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Biased diffusion in anisotropic disordered systems
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We investigate a diffusion process into an anisotropic disordered medium in the presence of a bias. The
medium is modeled by a two-dimensional square lattice in which the anisotropic disorder is represented by a
bond percolation model with different occupation probabilities on each direction. The biased diffusion process
is mapped by a random walk with unequal transition probabilities along and against the field~in the @1,1#
direction! by performing Monte Carlo simulations. We observe a transition from pure to drift diffusion when
the bias reaches a thresholdBc . In order to estimate thisBc , aneffective exponentis used to characterize the
diffusion process. ThisBc is also compared with another estimation for the critical field.

PACS number~s!: 02.50.Ng, 66.30.2h, 05.40.2a
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I. INTRODUCTION

Classical diffusion on disordered systems is a subjec
great interest and has been intensively studied in the past
decades@1,2#. In the pioneering work of de Gennes@3#, the
diffusion of a particle on a percolating lattice, performing
random walk~RW!, was called the ant in the labyrinth prob
lem, because not all lattice sites could be used to perform
RW. In the bond percolation problem, all sites are, in pr
ciple, accessible but the lattice is restricted by labeling
bonds which connect two sites as accessible or inacces
with probabilityp and 12p, respectively@4#. There exists a
critical probability ~percolation thresholdpc) such that an
infinite conducting cluster exists forp.pc and does not exis
for p,pc . It is important to note that the percolation thres
old depends on the geometric properties of the lattice and
kind of percolation problem to be studied~site or bond!.
These models have many applications, including diffus
processes and those related to critical phenomena due t
existence of the characteristic threshold~see Ref.@5# for a
general review on percolation!. In general, it is possible to
characterize the diffusion process by means of a power-
expression for the mean-square displacement~MSD!

^r 2&}tk. ~1!

When k51, the process is called normal diffusion, i.e.,
RW on an ordered or weak disordered medium. Whenk
Þ1, the process is called anomalous diffusion.

Let us now consider a bias applied in a certain direct
of the lattice. An interesting question arises: What is
power-law behavior of the MSD when a bias is switched
causing the RW to move with unequal probabilities in opp
site directions? It is known that for the ordered case and
the long-time regime,k52, but does the walker reach th
value on a random medium? This problem@6–10# has been
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recently revisited@11–13# in an attempt to solve the old con
troversy of whether or not there exists a transition from d
to no drift for a finite bias@6,7#. This transition occurs from
a finite velocity regime to an asymptotic vanishing veloc
regime for a characteristic critical external fieldBc . The re-
cent theory of Dhar and Stauffer~DS! @11# argues in favor of
the existence of a critical field. In this theory, the concept
trap generated from the disorder on the cluster is import
since these traps act as potential wells and retard notorio
the biased diffusion of the particle, causing thedrift/no-drift
transition. An increase inp increases the connectivity of th
cluster resulting in a decrease of the mean depth of traps
consequently, in an increase in the critical field, i.e., stron
bias is necessary to cause the mean-trapping time to dive
These arguments are valid for both site and bond percola
model due to the similar shape of the cluster generated.

In order to study this problem, it is convenient to defi
an effective exponent@9#

keff~ t !5
d~ log10̂ r 2&!

d~ log10t !
, ~2!

which describes the variation with time of theeffective
power law. Note that this definition is not equivalent to t
power law in Eq.~1! with k5keff . The effective exponen
keff defined in Eq.~2! just represents the rate of variation
log10̂ r 2& with respect to log10(t) at time t. The effective
exponent accounts for the critical behavior, since it a
proaches an asymptotic value faster with increasing bias
there exists a characteristic biasBc above which this ap-
proach is retarded on further increasing bias.

Previous studies@9,10,12,14# have dealt with an isotropic
medium, and here we are interested in studying the rela
problem of anisotropic disordered systems, in which not
directions are equivalent. These anisotropic systems are
portant from an applied point of view. As a matter of fact,
the oil industry, the dielectric properties of reservoir roc
are measured to determine the hydrocarbon content. In
context, water saturation in shaly sandstones can be rel
to the electric conductivity. The main problem to model t
electrical conductivity in the above-mentioned systems ar
7664 ©2000 The American Physical Society



ro
in
e
n
ol
io
n
m
i

on
p

as

W
e
an

w
na
c

-
u

st

th

b
i

.
ce
ou

at

ion.
e

h

are
n
m-
th a
nted
00

n-

10

s.
o-
ing
in
in
on
he

t

to

pic
tion

a

of

2,

PRE 62 7665BIASED DIFFUSION IN ANISOTROPIC DISORDERED . . .
because the porous reservoir rocks generally show st
anisotropy, which can be produced by geometrical or intr
sic conductivity factors. This fact has led to an increas
focus on the conductivity on an anisotropic rock formatio
because the effects of resistivity and induction logging to
are very important for a reliable hydrocarbon saturat
evaluation@15#. A second problem that we want to mentio
here is the analysis of transport in epoxy-graphite disk co
posites. These are very anisotropic materials due to the
trinsic anisotropic conductivity and preferential orientati
upon deposition in the preparation procedures of the sam
The study of dc electric properties, in these composites,
function of the electric field has inspired recent interest@16#.

The aim of our work is to analyze the behavior of a R
on an anisotropic disordered medium under the presenc
an external bias, which mimics a particle moving on an
isotropic amorphous material.

II. ANISOTROPIC MODEL

To represent the anisotropic disorder of the system,
consider a bond percolating model on a two-dimensio
square lattice with different occupation probabilities on ea
perpendicular direction. In thex direction (y direction!, we
keep a bond with probabilitypx (py) and cut it with prob-
ability 12px (12py). respectively. In the unbiased prob
lem, this kind of system leads, in general, to different diff
sion coefficients for each direction@17#, and important
changes in the biased problem are expected.

Note that in an isotropic percolating medium, there exi
a percolation thresholdpc , which for the bond percolation
model on a square lattice takes the valuepc5 1

2 . In aniso-
tropic systems this threshold becomes a critical surface of
form w(pi ,pj , . . . )50 @18#. For the bond percolation
model discussed here,w(px ,py)5px1py21 @18,19#.

Here we performed a RW with unequal transition pro
abilities along and against the external field. The field
measured by its strengthB, being 0<B,1. A bias is intro-
duced in the diagonal direction@1,1# of the square lattice
We make this selection because of the privilege introdu
in the coordinate system by considering the symmetry of
anisotropic model. Assuming the lattice constanta51, the
transition probabilityw(r→r1d) from r to r1d is defined
as

w~r→r1d!55
1

4
~11B! if d5~1,0! or ~0,1!,

1

4
~12B! if d5~21,0! or ~0,21!.

~3!

Now it is useful to introduce two new parameterspm and
pd , defined as

pm5
px1py

2
, ~4!

pd5upx2pyu. ~5!

The first one represents the global occupancy and indic
how far the system is from the percolation thresholdpx
1py51, where it takes the valuepm,c5 1

2 . The second pa-
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rameter is a measure of the anisotropy of the configurat
When pd50, we havepx5py , i.e., the isotropic case. Th
general anisotropic case is considered by setting 0,pd

<pd* , with pd* 52(12pm). For a fixedpd , the allowed val-
ues ofpm are those lying in the rangepm,c<pm<pm* with
pm* 512(pd/2). Due to the symmetry of the problem, wit
respect topx5py , we have worked out only the regionpx
.py , so we can setpd5px2py .

In the present paper, we work with configurations that
far above the thresholdpm,c , because near to the formatio
of the incipient percolation cluster there are a variety of co
plex phenomena. These problems must be handled wi
more sophisticated computer system; the results prese
here were just achieved with a PC Pentium III with 5
MHz.

III. RESULTS

A. The effective exponentkeff

We perform Monte Carlo~MC! simulations of the RW in
lattices of 5003500 sites with previously selected bond co
centrationspx and py , and performed up to 106 MC time
steps, averaging between 200 and 1000 lattices with
walks each. For each configuration (px ,py) we computed the
MSD and calculated the effective exponentkeff at various
MC time steps. We consider periodic boundary condition

First of all, we have compared our MC data, for the is
tropic ordered case, with analytical results obtained by us
a discrete time RW formalism for the probability of being
siter at timet @1#; the transition probabilities were defined
Eq. ~3!. It is then possible to obtain an analytic expressi
for the MSD and its effective exponent, as a function of t
external biasB,

^r 2&5
~22B2! t1B2t2

2
, ~6!

thus

keff5
~22B2! t12 B2t2

~22B2! t1B2t2
. ~7!

Note that whenB50, we obtainkeff(t)51 as expected.
In addition, for allBÞ0 we getkeff(t→`)52 , i.e., a com-
pletely biased particle. In Fig. 1~a!, we present the resul
expressed by Eq.~7! together with our MC data, finding a
very good agreement with our simulation. We shall refer
these plots askeff plots.

Second, let us consider a very simple case of anisotro
disordered media: the disorder appears only in one direc
~say they axes!. For example,px51 andpyÞ1. Although
pdÞ0 andpmÞ1 in this special anisotropic case we obtain
quasiorderedresult. This can be seen comparing Figs. 1~a!
and 1~b!. It is important to remark that in this casekeff(t
→`)→2 just as in the completely ordered case, see Eq.~7!.

The typical behavior of the effective exponentkeff(t) for
arbitrary values of the occupancy probabilitiespx andpy ~or
pm and pd) is represented in Fig. 2, for different values
the external fieldB. Figure 2~a! shows how, at low bias, the
exponent increases until it reaches its asymptotic value
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reaching this value faster whileB increases. Compare, fo
example, curves withB50.1 andB50.2. It is also possible
to realize that there is a characteristic biasBc , which we
associate with a plateau inkeff(t), above which increasing
the bias will cause the exponentkeff(t) to decrease. This
behavior shows, qualitatively, thedrift/no-drift transition
which depends on the strength of the external field and
parameterspm and pd . We remark that the statistical fluc
tuations have been averaged in order to obtainBc . In Figs.
2~b! and 2~c!, we show the behavior ofkeff(t) for the same
values of B for pm50.525 andpd (50.05,0.35), respec
tively. Figures 2~a!, 2~c!, and 2~d! arekeff plots for the same
value ofpx but different values ofpy .

Finally, we point out that we have found a characteris
oscillatory behavior of the effective exponent for bias fie
far above the critical valueBc , which is not studied here. In
this range, the exponentkeff(t) presents a log-periodic varia
tion due to the discrete-scale invariance of the cluster rela
to the depth distribution of traps@13,14,20#. These effects are
present in our simulations but it is still difficult, with our MC
simulations, to take into account the role of anisotropy.

FIG. 1. ~a! Monte Carlo data and analytickeff(t) from Eq. ~7!
for the isotropic ordered case (px51 andpy51), for different val-
ues of B. ~b! keff(t) as a function of log10(t) for px51 and py

(51,0.7,0.5,0.3) for different values ofB. Times are measured in
units of diffusion attempts.
e

c

d

B. Dhar and Sttaufer estimation of Bc

As mentioned before in the Introduction, DS@11# worked
out a theory for thedrift/no-drift transition. The main ingre-
dient of such a theory is the depth distribution of trapsP( l ).
When a particle gets into a trap of depthl, it has to dol steps
against the bias to get out and continue diffusing. As s
gested earlier@7,8#, this depth has an exponential distributio
P( l )}exp(2A l), where the parameterA is an unknown
p-dependent function. With this condition, DS derived
expression for the critical biasBc , at which the time spen
by the RW in the trap divergeŝt&5( l 50

` t l P( l ), wheret l is
the time spent at a trap of depthl. Using the exponentia
decay for the depth distribution, they showed that atB
5Bc , the average velocity at larget decreases to zero a
1/log10(t).

Our anisotropic bond percolation model has the same k
of geometric properties as in the DS isotropic site percolat
model, the main difference being the change in morpholo
of the resulting cluster. This allows us the use of an ex
nential decay for the depth distribution of traps but with
modified unknown parameterAani(pm ,pd), containing all the
information of the new cluster morphology. For ourbond
model, Aani(pm ,pd50)5Aiso(pm), which still differs from
the site model used by DS@11# and Kirsch@12,21#. In this
way, we argue that all the arguments developed by DS
also valid for our model but takingAani as the exponentia
parameter. Thus we can obtain a measure ofBc from the
change of the concavity of the reciprocal velocity 1/v versus
log10(t) ~DS plots! at variousB, as was proposed by DS. W
then used these values to compare with our previouskeff
estimations.

In Fig. 3, we present a phase diagram ofBc versuspm for
various pd values obtained from DS plots. The valueBc

→1 whenpm→pm* 512(pd/2) is an extrapolation of non
numerical results. This limit can be thought of by consid
ing that when the global occupancy increases, the dept
the traps gets smaller and smaller reaching, finally, a qu
ordered behavior when there is no trap. On the other ha
we know that the smaller the depth is, the larger the fieldBc
must be in order to stack the particle into the traps, i.e.,pm

→pm* . Thus in the particular situationpm→pm* , the charac-
teristic field tends to its maximum value, i.e.,Bc→1. The
inset of Fig. 3 shows the phase diagram ofBc versuspd at
constantpm .

Furthermore, we can adapt the formula used by DS@re-
lating Bc andAani(pm ,pd)] to our anisotropic bond percola
tion problem, which yields

11Bc

12Bc
5exp@Aani~pm ,pd!#. ~8!

From ourBc versuspm data, Fig. 3, and applying Eq.~8!
we obtain the variation of the exponential parame
Aani(pm ,pd) with the anisotropy; this is plotted in Fig. 4
This figure gives support to our conjecture of using Eq.~8!
even in the anisotropic case. This is insinuated in Fig.
where for a fixedpd , when pm→pm* , the tendency ofAani

shows a divergency atpm* (pd). This fact can heuristically be
understood from the calculation of the mean-trapping time
a function of the global occupancŷt&;( l 50

` $(11B)/@(1
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FIG. 2. keff(t) plots for various
values of px and py ~or pm and
pd). The strength of the biasB in
~b!, ~c!, and ~d! is the same as in
~a!. The corresponding values o
pd* andpm* , for each case, are als
shown. The lines are only guide
to the eye. Time units as in Fig. 1
a-
e-

e
in

w

fo
is

cles

to
2B)eAani
#% l . For pm→pm* , we expect a quasiordered situ

tion ~see Fig. 1!, so ^t&→0 because there is no trap. Ther
fore, Aani(pm→pm* ,pd) must diverge in this limit. Indeed
this conjecture is compatible with the fact that forpm→pm*

the critical fieldBc goes to 1 and (12Bc)e
Aani→`.

FIG. 3. Phase diagram ofBc versuspm for different values of
pd . Below each curve we can define the drift regime (vÞ0) and
above it the no-drift regime (v50). See the inset where we sho
the phase diagramBc versuspd ~for fixed pm). The dotted lines are
plotted in order to see the corresponding ending points atpm*
(50.7 for triangles, 0.8 for diamonds, 0.9 for circles, and 1
squares!; and pd* 50.6 in the inset. In all points the error bar
aboutDBc50.2.
IV. DISCUSSION

A. Comparison betweenkeff and DS estimation ofBc

From thekeff plots a value ofBc may be estimated as th
biasB for which the effective exponent begins to decrease
time. In Fig. 5, we compareBc estimations obtained from

r

FIG. 4. Exponential parameterAani versuspm for different pd .
Some of the curves show the behavior ofAani(pm) whenpm goes to
pm* . It can be seen that the curves asymptotically diverge atpm* . At
least there is an insinuation for triangles and diamonds. For cir
and squares, where we expect higher values ofBc , the log-periodic
oscillations shadow this asymptotic behavior, so we cannot go
these higher values ofBc . Aani is measured in units of 1/a, wherea
is the lattice constant.
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Figs. 2~a!, 2~c!, and 2~d! ~open circles! against estimations
from DS plots~open squares!, at constantpx . We find a very
good agreement, giving support to both approaches. In b
estimates the values could be improved by taking more
steps and more computer time, but the essential beha
does not change.

Although the values of the critical biasBc from effective
exponent plots do notdemonstratethe drift/no-drift transi-
tion, both approximations seem to be valid. Then, for a giv
system, we have used two different methods to get the c
cal bias. One approach is obtained in terms of the beha
of the velocity, or the mean displacement^r (t)&, as a func-
tion of time for various values of the external field. In th
second approach, we study the dependency of the effec
exponentkeff(t) as a function of time, or the mean-squa
displacement̂ r 2(t)&, for various external fieldsB.

B. Anisotropic effects

Let us first considerpx51, see Fig. 1~b!. This behavior
can be explained considering that the bias is oriented in
diagonal direction, so there is always an external field ac
on the transition probability in all directions. Therefor
when one direction is completely connected, the particle
always be pushed by the bias, as in the completely orde
case (px51 andpy51). This means that there are notdead
endson the percolating cluster, which would slow down,
any instant, the movement of the RW. This explains w
whenBÞ0, keff(t→`) takes the value 2 for allpy , as in the
ordered case, see Eq.~7!. We would find the same behavio
whenpxÞ1 andpy51 due to symmetrical properties.

From Figs. 2~b! and 2~c! it is clear that the critical biasBc
grows whenpd is increased andpm is kept constant. This can
also be seen in the inset in Fig. 3. WhenpdÞ0 and under the
action of a bias, the MSD depends onpx andpy . The larger
pd is, the more the process is governed by the direction w
larger concentration of bonds (px in this case!. This becomes
clearer when considering that althoughpm is kept constant,

FIG. 5. Comparison ofkeff and DS approaches for the estim
tion of the critical biasBc . The plot corresponds to a fixed value
px50.7.
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increasingpx causes a deformation of the cluster shape,
bonds connectivity in thex direction is increased, and th
particle can diffuse easily in this direction. If we keeppm

constant and increasepd , the trap becomes shallower in th
direction of larger concentration of bonds, thereforeBc must
increase due to the variation ofpd .

Using the same arguments, since the depth of the trap
decreased whenpm increases, it is expected that whenpd is
kept constant andpm increases, the value ofBc will increase
too. This is actually the case shown in Fig. 3.

In Figs. 2~a!, 2~c!, and 2~d! we show that when keeping
px constant and increasingpy , the value ofBc increases~see
also Fig. 5!. This situation corresponds to a competition e
fect of increasingpm ~which increasesBc) and decreasingpd

~which decreasesBc). Then, sinceBc increases althoughpd

decreases, it is clear that the effect ofpm is more important
than that ofpd in order to change the depth of the trap in t
relevant direction on anisotropic biased diffusion, at least
the small values ofpd as it is shown in these figures. In th
inset of Fig. 3 we see that the effect of the anisotropy
comes more important whenpd approaches its maximum
valuepd* .

Finally, let us consider the behavior of the exponent
parameterAani(pm ,pd) of Fig. 4. For high anisotropy, when
the global occupancy increases, theAani versuspm curves
suddenly rise forpm→pm* (pd), indicating that the paramete
Aani(pm→pm* ,pd)→` andBc→1. This means that the trap
will disappear forpm→pm* .

C. Final conclusions

We have shown that there are two possible estimation
the critical bias for the drift/no-drift transition: fromkeff plots
and from DS plots. In addition, these plots are useful
determining if one is in thevÞ0 or v50 region of the phase
diagram, like the one shown in Fig. 3.

We have shown a variety of phenomena related to
anisotropy of a disordered system, considering a part
which moves under the action of an external field. We ha
found that the direction of the bias is of great importan
For example, when we only have one disordered direct
the particle likely behaves as in the completely ordered ca
This is sobecausethe bias is in the diagonal direction and
can always push the RW. We have shown that the crit
bias depends on the shape of the traps, i.e., deforming
traps causes a variation onBc . Finally, we remark that the
critical bias—for low and intermediate anisotropy—is mo
affected by the variation of the global occupancy of the s
tempm than by the variation of the anisotropy parameterpd .
However, at higher anisotropies the critical bias is stron
affected bypd as the system tends to aquasiorderedbehav-
ior.
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