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Glassiness and constrained dynamics of a short-range nondisordered spin model
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We study the low temperature dynamics of a two-dimensional short-range spin system with uniform ferro-
magnetic interactions, which displays glassiness at low temperatures despite the absence of disorder or frus-
tration. The model has a dual description in terms of free defects subject to dynamical constraints, and is an
explicit realization of the “hierarchically constrained dynamics” scenario for glassy systems. We give a
number of exact results for the statics of the model, and study in detail the dynamical behavior of one-time and
two-time quantities. We also consider the role played by the configurational entropy, which can be computed
exactly, in the relation between fluctuations and response.

PACS numbgs): 64.70.Pf, 75.10.Hk, 05.70.Ln

I. INTRODUCTION for the various features displayed by glasses. The discontinu-
ous mean-field spin glasses, such as the sphepcin
Understanding the nature of the low-temperature dynammodel[10], provide a good example of such a model system.
ics of glasses and other strongly interacting many-body sysHowever, while some dynamical features of these models
tems remains one of the outstanding open problems in corj2,11] are also observed in simulations of Lennard-Jones
densed matter and statistical phydits2]. glasseq§12,13, the presence of disorder in the models and,
Consider, for example, the case of glass-forming supererucially, of long-range interactions limits their usefulness as
cooled liquids. One of the reasons for glassiness in suchodels of systems that are intrinsically short-ranged and
systems is that the rearrangements of atoms necessary fdisorder-free, such as hard spheres in two and three dimen-
their relaxation involves activation over energy barriers. It issions.
natural to plot the logarithm of the viscosity or equilibration  An alternative approach to modeling these latter systems
time against the inverse temperature, giving a so-callegs the ‘“hierarchically constrained dynamics” of Palmer
Arrhenius plot, which should take a straight-line form if the et al. [14], in which it is hypothesized that, for a strongly
barrier heights remain constant with varying temperatureinteracting system displaying glassy behavior, it should be
For “strong” liquids [1], such as Si@ the Arrhenius plotis possible to describe the dynamics in terms of hierarchies of
indeed a straight line, but for “fragile” liquids it is not, degrees of freedom, from fast to slow, independent of the
following instead the empirical Vogel-Fulcher law presence of disorder or even frustration. These hierarchies
exfconst/(T—Ty)], although other forms not displaying a would be weakly interacting in the energetic sense, but their
finite T singularity can be fit tod3]. If the dynamics of dynamics would be constrained, the faster modes constrain-
fragile liquids is due to activatiotwhich is not the only ing the slower ones. It is known that the presence of kinetic
possible explanation this implies that the energy barriers constraints in the dynamics can directly induce glassiness. A
grow with decreasing temperature, presumably because theyood example is the kinetically constrained Ising cHais—
increase with the increasing size of correlated regions in th@7], for which the Hamiltonian is trivial, but the transition
system. rates for the flipping of individual Ising spins depend on the
Another set of interesting questions, most relevant forstates of neighboring spins. Kinetic constraints can also arise
fragile liquids, revolves around the possible existence of aras a result of entropic barriers, as in the Backgammon model,
ideal (continuou$ phase transition to a true thermodynamic for instance[18]. Fragile glass behavior has also been ob-
glass state at some temperatilife (the Kauzmann tempera- served in kinetic lattice-gas moddl$9,20. Although inter-
ture) lying below the glass temperatufé,5]. Although the esting in their own right, these models have somewvatht
existence of such a transition would resolve Kauzmann'$ioc dynamics, and represent only one side of the scenario
paradox, in which the extrapolation of the configurationaldiscussed in Refl14]. A recent comparative study of one-
entropy of the supercooled liquid appears to pass below thatimensional constrained kinetic models has been given by
of the crystal[6], and is also supported by the analogy be-Crisantiet al.[21].
tween fragile glasses and discontinuous mean field spin In this paper, we study in detail a model introduced by
glasse$7], there is some evidence against it. For example, iNewman and Moore[22], which is a form of two-
has been shown numericall§] that a thermodynamic phase dimensional Ising model with uniform short-range ferromag-
transition is absent for a system of polydisperse hard disks, metic interactions. Despite the absence of either disorder or
typical model glass former. It has also been argued that thiustration, this model displays glassy behavior at low tem-
extrapolations that yield a positivig in fragile liquids com-  peratures. The cause of this behavior is the presence of en-
posed of molecules of finite size are flaw&d. ergy barriers that grow logarithmically with the size of cor-
Given the many interesting open questions in this field, itrelated regions. The model has a dual description in terms
is important to find simple and if possible solvable modelseither of strongly interacting spins subject to simple single-
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spin-flip dynamics, or of free “defects” subject to a con- whereN is the number of spins, and we skt 1 from here

strained dynamics. It is thus an explicit realization of theon. The equilibrium energy density is then

constrained dynamics scenario of Palne¢ml. [14]. Other L L L

nondisordered short-range spin systems displaying glassy _ _

features are three-dimensional Ising models with competing Seq= (1H(7))= 5(1_tanh§'8)' ®

nearest and next-nearest neighbor interact[@33, or with

ferromagnetic four-spin plaquette interactid@4—26. We now wish to invert Eq(2) and write the spins as
The paper is organized as follows. In Sec. I, we describdunctions of the defects. It is knowii22] that if the spins are

the model and extend the exact solution of the statics givefepresented by the variables,,=3(oma+1)€{0,1}, the

in Ref. [22] by calculating all equilibrium spin-correlation Spins below an isolated defect on the lattice form a Pascal's

functions, and showing that the phase transition to an ortriangle mod Zi.e., a triangular array with the binomial co-

dered state occurs only at zero temperature. In Sec. lIl, wefficients ) mod 2 as entrigs This means that the value of

give our principal results, which concern the out-of-the spinsy,, is given by the superposition mod 2 of the

equilibrium dynamics of the system following a quench fromPascal’s triangles of all defectg,=+1 with m—I<k=m

a random configuration to low temperatures. We show thaandl=n. The inverse of the transformatidg) then reads

the equilibration time diverges with an exponential inverse

temperature squared law, similar to that found for the asym- o= — H (— Tkl)(rIn:T()- (6)
metrically constrained Ising chain. We study the behavior of mn n<l
one-time quantities, such as energy density and spin correla- m-l<k<m

tions and two-time quantities, such as autocorrelation angyith this result we can compute the equilibrium correlation

response functions. We also study the out-of-equilibriumfnctions of the spins. First, the magnetization is given by
fluctuation-dissipation relations and relate them to the congyeraging Eq(6):

figurational entropy, which can be calculated exactly. Our

conclusions are given in Sec. IV. 1 \Nmn

(Om=— tanhzﬁ) ) (7

Il. MODEL AND STATIC SOLUTION
where
We consider the model introduced in R¢R2], which

consists of Ising sping=*1 on a triangular lattice with _ [—=n
uniform short-range three-spin ferromagnetic interactions: Ninn= = (m—k) mod 2 ®)
each spin interacts only with its nearest neighbors, and only m-—I<k=m

in groups of three lying at the vertices of a downward-
pointing triangle on the lattice. Note that this is distinct from
the model of Baxter and WLR7], which has interactions on
upward-pointing triangles alg@and which is not glasgyThe

is the total number of ones in the inverted Pascal’s triangle
with its tip at site (n,n). This number diverges faster than
the linear size of the triangle, so in the thermodynamic limit

Hamiltonian for the model is we obtain
(o) [—1 for T=0 ©
1 1 ooy =
H=333 Ommac10m a1t 3N (D) " =] 0 for T>0,
mn

for all (m,n), implying that the system has B=0 static
where the indicesn andn run along the unit vectors of the phase transition.
lattice a;=x and a,=1(x++3y). The constant in the Arbitrary correlation functions can be computed in a simi-
Hamiltonian is added for convenience to make the minimunf@" manner:

possible energy equal to zero. The model can also be formu- 1\ Moo
lated using the defect variables (Omn- - O ) =— tanhzﬂ) , (10)
Tmn= OmnOmn+19m—1n+1 (2)

where NOWN,...mne IS the total number of ones in the

superposition mod 2 of the inverted Pascal’s triangles start-

ing in positions (m,n) through (n’,n’). Since {)=(})=1,

1 1 the left and right edges of a Pascal’'s triangle contain only
H==J 2 Tont = NJ. ©) ones, so any superposition of two triangles always has an

2" mn 2 infinite number of ones coming from the edges. This implies
that all two-spin correlations vanish &>0. The first non-

On lattices of the size of a power of two in at least onezero correlations are those for three spins at the vertices of

direction, with periodic boundary conditions, there is a one-inverted equilateral triangles of sidé.an this caseN’=3X,

to-one correspondence between spin and defect configurand the correlation is

tions, and hence the partition function is given by

in terms of which the Hamiltonian is

k
1 3
C(ks): <Uanm,n+2k0'm—2k,n+2k> == ( tanhzﬁ

1 N
—| 9e-(128
Z=|2e coshi,B) , (4) (11)
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Notice that 0.5

L i
tanr?z/B). (12 04l

1
c®, tanh§,8> =c®
A similar scaling relation is seen in the one-dimensional
Ising model. 03
At low temperatures the system is in a scaling region, andw
using Eq.(11) we find a correlation length of

0.2
—=In2/In3
&= ( In cothzﬂ (13
01t
I1l. DYNAMICS
Newman and Moorg22] found that the model studied 0.0 5 '_2 L5 5 o s L 10
: . g, 10 10 10 10 10 10 10
here shows glassy behavior under a single-spin-flip dynam- ¢

ics. They showed that following a quench froh=«, the

system was unable to equilibrate in finite time at a low FIG. 1. Energy densitg=(H)/N as a function of time follow-
enough temperatureTE0.2 for ty.,~10° in their simula-  ing a quench fronT= to T=0.10, 0.12, 0.15, and 0.20, from
tions). The system also fell out of equilibrium for exponen- Monte Carlo simulations for a system of 28@56 spins. Time is in

tial cooling with a variety of cooling rates. The reason for qute Carlo steps per spin, and all ma}gnitudes arein Qimensionless
this glassiness is to be found in the details of the system’gn'ts- Inset: the same data as a function of rescaled tim& Int.
dynamics. Single-spin flips correspond to flips of the defect o o
variables on triples of sites forming upward-pointing tri- NOWEVer, is “fragile.” In fact, the EITS form can be ap-
angles on the lattice, and sets of such flips can be combindyf©Ximated by a Vogel-Fulcher form witRo~ 5T, . A sys-

to flip upward-pointing triangles of sidé‘dor any integek. (€M that has an analogous but “strong” behavior is the
Any isolated such triangle witlk>0 is locally stable; in Frenkel-Kontorova mod¢R8]: at low temperatures above its

order to remove it we have to cross an energy barrier of =0 phase transition, the relaxation of defects is hindered
heightk. Thus, as the system relaxes it has to cross energg¥ the presence of constant energy barriers, and the equili-

barriers that grow logarithmically with the size of the equili- Pration time diverges in an Arrhenius way.
brated regions. Equation(14) clarifies the observations made in Regf2].

Another way of looking at this is to observe that at low N the case of relaxation following a quench frofg=c to
temperatures the flipping of an isolated defect is heavily sup!’ the highest temperature at which the system was found to
pressed, since such a flip requires the creation of two othéfauilibrate within timeta—=10" was T=0.2, while for T -
defects and so incurs a net energy penalty. Thus, a defect0-18 or smaller, the system was unable to reach equilib-
requires the presence of another neighboring defect to Haum- This is explalneéj by the fact thag{T=0.2)~ 10",
able to flip, a situation highly reminiscent of the facilitated While tef T=0.18)~10". In the case of exponential cooling,
kinetic Ising model of Ref[15]; the defects are noninteract- OUr €Xpression foteq implies a maximum allowable cooling
ing in the Hamiltonian, but their low temperature dynamicsate of yma(T)~1te(T) if we wish to remain in equilibrium
is effectively constrained. at temperature§” and greater. For the different annealing

At low temperatures, excitations of linear size larger thanSimulations of[22], the temperatures at which the energy
one can only be annihilated via activation. From the obserceases to follow the equilibrium curve are given by the so-
vation that barriers grow logarithmically with linear size, it is 1ution of yma(T)=7 for the cooling ratey used.
straightforward to estimate equilibration time. The rate of
relaxation of an excitation of linear siztis given by the A. One-time quantities
Arrhenius formulal’(d) ~exp(-In d/TIn 2). Thus af;eg time We now consider the behavior of one-time quantities for
L, the average linear distance between defec~4" "% ho model, such as energy density and spin correlations, fol-
The equilibrium value of this distance at Iow is _deq _ lowing a quench fronT=c¢ to a low temperature.
~exp(8/2) [see Eq(S)], and hence the equilibration time is  rheT—c configuration is random, and therefore has zero

correlation length. As the system relaxes following the
¢ X 1 . (14) quench, it tries to increase its correlation length to the equi-
ed librium value, Eq.(13), which is finite but large at low tem-
perature. In terms of the defects, the system is trying to de-
This exponential inverse temperature squaedS) form is  crease the defect density or equivalently the internal energy
similar to that obtained in Ref17] for the asymmetrically per spine from its initial value ofey= 3. In Fig. 1, we show
constrained Ising chaifACIC) [16], except for the 2 in the numerical results for the evolution in time of the energy
denominator that is due to the two-dimensional nature of oudensity after a quench from=oc to a variety of final tem-
model. The EITS form has no finite-temperature singularity peratures. The simulations were performed on a>X2B86
which is consistent with the fact that our model has no finiterhombic lattice using a Bortz-Kalos-Lebowitz continuous
temperature phase transition. The behavior of the relaxatiortime algorithm[29]. As the figure shows, after an initial

2T?%In2
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temperature-independent exponential relaxation corresponc 100 . ' - . - .
ing to the (barrierlesy removal of pairs of neighboring de-
fects, the energy displays “plateaus,” which are more pro-
nounced the lower the temperature. These plateaus are tr
result of the system becoming trapped in locally stable con-
figurations. As we can see, the time taken by the system tc
escape these plateaus becomes larger with decreasing ter
perature.

As shown in the previous section, the typical length scale~s
in the system(i.e., the typical distance separating defgcts
grows with time ast”, and in the absence of other length
scales, we might thus expect the data in Fig. 1 approximately
to collapse when plotted againist, or equivalently against
v=TInt on the logarithmic scales used in the figufé.
collapse of this kind was found for the ACIC in R¢17].) In 1.0 ' ) - ) - )
the inset of Fig. 1, we show that this is indeed the case for -0 -05 00 0'5T1nt1'0 15 20 25
our model. Save for the initial exponential transient, the col-
lapse of the curves for different temperatures is very good. FIG. 2. Average distance between defedtss a function of
Moreover, the first plateau seems to extend frem0 to 1, rescaled timev=TIn(t). The dotted-dashed line corresponds to the
the second fromy=1 to 2, and so orfa behavior also seen T=0 coarsening approximation.
in the ACIC).

At low temperatures, the relaxation of the system can alsé"g the current stage—the following recursive relations are
be regarded as an anomalous coarsening process. For thltained[17]:
case considered here of periodic boundary conditions, there
exists a unique minimum Féznergy configura):ion of the model Ck+1(2)=1+[C(2) ~1]exd H(2)]. (15)
in which all the spins point down and there are no defects
For free boundary conditions, however, there afe™2 de- .
generate minimgThe spins along the bottom and right-hand solved 'numencally. .
side of our rhombic system, for instance, may be chosen I'n Fig. 2, we show the average linear length of the do-
arbitrarily, with the rest being uniquely fixed by the require- Mains d(t)=1/Ve(t) as a function ofy=Tint from our
ment that there be no defedt&ollowing a quench, spins Simulations. AsT—0, we expect(t) to become a "stair-
start to rearrange locally to eliminate defects, regardless dfase” function, with the steps extending between integer val-
the boundary conditions, and thus form domains of the varit€S ofv. The approximate heights of these steps are given by
ous free-boundary minima. The imperfect matching of thesdh® derivative f’f the generating function at=1: (d),
domains will be marked by the presence of defects. =24dPy(d)=G(1). These steps are also plotted in the fig-

The coarsening dynamics fdrclose to zero can be stud- Ure (dotted-dashed lineand, as we can see, the agreement is
ied approximately using the generating function method ofluite good. _ _ _

Sollich and Evan$17]. Consider a description of a configu- e now tumn to the behavior of the spin correlation func-
ration of the system in terms of domains containing no delions as we approach equilibrium. In equilibrium, as shown
fects (r=—1) bounded by sites containing defects=(1). above, t.h<_e magnetization and all two-spin cprrelatlons \_/anlsh
In contrast with the one-dimensional model studied i@,  at any finite temperature. Moreover, at all times following a
such a description cannot be made exact for our model. Neyduench, the average magnetization and all equal-time two-
ertheless, as far as average properties go, such as distarfidn correlations vanish as W_eII,_ as shoyvn in Fig. 3. Thisis a
between defects, we can think of low-energy configurationg§onsequence of the three-spin interactions: regardless of the
as an approximate tiling of defect-free parallelograms eacifalue of a spini, the Hamiltonian favors a neighboring spin
delimited by a defect in, say, its top right-hand corner. Thisl €qually to be up or down, since the only interaction be-
effectively maps the problem into one dimension. As wetween the two spins also includes a third spin of unknown
now show, this crude approximation, which allows us to ap-Oriéntation. _ _

ply the method of Ref[17], gives reasonable results. In equnlbrlym, the first nonzero correlations are th_ose f_or

WhenT—0, we haveso,—0 and the plateaus of Fig. 1 triplets of spins at the vertices of downwarq pointing tri-
become distinct stages in the dynamics. During stagell ang!gs _of Imea_r size'2 Thls is also the case in the out-of-
domains of linear sizal in the interval ¥ l1<d<2% are €quilibrium regime following a quench. In Fig. 4, we show
annealed away. The time scale for this proces®(s?*), the absolute value of the three-spin correlatip@f’)| as a
and differs by a factor o&? from the time scale associated function of time after a quench, for various valueskofrhe
with the following stage. In this limit, the master equation behavior of these curves illustrates the nature of the stages by
for the Coarsening process can be solved using generatirY@hiCh relaxation takes pIace. |n|t|a”y, Correlatipns at all
functions. IfP,(d) is the probability distribution of lengtrs ~ 1€ngth scales are zero. The system has no barriers to relax-
at the beginning of thith stageG,(z) = S« 1-4P(d)z%is  ation of excitations of length scale 1, t(bff)| starts to grow
the probability generating function for this distribution, and immediately after the quench. At=TInt=0, |C{¥)| grows
Hi(2) =3 k- 1-q=okP(d)z% is the equivalent function for exponentially fast to a first quasistationary value, while all
the active domains—those which will be annealed away durC(k3’>)1 remain zero: this first plateau corresponds to partial

Given an initial distributionPy(d), these equations can be
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FIG. 3. Two-spin correlations for various times as a function of ~ FIG. 5. Three-spin correlations scaled according to (&8).
distance.

temperature. We first consider the local two-time spin auto-

equilibration up to length scales of 2. At=1, the system ., relation function

starts to relax up to length scales of 4, wiily*> becoming
nonzero, whileC{¥),=0. And so forth. 1

Within the plateaus all one-time quantities have roughly C(t,tw) = N % (Omn(t) Tmi(tw))- (16)
stationary values, and so it is natural to ask to what extent the

system is in a quasiequilibrium state. One answer to thi% Fig. 6, we showC(t,t,) for quenches fronT=c to T
question comes from examining the agreement betwee_n oUy 12. fo’r three diﬁereﬁtwvalues of the weighting tityg, as
nonequilibrium correlation functions and the exact relations_ "~ . . . A
L ' . ; a function of the rescaled time differenee=T In 7, with 7

(12) for the equilibrium correlation function. In Fig. 5, we —t—t,,. The three values df, used correspond to=0, 1

@ wi (3)] (13 i o : . . A
compare|Cg”| with [C;”|(¥*), and find that the out-of- 5 'j & "tg the starting points of the first three of the plateaus
equilibrium correlation functions still collapse approximately giscussed in Sec. Il A. In Fig. 7, we present the same cor-

when scaled appropriately, the collapse getting better as time,ations as a function dft,, .
progresses. This may indicate that the later stages can be gjnce the system does not reach equilibriuniTat0.12

described by an approximate equilibrium at an appropriatgy, the time scales simulated, we do not in general expect the
effective temperature. We discuss this point further in Seceqrelation functions to be functions of the time difference

e, 7=t—t, only. In fact, as Fig. 6 shows, the behavior of the
correlation functions has a clear dependence on the waiting
time. On the other hand, as we can see from Fig. 7, neither

We now turn to the behavior of two-time quantities in the does it obey a simple aging form, scaling with,,, as ob-
out-of-equilibrium regime following a quench from high

B. Two-time quantities

. . . . . . ] e ~
0.8 \
0.8 - |
@ — 0=Th, .
5 0.6 P 1
g Soel 2 Y
[ g .
E o4y e 1.0 !
(9] ~—
£ © o4t
2
T 0 I 05
o
0 02 r
0.0
I -1.0 O. 1.0 20 3.0
-0.2 1 1 1 L L 1 0 L 1 L L 1 | |
-1.0 -0.5 0.0 0.5 1.0 1.5 20 25 -1 -0.5 0 0.5 1 1.5 2 2.5
Tlnt Tin<t
FIG. 4. Three-spin correlation functiorG(k3) as a function of FIG. 6. Local spin-spin correlation functions as a function of the

time, for linear sizes '¥~%1.234 We plot the absolute value of the scaled time differencé In 7, following a quench tof =0.12. Inset:
correlations. the same foiT=0.20.
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FIG. 7. Local spin-spin correlation functions as a function of Fl(j' 8. Integrated r_esponse functiqn vs rescaled time difference,
t/t,,, for T=0.12. Inset: the same faF=0.20. for T=0.12 andT Int,=0 and 1. Inset: the same fdr=0.20.

served in other casgg]. This is because the length scale @ imet,, following a quench to finite temperaturaH(t)
associated with the relaxation of the spins does not grow as & No?(t—tw)Zmnomn. We measured the integrated response
simple power of time(see Figs. 2 and )4 In general, if  (Or relaxation function
equilibration is associated with the growth of a length scale
[(t), then the two-time correlation functions should scale 1
with 1(t)/I(t,) [2]. Behavior of this kind was found in the -
autocorrelation functions for the ACI{21], where the ap- x(ttw) Nhg %:1 {@am(®)n (18
propriate length scale is the average distance between
upward-pointing spins. In our model, however, rescaling the
spin correlation functions by the distance between defect¥hich is equivalent to measuring the change in magnetiza-
fails, and we have not been able to find a suitable lengtfiion per spin of the system, divided by the strength of the
scale such that the scaling wittt)/I(t,,) holds. applied field. We have experimented with a variety of differ-
Another observable of interest is the response functior@nt values for the field strengthy; the results presented here
x(t,t,,), which measures the response of the spins attime are forh,=0.02, which we find to be well within the linear
a small field applied at timé, . Comparison of such a re- regime. In Fig. 8, we show the measured responseTfor
sponse function with the two-time correlations studied above=0.12 andr,,=TInt,=0 and 1. Notice that the response is
can reveal violations of the fluctuation-dissipation theoremnot in general a monotonically increasing function of time,
(FDT) that are expected in systems displaying aging. In genbut instead shows cusps at times corresponding to the jumps
eral, in order to obtain the response function correspondin§etween plateaus. For higher temperatures the cusps are less
to thelocal correlation function calculated above, we would Pronounced and eventually disappésee inset
need to apply a field to only a single spin on the lattice, or A similar nonmonotone behavior is seen in the response
equivalently we could apply a random field and measure théunction for the defects in our model, and can be understood
staggered respong&0]. Both of these approaches presentphysically by the following argument. The energy density
significant numerical challenges, and require a substantidllays a role for the defects equivalent to that played for the
investment of CPU time in simulation to extract clean re-Spins by the magnetizatiom, and the equivalent of a small
sults. For our model, however, this turns out to be unnecespplied magnetic fieldsh is a small change in temperature
sary because, as mentioned in Sec. Ill A, all off-diagonaldT=—T2sh. Consider then the behavior of the energy den-
spin-spin correlations vanish, implying that two-time auto-sity shown in Fig. 1. At low temperatures, we expecto
correlations of the magnetizatiom=N"'3 o, are pro- follow a staircase function, with steps extending between
portional to the local spin correlations thus: integer values ob. When the field is applied.e., when the
temperature is changgdhe perturbed energy density is an-
other staircase function, with each step having a slightly
, , higher (lower) value for the negativépositive field, and
(m(t)m(t"))= ﬁc(t’t ). (17 lasting a longer(shortej time, the steps now extending be-
tween integer values af(1—T 6h). The corresponding in-
tegrated response is given by the difference between the per-
This means that we need only to measure the response tot@rbed and unperturbed energy densities, divided by the field.
uniform field. Within each plateau this difference is mostly small and
We have performed simulations in which the Hamiltonianroughly constant, but a sharp change is seen at the bound-
was perturbed with a small uniform magnetic field applied ataries between steps. The unperturb@d+0) density jumps
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to the next plateau when is an integer, but the perturbed S(e)=—¢elne+0(¢), (23

one only does so when(1—T 6h) is an integer, and thus

the absolute value of the response is large during the showhich is the general form for a low concentration of nonin-

interval between these two events. Once the perturbed dereracting point defects in an ordered structi®& The con-

sity jumps to the next plateau, the response becomes smditjurational entropies of the disordered Ising chain, con-

again. This increase and decrease at integsrresponsible  strained Ising chains, and the Backgammon model all have

for the humps seen in the integrated response. The argumethiis asymptotic fornf21,33. Note thatS, has infinite slope

generalizes to perturbations with a staggered random field.with respect tee ate=0 where it vanishes, which is consis-
The response function for the ACIC was studied in Ref.tent with the fact that none of these models has a finite tem-

[21], where it was found to be a monotonically increasingperature phase transition. However, siigencreases loga-

function of _time. However, as mentioned abo_ve_, the defecfithmically ase is decreased, an extrapolationg§i(0) from

representation of our model behaves very similarly to th&ne pehavior at finite: would wrongly suggest a finite slope

ACIC, and we therefore conjecture that nonmonotone behavsng therefore a finite Kauzmann temperature. It has been

ior will be seen in the ACIC also at sufficient low tempera- grgued that this mechanism would rule out an ideal-glass

tures, for precisely the reasons given above. phase transition in materials composed of limited size mol-
ecules and conventional molecular interactif@s
C. Configurational entropy and fluctuation-dissipation Having calculated correlation and response functions for
relations the spins in our mode(lSec. 11l B), we can use our results to

! ) . . study the relation between fluctuations and responses, which
A configuration of our model is a local energy minimum ;, some other systems is related to the configurational en-
if and only if no two defects occupy adjacent sites on theyqny The natural way to do this is by means of a parametric

lattice. In the context of glasses, such states are known :
) ) ’ . ot of x(t,+ 7.t,) vs C(t,+ 7.t,) for fixedt, [11]. For a
inherent structuref31]. A nice feature of the model is that ?ystemxigr véquqi-libwr)ium at(tévmr;erg)tuTesuch avg)l[ot \}vould be

the set of inherent structures is isomorphic to the set of a'l‘rnear with slope— 1/, in accordance with the fluctuation-
lowed states of Baxter's hard-hexagon moihd], allowing giggjpation theorem. In a glassy system on the other hand,
the distribution of inherent structures to be calculated exy o FpT is normally violated in the out-of-equilibrium low-

actly. . Lo ;
- . temperature regime dg— o0, and this violation encodes im-
Thle grandf—lsar.tltlor_r function of the hard-hexagon mOde'portant information about the system’s dynamical behavior
on a lattice oiN sites Is (see Ref[2] for a review. The classic example is the mean-

N field p-spin spin glas§10], for which the FDT plot is piece-
Zy(2)= 2, g(M,N)ZM, (199  Wise linear: for large values of, corresponding to relax-
M=0 ation of fast degrees of freedom, the plot has a slope of

—1/T as it would in equilibrium, but for smalle€, corre-

wherez s the fugacity angj(M,N) is the number of ways of sponding to the relaxarlon of slow modes,_lt has slope
placingM nonadjacent particles on the triangular lattice. In — 1/Teir, WhereTeq>T is interpreted as a effective tempera-
our case,M=Ne corresponds to the total energy of our ture_for these_ modds34]. Furthermore, in th@-spin model,

model, sogy(e)=g(Ne,N) gives the density of states for Tes IS numerically equal to the inverse of the slope of the

inherent structures with energy. For largeN, g(n,N) is configurational entropy at the asymptotic energy density
exponential inN, so thatgy(e) =eV%(), whereS,(s) is the [35]. Similar behavior has also been observed in more real-

configurational entropy of the model, i.e., the entropy densityStic model glass formerfl2,13. ,
of metastable states. In this case, Ei) becomes At sufficiently low temperatures our model is clearly out
' of equilibrium, and although it does not reach the long-time

asymptotic regime corresponding to approach to equilibrium
_ in our simulations, it is possible that the FDT plots can still
ZN(Z)_J de exp{N{e Inz+Sy(e)}]. (20 provide information on the relaxation process, and maybe
that there exist effective temperatures associated with the
For largeN, the integral is dominated by the saddle point in different time scales in the problef84]. In Fig. 9, we show
the exponent, and we obtain the FDT plot for the spin response and correlation functions.
The unusual nonmonotonic shape is a consequence of the
nonmonotonicity of the response function.
e(2)= dln«x (21) The curves should be “read” from right to left in the plot,
dinz’ and are composed of a sequence of segments, each associ-
ated with one of the plateaus. The starting point of each
segment and the part of the curve in which the response is
increasing correspond to the time the system spends within
the relevant plateau. The maximum and the downward por-
wherek(z)=limy_,..[Zy(2)]*N is the partition function per tion of the segment correspond to the transition to the next
site of the hard-hexagon model, which is known exactly inplateau. The first part of each segment has a shape similar to
the thermodynamic limif32]. Between them, Eqg€19) and that found in Refs[36] and [37] for the one-dimensional
(21) determineS.(e) parametrically. Ising model following a quench into the temperature scaling
At low defect densitiesS;(&) reduces to region: the FDT curve there has slopel/T at C=1, and

Sle(2)]=Ink(z)—e(2)Inz, (22
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terms either of interacting spins or of free defects, the map-
ping between the spin and defect representations being one-
to-one. This allows us to compute exactly all equilibrium
correlation functions, both for spins and defects. We have
also shown that the model displays no static phase transition
at finite temperature.

Despite the simplicity of its statics, the model's low-
temperature single-spin-flip dynamics is highly nontrivial. A
spin flip in the model corresponds to the flipping of three
neighboring defects, which implies that at low temperatures
the dynamics of the defects is constrained: a defect can only
be flipped if another neighboring defect is present. This in
turn implies that the relaxation of isolated defects is an acti-
vated process, and the size of the corresponding energy bar-
riers are found to grow logarithmically with the distance be-
tween defects. The dual representation of the model in terms
of strongly interacting spins with a simple dynamics, and of
free defects subject to kinetic constraints, is an explicit real-
ization of the hierarchical constrained dynamics scenario of
$Palmeret al. [14].

We have studied in detail the dynamics of the model after
a quench to low temperatures. The presence of logarithmi-
cally growing barriers leads to non-Arrhenius relaxation, the
equilibration time being of the exponential inverse tempera-
ture squared forne,~ exp(1/2T?In 2]). One-time quantities
such as internal energy display “plateaus” in their equilibra-
gion profiles, which correspond to the trapping of the system
in local energy minima. Each plateau is associated with a
§pecific stage in the dynamics, tkih plateau corresponding

15 -

10 -

05 -

0.0
0.0

FIG. 9. Parametric plot of integrated response vs the two-tim
autocorrelation function of the spins fér=0.12 andT In t,=0 and
1. The dotted line corresponds to slop&/T. In the inset, we show
the same fofT=0.20 andT Int,=0.

bends continuously with decreasi@to reach a slope of
—1/2T at C=0. (Note that this behavior is very different
from that seen in domain growth in higher dimensi¢8@].)

In our model, each of the segments of the FDT plot start
with slope approximately- 1/T (indicated by the dotted line
in the figure, but the subsequent shape of the curve varie ; L
from one segment to another. The similarity within the pla—t0 the partial equilibration of length scales up t6. Ihe

teaus to the behavior of the one-dimensional Ising model igeh_avior of observa_bles related to t_he defects is. strikin_gly
-nS|m|Iar to that seen in the asymmetrically constrained Ising

Sec. II. chain. For example, in th&—0 limit, the average distance
petween defects can be well approximated using the analytic
methods of Sollich and Evan&7] that yield exact results for

he asymmetrically constrained model.

An important open question is whether the configurational
entropy of Eqs(21) and (22) plays any role in the out-of-

o ’ . . t
equilibrium dynamics. A plausible explanation for the shape . . .
of the FDT curves of Fig. 9 is that the initial part of each W€ have also studied two-time quantities for the model,

segment corresponds to quasi-stationary thermal excitatior?‘;’:lCh as spin autocorrelations and. response functions. At low
of fast modes, while the latter part corresponds to slowefemperatures, the response funct|or_ls have the unusual prop-
large-scale rearrangements arising from occasional jumps b 1ty of _belng nonmonotonic: they d_|splay humps at exactly
tween local minima before the transition to the next pIateaL[E 0se times at which the system Jumps.between plateaus.
takes place. If the slope of the latter part of each segmen his behawo_r has also b_een observed in other models at
corresponds to an effective temperature for that segment, es weII'W|th|n t'he activated regime, such as thg con-
might expect these temperatures to be related to the rate 3 rameo_l Ising chains and the Backg_ammon model in one
change ofS.(¢) at the energy density of the associated pla_d_lmen5|on[21], models_ for two-o_||men5|ona| frothi38], gnd_
teau. It is noteworthy that the final slopes of each segment iwbrated grgnglar med|58.9]. An important open question Is
Fig. 9 are roughly equal to ${(s,), with values approxi- \évhethgr th|? is a gegerlc feature of the out-of-equilibrium
mately 3, 3, and; for the first three plateaus. This observa- ynamics of activated processes.
tion is however, speculative and furthermore contrasts with ACKNOWLEDGMENTS
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