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Dimensionality effects in restricted bosonic and fermionic systems
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The phenomenon of Bose-like condensation, the continuous change of the dimensionality of the particle
distribution as a consequence of freezing out of one or more degrees of freedom in the limit of low particle
density, is investigated theoretically in the case of closed systems of massive bosons and fermions, described
by general single-particle Hamiltonians. This phenomenon is similar for both types of particles and, for some
energy spectra, exhibits features specific to multiple-step Bose-Einstein condensation, for instance, the appear-
ance of maxima in the specific heat. In the case of fermions, as the particle density increases, another phe-
nomenon is also observed. For certain types of single particle Hamiltonians, the specific heat is approaching
asymptotically a divergent behavior at zero temperature, as the Fermi egeigyconverging towards any
value from an infinite discrete set of energfes;~ 1. If ee=¢;, for anyi, the specific heat is divergent®t= 0
just in infinite systems, whereas for any finite system the specific heat approaches zero at low enough tem-
peratures. The results are particularized for particles trapped inside parallelepipedic boxes and harmonic po-
tentials.

PACS numbg(s): 05.30.Ch, 64.96-b, 05.30.Fk, 05.30.Jp

[. INTRODUCTION taining general expressions, we make numerical calculations
to give concrete examples of BLC and to observe the behav-
Because of the advances in nanotechnology it has beconier of the specific heat during the transition. The phenom-
possible to use very small structures in a broad range ofnon occurs at low particle densitighis will be made more
applications. The importance of these applications and thelear in Sec. Il and is specific to both bosons and fermions.
fact that the physical properties of such structures could bét low temperatures, the number of massive particles in a
very different from those of bulk materials, make the theo-closed system can be considered to be constant. The conser-
retical and experimental investigations very useful in thisvation of the particle number will allow us to observe resem-
area. blances with the BEC, such as, in some cases, maxima of the
The experimental findings in RdfL] motivated us to cal- specific heat §y5) at the condensation temperature. Any-
culate the thermal properties of ultrathin dielectric mem-way, the signature of BLC, as seen in the temperature depen-
branes or wires by splitting the phonon spectra into discretélence ofcy, is more complex and depends on the energy
and continuous partg2,3]. This framework implies cross- spectrum.
overs between different phonon gas distributions, reflected, A consequence of the third law of thermodynamics is that
for example, in the exponent of the temperature dependendbe specific heat of any thermodynamical system should van-
of the specific heat or heat conductivity. For example in aish at zero temperature. kit al. showed in Ref[7] that the
membrane, as the temperature drops, the population of tHeeat capacity of a Fermi gas, confined in an external poten-
phonon modes parallel to the surfadegich we shall call tial of quite general form, and for any space dimension, has
the two-dimensional2D) ground statég.s)] becomes domi- the asymptotic behaviar,> T at low temperatureévhereT
nant, and the three-dimensional phonon gas distributiofs the temperature of the systenThis is for the case of a
changes into a two-dimensional ofi2]. The macroscopic continuous energy spectrum. In contrast to this we show in
population of the 2D g.gor one-dimensional ground state in Sec. Il that the specific heat of a Fermi gas with a single-
the case of a wird3]) and the qualitative differences be- particle Hamiltonian of the fornd =H.+Hy, with H. hav-
tween phonon gas distributions with various dimensions ening a (quasjcontinuous spectrura,[0,2) andHy having
abled us to make the analogy with the multiple-step Bosethe discrete eigenvalues, i=0,1, ..., mayapproach, de-
Einstein condensation(BEC) [4,5] and to call this pending on the density of the energy leveldhf, divergent
phenomenon Bose-like condensati®@iC). Yet, the num- behavior at temperatufe=0 K as the Fermi energyr con-
ber of phonons changes with temperature and features likeerges toe;, for anyi=1. In such a case, if the spectrum of
maxima of the specific heatc() observed in the case of H. is continuous, then the specific heat diverge§-a0 and
BEC cannot be seen in the case of a phonon gas undergoirg=¢;, for anyi=1. However, in any finite system the en-
BLC. ergy spectrum is discrete, so the specific heat approaches
The first purpose of this paper is to extend the previougero if we go at low enough temperatures and the third law
work reported in Refd.2,3] and to describe BLC in systems of thermodynamics is not violated.
of massive bosons and fermions. This will be done in Sec. Il.  Ultrathin (semjconducting membranes and wires, nowa-
The mathematical technique used here is a straightforwardays widely used in mesoscopic applications, atoms in very
extension of the one introduced by Pathria and Greenspocemisotropic harmonic traps, wires or constrictions defined in
in Ref.[6]. Nevertheless, the analytical approximations use®D electronic gasses are just a few examples of systems
there are not appropriate for our case. Therefore, after obwhere the phenomena presented here could be observed.
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Also, they could provide an understanding of the behavior of 164 2.0
very thin liquid He films. ' -
W 121 [10
x 0.8 1.2
Il. BOSE-LIKE CONDENSATION § ' (@) (b)
0.8 o6 0.8
The BEC in cuboidal boxes with small dimensions drew a 04— 0 30
lot of attention many years ago, in the beginning in connec- 04~ ; ; 0.4 ' - ' '
. . S 2 . 0 200 400 00 0 10 20 30 40
tion with very thin films of liquid He[5,6,8—11. It is now 6 8
well known that, as the dimensions of the box are reduced, a 1.64
constant density, the cusplike maximumagfis rounded off
and the condensation temperatuire this situation taken as 129) 10 1.2
the temperature corresponding to the maximuntreases 0.8
. . e (c) (d)
with respect of the bulk value. The maximum of the specific & 0.84 o6 0.81
heat is usually smaller in restricted geometries than in the 0.4
bulk, for all the boundary conditions imposed on the walls of 41 0 2 4681 ,] - .
the container, with the exceptigthe only one known by the 0 200 400 600 0 10 20 30 40
present authgrof Dirichlet boundary condition$10,11,6.
The theoretical investigation of BEC in harmonic trgpse 2.0
Ref.[12], and references thergiwas motivated recently by 1.64 1.64
its realization in ultracold trapped atomic ga$&8]. In this
oo - D & 1.2 /12
situation, the specific heat of an infinite system presents e 1.0 1.2
discontinuity at the condensation temperature. In finite sys-~ g/ %8 @) ()
: oo . . 0.6 0.8
tems, the discontinuity is again rounded off, as shown by 04
analytical and numerical calculations, for example in Refs. g4l 0246810 4,1 , , , ,
[14-17. As the number of particles is decreased the conden: 0 200 400 600 0 10 20 30 40
sation temperature decreasg¢$4—17. Furthermore, the TIKI TIK]

multiple-step BEC was introduced in Refd,5] for the cases

of very anisotropic boxes or confining potentials. In this case FIG. 1. Specific heatin units df; vs temperature for ideal Bose
a finite Bose gas is condensing gradually to the ground stat@nd Fermi gases trapped inside cuboidal boxes with Diridigt
exhibiting in between 2D and/or 1D macroscopic popula-2nd(b)], Neumanri(c) and(d)], and periodid () and(f)] boundary

tions.
In a very anisotropic Bose system, as particle density de
creases, the multiple-step BE@MSBEC) temperature be-

grees of freedom of our system freeze out. During both
processe$MSBEC and freezingthe 3D particle distribution
transforms gradually into a lower dimensional distribution.

On the other hand, the two processes change into each other

at the variation of the particle density or of the dimensions of
the system. Moreover, the reduction of the dimensionality of
the particle distribution due to the freezing out of some of the
degrees of freedom can happen also for fermions at low den
sities. The analogies and differences between the two pro
cesses mentioned above, justifirguably, of coursethe use

of the simpler expression of Bose-like condensation for the
freezing out of some degrees of freedom, in the limit of low
particle density.
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conditions on the walls(a), (c), and(e) correspond td;—x, |,

=10"°m, andl;=10"1"m, while (b), (d), and (f) correspond to
l;—o andl,=13=10"° m. The particle density is 2dm~
ach case. In each situation the results for bogsakd line) and

comes lower than the temperature at which some of the d(?eérmions(dashed lingare both plotted, but they cannot be distin-

g
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uished. In the insets dh), (c), and(e) we show low temperature
details of the larger graphshe axes are the same
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The temperature at which BLC occuias in the case of in a similar way as Pathria and Greenspoon did for bosons in
BEC in finite systems, this temperature cannot be uniquelref. [6]. Then, for example, the number of particles, the
defined depends on the energy spectrum and reaches a finiteternal energy, and the heat capacity can be written as
positive value in the low particle density limit. This type of N)=z{*) U&=k 7Z{*), and C{)=kg(GS
condensation is identical for both bosons and fermi@ee  —G{*)%/G{")), respectively(in all this paper we shall con-
Fig. 1). To show this, let us consider a closed system ofsider spinless particlgsTo avoid divergent terms that occur
massive bosons and fermions described by a single-particia the functions introduced whefi approaches zero, in the
Hamiltonian of the formH=H.+Hy, with the eigenvalues case when the ground-state eneegys positive, we redefine
e=¢€.+ ¢, as explained in the Introduction. The mean occu-a asa— €,/KT and e as e— €,. Making these replacements
pation numbers of single particle energy levels are  we do not change the thermodynamics of the canonical en-
(n(f)>=[exp(a+e/kB'Di1]‘l, where (—) is the superscript semble[18,19. If the density of the energy levels of the
for bosons, and{) for fermions,a= — u/kgT, andu is the  (quasjcontinuous spectrum, as a function of energy, is
chemical potential. We introduce the functions o(es), then we can write
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where 8=1/kgT. If in the temperature range of interest for ,\é 104
the study of BLC €,/kgT~1) a>1, then we can writ&,
in terms of two functions, corresponding to the continuous 0
and to the discrete spectra, respectively,
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wherez(*)= [Fo(e)e Pede and Z{) =37 e #€. In this ¥

approximation it is no difference between bosons and fermi- QE 16/ - 17 (d)
ons and, according to E¢2), G(F=z(*) Using the rela- 15/ el
tion 40374 6 810121416718 00 05 10 15 20
il i
z§) z§)
n =p" n ) (4) FIG. 2. The temperature d@,., Of Bose gasesscaled by the
dex B Ip a bulk critical temperatureT . (see the tejt as a function ofl /I
(wherel=p~3 andp is the density, is shown for(a) the mem-

that holds for boson§6], as well as for fermions, we can prane geometry I(,1,>15) and (b) the wire geometry Ig>1,
write the specific heat{”)=C{")/N(*), in units ofkg, as =13). The value oftymay, in units ofkg, vsls/l, is plotted for(c)
membrane geometry ar{d) wire geometrythe same as ifa) and
oo, 9? X 32 5 3? (b)]. Solid, dashed and dotted lines are used for Dirichlet, periodic
ke B (9_/32 INZo(B,a)=p 3_,32 InZ.(B)+B (9_,6’2 INZ4(B)  and Neumann boundary conditions, respectively. The thick horizon-
5) tal lines in(c) and(d) correspond to the 3D bulk value of at the
BEC temperature. In the numerical calculations we vapiekleep-

[where we have droped the superscript)(as insignificant N9 1s=10 m.
in this casg Acording to Eq.(5), the specific heat is nothing
else then the sum of the heat capacities of two systems, eattspectively. The mass of one particlenisand the discrete
of them containing a single particle under canonical condivalues ofk,; andk,; depend on the boundary conditions. In
tions, and it is described by the Hamiltoni&h, andHg, this cases=—1/2. If I,,|,>1,, thens=0 and 6C=ﬁ2(k)2(
respectively. +kZ)/2m, while €=7%2kZ/2m. Let us now concentrate on
Explicit expressions foE{*) andG{*) can be obtained if the BLC of particles inside such rectangular boxes. In Fig. 1
we assume that the density of states of the continuous spegare can see the results of the exact numerical calculation of
trum has the formv(e.) =Ce3(C ands are constants, such cy [using the formulas from Ed8) for Z{*) andG{")] as a
that C>0 ands>—1), as it happens in most of the casesfunction of temperature, for two different kinds of geom-
[21]. Using the Eqgs(1), (2), and(4), we can write etries and for DirichlefFigs. Xa), 1(b)], Neumann[Figs.
1(c), 1(d)], and periodic[Figs. Xe), 1(f)] boundary condi-
tions. In geometry I[see Figs. (@), 1(c), and 1e)] I,
=10"°m, 1;=10 ®m, andl,;>1,, while in geometry II
[see Figs. (b), 1(d), and 1f)] I,=13=10"°m andl>1,.
> _ To make concrete calculations we choose=2742/mkgT
X > (B9 j(a+ Be) =10"8T~* which corresponds to a mass of about 3 atomic
=0 mass units for all the particles in the systems investigated. In
the figure, the results for bosons and fermions are indistin-
guishable, as expected for low particle densities. The choice
n of the dimensions in geometry | allows us to observe the
> CIr(s+1+n-j) BLC from 3D to 2D and, at lower temperature, from 2D to
Bt i=o 1D. We observe the formation of a maximuat, let us say,
o temperatureT 50 in each of these two cases and for all
_ Nig(2) _ boundary conditions. The height of this maximum and, in
Xi=20 Mi(Bei)Gsin-j(at Bei), ®) general, the shape of the functiop(T) aroundT ., depend
on the spectrum dfl ;. For example, for Neumann boundary
wheren; is the degeneracy of the level with energyand  conditions, we observe the formation of a minimum at a
Cl=n!/j!(n—])!. The functionsg{*)(«) are thelth order  temperature a bit higher thafy,,. In geometry Il we ob-
polylogarithmic functions(see, for example, Ref20], and  serve the BLC from 3D to 1D. In this case, the maxima are
references therein for more detailof argumente™*  more pronounced and the minima observed in geometry | for
(bosong or —e™* (fermiong. In the case of ideal particles Neumann boundary conditions disappear.
inside a rectangular box of dimensiohs>1,,l,, we can In Fig. 2 we plotT na/ T and cymax/Kg Vs 13/1, for Di-
write e,=#2ki/2m and e;; j;=%2(k;+kZ)/2m, wherek,,  richlet, Neumann, and periodic boundary conditions, in the
ky, andk, are the wave vectors along they, andz axes, cases whethy,1,>15 [Figs. 2a), 2(c)] andl,>1,=1; [Figs.

C <« .
(+) = —j
z{ =it ,Zo CI(s+1+n-j)

and

G(")=
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2(b), 2(d)]. T, is the bulk BEC temperature, given by the ground state oH is nondegenerate since we discuss a finite
equationp(27%2/mkgTo)%?=£(3/2), p is the particle den- system. We shall use the notatiag= — Be .

sity, ¢ is the Riemann zeta function, ahd p~ ' is the mean Since we know thapu— e asT—0, let us now calculate
interparticle distance. SincE,,,, converges to a finite value lim1_q(|ag|—|a|) whenez=¢;, i>0 (in all the other cases
and T,—0 whenp—0, the ratioT ./ T, diverges in this  will turn out that the limit is zerp UsingN=2{"(«a), Egs.
limit. As p increases,T. increases and BLC is gradually (6), and the definition of the Fermi energy, we write two

replaced by BEC. As a consequence,|3limLmeax/TC=1. different expressions for the total number of particles in the

Figure 2c) can make the connection between these numerisystem:

cal calculations and the analytical approximations reported in

Ref.[6]. We observe thaty . is higher in Fig. 2d) then in

Fig. 2(c), at the same value o§/I, for any boundary condi- -~ C
tions. Nevertheless, the maximum valuegf,,,, Which is B (s+1)ps+1
about 2.0Rg, is obtained for periodic boundary conditions

{lal*"*+ - +(la|-Be-1)°" )}

in the limit p—0, while at higher densities this decreases I'(s+1) (+)
under its bulk value, as expected from previous calculations X|11+0 2 +niC ! Os+1(at Be)
[6].
The study of the BLC of ideal particles in harmonic traps I(s+1)
is easier since in this situatiofy has a very simple analyti- +C— E nje‘“|‘ﬁfj (8)
cal expression. If we denote the characteristic frequencies of AR
the harmonic trap byn,, wy, and w,, with o,<wy,0,,
then Z.=kgT/hw,, and Zyz={[(1—-explw,/ksT)][(1 c
—eX[ﬁwy/kBT)]}_l. In this caselc, /dT=0 for any tempera- = —{|a0|5+1+ vt (| aygl _ﬁéi_l)s+l}_
ture, so BLC is not accompanied by the formation of a maxi- (s+1)pstt
mum. The dimensionality of the systefsay, nD) is re- C)

flected in the value of,,, which isnkg, and the fraction of

the particle number in the 1D g.s., has the expression
NlD/pN:(1_e—(ﬁmy/kBT))(l_e—(ﬁwzg/kBT))_ P If we denoteé=a+ Be;, then from Eqs(8) and (9), ne-

glecting the exponentials and assuming thatligg( /| a|)
=lim_q(&/|a|)=0, we obtain, in the casey,a<—1, an

lll. DIVERGENT BEHAVIOR OF = C, IN FERMIONIC equation foré:
SYSTEMS
In this section we shall concentrate on Fermi systems (+) R
close toT=0 K. We consider again that the Hamiltonian of 9s+1(8) _ | o ; 10
the system can be approximated by single-particle operators ¢ [(s+1)7°

of the formH=H_.+H,, as explained in the Introduction.
At the increase of the particle density or of the density of the
eigenvalues; of the operatoH, we would expect to ap- Where xe=1+---+ni_y(1-x;_1)° and x;=¢j/er. We
proach the limit in which bottH, andH4 have continuous NOW notice that we have three distinct situatiof@:s>0, in
spectra3D bulk limit). In such a limit we should recover the Which case¢—0 asT—0, (b) s=0, and¢ converges to a
results from Ref[7], namely,c,=T at low temperatures. As finite positive value, andc) se(—1,0), when§{—x asT
it will be shown next, this is not the case in general. The—0- _ )
continuous limit is not attained in a smooth way. Instead, in L€t us analyze now the asymptotic behaviorfoin the
some situations, the specific heat would become divergent &S€(C). For £>1 we can write
zero temperature, for certain values of the Fermi energy.
At temperatures close to 0 K the chemical potential of a

—¢ s
Fermi system approaches the Fermi eneegy For a< € _ | ol X (11)
—1, the polylogarithmic functions of negative argument can nl'(s+1) 7
be written in the forn{7]
la|" 1 s0 &é=(—s)In|ag|—Iné=In[ xs/n;T'(s+1)]. Therefore, at
Ej)(a):m 1+o(_2”_ (1) ap<—1, &=|s|Infag|—In[In|ag|]+---. We can see now
a that the assumption lim, o(&/| ag|) =lim_o(&/|a|) =0 was

justified. Also, following the same kind of reasoning, one
The cases fon=0 and 1 are included in E7), but can be can prove that wherr#¢,, for anyi, then limr_ (] o
refined further to writeg{"(a)=|a|"[1+0O(e%)]. In the —|a|)=0 for anys.
other extreme case, wher® 1, all the polylogarithmic func- Using the Eqs(10) and(11) we can calculate the specific
tions have a behavior of the fornggi)(a)ze*“[l heat close to 0 K. For that we have to evaluate the functions
+0(e"9)]. Using these asymptotic expressions we can reGS"), G{"), G{"), andz{"). We analyze again the case
turn to the study of the specific heat close to zero temperavhen eg=¢;, i>0. After some algebra and dropping out
ture, for a density of energy levels &f; similar to the one the factors that become exponentially small in the liffit
introduced in the previous section, namelfe.)=Ce;. The  —0, we can write
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Clas*? 1 (+)(§)
(+) = = 9s+2(&)
Gy= = Xd 1+0 — +n;| T(s+3) ]2
gl i(é)
S+l
+2I(s+2)y IW
(+)
S
la|s | e
Clals*? 9l h(®)
(+)— il 9s
1= g+t Xs 1+0 o? +ny I'(s+2) |5+t
(+) s
+T(s+1)y; 95 (O] st Y, (13
a5 | el

ool

Clal®
(+) =
GO - BS+1 Xs

(+)
+nir(s+1)s—(§)—ﬁys], (14)
lafs e
S Clal™ 1+03J]
0 (n+1)55 1 Xs+1 o2
(+)
Us:1(§)  (s+1)
+nil'(s+2) |a|s+l_ Il Ys+1], (15

where y;=Be¢;/|a| and Y =330 (1-x)5"1x,. To see
the asymptotic behavior, we calculatg separately for the
casega), (b), and(c). Using Eqgs.(10),(12)—(15) and work-
ing consistently in the orders ¢&|, we obtain the following
asymptotic results:

Case(a)
oy (st1)qf niT2(s+1) g{"M%(§)
Ke  Xsi1+0O(a] ") Xs |af?®

nT3(s+1) g{"3(¢)

X5 | a|%

(16)

"o |al|>]

wherem=min{s+1,4s,2}.

Case(b)
S 0m
Ke  |alx;0(al™h)
X0967(8)  , 2x0017(&)
£+2g57(¢)
o gs (6 - xormgb (@) 2

(+)2 2
ng; (&) "
T ornaiig 8 0O
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FIG. 3. The specific hedin units ofkg) of a Fermi gas trapped
inside a cuboidal boxl{—®, 1,=1,=10"° m) with Neumann
boundary conditions on the walls. The four curves correspond to the
following densities: 1.%10°° m™2 (dotted ling, 9.2x10? m~3

(dashed ling 9.6x 10?® m~2 (solid line), and 1x 107 m~23 (thick
solid line). The last case correspondsdg= e;.
Case(c)
C s+1 a 1
ko™ e (e rolpl) s
B )(S+1+O|a| ) «

So, foreg=¢;, >0, from Eqgs.(16)—(18) we distinguish
the following situations.

(al) s>1/2, thency/kgx(er/kgT)1 ™25, soc,—0 asT
—0 (note that ifs>1 some of the orders at interchange,
but the functionc,, converges fast to zero dsapproaches
0 K).

(@2 s=1/2, then lim_o(cy/kg)=(3—22)
X(3m/8) (U2l X312 v2-

(@3 se(0,1/2), thercy /kg= (e [kgT)1 ™25, socy— > as
T—0.

(b) s=0, thency /kgckgT/eg, socy,—0 asT—0.

(¢) se(—1,0), thency/kgx(ex/kgT)/In(ex/kgT), SO
cy—® asT—0.

Therefore, in the casda3d and(c), cy presents a diver-
gent behavior aff=0 K, while in case(a?2 approaches a
finite limit. These situations seem to be in contradiction with
the third law of thermodynamics. To clarify this we mention
that the divergency appears just if the spectrumHgfis
continuous. In any finite system this is not the case, so at low
enough temperatures, decreases towards zero.

Without getting into details we state that whes
#¢, Vi=0, similar calculations lead us to the results
limr_o(]ag|—|a|)=0 and lim_,cy=0 for anys. More-
over, in the low-temperature limit we reobtain the known
result[7] cy=T. On the other hand, the continuity pf as a
function of e implies the continuity ofe andc,, as func-
tions of g, for any T>0 K. In other words, the divergent
behavior in the casgg3 and(c) can be approached asymp-
totically for anyT>0 K, aser— €; (for anyi), by the func-
tions cy(T). This leads to the formation of a maximum at
finite temperature, with the properti€sa,—© and T ax
—0, aseg—¢€;, foranyi=1.

Let us make now the connections with familiar systems,
namely, with the ones discussed in Sec. Il. In the case of a
cuboidal box with dimension§>1,,l,, s=-1/2, so we
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are in the caséc). In Fig. 3 we plot the exact numerical general, for a single-particle Hamiltonian of the forrh
calculation of such a fermionic system, with dimensibps =H.+Hy, with H. having a(quasjcontinuous spectrum
—o, l,=13=10"% m. The mass of the particles is chosen e,c[0,) with the energy levels density(e;)=Ce (s>

as in Sec. II, such that?=10"'8T 1. We observe the for- —1) and H, having the discrete eigenvalues;, i
mation of the maximum as the Fermi energy approaches the 0,1,... . It was found that c,(T)—« for any se

first excited energy level dfiy, and the divergent behavior (—1,0)U(0,1/2) if ee=¢;, for anyi=1. This divergent be-

at eg=¢,. If the fermions are inside a cuboidal box with havior is approached asymptotically for afy>0, as ¢
dimensiond, I, >1, or a harmonic potential with the char- — ¢, Vi=1, leading in this way to the formation of very
acteristic frequenciee,<w,,w,, thens=0 and we are in  high maxima(in the limit, infinitely high of the fermionic
case(b), therefore we do not observe the formation of aspecific heat close to zero temperature. This is an unexpected
similar maximum. This was checked by exact numerical calnew phenomenon, since it seems to contradict the third law

culations and was found to be correct. of thermodynamics. Anyway, this does not happen since in
any finite system the energy spectrum is discrete and at low
IV. CONCLUSIONS enough temperature the specific heat decreases towards zero.

Nevertheless, this phenomenon might have interesting con-

In Sec. Il of this paper it is presented in general the phegeqences on the entropy of the system in the vicinity of zero

nomenon of Bose-like condensation in the case of massiv@mperature. On the other hand it should be investigated if
bosons and fermions. This denomination was introduced "%ystems obeying fractional statisti2] or interacting Bose

Ref. [2], where, according to my knowledge, a crossovergysiomg(see, for example, Ref23] and references therein
between different dimensionalities of the phonon gas distrizJ. similarities between these two types of systemshibit
bution in ultrathin dielectric membranes was reported for theimijar behavior.

first time. This phenomenon appears to be identical for both
types of massive particles and resembles the multiple-step
Bose-Einstein condensati¢h,4]. Nevertheless, the two phe-
nomena are different in nature. The results are exemplified The author wants to thank Professor M. Manninen, Pro-
for the familiar cases of ideal particles trapped inside cuboifessor J. P. Pekola, and Professor E. B. Sonin for discus-
dal boxes and harmonic potentials. sions. This work was supported by the Academy of Finland

The analysis made in Sec. Ill, lead us to the observatiomnder the Finnish Center of Excellence Programme 2000-
of interesting divergences of the specific heat of a FermR005 (Project No. 44875, Nuclear and Condensed Matter
system at zero temperature. The phenomenon is described Brogramme at JYFL
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