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Glassiness and constrained dynamics of a short-range nondisordered spin model
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We study the low temperature dynamics of a two-dimensional short-range spin system with uniform ferro-
magnetic interactions, which displays glassiness at low temperatures despite the absence of disorder or frus-
tration. The model has a dual description in terms of free defects subject to dynamical constraints, and is an
explicit realization of the ‘‘hierarchically constrained dynamics’’ scenario for glassy systems. We give a
number of exact results for the statics of the model, and study in detail the dynamical behavior of one-time and
two-time quantities. We also consider the role played by the configurational entropy, which can be computed
exactly, in the relation between fluctuations and response.

PACS number~s!: 64.70.Pf, 75.10.Hk, 05.70.Ln
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I. INTRODUCTION

Understanding the nature of the low-temperature dyna
ics of glasses and other strongly interacting many-body s
tems remains one of the outstanding open problems in c
densed matter and statistical physics@1,2#.

Consider, for example, the case of glass-forming sup
cooled liquids. One of the reasons for glassiness in s
systems is that the rearrangements of atoms necessar
their relaxation involves activation over energy barriers. I
natural to plot the logarithm of the viscosity or equilibratio
time against the inverse temperature, giving a so-ca
Arrhenius plot, which should take a straight-line form if th
barrier heights remain constant with varying temperatu
For ‘‘strong’’ liquids @1#, such as SiO2, the Arrhenius plot is
indeed a straight line, but for ‘‘fragile’’ liquids it is not
following instead the empirical Vogel-Fulcher la
exp@const/(T2T0)#, although other forms not displaying
finite T singularity can be fit too@3#. If the dynamics of
fragile liquids is due to activation~which is not the only
possible explanation!, this implies that the energy barrier
grow with decreasing temperature, presumably because
increase with the increasing size of correlated regions in
system.

Another set of interesting questions, most relevant
fragile liquids, revolves around the possible existence of
ideal ~continuous! phase transition to a true thermodynam
glass state at some temperatureTK ~the Kauzmann tempera
ture! lying below the glass temperature@4,5#. Although the
existence of such a transition would resolve Kauzman
paradox, in which the extrapolation of the configuration
entropy of the supercooled liquid appears to pass below
of the crystal@6#, and is also supported by the analogy b
tween fragile glasses and discontinuous mean field s
glasses@7#, there is some evidence against it. For example
has been shown numerically@8# that a thermodynamic phas
transition is absent for a system of polydisperse hard disk
typical model glass former. It has also been argued that
extrapolations that yield a positiveTK in fragile liquids com-
posed of molecules of finite size are flawed@9#.

Given the many interesting open questions in this field
is important to find simple and if possible solvable mod
PRE 621063-651X/2000/62~6!/7670~9!/$15.00
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for the various features displayed by glasses. The discont
ous mean-field spin glasses, such as the sphericalp-spin
model@10#, provide a good example of such a model syste
However, while some dynamical features of these mod
@2,11# are also observed in simulations of Lennard-Jon
glasses@12,13#, the presence of disorder in the models an
crucially, of long-range interactions limits their usefulness
models of systems that are intrinsically short-ranged a
disorder-free, such as hard spheres in two and three dim
sions.

An alternative approach to modeling these latter syste
is the ‘‘hierarchically constrained dynamics’’ of Palme
et al. @14#, in which it is hypothesized that, for a strong
interacting system displaying glassy behavior, it should
possible to describe the dynamics in terms of hierarchie
degrees of freedom, from fast to slow, independent of
presence of disorder or even frustration. These hierarc
would be weakly interacting in the energetic sense, but th
dynamics would be constrained, the faster modes constr
ing the slower ones. It is known that the presence of kine
constraints in the dynamics can directly induce glassines
good example is the kinetically constrained Ising chain@15–
17#, for which the Hamiltonian is trivial, but the transitio
rates for the flipping of individual Ising spins depend on t
states of neighboring spins. Kinetic constraints can also a
as a result of entropic barriers, as in the Backgammon mo
for instance@18#. Fragile glass behavior has also been o
served in kinetic lattice-gas models@19,20#. Although inter-
esting in their own right, these models have somewhatad
hoc dynamics, and represent only one side of the scen
discussed in Ref.@14#. A recent comparative study of one
dimensional constrained kinetic models has been given
Crisantiet al. @21#.

In this paper, we study in detail a model introduced
Newman and Moore@22#, which is a form of two-
dimensional Ising model with uniform short-range ferroma
netic interactions. Despite the absence of either disorde
frustration, this model displays glassy behavior at low te
peratures. The cause of this behavior is the presence o
ergy barriers that grow logarithmically with the size of co
related regions. The model has a dual description in te
either of strongly interacting spins subject to simple sing
7670 ©2000 The American Physical Society
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PRE 62 7671GLASSINESS AND CONSTRAINED DYNAMICS OF A . . .
spin-flip dynamics, or of free ‘‘defects’’ subject to a con
strained dynamics. It is thus an explicit realization of t
constrained dynamics scenario of Palmeret al. @14#. Other
nondisordered short-range spin systems displaying gla
features are three-dimensional Ising models with compe
nearest and next-nearest neighbor interactions@23#, or with
ferromagnetic four-spin plaquette interactions@24–26#.

The paper is organized as follows. In Sec. II, we descr
the model and extend the exact solution of the statics gi
in Ref. @22# by calculating all equilibrium spin-correlatio
functions, and showing that the phase transition to an
dered state occurs only at zero temperature. In Sec. III,
give our principal results, which concern the out-o
equilibrium dynamics of the system following a quench fro
a random configuration to low temperatures. We show t
the equilibration time diverges with an exponential inve
temperature squared law, similar to that found for the asy
metrically constrained Ising chain. We study the behavior
one-time quantities, such as energy density and spin cor
tions and two-time quantities, such as autocorrelation
response functions. We also study the out-of-equilibri
fluctuation-dissipation relations and relate them to the c
figurational entropy, which can be calculated exactly. O
conclusions are given in Sec. IV.

II. MODEL AND STATIC SOLUTION

We consider the model introduced in Ref.@22#, which
consists of Ising spinss561 on a triangular lattice with
uniform short-range three-spin ferromagnetic interactio
each spin interacts only with its nearest neighbors, and o
in groups of three lying at the vertices of a downwar
pointing triangle on the lattice. Note that this is distinct fro
the model of Baxter and Wu@27#, which has interactions on
upward-pointing triangles also~and which is not glassy!. The
Hamiltonian for the model is

H5
1

2
J (

mn
smnsm,n11sm21,n111

1

2
NJ, ~1!

where the indicesm andn run along the unit vectors of th
lattice aW 1[ x̂ and aW 2[ 1

2 ( x̂1A3ŷ). The constant in the
Hamiltonian is added for convenience to make the minim
possible energy equal to zero. The model can also be for
lated using the defect variables

tmn[smnsm,n11sm21,n11 , ~2!

in terms of which the Hamiltonian is

H5
1

2
J (

mn
tmn1

1

2
NJ. ~3!

On lattices of the size of a power of two in at least o
direction, with periodic boundary conditions, there is a on
to-one correspondence between spin and defect config
tions, and hence the partition function is given by

Z5S 2e2(1/2)bcosh
1

2
b D N

, ~4!
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whereN is the number of spins, and we setJ51 from here
on. The equilibrium energy density is then

«eq5
1

2
~11^t&!5

1

2 S 12tanh
1

2
b D . ~5!

We now wish to invert Eq.~2! and write the spins as
functions of the defects. It is known@22# that if the spins are
represented by the variablessmn[

1
2 (smn11)P$0,1%, the

spins below an isolated defect on the lattice form a Pasc
triangle mod 2@i.e., a triangular array with the binomial co
efficients (r

n) mod 2 as entries#. This means that the value o
the spin smn is given by the superposition mod 2 of th
Pascal’s triangles of all defectstkl511 with m2 l<k<m
and l>n. The inverse of the transformation~2! then reads

smn52 )
n< l

m2 l<k<m

~2tkl!
(

l 2n
m2k). ~6!

With this result we can compute the equilibrium correlati
functions of the spins. First, the magnetization is given
averaging Eq.~6!:

^smn&52S tanh
1

2
b D Nmn

, ~7!

where

Nmn5 (
n< l

m2 l<k<m

S l 2n
m2kD mod 2 ~8!

is the total number of ones in the inverted Pascal’s trian
with its tip at site (m,n). This number diverges faster tha
the linear size of the triangle, so in the thermodynamic lim
we obtain

^smn&5H 21 for T50

0 for T.0,
~9!

for all (m,n), implying that the system has aT50 static
phase transition.

Arbitrary correlation functions can be computed in a sim
lar manner:

^smn•••sm8n8&52S tanh
1

2
b D Nmn•••m8n8

, ~10!

where nowNmn•••m8n8 is the total number of ones in th
superposition mod 2 of the inverted Pascal’s triangles st
ing in positions (m,n) through (m8,n8). Since (0

l )5( l
l)51,

the left and right edges of a Pascal’s triangle contain o
ones, so any superposition of two triangles always has
infinite number of ones coming from the edges. This impl
that all two-spin correlations vanish atT.0. The first non-
zero correlations are those for three spins at the vertice
inverted equilateral triangles of side 2k. In this caseN53k,
and the correlation is

Ck
(3)5^smnsm,n12ksm22k,n12k&52S tanh

1

2
b D 3k

.

~11!
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Notice that

Ck11
(3) S tanh

1

2
b D5Ck

(3)S tanh3
1

2
b D . ~12!

A similar scaling relation is seen in the one-dimensio
Ising model.

At low temperatures the system is in a scaling region, a
using Eq.~11! we find a correlation length of

j5S ln coth
1

2
b D 2 ln 2/ln 3

. ~13!

III. DYNAMICS

Newman and Moore@22# found that the model studie
here shows glassy behavior under a single-spin-flip dyn
ics. They showed that following a quench fromT5`, the
system was unable to equilibrate in finite time at a lo
enough temperature (T&0.2 for tmax;109 in their simula-
tions!. The system also fell out of equilibrium for expone
tial cooling with a variety of cooling rates. The reason f
this glassiness is to be found in the details of the syste
dynamics. Single-spin flips correspond to flips of the def
variables on triples of sites forming upward-pointing t
angles on the lattice, and sets of such flips can be comb
to flip upward-pointing triangles of side 2k for any integerk.
Any isolated such triangle withk.0 is locally stable; in
order to remove it we have to cross an energy barrier
height k. Thus, as the system relaxes it has to cross ene
barriers that grow logarithmically with the size of the equi
brated regions.

Another way of looking at this is to observe that at lo
temperatures the flipping of an isolated defect is heavily s
pressed, since such a flip requires the creation of two o
defects and so incurs a net energy penalty. Thus, a de
requires the presence of another neighboring defect to
able to flip, a situation highly reminiscent of the facilitate
kinetic Ising model of Ref.@15#; the defects are noninterac
ing in the Hamiltonian, but their low temperature dynam
is effectively constrained.

At low temperatures, excitations of linear size larger th
one can only be annihilated via activation. From the obs
vation that barriers grow logarithmically with linear size, it
straightforward to estimate equilibration time. The rate
relaxation of an excitation of linear sized is given by the
Arrhenius formulaG(d);exp(2ln d/T ln 2). Thus after time
t, the average linear distance between defects isd;tT ln 2.
The equilibrium value of this distance at lowT is deq
;exp(b/2) @see Eq.~5!#, and hence the equilibration time

teq;expS 1

2 T2 ln 2
D . ~14!

This exponential inverse temperature squared~EITS! form is
similar to that obtained in Ref.@17# for the asymmetrically
constrained Ising chain~ACIC! @16#, except for the 2 in the
denominator that is due to the two-dimensional nature of
model. The EITS form has no finite-temperature singular
which is consistent with the fact that our model has no fin
temperature phase transition. The behavior of the relaxa
l
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however, is ‘‘fragile.’’ In fact, the EITS form can be ap
proximated by a Vogel-Fulcher form withT0; 2

3 Tg . A sys-
tem that has an analogous but ‘‘strong’’ behavior is t
Frenkel-Kontorova model@28#: at low temperatures above it
T50 phase transition, the relaxation of defects is hinde
by the presence of constant energy barriers, and the eq
bration time diverges in an Arrhenius way.

Equation~14! clarifies the observations made in Ref.@22#.
In the case of relaxation following a quench fromT05` to
T, the highest temperature at which the system was foun
equilibrate within timetmax5109 was T50.2, while for T
50.18 or smaller, the system was unable to reach equ
rium. This is explained by the fact thatteq(T50.2);108,
while teq(T50.18);1010. In the case of exponential cooling
our expression forteq implies a maximum allowable cooling
rate ofgmax(T);1/teq(T) if we wish to remain in equilibrium
at temperaturesT and greater. For the different annealin
simulations of@22#, the temperatures at which the ener
ceases to follow the equilibrium curve are given by the
lution of gmax(T)5g for the cooling rateg used.

A. One-time quantities

We now consider the behavior of one-time quantities
the model, such as energy density and spin correlations,
lowing a quench fromT5` to a low temperature.

TheT5` configuration is random, and therefore has ze
correlation length. As the system relaxes following t
quench, it tries to increase its correlation length to the eq
librium value, Eq.~13!, which is finite but large at low tem-
perature. In terms of the defects, the system is trying to
crease the defect density or equivalently the internal ene
per spin« from its initial value of«05 1

2 . In Fig. 1, we show
numerical results for the evolution in time of the ener
density after a quench fromT5` to a variety of final tem-
peratures. The simulations were performed on a 2563256
rhombic lattice using a Bortz-Kalos-Lebowitz continuo
time algorithm @29#. As the figure shows, after an initia

FIG. 1. Energy density«5^H&/N as a function of time follow-
ing a quench fromT5` to T50.10, 0.12, 0.15, and 0.20, from
Monte Carlo simulations for a system of 2563256 spins. Time is in
Monte Carlo steps per spin, and all magnitudes are in dimension
units. Inset: the same data as a function of rescaled timen5T ln t.
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temperature-independent exponential relaxation corresp
ing to the ~barrierless! removal of pairs of neighboring de
fects, the energy displays ‘‘plateaus,’’ which are more p
nounced the lower the temperature. These plateaus are
result of the system becoming trapped in locally stable c
figurations. As we can see, the time taken by the system
escape these plateaus becomes larger with decreasing
perature.

As shown in the previous section, the typical length sc
in the system~i.e., the typical distance separating defec!
grows with time astT, and in the absence of other leng
scales, we might thus expect the data in Fig. 1 approxima
to collapse when plotted againsttT, or equivalently agains
n5T ln t on the logarithmic scales used in the figure.~A
collapse of this kind was found for the ACIC in Ref.@17#.! In
the inset of Fig. 1, we show that this is indeed the case
our model. Save for the initial exponential transient, the c
lapse of the curves for different temperatures is very go
Moreover, the first plateau seems to extend fromn50 to 1,
the second fromn51 to 2, and so on~a behavior also see
in the ACIC!.

At low temperatures, the relaxation of the system can a
be regarded as an anomalous coarsening process. Fo
case considered here of periodic boundary conditions, th
exists a unique minimum energy configuration of the mo
in which all the spins point down and there are no defe
For free boundary conditions, however, there are 22L21 de-
generate minima.~The spins along the bottom and right-ha
side of our rhombic system, for instance, may be cho
arbitrarily, with the rest being uniquely fixed by the requir
ment that there be no defects.! Following a quench, spins
start to rearrange locally to eliminate defects, regardles
the boundary conditions, and thus form domains of the v
ous free-boundary minima. The imperfect matching of th
domains will be marked by the presence of defects.

The coarsening dynamics forT close to zero can be stud
ied approximately using the generating function method
Sollich and Evans@17#. Consider a description of a configu
ration of the system in terms of domains containing no
fects (t521) bounded by sites containing defects (t51).
In contrast with the one-dimensional model studied in@17#,
such a description cannot be made exact for our model. N
ertheless, as far as average properties go, such as dis
between defects, we can think of low-energy configuratio
as an approximate tiling of defect-free parallelograms e
delimited by a defect in, say, its top right-hand corner. T
effectively maps the problem into one dimension. As
now show, this crude approximation, which allows us to a
ply the method of Ref.@17#, gives reasonable results.

When T→0, we have«eq→0 and the plateaus of Fig.
become distinct stages in the dynamics. During stagen, all
domains of linear sized in the interval 2k21,d<2k are
annealed away. The time scale for this process isO(ebk),
and differs by a factor ofeb from the time scale associate
with the following stage. In this limit, the master equatio
for the coarsening process can be solved using genera
functions. IfPk(d) is the probability distribution of lengthsd
at the beginning of thekth stage,Gk(z)5(2k21,dPk(d)zd is
the probability generating function for this distribution, an
Hk(z)[(2k21,d<2kPk(d)zd is the equivalent function for
the active domains—those which will be annealed away d
d-
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ing the current stage—the following recursive relations
obtained@17#:

Gk11~z!511@Gk~z!21#exp@Hk~z!#. ~15!

Given an initial distributionP0(d), these equations can b
solved numerically.

In Fig. 2, we show the average linear length of the d
mains d(t)51/A«(t) as a function ofn5Tln t from our
simulations. AsT→0, we expectd(t) to become a ‘‘stair-
case’’ function, with the steps extending between integer v
ues ofn. The approximate heights of these steps are given
the derivative of the generating function atz51: ^d&k

5(ddPk(d)5Gk8(1). These steps are also plotted in the fi
ure ~dotted-dashed line! and, as we can see, the agreemen
quite good.

We now turn to the behavior of the spin correlation fun
tions as we approach equilibrium. In equilibrium, as sho
above, the magnetization and all two-spin correlations van
at any finite temperature. Moreover, at all times following
quench, the average magnetization and all equal-time t
spin correlations vanish as well, as shown in Fig. 3. This i
consequence of the three-spin interactions: regardless o
value of a spini, the Hamiltonian favors a neighboring sp
j equally to be up or down, since the only interaction b
tween the two spins also includes a third spin of unkno
orientation.

In equilibrium, the first nonzero correlations are those
triplets of spins at the vertices of downward pointing t
angles of linear size 2k. This is also the case in the out-o
equilibrium regime following a quench. In Fig. 4, we sho
the absolute value of the three-spin correlationsuCk

(3)u as a
function of time after a quench, for various values ofk. The
behavior of these curves illustrates the nature of the stage
which relaxation takes place. Initially, correlations at
length scales are zero. The system has no barriers to re
ation of excitations of length scale 1, souC0

(3)u starts to grow
immediately after the quench. Atn5T ln t50, uC1

(3)u grows
exponentially fast to a first quasistationary value, while
Ck.1

(3) remain zero: this first plateau corresponds to par

FIG. 2. Average distance between defectsd as a function of
rescaled timen5Tln(t). The dotted-dashed line corresponds to t
T50 coarsening approximation.
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7674 PRE 62JUAN P. GARRAHAN AND M. E. J. NEWMAN
equilibration up to length scales of 2. Atn51, the system
starts to relax up to length scales of 4, withC2

(3) becoming
nonzero, whileCk.2

(3) 50. And so forth.
Within the plateaus all one-time quantities have roug

stationary values, and so it is natural to ask to what extent
system is in a quasiequilibrium state. One answer to
question comes from examining the agreement between
nonequilibrium correlation functions and the exact relatio
~12! for the equilibrium correlation function. In Fig. 5, w
compareuC0

(3)u with uCk
(3)u(1/3k), and find that the out-of-

equilibrium correlation functions still collapse approximate
when scaled appropriately, the collapse getting better as
progresses. This may indicate that the later stages ca
described by an approximate equilibrium at an appropr
effective temperature. We discuss this point further in S
III C.

B. Two-time quantities

We now turn to the behavior of two-time quantities in t
out-of-equilibrium regime following a quench from hig

FIG. 3. Two-spin correlations for various times as a function
distance.

FIG. 4. Three-spin correlation functionsCk
(3) as a function of

time, for linear sizes 2k50,1,2,3,4. We plot the absolute value of th
correlations.
y
e

is
ur
s

e
be
te
c.

temperature. We first consider the local two-time spin au
correlation function

C~ t,tw!5
1

N (
mn

^smn~ t !smn~ tw!&. ~16!

In Fig. 6, we showC(t,tw) for quenches fromT5` to T
50.12 for three different values of the weighting timetw , as
a function of the rescaled time differencen5T ln t, with t
5t2tw . The three values oftw used correspond ton50, 1,
2, i.e., to the starting points of the first three of the platea
discussed in Sec. III A. In Fig. 7, we present the same c
relations as a function oft/tw .

Since the system does not reach equilibrium atT50.12
on the time scales simulated, we do not in general expect
correlation functions to be functions of the time differen
t5t2tw only. In fact, as Fig. 6 shows, the behavior of th
correlation functions has a clear dependence on the wa
time. On the other hand, as we can see from Fig. 7, nei
does it obey a simple aging form, scaling witht/tw , as ob-

f FIG. 5. Three-spin correlations scaled according to Eq.~12!.

FIG. 6. Local spin-spin correlation functions as a function of t
scaled time differenceT ln t, following a quench toT50.12. Inset:
the same forT50.20.
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served in other cases@2#. This is because the length sca
associated with the relaxation of the spins does not grow
simple power of time~see Figs. 2 and 4!. In general, if
equilibration is associated with the growth of a length sc
l (t), then the two-time correlation functions should sca
with l (t)/ l (tw) @2#. Behavior of this kind was found in the
autocorrelation functions for the ACIC@21#, where the ap-
propriate length scale is the average distance betw
upward-pointing spins. In our model, however, rescaling
spin correlation functions by the distance between defe
fails, and we have not been able to find a suitable len
scale such that the scaling withl (t)/ l (tw) holds.

Another observable of interest is the response func
x(t,tw), which measures the response of the spins at timet to
a small field applied at timetw . Comparison of such a re
sponse function with the two-time correlations studied ab
can reveal violations of the fluctuation-dissipation theor
~FDT! that are expected in systems displaying aging. In g
eral, in order to obtain the response function correspond
to the local correlation function calculated above, we wou
need to apply a field to only a single spin on the lattice,
equivalently we could apply a random field and measure
staggered response@30#. Both of these approaches prese
significant numerical challenges, and require a substan
investment of CPU time in simulation to extract clean
sults. For our model, however, this turns out to be unnec
sary because, as mentioned in Sec. III A, all off-diago
spin-spin correlations vanish, implying that two-time au
correlations of the magnetizationm[N21(mnsmn are pro-
portional to the local spin correlations thus:

^m~ t !m~ t8!&5
1

N
C~ t,t8!. ~17!

This means that we need only to measure the response
uniform field.

We have performed simulations in which the Hamiltoni
was perturbed with a small uniform magnetic field applied

FIG. 7. Local spin-spin correlation functions as a function
t/tw , for T50.12. Inset: the same forT50.20.
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a time tw following a quench to finite temperature:DH(t)
5h0u(t2tw)(mnsmn . We measured the integrated respon
~or relaxation function!

x~ t,tw!5
1

Nh0
(
nm

^snm~ t !&h , ~18!

which is equivalent to measuring the change in magnet
tion per spin of the system, divided by the strength of t
applied field. We have experimented with a variety of diffe
ent values for the field strengthh0; the results presented her
are forh050.02, which we find to be well within the linea
regime. In Fig. 8, we show the measured response foT
50.12 andnw5T ln tw50 and 1. Notice that the response
not in general a monotonically increasing function of tim
but instead shows cusps at times corresponding to the ju
between plateaus. For higher temperatures the cusps are
pronounced and eventually disappear~see inset!.

A similar nonmonotone behavior is seen in the respo
function for the defects in our model, and can be underst
physically by the following argument. The energy density«
plays a role for the defects equivalent to that played for
spins by the magnetizationm, and the equivalent of a sma
applied magnetic fielddh is a small change in temperatur
dT52T2dh. Consider then the behavior of the energy de
sity shown in Fig. 1. At low temperatures, we expect« to
follow a staircase function, with steps extending betwe
integer values ofn. When the field is applied~i.e., when the
temperature is changed!, the perturbed energy density is a
other staircase function, with each step having a sligh
higher ~lower! value for the negative~positive! field, and
lasting a longer~shorter! time, the steps now extending be
tween integer values ofn(12T dh). The corresponding in-
tegrated response is given by the difference between the
turbed and unperturbed energy densities, divided by the fi
Within each plateau this difference is mostly small a
roughly constant, but a sharp change is seen at the bo
aries between steps. The unperturbed (T→0) density jumps

f FIG. 8. Integrated response function vs rescaled time differen
for T50.12 andT ln tw50 and 1. Inset: the same forT50.20.
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to the next plateau whenn is an integer, but the perturbe
one only does so whenn(12T dh) is an integer, and thus
the absolute value of the response is large during the s
interval between these two events. Once the perturbed
sity jumps to the next plateau, the response becomes s
again. This increase and decrease at integern is responsible
for the humps seen in the integrated response. The argu
generalizes to perturbations with a staggered random fie

The response function for the ACIC was studied in R
@21#, where it was found to be a monotonically increasi
function of time. However, as mentioned above, the def
representation of our model behaves very similarly to
ACIC, and we therefore conjecture that nonmonotone beh
ior will be seen in the ACIC also at sufficient low temper
tures, for precisely the reasons given above.

C. Configurational entropy and fluctuation-dissipation
relations

A configuration of our model is a local energy minimu
if and only if no two defects occupy adjacent sites on
lattice. In the context of glasses, such states are know
inherent structures@31#. A nice feature of the model is tha
the set of inherent structures is isomorphic to the set of
lowed states of Baxter’s hard-hexagon model@32#, allowing
the distribution of inherent structures to be calculated
actly.

The grand-partition function of the hard-hexagon mo
on a lattice ofN sites is

ZN~z!5 (
M50

N

g~M ,N!zM, ~19!

wherez is the fugacity andg(M ,N) is the number of ways o
placing M nonadjacent particles on the triangular lattice.
our case,M5N« corresponds to the total energy of o
model, sogN(«)[g(N«,N) gives the density of states fo
inherent structures with energy«. For largeN, g(n,N) is
exponential inN, so thatgN(«)5eNSc(«), whereSc(«) is the
configurational entropy of the model, i.e., the entropy den
of metastable states. In this case, Eq.~12! becomes

ZN~z!5E d« exp@N$« ln z1Sc~«!%#. ~20!

For largeN, the integral is dominated by the saddle point
the exponent, and we obtain

«~z!5
] ln k

] ln z
, ~21!

Sc@«~z!#5 ln k~z!2«~z!ln z, ~22!

wherek(z)[ limN→`@ZN(z)#1/N is the partition function per
site of the hard-hexagon model, which is known exactly
the thermodynamic limit@32#. Between them, Eqs.~19! and
~21! determineSc(«) parametrically.

At low defect densities,Sc(«) reduces to
rt
n-
all

ent
.
.

ct
e
v-

e
as

l-

-

l

y

Sc~«!52« ln «1O~«!, ~23!

which is the general form for a low concentration of noni
teracting point defects in an ordered structure@9#. The con-
figurational entropies of the disordered Ising chain, co
strained Ising chains, and the Backgammon model all h
this asymptotic form@21,33#. Note thatSc has infinite slope
with respect to« at «50 where it vanishes, which is consis
tent with the fact that none of these models has a finite te
perature phase transition. However, sinceSc8 increases loga-
rithmically as« is decreased, an extrapolation ofSc8(0) from
the behavior at finite« would wrongly suggest a finite slop
and therefore a finite Kauzmann temperature. It has b
argued that this mechanism would rule out an ideal-gl
phase transition in materials composed of limited size m
ecules and conventional molecular interactions@9#.

Having calculated correlation and response functions
the spins in our model~Sec. III B!, we can use our results t
study the relation between fluctuations and responses, w
in some other systems is related to the configurational
tropy. The natural way to do this is by means of a parame
plot of x(tw1t,tw) vs C(tw1t,tw) for fixed tw @11#. For a
system in equilibrium at temperatureT, such a plot would be
linear with slope21/T, in accordance with the fluctuation
dissipation theorem. In a glassy system on the other ha
the FDT is normally violated in the out-of-equilibrium low
temperature regime astw→`, and this violation encodes im
portant information about the system’s dynamical behav
~see Ref.@2# for a review!. The classic example is the mea
field p-spin spin glass@10#, for which the FDT plot is piece-
wise linear: for large values ofC, corresponding to relax-
ation of fast degrees of freedom, the plot has a slope
21/T as it would in equilibrium, but for smallerC, corre-
sponding to the relaxation of slow modes, it has slo
21/Teff , whereTeff.T is interpreted as a effective temper
ture for these modes@34#. Furthermore, in thep-spin model,
Teff is numerically equal to the inverse of the slope of t
configurational entropy at the asymptotic energy dens
@35#. Similar behavior has also been observed in more re
istic model glass formers@12,13#.

At sufficiently low temperatures our model is clearly o
of equilibrium, and although it does not reach the long-tim
asymptotic regime corresponding to approach to equilibri
in our simulations, it is possible that the FDT plots can s
provide information on the relaxation process, and may
that there exist effective temperatures associated with
different time scales in the problem@34#. In Fig. 9, we show
the FDT plot for the spin response and correlation functio
The unusual nonmonotonic shape is a consequence o
nonmonotonicity of the response function.

The curves should be ‘‘read’’ from right to left in the plo
and are composed of a sequence of segments, each as
ated with one of the plateaus. The starting point of ea
segment and the part of the curve in which the respons
increasing correspond to the time the system spends w
the relevant plateau. The maximum and the downward p
tion of the segment correspond to the transition to the n
plateau. The first part of each segment has a shape simil
that found in Refs.@36# and @37# for the one-dimensiona
Ising model following a quench into the temperature scal
region: the FDT curve there has slope21/T at C51, and
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bends continuously with decreasingC to reach a slope o
21/2T at C50. ~Note that this behavior is very differen
from that seen in domain growth in higher dimensions@30#.!
In our model, each of the segments of the FDT plot sta
with slope approximately21/T ~indicated by the dotted line
in the figure!, but the subsequent shape of the curve va
from one segment to another. The similarity within the p
teaus to the behavior of the one-dimensional Ising mode
consistent with what was found for the statics of the mode
Sec. II.

An important open question is whether the configuratio
entropy of Eqs.~21! and ~22! plays any role in the out-of-
equilibrium dynamics. A plausible explanation for the sha
of the FDT curves of Fig. 9 is that the initial part of eac
segment corresponds to quasi-stationary thermal excitat
of fast modes, while the latter part corresponds to slow
large-scale rearrangements arising from occasional jumps
tween local minima before the transition to the next plate
takes place. If the slope of the latter part of each segm
corresponds to an effective temperature for that segment
might expect these temperatures to be related to the ra
change ofSc(«) at the energy density of the associated p
teau. It is noteworthy that the final slopes of each segmen
Fig. 9 are roughly equal to 1/Sc8(«k), with values approxi-
mately 1

2 , 1
3 , and 1

4 for the first three plateaus. This observ
tion is however, speculative and furthermore contrasts w
the conclusions of Ref.@21# for the ACIC, so it deserves
further investigation.

IV. CONCLUSIONS

In this paper, we have studied the low-temperature beh
ior of the glassy two-dimensional spin model with unifor
ferromagnetic short-range three-spin interactions introdu
by Newman and Moore. The model has a dual descriptio

FIG. 9. Parametric plot of integrated response vs the two-t
autocorrelation function of the spins forT50.12 andT ln tw50 and
1. The dotted line corresponds to slope21/T. In the inset, we show
the same forT50.20 andT ln tw50.
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terms either of interacting spins or of free defects, the m
ping between the spin and defect representations being
to-one. This allows us to compute exactly all equilibriu
correlation functions, both for spins and defects. We ha
also shown that the model displays no static phase trans
at finite temperature.

Despite the simplicity of its statics, the model’s low
temperature single-spin-flip dynamics is highly nontrivial.
spin flip in the model corresponds to the flipping of thr
neighboring defects, which implies that at low temperatu
the dynamics of the defects is constrained: a defect can
be flipped if another neighboring defect is present. This
turn implies that the relaxation of isolated defects is an a
vated process, and the size of the corresponding energy
riers are found to grow logarithmically with the distance b
tween defects. The dual representation of the model in te
of strongly interacting spins with a simple dynamics, and
free defects subject to kinetic constraints, is an explicit re
ization of the hierarchical constrained dynamics scenario
Palmeret al. @14#.

We have studied in detail the dynamics of the model a
a quench to low temperatures. The presence of logarith
cally growing barriers leads to non-Arrhenius relaxation, t
equilibration time being of the exponential inverse tempe
ture squared formteq;exp(1/@2T2ln 2#). One-time quantities
such as internal energy display ‘‘plateaus’’ in their equilibr
tion profiles, which correspond to the trapping of the syst
in local energy minima. Each plateau is associated wit
specific stage in the dynamics, thekth plateau corresponding
to the partial equilibration of length scales up to 2k. The
behavior of observables related to the defects is strikin
similar to that seen in the asymmetrically constrained Is
chain. For example, in theT→0 limit, the average distance
between defects can be well approximated using the ana
methods of Sollich and Evans@17# that yield exact results for
the asymmetrically constrained model.

We have also studied two-time quantities for the mod
such as spin autocorrelations and response functions. At
temperatures, the response functions have the unusual p
erty of being nonmonotonic: they display humps at exac
those times at which the system jumps between plate
This behavior has also been observed in other model
times well within the activated regime, such as the co
strained Ising chains and the Backgammon model in
dimension@21#, models for two-dimensional froths@38#, and
vibrated granular media@39#. An important open question is
whether this is a generic feature of the out-of-equilibriu
dynamics of activated processes.
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@16# J. Jäckle and S. Eisinger, Z. Phys. B: Condens. Matter84, 115

~1991!.
@17# P. Sollich and M.R. Evans, Phys. Rev. Lett.83, 3238~1999!.
@18# F. Ritort, Phys. Rev. Lett.75, 1190~1995!.
r

.

,

@19# J. Kurchan, L. Peliti, and M. Sellito, Europhys. Lett.39, 365
~1997!.

@20# M. Sellito, J. Phys.: Condens. Matter12, 6477~2000!.
@21# A. Crisanti, F. Ritort, A. Rocco, and M. Sellitto, e-prin

cond-mat/0006045.
@22# M.E.J. Newman and C. Moore, Phys. Rev. E60, 5068~1999!.
@23# J.D. Shore, M. Holzer, and J.P. Sethna, Phys. Rev. B46, 11

376 ~1992!.
@24# A. Lipowski, J. Phys. A30, 7365~1997!.
@25# A. Lipowski, D. Johnston, and D. Espriu, Phys. Rev. E62,

3404 ~2000!.
@26# M.R. Swift, H. Bokil, R.D.M. Travasso, and A.J. Bray, e-prin

cond-mat/0003384.
@27# R.J. Baxter and F.Y. Wu, Phys. Rev. Lett.31, 1294~1973!.
@28# S.L. Shumway and J.P. Sethna, Phys. Rev. Lett.67, 995

~1991!.
@29# A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, J. Comp. Physio

17, 10 ~1975!.
@30# A. Barrat, Phys. Rev. E57, 3629~1998!.
@31# F.H. Stillinger and T.A. Weber, Phys. Rev. A25, 978 ~1982!.
@32# R.J. Baxter,Exactly Solved Models in Statistical Mechanic,

~Academic Press, London, 1982!.
@33# G. Biroli and R. Monasson, Europhys. Lett.50, 155 ~2000!.
@34# L.F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E55,

3898 ~1997!.
@35# R. Monasson, Phys. Rev. Lett.75, 2847~1995!.
@36# C. Godreche and J.M. Luck, J. Phys. A33, 1151~2000!.
@37# E. Lippiello and M. Zannetti, Phys. Rev. E61, 3369~2000!.
@38# L. Davison and D. Sherrington, e-print cond-mat/0008039.
@39# M. Nicodemi, Phys. Rev. Lett.82, 3734~1999!.


