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Dimensionality effects in restricted bosonic and fermionic systems
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The phenomenon of Bose-like condensation, the continuous change of the dimensionality of the particle
distribution as a consequence of freezing out of one or more degrees of freedom in the limit of low particle
density, is investigated theoretically in the case of closed systems of massive bosons and fermions, described
by general single-particle Hamiltonians. This phenomenon is similar for both types of particles and, for some
energy spectra, exhibits features specific to multiple-step Bose-Einstein condensation, for instance, the appear-
ance of maxima in the specific heat. In the case of fermions, as the particle density increases, another phe-
nomenon is also observed. For certain types of single particle Hamiltonians, the specific heat is approaching
asymptotically a divergent behavior at zero temperature, as the Fermi energyeF is converging towards any
value from an infinite discrete set of energies$e i% i>1. If eF5e i , for anyi, the specific heat is divergent atT50
just in infinite systems, whereas for any finite system the specific heat approaches zero at low enough tem-
peratures. The results are particularized for particles trapped inside parallelepipedic boxes and harmonic po-
tentials.

PACS number~s!: 05.30.Ch, 64.90.1b, 05.30.Fk, 05.30.Jp
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I. INTRODUCTION

Because of the advances in nanotechnology it has bec
possible to use very small structures in a broad range
applications. The importance of these applications and
fact that the physical properties of such structures could
very different from those of bulk materials, make the the
retical and experimental investigations very useful in t
area.

The experimental findings in Ref.@1# motivated us to cal-
culate the thermal properties of ultrathin dielectric me
branes or wires by splitting the phonon spectra into disc
and continuous parts@2,3#. This framework implies cross
overs between different phonon gas distributions, reflec
for example, in the exponent of the temperature depende
of the specific heat or heat conductivity. For example in
membrane, as the temperature drops, the population o
phonon modes parallel to the surfaces@which we shall call
the two-dimensional~2D! ground state~g.s.!# becomes domi-
nant, and the three-dimensional phonon gas distribu
changes into a two-dimensional one@2#. The macroscopic
population of the 2D g.s.~or one-dimensional ground state
the case of a wire@3#! and the qualitative differences be
tween phonon gas distributions with various dimensions
abled us to make the analogy with the multiple-step Bo
Einstein condensation~BEC! @4,5# and to call this
phenomenon Bose-like condensation~BLC!. Yet, the num-
ber of phonons changes with temperature and features
maxima of the specific heat (cV) observed in the case o
BEC cannot be seen in the case of a phonon gas underg
BLC.

The first purpose of this paper is to extend the previo
work reported in Refs.@2,3# and to describe BLC in system
of massive bosons and fermions. This will be done in Sec
The mathematical technique used here is a straightforw
extension of the one introduced by Pathria and Greensp
in Ref. @6#. Nevertheless, the analytical approximations us
there are not appropriate for our case. Therefore, after
PRE 621063-651X/2000/62~6!/7658~6!/$15.00
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taining general expressions, we make numerical calculat
to give concrete examples of BLC and to observe the beh
ior of the specific heat during the transition. The pheno
enon occurs at low particle densities~this will be made more
clear in Sec. II! and is specific to both bosons and fermion
At low temperatures, the number of massive particles i
closed system can be considered to be constant. The co
vation of the particle number will allow us to observe rese
blances with the BEC, such as, in some cases, maxima o
specific heat (cVmax) at the condensation temperature. An
way, the signature of BLC, as seen in the temperature de
dence ofcV , is more complex and depends on the ene
spectrum.

A consequence of the third law of thermodynamics is t
the specific heat of any thermodynamical system should v
ish at zero temperature. Liet al. showed in Ref.@7# that the
heat capacity of a Fermi gas, confined in an external po
tial of quite general form, and for any space dimension,
the asymptotic behaviorcV}T at low temperatures~whereT
is the temperature of the system!. This is for the case of a
continuous energy spectrum. In contrast to this we show
Sec. III that the specific heat of a Fermi gas with a sing
particle Hamiltonian of the formH5Hc1Hd , with Hc hav-
ing a ~quasi!continuous spectrumecP@0,̀ ) and Hd having
the discrete eigenvaluese i , i 50,1, . . . , mayapproach, de-
pending on the density of the energy levels ofHc , divergent
behavior at temperatureT50 K as the Fermi energyeF con-
verges toe i , for any i>1. In such a case, if the spectrum
Hc is continuous, then the specific heat diverges atT50 and
eF5e i , for any i>1. However, in any finite system the en
ergy spectrum is discrete, so the specific heat approa
zero if we go at low enough temperatures and the third
of thermodynamics is not violated.

Ultrathin ~semi!conducting membranes and wires, now
days widely used in mesoscopic applications, atoms in v
anisotropic harmonic traps, wires or constrictions defined
2D electronic gasses are just a few examples of syst
where the phenomena presented here could be obse
7658 ©2000 The American Physical Society
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Also, they could provide an understanding of the behavio
very thin liquid He films.

II. BOSE-LIKE CONDENSATION

The BEC in cuboidal boxes with small dimensions drew
lot of attention many years ago, in the beginning in conn
tion with very thin films of liquid He@5,6,8–11#. It is now
well known that, as the dimensions of the box are reduced
constant density, the cusplike maximum ofcV is rounded off
and the condensation temperature~in this situation taken as
the temperature corresponding to the maximum! increases
with respect of the bulk value. The maximum of the spec
heat is usually smaller in restricted geometries than in
bulk, for all the boundary conditions imposed on the walls
the container, with the exception~the only one known by the
present author! of Dirichlet boundary conditions@10,11,6#.
The theoretical investigation of BEC in harmonic traps~see
Ref. @12#, and references therein! was motivated recently by
its realization in ultracold trapped atomic gases@13#. In this
situation, the specific heat of an infinite system presen
discontinuity at the condensation temperature. In finite s
tems, the discontinuity is again rounded off, as shown
analytical and numerical calculations, for example in Re
@14–17#. As the number of particles is decreased the cond
sation temperature decreases@14–17#. Furthermore, the
multiple-step BEC was introduced in Refs.@4,5# for the cases
of very anisotropic boxes or confining potentials. In this ca
a finite Bose gas is condensing gradually to the ground s
exhibiting in between 2D and/or 1D macroscopic popu
tions.

In a very anisotropic Bose system, as particle density
creases, the multiple-step BEC~MSBEC! temperature be-
comes lower than the temperature at which some of the
grees of freedom of our system freeze out. During b
processes~MSBEC and freezing! the 3D particle distribution
transforms gradually into a lower dimensional distributio
On the other hand, the two processes change into each
at the variation of the particle density or of the dimensions
the system. Moreover, the reduction of the dimensionality
the particle distribution due to the freezing out of some of
degrees of freedom can happen also for fermions at low d
sities. The analogies and differences between the two
cesses mentioned above, justify~arguably, of course! the use
of the simpler expression of Bose-like condensation for
freezing out of some degrees of freedom, in the limit of lo
particle density.

The temperature at which BLC occurs~as in the case o
BEC in finite systems, this temperature cannot be uniqu
defined! depends on the energy spectrum and reaches a fi
positive value in the low particle density limit. This type o
condensation is identical for both bosons and fermions~see
Fig. 1!. To show this, let us consider a closed system
massive bosons and fermions described by a single-par
Hamiltonian of the formH5Hc1Hd , with the eigenvalues
e5ec1e i , as explained in the Introduction. The mean occ
pation numbers of single particle energy levelse, are
^ne

(6)&5@exp(a1e/kBT)61#21, where (2) is the superscript
for bosons, and (1) for fermions,a52m/kBT, andm is the
chemical potential. We introduce the functions
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Zn
(6)5(

e
S e

kBTD n

^ne
(6)&, ~1!

Gn
(6)5(

e
S e

kBTD n

@^ne
(6)&7^ne

(6)&2#52
]Zn

(6)

]a
, ~2!

in a similar way as Pathria and Greenspoon did for boson
Ref. @6#. Then, for example, the number of particles, t
internal energy, and the heat capacity can be written
N(6)5Z0

(6) , U (6)5kBTZ1
(6) , and CV

(6)5kB(G2
(6)

2G1
(6)2/G0

(6)), respectively~in all this paper we shall con
sider spinless particles!. To avoid divergent terms that occu
in the functions introduced whenT approaches zero, in th
case when the ground-state energye0 is positive, we redefine
a asa2e0 /kT ande ase2e0. Making these replacement
we do not change the thermodynamics of the canonical
semble@18,19#. If the density of the energy levels of th
~quasi!continuous spectrum, as a function of energy,
s(ec), then we can write

FIG. 1. Specific heat in units ofkB vs temperature for ideal Bos
and Fermi gases trapped inside cuboidal boxes with Dirichlet@~a!
and~b!#, Neumann@~c! and~d!#, and periodic@~e! and~f!# boundary
conditions on the walls.~a!, ~c!, and ~e! correspond tol 1→`, l 2

51029 m, and l 3510210 m, while ~b!, ~d!, and ~f! correspond to
l 1→` and l 25 l 351029 m. The particle density is 1025 m23 in
each case. In each situation the results for bosons~solid line! and
fermions~dashed line! are both plotted, but they cannot be disti
guished. In the insets of~a!, ~c!, and~e! we show low temperature
details of the larger graphs~the axes are the same!.
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Z0
(6)5(

i 50

` E
0

` s~e!

exp~a1be i1be!61
de, ~3!

whereb51/kBT. If in the temperature range of interest fo
the study of BLC (e1 /kBT'1) a@1, then we can writeZ0
in terms of two functions, corresponding to the continuo
and to the discrete spectra, respectively,

Z0
(6)5e2aZc

(6)Zd
(6) ,

where Zc
(6)5*0

`s(e)e2bede and Zd
(6)5( i 50

` e2be i. In this
approximation it is no difference between bosons and fer
ons and, according to Eq.~2!, Gn

(6)5Zn
(6) . Using the rela-

tion

S ]nZn
(6)

]an D
b

5bnS ]nZ0
(6)

]bn D
a

, ~4!

that holds for bosons@6#, as well as for fermions, we ca
write the specific heatcV

(6)5CV
(6)/N(6), in units ofkB , as

cV

kB
5b2

]2

]b2
ln Z0~b,a!5b2

]2

]b2
ln Zc~b!1b2

]2

]b2
ln Zd~b!

~5!

@where we have droped the superscript (6) as insignificant
in this case#. Acording to Eq.~5!, the specific heat is nothing
else then the sum of the heat capacities of two systems,
of them containing a single particle under canonical con
tions, and it is described by the HamiltonianHc and Hd ,
respectively.

Explicit expressions forZn
(6) andGn

(6) can be obtained if
we assume that the density of states of the continuous s
trum has the forms(ec)5Cec

s(C ands are constants, suc
that C.0 ands.21), as it happens in most of the cas
@21#. Using the Eqs.~1!, ~2!, and~4!, we can write

Zn
(6)5

C

bs11 (
j 50

n

Cn
j G~s111n2 j !

3(
i 50

`

ni~be i !
jgs111n2 j

(6) ~a1be i !

and

Gn
(6)5

C

bs11 (
j 50

n

Cn
j G~s111n2 j !

3(
i 50

`

ni~be i !
jgs1n2 j

(6) ~a1be i !, ~6!

whereni is the degeneracy of the level with energye i and
Ck

j 5n!/ j !(n2 j )!. The functionsgl
(6)(a) are thel th order

polylogarithmic functions~see, for example, Ref.@20#, and
references therein for more details! of argument e2a

~bosons! or 2e2a ~fermions!. In the case of ideal particle
inside a rectangular box of dimensionsl x@ l y ,l z , we can
write ec5\2kx

2/2m and e$ i , j %5\2(kyi
2 1kz j

2 )/2m, wherekx ,
ky , andkz are the wave vectors along thex, y, andz axes,
s

i-

ch
i-

c-

respectively. The mass of one particle ism and the discrete
values ofkyi andkz j depend on the boundary conditions.
this cases521/2. If l x ,l y@ l z , then s50 and ec5\2(kx

2

1ky
2)/2m, while e i5\2kzi

2 /2m. Let us now concentrate on
the BLC of particles inside such rectangular boxes. In Fig
we can see the results of the exact numerical calculation
cV @using the formulas from Eq.~6! for Zn

(6) andGn
(6)# as a

function of temperature, for two different kinds of geom
etries and for Dirichlet@Figs. 1~a!, 1~b!#, Neumann@Figs.
1~c!, 1~d!#, and periodic@Figs. 1~e!, 1~f!# boundary condi-
tions. In geometry I@see Figs. 1~a!, 1~c!, and 1~e!# l 2
51029 m, l 3510210 m, and l 1@ l 2, while in geometry II
@see Figs. 1~b!, 1~d!, and 1~f!# l 25 l 351029 m and l 1@ l 2.
To make concrete calculations we choosel2[2p\2/mkBT
510218T21 which corresponds to a mass of about 3 atom
mass units for all the particles in the systems investigated
the figure, the results for bosons and fermions are indis
guishable, as expected for low particle densities. The cho
of the dimensions in geometry I allows us to observe
BLC from 3D to 2D and, at lower temperature, from 2D
1D. We observe the formation of a maximum~at, let us say,
temperatureTmax) in each of these two cases and for a
boundary conditions. The height of this maximum and,
general, the shape of the functioncV(T) aroundTmax depend
on the spectrum ofHd . For example, for Neumann bounda
conditions, we observe the formation of a minimum at
temperature a bit higher thanTmax. In geometry II we ob-
serve the BLC from 3D to 1D. In this case, the maxima a
more pronounced and the minima observed in geometry I
Neumann boundary conditions disappear.

In Fig. 2 we plotTmax/Tc andcVmax/kB vs l 3 / l , for Di-
richlet, Neumann, and periodic boundary conditions, in
cases whenl 1 ,l 2@ l 3 @Figs. 2~a!, 2~c!# and l 1@ l 25 l 3 @Figs.

FIG. 2. The temperature ofcVmax of Bose gases, scaled by the
bulk critical temperatureTc ~see the text!, as a function ofl 3 / l
~where l 5r21/3, andr is the density!, is shown for~a! the mem-
brane geometry (l 1 ,l 2@ l 3) and ~b! the wire geometry (l 1@ l 2

5 l 3). The value ofcVmax, in units ofkB , vs l 3 / l , is plotted for~c!
membrane geometry and~d! wire geometry@the same as in~a! and
~b!#. Solid, dashed and dotted lines are used for Dirichlet, perio
and Neumann boundary conditions, respectively. The thick horiz
tal lines in~c! and~d! correspond to the 3D bulk value ofcV at the
BEC temperature. In the numerical calculations we variedr, keep-
ing l 351029 m.
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2~b!, 2~d!#. Tc is the bulk BEC temperature, given by th
equationr(2p\2/mkBTc)

3/25z(3/2), r is the particle den-
sity, z is the Riemann zeta function, andl 5r21/3 is the mean
interparticle distance. SinceTmax converges to a finite value
and Tc→0 when r→0, the ratioTmax/Tc diverges in this
limit. As r increases,Tc increases and BLC is graduall
replaced by BEC. As a consequence, liml 3 / l→`Tmax/Tc51.
Figure 2~c! can make the connection between these num
cal calculations and the analytical approximations reporte
Ref. @6#. We observe thatcVmax is higher in Fig. 2~d! then in
Fig. 2~c!, at the same value ofl 3 / l , for any boundary condi-
tions. Nevertheless, the maximum value ofcVmax, which is
about 2.02kB , is obtained for periodic boundary condition
in the limit r→0, while at higher densities this decreas
under its bulk value, as expected from previous calculati
@6#.

The study of the BLC of ideal particles in harmonic tra
is easier since in this situationZd has a very simple analyti
cal expression. If we denote the characteristic frequencie
the harmonic trap byvx , vy , and vz , with vx!vy ,vz ,
then Zc5kBT/\vx , and Zd5$@(12exp(\vx /kBT)#@(1
2exp\vy /kBT)#%21. In this casedcV /dT>0 for any tempera-
ture, so BLC is not accompanied by the formation of a ma
mum. The dimensionality of the system~say, nD) is re-
flected in the value ofcV , which isnkB , and the fraction of
the particle number in the 1D g.s., has the express
N1D /N5(12e2(\vy /kBT))(12e2(\vz /kBT)).

III. DIVERGENT BEHAVIOR OF CV IN FERMIONIC
SYSTEMS

In this section we shall concentrate on Fermi syste
close toT50 K. We consider again that the Hamiltonian
the system can be approximated by single-particle opera
of the form H5Hc1Hd , as explained in the Introduction
At the increase of the particle density or of the density of
eigenvaluese i of the operatorHd , we would expect to ap-
proach the limit in which bothHc and Hd have continuous
spectra~3D bulk limit!. In such a limit we should recover th
results from Ref.@7#, namely,cV}T at low temperatures. As
it will be shown next, this is not the case in general. T
continuous limit is not attained in a smooth way. Instead
some situations, the specific heat would become diverge
zero temperature, for certain values of the Fermi energy

At temperatures close to 0 K the chemical potential o
Fermi system approaches the Fermi energyeF . For a!
21, the polylogarithmic functions of negative argument c
be written in the form@7#

gn
(1)~a!5

uaun

G~n11! F11OS 1

a2D G . ~7!

The cases forn50 and 1 are included in Eq.~7!, but can be
refined further to writegn

(1)(a)5uaun@11O(ea)#. In the
other extreme case, whena@1, all the polylogarithmic func-
tions have a behavior of the formgn

(6)(a)5e2a@1
1O(e2a)#. Using these asymptotic expressions we can
turn to the study of the specific heat close to zero temp
ture, for a density of energy levels ofHc similar to the one
introduced in the previous section, namelys(ec)5Cec

s . The
i-
in

s
s

of

i-

n

s

rs

e

n
at

a

n

-
a-

ground state ofHd is nondegenerate since we discuss a fin
system. We shall use the notationa0[2beF .

Since we know thatm→eF asT→0, let us now calculate
limT→0(ua0u2uau) wheneF5e i , i .0 ~in all the other cases
will turn out that the limit is zero!. UsingN5Z0

(1)(a), Eqs.
~6!, and the definition of the Fermi energy, we write tw
different expressions for the total number of particles in
system:

N5
C

~s11!bs11
$uaus111•••1~ uau2be i 21!s11%

3F11OS 1

a2D G1niC
G~s11!

bs11
gs11

(1) ~a1be i !

1C
G~s11!

bs11 (
j 5 i 11

`

nje
uau2be j ~8!

5
C

~s11!bs11
$ua0us111•••1~ ua0u2be i 21!s11%.

~9!

If we denotej[a1be i , then from Eqs.~8! and ~9!, ne-
glecting the exponentials and assuming that limT→0(j/ua0u)
5 limT→0(j/uau)50, we obtain, in the casea0 ,a!21, an
equation forj:

ni

gs11
(1) ~j!

j
5

ua0us

G~s11!
xs , ~10!

where xs[11•••1ni 21(12xi 21)s and xj[e j /eF . We
now notice that we have three distinct situations:~a! s.0, in
which casej→0 asT→0, ~b! s50, andj converges to a
finite positive value, and~c! sP(21,0), whenj→` as T
→0.

Let us analyze now the asymptotic behavior ofj in the
case~c!. For j@1 we can write

e2j

j
5

ua0us

niG~s11!
xs , ~11!

so j5(2s)lnua0u2 lnj2 ln@xs /niG(s11)#. Therefore, at
a0!21, j'usu lnua0u2 ln@ lnua0u#1•••. We can see now
that the assumption limT→0(j/ua0u)5 limT→0(j/uau)50 was
justified. Also, following the same kind of reasoning, on
can prove that wheneF5” e i , for any i, then limT→0(ua0u
2uau)50 for anys.

Using the Eqs.~10! and~11! we can calculate the specifi
heat close to 0 K. For that we have to evaluate the functi
G2

(1) , G1
(1) , G0

(1) , and Z0
(1) . We analyze again the cas

when eF5e i , i .0. After some algebra and dropping o
the factors that become exponentially small in the limitT
→0, we can write
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G2
(1)5

Cuaus12

bs11 H xsF11OS 1

a2D G1niFG~s13!
gs12

(1) ~j!

uaus12

12G~s12!yi

gs11
(1) ~j!

uaus11

1G~s11!yi
2

gs
(1)~j!

uaus
G2

sj

uau
YsJ , ~12!

G1
(1)5

Cuaus11

bs11 H xsF11OS 1

a2D G1niFG~s12!
gs11

(1) ~j!

uaus11

1G~s11!yi

gs
(1)~j!

uaus G2
sj

uau
YsJ , ~13!

G0
(1)5

Cuaus

bs11 H xsF11OS 1

a2D G
1niG~s11!

gs
(1)~j!

uaus
2

sj

uau
YsJ , ~14!

Z0
(1)5

Cuaus11

~n11!bs11 H xs11F11OS 1

a2D G
1niG~s12!

gs11
(1) ~j!

uaus11
2

~s11!

uau
Ys11J , ~15!

where yj5be j /uau and Ys[(k51
i 21 nk(12x)s21xk. To see

the asymptotic behavior, we calculatecV separately for the
cases~a!, ~b!, and~c!. Using Eqs.~10!,~12!–~15! and work-
ing consistently in the orders ofuau, we obtain the following
asymptotic results:

Case~a!

cV

kB
5

~s11!uau

xs111O~ uau2~s11!!
H ni

2G2~s11!

xs

gs
(1)2~j!

uau2s

1
ni

3G3~s11!

xs
2

gs
(1)3~j!

uau3s
1OS 1

uaum
D J , ~16!

wherem5min$s11,4s,2%.

Case~b!

cV

kB
5

ni

uaux1O~ uau21!

3H x0g0
(1)~j!

x01nig0
(1)~j!

j21
2x0g1

(1)~j!

x01nig0
(1)~j!

j12g2
(1)~j!

2
nig1

(1)2~j!

x01nig0
(1)~j!

p2

3
x01O~ea!J . ~17!
Case~c!

cV

kB
5

s11

xs111Ouau2~s11!)

uau
j H xs1

xs

j
1OS 1

uau D J . ~18!

So, for eF5e i , i .0, from Eqs.~16!–~18! we distinguish
the following situations.

~a1! s.1/2, thencV /kB}(eF /kBT)122s, so cV→0 asT
→0 ~note that ifs.1 some of the orders ofa interchange,
but the functioncV converges fast to zero asT approaches
0 K!.

~a2! s51/2, then limT→0(cV /kB)5(322A2)
3(3p/8)z2(1/2)ni

2/x3/2x1/2.
~a3! sP(0,1/2), thencV /kB}(eF /kBT)122s, socV→` as

T→0.
~b! s50, thencV /kB}kBT/eF , socV→0 asT→0.
~c! sP(21,0), then cV /kB}(eF /kBT)/ ln(eF /kBT), so

cV→` asT→0.
Therefore, in the cases~a3! and ~c!, cV presents a diver-

gent behavior atT50 K, while in case~a2! approaches a
finite limit. These situations seem to be in contradiction w
the third law of thermodynamics. To clarify this we mentio
that the divergency appears just if the spectrum ofHc is
continuous. In any finite system this is not the case, so at
enough temperaturescV decreases towards zero.

Without getting into details we state that wheneF
Þe i , ; i>0, similar calculations lead us to the resu
limT→0(ua0u2uau)50 and limT→0cV50 for any s. More-
over, in the low-temperature limit we reobtain the know
result@7# cV}T. On the other hand, the continuity ofm as a
function of eF implies the continuity ofa and cV as func-
tions of eF , for any T.0 K. In other words, the divergen
behavior in the cases~a3! and~c! can be approached asymp
totically for anyT.0 K, aseF→e i ~for any i ), by the func-
tions cV(T). This leads to the formation of a maximum
finite temperature, with the propertiescVmax→` and Tmax
→0, aseF→e i , for any i>1.

Let us make now the connections with familiar system
namely, with the ones discussed in Sec. II. In the case
cuboidal box with dimensionsl x@ l y ,l z , s521/2, so we

FIG. 3. The specific heat~in units ofkB) of a Fermi gas trapped
inside a cuboidal box (l 1→`, l 25 l 351029 m) with Neumann
boundary conditions on the walls. The four curves correspond to
following densities: 1.531026 m23 ~dotted line!, 9.231026 m23

~dashed line!, 9.631026 m23 ~solid line!, and 131027 m23 ~thick
solid line!. The last case corresponds toeF5e1.
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are in the case~c!. In Fig. 3 we plot the exact numerica
calculation of such a fermionic system, with dimensionsl 1
→`, l 25 l 351029 m. The mass of the particles is chos
as in Sec. II, such thatl2510218T21. We observe the for-
mation of the maximum as the Fermi energy approaches
first excited energy level ofHd , and the divergent behavio
at eF5e1. If the fermions are inside a cuboidal box wit
dimensionsl x ,l y@ l z or a harmonic potential with the cha
acteristic frequenciesvx!vy ,vz , thens50 and we are in
case~b!, therefore we do not observe the formation of
similar maximum. This was checked by exact numerical c
culations and was found to be correct.

IV. CONCLUSIONS

In Sec. II of this paper it is presented in general the p
nomenon of Bose-like condensation in the case of mas
bosons and fermions. This denomination was introduced
Ref. @2#, where, according to my knowledge, a crossov
between different dimensionalities of the phonon gas dis
bution in ultrathin dielectric membranes was reported for
first time. This phenomenon appears to be identical for b
types of massive particles and resembles the multiple-
Bose-Einstein condensation@5,4#. Nevertheless, the two phe
nomena are different in nature. The results are exempli
for the familiar cases of ideal particles trapped inside cub
dal boxes and harmonic potentials.

The analysis made in Sec. III, lead us to the observa
of interesting divergences of the specific heat of a Fe
system at zero temperature. The phenomenon is describ
d
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general, for a single-particle Hamiltonian of the formH
5Hc1Hd , with Hc having a ~quasi!continuous spectrum
ecP@0,̀ ) with the energy levels densitys(ec)5Cec

s (s.
21) and Hd having the discrete eigenvaluese i , i
50,1, . . . . It was found that cv(T)→` for any sP
(21,0)ø(0,1/2) if eF5e i , for any i>1. This divergent be-
havior is approached asymptotically for anyT.0, as eF
→e i , ; i>1, leading in this way to the formation of ver
high maxima~in the limit, infinitely high! of the fermionic
specific heat close to zero temperature. This is an unexpe
new phenomenon, since it seems to contradict the third
of thermodynamics. Anyway, this does not happen since
any finite system the energy spectrum is discrete and at
enough temperature the specific heat decreases towards
Nevertheless, this phenomenon might have interesting c
sequences on the entropy of the system in the vicinity of z
temperature. On the other hand it should be investigate
systems obeying fractional statistics@22# or interacting Bose
systems~see, for example, Ref.@23# and references therei
for similarities between these two types of systems! exhibit
similar behavior.
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