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Biased diffusion in anisotropic disordered systems
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We investigate a diffusion process into an anisotropic disordered medium in the presence of a bias. The
medium is modeled by a two-dimensional square lattice in which the anisotropic disorder is represented by a
bond percolation model with different occupation probabilities on each direction. The biased diffusion process
is mapped by a random walk with unequal transition probabilities along and against thérfighe [1,1]
direction by performing Monte Carlo simulations. We observe a transition from pure to drift diffusion when
the bias reaches a threshd@d. In order to estimate thiB., aneffective exponeri$ used to characterize the
diffusion process. Thi8. is also compared with another estimation for the critical field.

PACS numbegps): 02.50.Ng, 66.30-h, 05.40-a

[. INTRODUCTION recently revisited11-13 in an attempt to solve the old con-
troversy of whether or not there exists a transition from drift
Classical diffusion on disordered systems is a subject ofo no drift for a finite biad6,7]. This transition occurs from
great interest and has been intensively studied in the past twa finite velocity regime to an asymptotic vanishing velocity
decadeg1,2]. In the pioneering work of de Genng3], the  regime for a characteristic critical external fid@d. The re-
diffusion of a particle on a percolating lattice, performing acent theory of Dhar and StaufféDS) [11] argues in favor of
random walk(RW), was called the ant in the labyrinth prob- the existence of a critical field. In this theory, the concept of
lem, because not all lattice sites could be used to perform thigap generated from the disorder on the cluster is important
RW. In the bond percolation problem, all sites are, in prin-since these traps act as potential wells and retard notoriously
ciple, accessible but the lattice is restricted by labeling theéhe biased diffusion of the particle, causing thét/no-drift
bonds which connect two sites as accessible or inaccessiblensition. An increase ip increases the connectivity of the
with probability p and 1—p, respectivelyf4]. There exists a cluster resulting in a decrease of the mean depth of traps and,
critical probability (percolation thresholg.) such that an consequently, in an increase in the critical field, i.e., stronger
infinite conducting cluster exists fa>p. and does not exist bias is necessary to cause the mean-trapping time to diverge.
for p<p.. Itis important to note that the percolation thresh- These arguments are valid for both site and bond percolation
old depends on the geometric properties of the lattice and theodel due to the similar shape of the cluster generated.
kind of percolation problem to be studigdite or bongl In order to study this problem, it is convenient to define
These models have many applications, including diffusioran effective exponerig]
processes and those related to critical phenomena due to the

existence of the characteristic threshé¢ége Ref[5] for a _ d(log;(r?))
general review on percolatipnin general, it is possible to e d(logyot) &)
characterize the diffusion process by means of a power-law
expression for the mean-square displacenist8D) which describes the variation with time of theffective
power law. Note that this definition is not equivalent to the
(r?yoctk, (1)  power law in Eq.(1) with k=kes. The effective exponent

ke defined in Eqy2) just represents the rate of variation of
Whenk=1, the process is called normal diffusion, i.e., alog,o(r?) with respect to logyt) at timet. The effective
RW on an ordered or weak disordered medium. When exponent accounts for the critical behavior, since it ap-
#1, the process is called anomalous diffusion. proaches an asymptotic value faster with increasing bias and
Let us now consider a bias applied in a certain directiornthere exists a characteristic bi@ above which this ap-
of the lattice. An interesting question arises: What is theproach is retarded on further increasing bias.
power-law behavior of the MSD when a bias is switched on, Previous studief9,10,12,14 have dealt with an isotropic
causing the RW to move with unequal probabilities in oppo-medium, and here we are interested in studying the related
site directions? It is known that for the ordered case and iproblem of anisotropic disordered systems, in which not all
the long-time regimek=2, but does the walker reach this directions are equivalent. These anisotropic systems are im-
value on a random medium? This probl¢6+10] has been portant from an applied point of view. As a matter of fact, in
the oil industry, the dielectric properties of reservoir rocks
are measured to determine the hydrocarbon content. In this

*Email address: sbusting@cab.cnea.gov.ar context, water saturation in shaly sandstones can be related
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because the porous reservoir rocks generally show strongmeter is a measure of the anisotropy of the configuration.
anisotropy, which can be produced by geometrical or intrin\Whenpy=0, we havep,=p,, i.e., the isotropic case. The
sic conductivity factors. This fact has led to an increasedyeneral anisotropic case is considered by settirgpg
focus on the conductivity on an aniso_tropic_ rock formation,gpg , With p% =2(1—p,,). For a fixedpy, the allowed val-
because the effects of resistivity and induction logging to_oISUeS ofpy, are those lying in the ranggy, ¢<pm=p?, with

are very important for a reliable hydrocarbon saturatlonp:nzl_(pdlz)_ Due to the symmetry of the problem, with

evaluation[15]. A second problem that we want to mention I .
respect top,=p,, we have worked out only the regiqy

here is the analysis of transport in epoxy-graphite disk com: D, . SO We can seby=py—p,

posites. These are very anisotropic materials due to the in- I the present paper. we work with confiaurations that are
trinsic anisotropic conductivity and preferential orientation P paper, 9 .
éar above the threshold,, ., because near to the formation

upon deposition in the preparation procedures of the sampl f the incipient percolation cluster there are a variety of com-
The study of dc electric properties, in these composites, as P P y ,
plex phenomena. These problems must be handled with a

function of the electric field has inspired recent in . "
unction of the electric field has inspired recent inte{dsl more sophisticated computer system; the results presented

The aim of our work is to analyze the behavior of a RW ; . ) : :
on an anisotropic disordered medium under the presence {iﬁi were just achieved with a PC Pentium IIl with 500

an external bias, which mimics a particle moving on an an- :

isotropic amorphous material.
Ill. RESULTS

Il. ANISOTROPIC MODEL A. The effective exponentk .

Tq represent the aniso.tropic disorder of the s_ystem, We e perform Monte Carl¢MC) simulations of the RW in
consider a bond percolating model on a two-dimensionafagices of 500¢ 500 sites with previously selected bond con-
square lattice with different occupation probabilities on eaChbentrationsp and p,, and performed up to $OMC time
perpendicular djrection. In_thxe direction (y di.rect.iorb, we steps, averaxging byetween 200 and 1000 lattices with 10
keep a bond with probabilitp, (p,) and cut it with prob- 415 each. For each configurationy p,) we computed the
ability 1—p, (1-py). respectively. In the unbiased prob- \,sp ang calculated the effective expondag at various
lem, this kind of system leads, in general, to different diffu- \;c ime steps. We consider periodic boundary conditions.
sion coefficients. for each directiofl7], and important First of all, we have compared our MC data, for the iso-
changes in the bla_sed pr_oblem are_expecte_d_ . tropic ordered case, with analytical results obtained by using

Note that in an isotropic percolating medium, there exists, giscrete time RW formalism for the probability of being in
a percolation thresholg., which for the bond percolation  gjte 4t timet [1]: the transition probabilities were defined in

: : :
model on a square lattice takes the vajue=3. In aniso- g4 (3) |t is then possible to obtain an analytic expression
tropic systems this threshold becomes a critical surface of thg), the MSD and its effective exponent, as a function of the
form @(p;,p;....)=0 [18]. For the bond percolation ayternal bia ’

model discussed here,(p,,p,) =px+py,—1[18,19.
Here we performed a RW with unequal transition prob- ,_ (2-B?) t+B%?
abilities along and against the external field. The field is r=—— (6)
measured by its strengi, being 0<B<1. A bias is intro-
duced in the diagonal directignt,1] of the square lattice. g
We make this selection because of the privilege introduced

in the coordinate system by considering the symmetry of our (2-B2) t+2 B2
anisotropic model. Assuming the lattice constartl, the Kefi= ) (7)
transition probabilityw(r—r+ ) fromr to r+ & is defined (2-B?) t+Bt?
as
1 Note that wherB=0, we obtaink.(t)=1 as expected.
oo In addition, for allB#0 we getkgp(t—>)=2 , i.e., a com-
— + = . . . e
4(1 B) it 6=(L,0) or (0.), pletely biased particle. In Fig.(4), we present the result
wW(r—r+48)= expressed by Eq.7) together with our MC data, finding a
1 i very good agreement with our simulation. We shall refer to
Z(l_B) if 6=(-1,0 or (0,—1). these plots ak. plots
3) Second, let us consider a very simple case of anisotropic

o ) disordered media: the disorder appears only in one direction
Now it is useful to introduce two new paramet@rgand  (say they axes. For examplep,=1 and p,# 1. Although

P4, defined as pe# 0 andp,# 1 in this special anisotropic case we obtain a
D+ p quasiorderedresult. This can be seen comparing Fig&) 1
pm:%, (4) and Xb). It is important to remark that in this caseg(t

—o)— 2 just as in the completely ordered case, see(Bq.
Pa=Ip—py- (5) The typical behavior of the effective expondq(t) for
y arbitrary values of the occupancy probabilit@sandp,, (or
The first one represents the global occupancy and indicatg, and py) is represented in Fig. 2, for different values of
how far the system is from the percolation threshpld the external fieldB. Figure Za) shows how, at low bias, the
+py=1, where it takes the valupmvc=%. The second pa- exponent increases until it reaches its asymptotic value 2,
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Iog10 t B. Dhar and Sttaufer estimation of B,

0 1 2 3 4 5 6 As mentioned before in the Introduction, D8] worked
— 1 - r - 1 - r 1 1 out a theory for thalrift/no-drift transition. The main ingre-
@) dient of such a theory is the depth distribution of tré{s).
4 When a particle gets into a trap of deptlit has to dd steps
against the bias to get out and continue diffusing. As sug-
gested earlief7,8], this depth has an exponential distribution
P(l)xexp(—A |), where the parameteh is an unknown
p-dependent function. With this condition, DS derived an
] expression for the critical biaB;, at which the time spent
by the RW in the trap diverges)==,_,7P(l), wherer, is
the time spent at a trap of depth Using the exponential
B<06 decay for the depth distribution, they showed thatBat
B<0.9 i =B., the average velocity at largedecreases to zero as
Discrete time RW Hogio(1) " . . )
Our anisotropic bond percolation model has the same kind
T+ T of geometric properties as in the DS isotropic site percolation
(b) model, the main difference being the change in morphology
20| ' p.”',,,,,n‘g;;;ﬁg;:ﬁ5555;35"0 --------- S of the resulting cluster. This allows us the use of an expo-
A nential decay for the depth distribution of traps but with a
R A ] modified unknown paramet&®"(p,,,p4), containing all the
information of the new cluster morphology. For obiond
model, A*"(p,,pq=0)=A"(p,), which still differs from
] the site model used by D$11] and Kirsch[12,2]]. In this
way, we argue that all the arguments developed by DS are
also valid for our model but taking®" as the exponential
parameter. Thus we can obtain a measurdgffrom the
change of the concavity of the reciprocal velocity Zersus
log,o(t) (DS plots at variousB, as was proposed by DS. We
. ) ) . - then used these values to compare with our previqus
0 1 2 3 4 5 6 estimations.
In Fig. 3, we present a phase diagranBgfversusp,, for
I0910t various py values obtained from DS plots. The vallg
—1 whenp,—py=1—(p4/2) is an extrapolation of non-
numerical results. This limit can be thought of by consider-
ing that when the global occupancy increases, the depth of
the traps gets smaller and smaller reaching, finally, a quasi-
ordered behavior when there is no trap. On the other hand,
we know that the smaller the depth is, the larger the fild
must be in order to stack the particle into the traps, pg.,
—pp . Thus in the particular situatiop,,— p},, the charac-
teristic field tends to its maximum value, i.8,—1. The
inset of Fig. 3 shows the phase diagramBafversuspy at
constantp,,.
Furthermore, we can adapt the formula used by[BS
lating B, andA?™(pm,pg)] to our anisotropic bond percola-
tion problem, which yields

20

B=0.05
B=0.2
B=04

¢ 4 > o n

10

Bovd

10

FIG. 1. (a) Monte Carlo data and analytic.(t) from Eq. (7)
for the isotropic ordered cas@,(=1 andp,=1), for different val-
ues of B. (b) keg(t) as a function of logyt) for p,=1 andp,
(=1,0.7,0.5,0.3) for different values &. Times are measured in
units of diffusion attempts.

reaching this value faster whilB increases. Compare, for
example, curves witB=0.1 andB=0.2. It is also possible
to realize that there is a characteristic bBgs, which we
associate with a plateau kyu(t), above which increasing
the bias will cause the exponektq(t) to decrease. This
behavior shows, qualitatively, thdrift/no-drift transition
which depends on the strength of the external field and th
parameterp,, and pq. We remark that the statistical fluc-
tuations have been averaged in order to obBin In Figs. 1
2(b) and Zc), we show the behavior d{.«(t) for the same
values of B for p,,=0.525 andpy4 (=0.05,0.35), respec-
tively. Figures 2a), 2(c), and 2d) arekc plots for the same ) )
value of p, but different values op, . From ourB. versuspy, data, Fig. 3, and applying E(8)
Finally, we point out that we have found a characteristicWe obtain the variation of the exponential parameter
oscillatory behavior of the effective exponent for bias fieldsA®"(Pm.P4) With the anisotropy; this is plotted in Fig. 4.
far above the critical valuB,, which is not studied here. In This figure gives support to our conjecture of using Eg).
this range, the exponekt,(t) presents a log-periodic varia- €ven in the anisotropic case. This is insinuated in Fig. 4,
tion due to the discrete-scale invariance of the cluster relateghere for a fixedpy, whenpy,—pp,, the tendency oA™"
to the depth distribution of trajd.3,14,2Q. These effects are shows a divergency at}(pg). This fact can heuristically be
present in our simulations but it is still difficult, with our MC understood from the calculation of the mean-trapping time as
simulations, to take into account the role of anisotropy. a function of the global occupandyr)~=,_,{(1+B)/[(1

Bc

5.~ A" (b P ®
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log,, t log,, t
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20 P, =0.7;p,=07 (@) TP, =055p,=05 (b) 2.0
Pn=07;p,=0 P, = 0.525; p, = 0.05
16}P = 1P, =06 1 b, =0975;p* =0.95 16
12 + 12
%
S osl —s—B=0 1
—o—B=0.1 )
—a—B=02 FIG. 2. keg(t) plots for various
04r —v—B=03 T values ofp, and p, (or p,, and
*—B8-05 py). The strength of the biaB in
—o—B=07 . .
oor , , , , , T (), (0), and(d) is the same as in
20 " p,=0.7;p,= 035 © 1 (aB. The *correspondlng values of
p, = 0.525; p, = 0.35 P, =0.625; p, = 0.15 pg andpy,, for each case, are also
16 [ Po" = 0.825;p," = 0.95 1 Pn shown. The lines are only guides
to the eye. Time units as in Fig. 1.
12 ° ° ER
A
5
S o8| 1
04} + 04
00| + 0.0
n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 1 1
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—B)eAam]}'. For p,— Pr,, We expect a quasiordered situa-
tion (see Fig. 1, so(7)—0 because there is no trap. There-
fore, A*"(p,— pr,,pg) Must diverge in this limit. Indeed
this conjecture is compatible with the fact that foy— py,

IV. DISCUSSION

A. Comparison betweenks and DS estimation ofB,

From thek. plotsa value ofB. may be estimated as the

biasB for which the effective exponent begins to decrease in

the critical fieldB, goes to 1 and (+B.)e" —c. time. In Fig. 5, we compar®, estimations obtained from
o o
; ol : as . pr—h—) p—0—) p—0—) pr—B—) ]
081  no drift { °/° Pa=0 I
—0— p,=0.2 ~» a0l i
——p-04f @
—A— =
06} drift Py=06 r o5} i
=, L
B B @ 20f .
¢ oal no drift i + A
o4 , oo T 15} —o— p,=0 J
_ c [ —— p,=02 ]
02 drift ] 1.0F —bo— Pd= 0.4 -
: - o .E L —o— p,=06
. .6 05} -
Pq < 7l
0.0 N 1 L 1 M ] L 1 L 0.0 1 N 1 N 1 N 1 L 1
0.5 0.6 0.7 08 09 1.0 0.5 0.6 0.7 0.8 0.9 1.0

FIG. 3. Phase diagram &_. versusp,, for different values of

the phase diagram, versuspy (for fixed p,,). The dotted lines are least there is an insinuation for triangles and diamonds. For circles

FIG. 4. Exponential parameté?®” versuspy, for differentpy .
pq- Below each curve we can define the drift regime#(0) and  Some of the curves show the behavio®éf'(p,,) whenp,, goes to
above it the no-drift regimeu(=0). See the inset where we show p},. It can be seen that the curves asymptotically divergeatAt

plotted in order to see the corresponding ending pointpjat  and squares, where we expect higher valueB.gfthe log-periodic

(=0.7 for triangles, 0.8 for diamonds, 0.9 for circles, and 1 for oscillations shadow this asymptotic behavior, so we cannot go to

squarel and p%=0.6 in the inset. In all points the error bar is these higher values &,. A®"is measured in units of 4/ wherea
aboutAB.=0.2. is the lattice constant.
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0.9 ——T———T7T—— 77— increasingp, causes a deformation of the cluster shape, the
0.8 [ ] bonds connectivity in the direction is increased, and the
1 —o— DS estimation ] particle can diffuse easily in this direction. If we keep,
07 F 0 o estimation 4 constant and increag®;, the trap becomes shallower in the
- 1 direction of larger concentration of bonds, therefBgemust
06 - 7 increase due to the variation pf;.
05 [ ] Using the same arguments, since the depth of the traps is
I decreased whep,, increases, it is expected that whpgis
Bc 04} - kept constant ang,, increases, the value &; will increase
0.3 [ ] too. This is actually the case shown in Fig. 3.
1 In Figs. Za), 2(c), and Zd) we show that when keeping
02| - px constant and increasing, , the value ofB increasessee
- 1 also Fig. 5. This situation corresponds to a competition ef-
01 ¥ 7 fect of increasing,, (which increase8.) and decreasingy
0.0 [ N T T S T (which decreaseB.). Then, sinceB, increases althoughy
0.3 0.4 0.5 06 0.7 0.8 0.9  decreases, it is clear that the effectppf is more important

than that ofpy in order to change the depth of the trap in the
relevant direction on anisotropic biased diffusion, at least for

FIG. 5. Comparison okt and DS approaches for the estima- f[he small yalues Opg as itis shown in these flgulres. In the
tion of the critical biadB.. The plot corresponds to a fixed value of inset of Fig. 3 we see that the effect of the'anlsotr.opy be-
0,=0.7. comes more important whepy approaches its maximum
valuepj .

Figs. 2a), 2(c), and 2d) (open circles against estimations Finally, let us consider_ the beha\(ior of_the exponential
from DS plots(open squarésat constanp, . We find a very ~ ParameteA*(py,,pg) of Fig. 4. For high anisotropy, when
good agreement, giving support to both approaches. In botie global occupancy increases, thé™ versuspy, curves
estimates the values could be improved by taking more Mcuddenly rise fopy,— pr(py), indicating that the parameter
steps and more computer time, but the essential behaviéx®"(p,— pp,,Pq) —* andB.— 1. This means that the traps

does not change. will disappear forp,,— p}, .
Although the values of the critical bid, from effective
exponent plots do nodemonstratethe drift/no-drift transi- C. Final conclusions

tion, both approximations seem to be valid. Then, for a given ) o
system, we have used two different methods to get the criti- We have shown that there are two possible estimations of
cal bias. One approach is obtained in terms of the behavidhe critical bias for the drift/no-drift transition: frol plots

of the velocity, or the mean displacemén(t)), as a func- and from DS plots. In addition, these plots are useful for
tion of time for various values of the external field. In the determining if one is in the # 0 orv =0 region of the phase
second approach, we study the dependency of the effectivdiagram, like the one shown in Fig. 3.

exponentk.#(t) as a function of time, or the mean-square  We have shown a variety of phenomena related to the

displacementr?(t)), for various external fields. anisotropy of a disordered system, considering a particle
which moves under the action of an external field. We have
B. Anisotropic effects found that the direction of the bias is of great importance.

For example, when we only have one disordered direction,
the particle likely behaves as in the completely ordered case.
%his is sobecausehe bias is in the diagonal direction and it

%an always push the RW. We have shown that the critical

on the transition probability in all directions. Therefore, bias depends on the shape of the traps, i.e., deforming the
when one direction is completely connected, the particle ca aps causes a variation @y. Finally we,re-rﬁ:ark that the

always be pushed by the bias, as in the completely Ordere(Sjritical bias—for low and intermediate anisotropy—is more

ca(sje px:hl andpy|= .1)‘ Tlhis mea?]s_ tr?at thﬁjre lare (rjdﬂad affected by the variation of the global occupancy of the sys-
endson the p(ra]rco ating ¢ ustefr, ;:V I(I;WWQI'uh' S owl .Own’r?ttem pm than by the variation of the anisotropy parameigr
any instant, the movement of the - [NIS expiains Why.qyever, at higher anisotropies the critical bias is strongly

whenB#0, kei(t— ) takes the value 2 for afy, as in the f h : hav-
ordered case, see E(). We would find the same behavior %rected bypg as the system tends toqaasiorderedbehav

whenp,#1 andp,=1 due to symmetrical properties.

From Figs. 2b) and Zc) it is clear that the critical biaB.
grows whemy is increased ang,, is kept constant. This can
also be seen in the inset in Fig. 3. Whgg# 0 and under the S.B. acknowledges financial support from Secratate
action of a bias, the MSD depends ppandp, . The larger  Investigacio de la Universidad Nacional del Comahue. This
pq is, the more the process is governed by the direction wittwork has been partially supported through grants from
larger concentration of bondg in this casg¢ This becomes CONICET (No: 4948/96, and Secretaaide Investigacio de
clearer when considering that although is kept constant, la Universidad Nacional del Comahue.

Let us first considep,=1, see Fig. (b). This behavior
can be explained considering that the bias is oriented in th
diagonal direction, so there is always an external field actin
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