 Granada, Spain.
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classical Boltzmann elastic operator.
In particular, the stationary solution, to second order

curacy in energy dissipation rate, is given by a Maxwelli
distribution multiplied by a factor proportional to a quart
polynomial in velocity space. Such a solution qualitative
agrees with the one computed in Ref.@1#, Fig. 3. Let us
remark that our computation of the solution is rigorous on
the expansion in the dissipation rate is performed.

Being more precise, we perform a statistical mechan
analysis of the dynamics of perfect spheres of diametes
.0 colliding inelastically in a thermal bath of infinite tem
perature. Because the inelastic collision particles are c
stantly losing energy, the inclusion of an energy inp
mechanism allows us to achieve a steady state. Then, a
formly heated system is obtained by assuming Brownian m
tion of the particles between collisions. The correspond
equation of motion can be written as the Langevin equat

x95G~ t !,

whereG(t) is a white noise stochastic force with indepe
dent, identically Gaussian distributed processes of varia
F, that is,^G(t),G(t8)&52Fd(t2t8).

Concerning the collision mechanism, if~x,v! and (x
2sn,w) are the states of two particles before a collisio
where nPS2 is the unit vector along the center of bo
spheres, the post-collisional velocities are found by assum
that the total momentum is preserved, but part of the nor
relative velocity is lost, that is,

n•~v82w8!52e@~v2w!•n#,

where 0,e<1 is called the restitution coefficient.
We can then easily construct the post-collisional velo

ties as

v85
1

2
~v1w!1

V8

2
. ~1.1!
7700 ©2000 The American Physical Society
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w85
1

2
~v1w!2

V8

2
, ~1.2!

where V85V2(11e)(V•n)n, V5v2w, and V85v8
2w8. Let us denote byv* andw* the precollisional veloci-
ties corresponding tov andw.

Therefore, following the standard procedures of kine
theory @3–6#, we can find a Boltzmann-Enskog equation f
inelastic hard spheres in a thermal bath. This equation re

] f

]t
5QHS~ f , f !1LFPf , ~1.3!

whereQHS is the collision operator for inelastic hard spher
@4,5# and LFP is the Fokker-Planck operator. This operat
takes into account the white noise interaction between c
sions and using Ito’s stochastic calculus is given by

LFPf 5FDv f . ~1.4!

The corresponding homogeneous Boltzmann equation
inelastic particles under the pseudo-Maxwellian approxim
tion in a heat bath is given by

] f

]t
5B~r,t !Q«~ f , f !1LFPf , ~1.5!

where

Q«~ f , f !5
1

4p E
R3
E

S2
@ f ~ t,v* ! f ~ t,w* ! J

2 f ~ t,v ! f ~ t,w!#dn dw ~1.6!

with

J5
1

e2

uv2wu
uv* 2w* u

and

B~r,t !5pSs2G~r!Au~ t !

5B~r!Au~ t ! ~1.7!

and the label« refers to the temperature dissipation rate«
5(12e2)/4. Here,v* ,w* are the precollisional velocitie
associated with the postcollisional velocities

v85
1

2
~v1w!1

12e

4
~v2w!1

11e

4
uv2wun, ~1.8!

w85
1

2
~v1w!2

12e

4
~v2w!2

11e

4
uv2wun. ~1.9!

Equation ~16! corrects the strong form of the pseud
Maxwellian collision integral given in@2#.

Also, r, u, andu(t) are the density, mean velocity, an
temperature of the distributionf. Since bothQ«( f , f ) and
LFPf preserve density and mean velocity, these quantities
just constants. The functionG(r) takes into account dens
gas effects@5,1#.

The operatorQ«( f , f ) acts on functionscPC0
`(R3) as
c

ds

r
i-

or
-

re

^Q«~ f , f !,c&5
1

4p E
R33R33S2

f ~ t,w! f ~ t,v !@c~v8!

2c~v !#dv dw dn,

wherev8 is computed by

v85
1

2
~v1w!1

12e

4
~v2w!1

11e

4
uv2wun.

~1.10!

The existence of such steady states in heated gran
media was proved in the one-dimensional case for a diffe
collision operator in Ref.@7# and discussed for a discret
number of particles in Ref.@8#; see also Ref.@9,10#. As a first
result we find the equation of state for the steady state wh
is given by

u`~r!5S 2F

B~r!r« D 2/3

.

FIG. 1. Validation of formula~2.11! by a 3D MD simulation.
Kinetic temperature versus (12e2)22/3.

FIG. 2. Validation of formula~2.11! by a 3D MD simulation.
Kinetic temperature versusF2/3.
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Precisely, this prediction coincides with the results sho
in Figs. 1 and 2, corresponding to a recent three-dimensi
molecular dynamics simulation. Figures 1 and 2 show
steady state kinetic temperature as a function of the heat
temperatureF and as a function of the energy dissipation ra
«5(12e2)/4, which clearly coincide with the above for
mula foru` . These simulations are performed in a finite b
with a fixed number of particles. In addition we point o
that this dependence ofu` on r, «, andF coincides with the
one-dimensional molecular dynamics results shown in R
@8# ~Figs. 3, 4, and 5!.

Though our work has been strongly motivated by the M
simulation of a 2D hard-spheres model in a finite box@1#, we
performed it in 3D were the collision operator has a natu
invariance in spherical coordinates that yields the repres
tation ~1.6!. Similar data corresponding to 3D MD simula
tions are not available, but those simulations are curre
under way.

II. TEMPERATURE DISSIPATION

We first find the equation for the evolution of the seco
moment of the distribution function. Let us considerr, u, and
u(t) the density, mean velocity, and temperature off (t,v).
Thus,f must satisfy

E
R3

f dv5r, E
R3

v f dv5ru, E
R3

uv2uu2f dv53ru.

~2.1!

Let us remark that the computation of the second mom
without the Fokker-Planck operator was done for isotro
solutions in Ref.@2# using Fourier transform techniques. W
include here this computation in a different way which
valid for general distributions.

Computing the integral ofQ«( f , f ) multiplied by uv
2uu2 we deduce

3ru8~ t !5
d

dt ER3
uv2uu2f ~v !dv

5
B~r,t !

4p E
R33R33S2

f ~v ! f ~w!

3~ uv82uu22uv2uu2!dv dw dn16Fr.

~2.2!

We change variables in the collision integral finding

E
R33R33S2

f ~v ! f ~w!~ uv82uu22uv2uu2!dv dw dn

5E
R33R33S2

f ~v1u! f ~w1u!~ uv8u22uvu2!dv dw dn.

~2.3!

Now, we need to computeuv8u2. In order to simplify this
computation we use the unitary linear change of variab
given by the velocity of the center-of-mass–relative-veloc
system
n
al
e
th

f.

l
n-

ly

nt
c

s

~ v̄,V!5S v1w

2
,v2wD ,

so that

v85 v̄1
12e

4
V1

11e

4
uVu•n ~2.4!

then

uv8u25uv̄u21
11e2

8
uVu21

12e

2
v̄•V

1
11e

2
uVuv̄•n1

12e2

8
uVuV•n.

Since the integral on the unit vectorn goes through in Eq.
~2.3!, the integrals containinguVuv̄•n and uVuV•n will van-
ish. On the other hand, due tov̄•V51/2(uvu22uwu2) and Eq.
~2.1! the integral containingv̄•V vanishes too. In addition
rewriting v̄ andV in the original variables yields

uv̄u21
11e2

8
uVu25

31e2

8
~ uvu21uwu2!1

12e2

4
v•w;

~2.5!

therefore the collision integral of Eq.~2.2! can be computed
as

B~r!u1/2E
R33R3

f ~v1u! f ~w1u!

3F31e2

8
~ uvu21uwu2!2uvu2Gdw dv ~2.6!

since the term withv•w vanishes too due to Eq.~2.1!.
Again, using properties~2.1!, ~2.6! results in

5B~r!u1/2E
R33R3

f ~v1u! f ~w1u!

3F ~251e2!

8
uvu21

31e2

8
uwu2Gdv dw

523B~r!r2
12e2

4
u3/2

523B~r!r2«u3/2. ~2.7!

Therefore combining Eqs.~2.2! and~2.7! yields the equation

ru8~ t !52B~r!r2«u3/212Fr ~2.8!

or equivalently the temperature dissipation equation

u852B~r!r«u3/212F. ~2.9!

Now, we fix the value of the constantS. The dissipation
term in temperature arising from the collision operatorQ« is
given byg«5pSs2G(r)r«5B(r)r« while the dissipation
term arising from the hard-spheres original operatorQHS is
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given by @5,1# gHS58Aps2G(r)r«. We setS by g«5gHS

and thenS58/Ap. Thus, finally the temperature equatio
can be written as

u852g«u3/212F. ~2.10!

Let us remark that this equation is also valid for the ha
spheres case.

The equilibrium point corresponds to a possible stea
statef r,u

s whose temperatureu`(r) is explicitly given by

u`~r!5S 2F

B~r!r« D 2/3

5S 2

g«
F D 2/3

. ~2.11!

This temperature is asymptotically stable for Eq.~2.10!.
Moreover, it is easy to see that a steady statef r,u

s can be
obtained from a normalized steady statef 1,0

s 5 f s by the self-
similar relation

f r,u
s ~v !5rA~r!23/2f s@A~r!21/2~v2u!#, ~2.12!

where

A~r!5r22/3S G~1!

G~r! D
2/3

5
u`~r!

u`
5

Au`G~1!

rAu`~r!G~r!

and u`5u`(1). In this sense we can say that the stea
states are self-similar solutions.

Let us also finally point out that the dependency onr of
u`(r) ~2.11! and the relation~2.12! for G51 coincides with
the one-dimensional granular media models developed
Refs. @7,10#. Let us remark again that the formula~2.11!
appears in Ref.@8# for a one-dimensional problem.

III. AN APPROXIMATION FORMULA
FOR THE STEADY STATE

Assuming the existence of a steady state solutionf r,u
s we

shall perform a small inelasticity expansion and a lineari
tion of the operator to compute a small inelasticity appro
mation of this steady state. Let us take unit density and z
mean velocity and focus on an expansion off s since using
Eq. ~2.12! we produce an expansion forf r,u

s . Let us remem-
ber thatf s has temperature

u`5S 2F

B« D 2/3

~3.1!

with B58Aps2G(1) and assumed to satisfy

BAu`Q«~ f s, f s!1LFPf s50. ~3.2!

The expansion parameter is given by«5(12e2)/4.
Therefore, we can approximate the restitution coefficient
e5A124«'122«22«2. The reason for this choice i
twofold: on one hand,« is the parameter involved in th
-

y

y

in

-
-
ro

y

dissipation term for the temperature equation, on the ot
hand,« appears as a small eigenvalue of the linearized
eratorQ« about Dirac’s delta distribution which has a lot o
important consequences in the asymptotic behavior of
distribution for small inelasticity in the unheated caseub
50, see Ref.@2#.

We perform the expansion over the action of the opera
Q« since it is easier to evaluate it in this form. The postc
lisional velocityv8 is given by

v85
1

2
~v1w!1

12e

4
~v2w!1

11e

4
uv2wun

5
1

2
~v1w!1

1

2
uv2wun1

1

2
~«1«2!~v2w!

2
1

2
~«1«2!uv2wun

5v01~«1«2!v1 . ~3.3!

Herev05 1
2 (v1w)1 1

2 uv2wun is the postcollisional veloc-
ity corresponding to an elastic collision andv15 1

2 (V
2uVun) the dissipated part of the postcollisional velocit
which depends only on the relative velocity and the collisi
angle.

We look for the steady state as an«2 perturbation of a
Maxwellian distribution with temperatureu` ; therefore

f s~v !5M u`
~11«2g!

5M u`
1g̃

with * g̃dv50. LinearizingQ«( f , f ) aboutM u`
on Eq.~3.2!

yields an equation forg

BAu`Q«~M u`
,M u`

!12BAu`Q«~M u`
,g̃!

1LFP~M u`
!1LFP~ g̃!50. ~3.4!

On the other hand, sinceQ« depends on the restitution coe
ficient e'122«22«2 we expandQ« expressed in a weak
form by using a Taylor series in« for c(v8), that is, forc
PC0

`(R) and v̄5(v1w)/2,

c~v8!5c@v01~«1«2!v1#

5c~v0!1~«1«2!@v1•~¹ v̄!c#~v0!

1
«2

2
v1

^ 2
•~H v̄c!~v0!1O~«3!, ~3.5!

whereH v̄c(v0) denotes the Hessian ofc with respect tov̄ at
v0 . Then inserting Eq.~3.5! in the weak formulation of the
collision integral and integrating by parts we have

^Q«~ f , f !,c&5^Q0~ f , f !,c&

1~«1«2!^R~ f , f !,c&1
«2

2
^S~ f , f !,c&,

~3.6!
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whereQ0 is the classical elastic Boltzmann collision oper
tor for Maxwellian molecules

^R~ f , f !,c&52
1

8p E
R33R33S2

~V2uVun!

•¹ v̄@ f ~v ! f ~w!#c~v0!dv dw dn ~3.7!

and

^S~ f , f !,c&5
1

16p E
R33R33S2

~V2uVun! ^ 2
•H v̄

3@ f ~v ! f ~w!#c~v0!dv dw dn. ~3.8!

Since all the Maxwellian distributions are in the kernel
the classical operatorQ0 we haveQ0(M u`

,M u`
)50. There-

fore, g̃ must satisfy the equation

05BAu`K ~«1«2!@R~M u`
,M u`

!12R~M u`
,g̃!#

1
«2

2
@S~M u`

,M u`
!12S~M u`

,g̃!#,c L
12BAu`^Q0~M u`

,g̃!,c&1^LFPM u`
,c&

1^LFPg̃,c&1O~«3!. ~3.9!

It is straightforward to find

LFPM u`
~v !5

F

u`
S 231

uvu2

u`
D M u`

~v !

52
«

2
BAu`M u`

F32
uvu2

u`
G . ~3.10!

Next, replacing Eq.~3.10! into Eq. ~3.9! and taking into ac-
count thatg̃5«2M u`

g the following equation is valid forg:

05«21BAu`F ^R~M u`
,M u`

!,c&2 K 1

2
M u`

S 32
uvu2

u`
D ,c L G

1BAu`K S R1
1

2
SD ~M u`

,M u`
!,c L

12BAu`^Q0~M u`
,gMu`

!,c&

1^LFP~M u`
g!,c&1O~«!. ~3.11!

The termsR andSevaluated on (M u`
,M u`

) can be com-
puted exactly. The computation is given in the Appendix a
yields

^R~M u`
,M u`

!,c&5 K 1

2
M u`

~v !F32
uvu2

u`
G ,c L ~3.12!

and

S~M u`
,M u`

!5M u`
~v !F uvu4

3u`
2 2

7

3

uvu2

u`
12G . ~3.13!
-

d

This shows that the term of order«21 vanishes in Eq.
~3.11!. Next, we can replace Eqs.~3.12! and ~3.13! in the
weak formulation of the equation forg, given by Eq.~3.11!,
obtaining the following equation forg:

22BAu`Q0~M u`
,gMu`

!2LFP~gMu`
!

5BAu`M u`F1

2 S 32
uvu2

u`
D1

uvu4

6u`
2 2

7

6

uvu2

u`
11G

5
1

6
BAu`M u`F uvu4

u`
2 2

10uvu2

u`
115G52h~v !.

~3.14!

Next, let us consider the linear operator acting ong

L~gMu`
!52BAu`Q0~M u`

,gMu`
!1LFP~gMu`

!.
~3.15!

We need to solve the problem

L~gMu`
!5h~v !. ~3.16!

We first discuss the eigenvalue problem associated w
the operatorL(gMu`

), that is,

L~gMu`
!52lgMu`

. ~3.17!

We restrict ourselves to the case of isotropic eigenfunctio
We recall from Refs.@3,11# that the isotropic eigenfunction
of the operatorsQ0(M u`

,gMu`
) are given by Sonine poly-

nomials multiplied byM u`
(v). We recall that the second

order Sonine polynomial@11# is

S1/2
~2!~j !5

3

24
~15220j14j2! ~3.18!

for any jPR, and if we define the function

P~v !5S1/2
~2!S uvu2

2u`
D

5
3

24S 152
10uvu2

u`
1

uvu4

u`
2 D ~3.19!

then, the functionh(v) is given by

h~v !52
4

3
BAu`M u`

P. ~3.20!

We also recall@12,13# that

2Q0FM u`
,S1/2

~2!S uvu2

2u`
D M u`

G52l20S1/2
~2!S uvu2

2u`
D M u`

~v !

~3.21!

with l2051/3.
Next, we show that the functionM u`

P5M u`
S1/2

(2)(uvu2/

2u`) is an eigenvector with zero eigenvalue for the opera
LFP5FDv up to an order of«2/3. We first compute
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LFP~M u`
!5FM u`

FPS uvu2

u`
23D 1

u`
2

v
u`

•¹vP1DvPG
5

1

u`
FM u`

3

24S 2105185
uvu2

u`
217

uvu4

u`
2 1

uvu6

u`
3 D .

~3.22!

Now, by Eq. ~3.1! u`
215O(«2/3) and thus, LFP(M u`

P)

5O(«2/3).
To finish we come back to Eq.~3.16!, take into account

Eq. ~3.20! and the previous results for the eigenvalues of
operators to find out that

g~v !54S1/2
~s!S uvu2

2u`
D M u`

~v !

is a solution of Eq.~3.16! up to order«. We conclude by
writing the expansion of the stationary solution

f s~v !5M u`
~v !F114«2S1/2

~2!S uvu2

2u`
D G1O~«3!.

Now, we use the self-similar relation~2.12! to obtain the
main result of this paper.

Theorem III.1. The steady statef r,u
s for Eq. ~1.5!, up to

order«3, is given by

f r,u
s ~v !5rM u`~r!~v2u!F114«2S1/2

~2!S uv2uu2

2u`~r! D G1O~«3!

with

u`~r!5S 2F

B~r!r« D 2/3

5S 2

g«
F D 2/3

andS1/2
(2) given by formula~3.18!.

IV. HEAT BATH WITH FRICTION

We may also include friction on the particles betwe
collisions assuming that the particles are in some sor
surrounding heat bath with a fixed finite temperatureub . In
this case, the paths of the particles are governed by
Langevin equation

x91
1

t
x85G~ t !,

whereG(t) is a white noise stochastic force with indepe
dent, identically Gaussian distributed processes of varia
F, that is, ^G(t),G(t8)&52Fd(t2t8) with F5ub /t and t
.0 the relaxation time corresponding to the damping for
The Fokker-Planck operator now reads

LFP
2 f 5

1

t
divv~v f 1ub¹v f !.

In this case, we can perform the same computations as be
and the temperature dissipation equation becomes
e

f

he

ce

.

re

u81
2

t
u52g«u3/21

2

t
ub . ~4.1!

Also, the mean velocity is no longer preserved and is dis
pated according tou(t)5e2t/tu(0).

The equilibrium point corresponds to a possible stea
statef r

s with zero mean velocity whereu`(r) is given by the
unique positive solution of the equation

ub5u1
t

2
g«u3/2. ~4.2!

This temperature is globally asymptotically stable for t
evolution of Eq.~4.1!. In this case we do not have a simp
relation betweenf r

s and the normalizedf s.
The same expansion procedure can be applied to this

erator. The main differences are that we do not have a r
tion as Eq.~2.12! to reduce the computation tof s and the
computation ofLFP

2 (M u`(r)P) with P given by

P~v !5S1/2
~2!S uvu2

2u`~r! D
5

3

24S 152
10uvu2

u`~r!
1

uvu4

u`~r!2D .

The first one is easily solved by directly expandingf r
s . Now,

we compute

LFP
2 ~M u`~r!P!5

M u`~r!

t FPS 32
uvu2

2 D S 12
ub

u`~r! D
1vS 12

2ub

u`~r! D¹vP1ubDvPG . ~4.3!

Now, by Eq.~4.2! we haveu`(r)5ub1O(«) and there-
fore, we can estimate the right-hand side of Eq.~4.3! as

M u`~r!

t
@O~«!2v¹vP1ubDvP#524

M u`~r!

t
P1O~«!

thus

LFP
2 ~M u`~r!P!52

4

t
M u`~r!P1O~«!.

As a consequence, the expansion for the steady state in
case is

f r
s~v !5rM u`~r!~v !F11«2ĀS1/2

~2!S uvu2

2u`~r! D G1O~«3!

with

Ā54S trB~r!u`~r!13

trB~r!u`~r! D ,

u`(r) being the unique solution of

ub5u1
t

2
g«u3/2
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andS1/2
(2) given by formula~3.18!. Formally, we recover theo

rem III.1 by taking the limitt→`, ub→` in such a way
that F5ub /t remains constant.

V. CONCLUSIONS

We have found that a reduced model to the inelastic ha
spheres Boltzmann-Enskog equation, has stationary isotr
homogeneous solutions for small energy dissipation per
bations. These solutions are explicitly given and they m
be, to quadratic order, Maxwellian distributions multiplie
by a factor given by the second Sonine polynomial evalua
at the temperature of the Maxwellian. The second Son
polynomial is related to the second eigenvalue of the line
ized classical Boltzmann elastic operator. Moreover, we h
obtained rigorously the equation for the temperature of
steady state~2.11!.

Though our work has been strongly motivated by the M
simulation of a 2D hard-spheres model in a finite box@1#, we
performed it in 3D. Thus, our results are not directly comp
rable to those in Ref.@1#. Nevertheless, it reproduces qua
tatively the difference of the steady state distribution fun
tion with respect to a Maxwellian as shown in Ref.@1#, Fig.
3. Moreover, Figs. 1 and 2 show that formula~2.11! agrees
very well with the molecular dynamics simulation.

Let us finally remark that very recent papers@14–16#,
dealing with the homogeneous inelastic hard-sphe
Boltzmann-Enskog model uniformly heated by a bath, sh
that there can be solutions given by Maxwellians multipli
by a factor depending on the second Sonine polynomial
these papers different additional assumptions are mad
order to compute this factor depending on the energy di
pation rate. One one hand, the present paper shows a
rigorous approach to find an approximation to the ste
solution for the pseudo-Maxwellian model showing that
must be a Maxwellian distribution modified by a factor co
taining the second Sonine polynomial. However, these
pers show that the coefficient corresponding to this poly
mial correction is not necessarily positive as a function of
energy dissipation rate. This may indicate that a solution
the stationary inelastic pseudo-Maxwellian model might
better approximated by a double expansion in energy d
pation rate at all orders and higher order Sonine polynom
as well. Also, the validity of the pseudo-Maxwellian mod
should be examined. These tasks are presently under w

APPENDIX

Here, we calculate Eqs.~3.7! and~3.8! in order to replace
in Eq. ~3.11!. First from Eq.~3.7!, using (v̄,V) coordinates

^R~M u`
,M u`

!,c&52
1

8p E
R33R33S2

~V2uVun!•¹ v̄

3FM u`
~& v̄ !M u`S V

&
D G

3cS v̄1
uVun

2 Ddv̄ dV dn. ~A1!

Since¹ v̄M u`
(& v̄)52(2v̄/u`)M u`

(& v̄) we have
d-
ic
r-
st

d
e
r-
e
e

-

-

s
w

In
in
i-
ore
y

t

a-
-

e
r

e
i-
ls

.

1

4pu`
E

R33R33S2
M u`

~& v̄ !M u`S V

&
D

3~V• v̄2uVuv̄•n!cS v̄1
uVun

2 Ddv̄ dV dn.

~A2!

Now, considering spherical coordinatesV5uVuk with k
PS2, swapping the roles ofk andn, interchanging the inte-
grals overdn by the one overdk and rewritingV5uVun,
~A2! becomes

1

4pu`
E

R33R33S2
M u`

~& v̄ !M u`S V

&
D

3~ uVuv̄•k2 v̄•V!c~v !dv̄ dV dk. ~A3!

The integration with respect tok on S2 can be performed
and the integral of the termv̄•k vanishes. Returning to
(v,w) coordinates and taking into accountv̄•V5(uvu2
2uwu2)/2, Eq. ~A3! becomes

2
1

2u`
E

R33R3
M u`

~v !M u`
~w!~ uvu22uwu2!c~v !dv dw.

~A4!

Therefore the operatorR(M u`
,M u`

) can be expressed a

2 1
2 E

R3

1

u`
M u`

~v !M u`
~w!~ uvu22uwu2!dw

52
1

2u`
M u`

~v !~ uvu223u`!, ~A5!

which finally gives Eq.~3.12!.
We proceed similarly in order to computeS(M u`

,M u`
).

Expressing the first integral onS in ( v̄,V) variables, comput-
ing

H v̄@M u`
~& v̄ !#5M u`

~& v̄ !S 2
2

u`
I 1

4

u`
2 v̄ ^ 2D ~A6!

and swapping the role ofn andk as done forR we have

1

8p E
R33R33S2

M u`S V

&
D M u`

~& v̄ !S 2
1

u`
I 1

2

u`
2 v̄ ^ 2D

3~ uVu2k^ 222uVuV^ k1V^ 2!c~v !dkdv̄ dV.

Now, performing the integration with respect tokPS2, re-
calling *S2k^ 2dk5(4p/3)I , *S2V^ kdk50 and *S2dk
54p and reducing the matrices, Eq.~A6! becomes

1
2 E

R6
M u`S V

&
D M u`

~& v̄ !F2
uVu2

u`
1

2

3u`
2 uv̄u2uVu2

2
uVu2

u`
1

2

u`
2 v̄ ^ 2

•V^ 2Gc~v !dv̄ dV,

thus, rewriting thus integral in the original coordinates
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E
R6

M u`
~v !M u`

~w!

3F2
uv2wu2

2u`
1

uv2wu2uv1wu2

12u`
2 2

uv2wu2

2u`

1
1

4u`
2 ~v1w! ^ 2~v2w! ^ 2Gc~v !dv dw

5E
R6

M u`
~v !M u`

~w!

3F2
uvu21uwu222vw

u`
1

~ uvu21uwu2!224~vw!2

12u`
2

1
~ uvu22uwu2!2

4u`
2 Gc~v !dv dw. ~A7!

Now, we have to integrate with respect tow: we make use of
the integral

E
R3

M u`
~w!~vw!2dw

5E
0

`

M u`
~w!uvu2uwu4duwu E

S2
~n1n2!2dn2

5
4p

3 E
R3

M u`
~w!uvu2uwu4duwu

5 1
3 E

R3

M u`
~w!uvu2uwu2dw,

and of the fact that the integral inw of the termv•w van-
ishes. Therefore, the termS(M u`

,M u`
) becomes
y,

s.

s
es

o
le

al

J.
M u`
~v !E

R3
M u`

~w!

3S 2
uvu21uwu2

u`
1

uvu41uwu4

3u`
2 2

4

9u`
2 uvu2uwu2Ddw.

~A8!

Taking moments ofM u`
(w) one finally proves Eq.~3.13!. In

particular

E R~M u`
,M u`

!dv505E S~M u`
,M u`

!dv.

Thus, we have checked our computations in the sense
the first two order terms in the expansion ofQ« preserve
mass.
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