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Interface scaling in the contact process
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A correspondence between lattice models with absorbing states and models of pinned interfaces in random
media can be established by defining local height varia{gs) as integrals of the activity at poixtup to
time t. Within this context we study the interface representation of a prototypical model with absorbing states,
the contact process, in dimensions 1-3. Simulations confirm the scaling relagjerl— 6 between the
interface-width growth exponertt,, and the exponernt governing the decay of the order parameter. A scaling
property of the height distribution, which serves as the basis for this relation, is also verified. The height-height
correlation function shows clear signs of anomalous scaling, in accord wjihZ @nalysigPhys. Rev. Lett.
83, 4594(1999], but no evidence of multiscaling.

PACS numbes): 64.60.Ht, 05.40-a, 05.10.Ln, 05.96:m

[. INTRODUCTION then present a brief discussion of the associated continuum
equation, and of a scaling theory. Numerical results are pre-
Scaling and criticality in nonequilibrium systems continue sented in Sec. Ill. Section IV contains a brief summary.
to be of great interest in statistical physics. Among the vari-

ous classes of systems that have been subject to intensive Il. MODEL
study are models of growing interfadels-5], and absorbing-
state phase transitions, typified by directed percolatioR) The contact process is a simple particle sysidattice

and the contact procegé—9]. The latter class of models Markov procesgexhibiting a phase transition to an absorb-
generally involve variables;(t)=1(0) indicating the pres- ing (frozen state at a critical value of the creation rg2e].
ence(absenceof activity at sitei at timet. Introducing a set  This model belongs to the universality class of directed per-
of height variables;(t)= fo(t')dt’ establishes a connec- colation[6] and Reggeon field theof1], and is pertinent to
tion between the particle model and a corresponding intermodels of epidemicg8], catalysig22], and damage spread-
face model. The absorbing state of the particle moglebal ~ iNg [23], among many others. In the CP each site of the
absence of activitycorresponds to pinning of the interface. hypercubic latticeZ? is either vacant or occupied by a par-
At the critical point, the scaling properties of the interfaceticle. Particles are created at vacant sites at aé2d,
can be related to those of the original particle model. It iswherenis the number of occupied nearest neighbors, and are
therefore of considerable interest to investigate interface dyannihilated at unit rate, independent of the surrounding con-
namics at an absorbing-state critical point. figuration. The order parameter is the particle dengityhe
Absorbing-state phase transitions have also been linked t¢acuum statep=0, is absorbing. As\ is increased beyond
self-organized criticalitfSOQ in sandpile model§10-124, A, there is a continuous phase transition from the vacuum
as have driven interface modg¢ls3—18§. [The latter connec- to an active state; fok>\., p~(A—X\.)# in the stationary
tion is established by defining;(t) as the number of top- State. In one dimension,.=3.297 848.
plings at sitei up to timet.] It turns out that the interface of ~ There are a number of waysquivalent as regards scaling
the Bak-Tang-Wiesenfeld mod¢ll9] is described by an behavioj of implementing the CP in a simulation algorithm;
Edwards-Wilkinson equation with columnar noigk7,18.  this work follows the widely used practice of maintaining a
In view of the connections between absorbing-state phaskst of all occupied sites. In this study the initial condition is
transitions, SOC, and surface growth, it is worthwhile toalways that of all sites occupied. Subsequent events involve
study the dynamics of the interface representation of selecting(at random an occupied site from theN, sites on
simple model in the DP class, the contact prod€R. Pre-  the list, selecting a procedgreation with probabilityp
cise results on the scaling properties of the CP interface=\/(1+\), annihilation with probability - p], and, in the
should prove useful when trying to assign interface modelsase of creation, selecting one of the Bearest neighborng
(or height representations of other models, such as sandpilesf x. (The creation attempt succeedyiis vacant. The time
to universality classes. incrementAt associated with an event isN/, whereN,, is
In this paper we examine the dynamics of the contacthe number of occupied sites immediately prior to the event.
process in dimensions 1-3, studying the interface width and trial ends when all the particles have vanished, or at the
the height-height correlation function, as well as the heighfirst event with time=t,,,, a predetermined maximum time.
probability distribution. In Sec. Il we define the model and The important scaling laws pertinent to the critical contact
process on a lattice df? starting with all sites occupied are
(1) the mean survival timercL"I’”+, and (2) the average
*Electronic address: dickman@fisica.ufmg.br particle density decaying as a power lag(t)=t™ ¢ for 1
"Electronic address: mamunoz@onsager.ugr.es <t<r. (In practice, the power law is already found for
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~2.) In one dimensiony /v, =1.5808 andy=0.1595[24].  tion in this paper to simulate E) directly; rather, we shall
Occupied sites represent activity, which spreads from sitstudy the dynamics dfi(x,t) via simulations of the CP.

to site.(The absence of any activity corresponds to the ab- We turn now to a simple scaling analysis of the interface.

sorbing statg.In a growing surface or driven interface, ac- At its basis lies a scaling hypothesis for the probability den-

tivity corresponds to the motion of the interface. We there-sity p(h;t) of the heighth (at any lattice sitpat timet: the

fore define théheight h(t) at sitei as the amount of timaup  time dependence of this density enters only throughriban

to time t) that sitei has been occupied. In our numerical heightT(t). The conjectured scaling property is

studies we use a real-valued heighgcall that time is not

restricted to integer values in our implementajiddy keep- 1 _

ing a record of the last timg at which the state of site p(h;t)==—P(h/h(1)), (6)

changed, we are able to evaluatét) at any moment in the h(t)

zlnrgutlﬁgoga(mvihiﬁgﬁﬁgreps}lg;se:ﬁggftgfiﬂteergeﬁrfgr;ﬁﬁgse where the scaling functio®=0 with [P(u)du=1, and the

h;(t) may be thought of as a driven interface. Since the Criti_prefactor guarantees normalization. We have no proof for

) this scaling hypothesis. While it is known that an analogous
cal contact process must eventually enter the absorbing Stat?caling relation holds for the probability(p:t) of the local
the interface, in this analogy, will eventually be pinned. ’

The large-scale properties of the CP and related mode article densityin the critical CP[9], it is not obvious that

. : ' e scaling property fop implies the same foh. [The prob-
;l:acghg:c?nDﬁZIgatEe%(; yg:fncél(;)?g t\tlal ?mz 2?'2 tcrziacfs?:;:ge d lem is thath(x,t) is the sum of many random variables, i.e.,
density p(x,t)=0 [21]. Retaining only relevant terms, the p(x.t") for t'<t, which are, however, strongly correlatgd.

stochastic partial differential equation fp(x,t) reads ) It follows from. Eq. (6)—thit the monlents oh all scale
with the mean height"=u"[h(t)]" with u" thenth moment

ap ‘P. In particular, the mean-square width
—t = Vep—ap=bp*+y(xt). (1) B
WA(t,L)=varth)~[h(t)]?, )

Here n(x,t) is a Gaussian noise with zero mean and auto- .
correlation if Eg. (6) holds. On the other hand, we have that for times

t<r in the critical contact process,
() (X' 1) =Tp(x,t) S(x=x")8(t—t").  (2)

_ t
— ’ ’ 1-0
In our continuum description, the height is given by h(t)= jodt p(t)~t7, ®)
(' , which immediately implies thaiv?~t2Aw with B,,=1— 6.
h(x.) jodt PO, @ In surface growth studies the crossover time is expected
to scale as$, ~ L7 for a process in the DP universality class,
Integrating Eq(1) from time zero to time, we obtain we may writez= v /v, (clearlyt, andr should scale with
2 the same exponentThen the roughness exponentdefined
ﬂzvzh—ah—br(ﬂ dt’ + Z(x.1), @) via Wz(t,'L)=W§at(L)~L2“ for t>t, is given by the scal-
at o\ ot’ ing relation @=pBwz=(1—0)y,/v, . It is perhaps worth
stressing that the expressions relatingnd 8, to DP expo-
with the noise autocorrelation nents depend on the validity of the scaling hypothesis Eq.
I (6), which should be tested. Inserting the known DP expo-
LX) =T &%x=x")h(x,t-), (5  nent values, scaling theory yields=1.3287, 0.97, 0.51, and

zero for dimensions 1, 2, 3, and 4, respectively. In other
words, the interface associated with the critical contact pro-
cess is super-rough in one dimension, and asymptotically flat
r‘l? d=d.=4, wheref=1.

o The family of height-difference correlation functions

wheret _=min(t,t’). Thus the equation governing the height
includes a nonlinear memory term and a noise with nonvan
ishing correlations between different times. This equatio
does not seem to shed much light on the scaling properties
the interface. Rather, the relation betwdeand the density
in the contact process, E3), yields some properties that — _ q

are not immediately obvious from E@), for example, that Ga(r.n=InCH=hOc+r,D) ©
dh/gt=0, and that the nonlinear term is relevant txd. s also much studied in surface growth. Starting with a flat
=4. In any event, Eq(4) does serve to point up some dif- interface at=0, we expect power-law growt,~r % for
ferences between the CP interface and conventional surface= ¢(t) ~t'# the time-dependent correlation length. df,
growth models such as the Edwards-Wilkinsp®5] or  depends or the interface is said to be multiaffine. For
Kardar-Parisi-Zhang equatiop26]. First, the linear “drive” > ¢ G, will saturate; in particularG, should approach
term [ —ah(x,t) with a<0 in the active regimgis propor-  wW2(t, 1) ~t2Bw~ £22 for r ~ ¢ andt<t, . Sinceé is the only
tional to the local height and so cannot be transformed awayength scale relevant to correlations at short tirfies, for
Second, in the active state, the moduli of the last three termg<t_ | so that the system sizedoes not come into playit

on the right-hand sidéRHS) of Eq. (4) grow without limit,  is reasonable to expect the scaling form

suggesting tha¥?h does as well, so that the width of the

active phase never saturates. We note that it is not our inten- G,(r,t)=£29G(r/¢), (10
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FIG. 3. Scaling plot of the height probability distributidaon-
normalized for L=1000 at(from top to bottom on left-hand sigle
times 500, 1000, 2000, 5000, 4®@x 10%, 5x 10%, and 16.

i

A trial enters the absorbing sta®? naturally remains fixed
for all subsequent times, and since all trials do eventually
reach the absorbing state in the critical contact process, the
interface width saturates for largelf we restrict the sample
to surviving trials, however, there is no saturation. It is im-
portant to note that the same scaling laws apply in either
case.(The power-law growth regime, for example, corre-
sponds to times less tham for which all trials still survive)
Figure 1 shows a series of snapshots of the interface in a
IIl. SIMULATION RESULTS single trial withL =200, at intervals of 5000 time units. The
progressive roughening of the interface, without evidence of

We study the standard CP on hypercubic lattices wit oo ; . | lot of th
periodic boundary conditions. All interface properties are de-Saturation, is apparent. Figure 2 is a scaling plot of the square

rived from the heighth,(t) variables defined in Sec. II. In Width, averaged over all trials, i.eW?(L,t)/L** versust
one dimension, we determined the square wi{t,L) for ~ =t/L?% using the exponents=1.328 andz=1.5808 ex-
rings of L=500, 1000, 2000, and 5000 sites, in samples ofected for DP in ¥ 1 dimensions. There is a near-perfect
2000, 1000, 1000, and 400 trials, respectively. The maxidata collapse fort>10"3. The power-law portion of the
mum time ranged from about :IXG].OS for L=500 to 8.8 graph (10_3$TS005) y|e|ds the growth exponerﬁw
><:|.O5 for L=5000. All simulations were performed at the :083q1), in good agreement with the value —19
critical point,\;=3.297 848. In the contact process, interfa-
cial properties can be studied over the full sample, or over a
sample restricted to those trials that survive to tim@/hen

FIG. 1. Interface of the critical contact process in a system o
200 sites, shown at intervals of 5000 time units.

where the scaling functiog(x)~x2?2 for small x and is
constant for largex. The casex,= « is referred to as “con-
ventional” scaling whilea,< « is characterized as “anoma-
lous” scaling[4,27].
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FIG. 2. Scaled mean-square width versus reduced time for syseduced timesfrom top to bottom on left-hand sijle =0.142,
tem sizes. =500, 1000, 2000, and 5000. 0.71, and 1.42.
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FIG. 5. Scaled height-height correlation function versis” t=tL'7*

for L=1000. The topmost curve comprises collapsed data for times

500, 1000, 2000, 5000, and “®elow it lie results fort=2x 10*
(solid curve, 5% 10* (dotted curvg and 18 (dashed curve

10

FIG. 7. Scaled mean-square width versus reduced time in two
dimensions; system sizés=32, 64, 128, and 256.

) ) ) The height-height correlation functidd@, in a system of
=0.8405 expected on the basis of the scaling argunig= 1000 sites is shown in Fig. 5, which is a double-logarithmic
ures in parentheses denote statistical uncertaipiemlysis plot of G5 =G, /t?Aw versusr* =r/t}2 There is a perfect

. . . 2 | 2« H ~
of the saturation width yieldsWga(L)~L"™ with data collapse fort=500,...,18 (reduced times 10°<t

=1.325(15). _ ; . e s
X . . . .=<0.2), with a power-law portiot,~r<“2 with a,=0.625.
In Fig. 3 we test the scaling assumption for the he'ghtAt Iatzer timesC?* does no?colla sze rinci allazbecause the
probability distribution p(h) by plotting t°#4p(h) versus 2 pse, principally

0.84 — . square width has begun to saturéteno longer grows pro-
h/t ™ gﬁfca" thath is expected to grow proportionally 10, rignally tot24w). The value ofe, is insensitive to system
t*~?=1t"°%%) In this system oL = 1000 sites, there is a near- size. ForL=5000 we obtaina,=0.623(2) fort=2x 1C,

perfect data collapse, in accord with E(_@), for times be- and 0.644 fort=5x10°. Thus we may, with a high degree
tween 500 anq 1o Foft: 210" we begin to note a depar- of confidence, adopt the estimatg=0.633), clearly much

ture from scaling, which becomes more pronounced at Iateémaller than the roughness exponent 1.33 found in the
times. Note that=2x 10" corresponds to lb=—1, whichis  analysis of the square width, indicating that this one-
where W* begins to depart noticeably from a power law in dimensional system exhibits anomalous scaling. Recently,
Fig. 2. Analysis ofp(h) for L=5000 yields similar results. | opez argued that anomalous surface roughening is associ-
The form of the scaling function for a given reduced tilme ated with a diverging height gradiefi27]. In view of the

is independent of the system size, as shown in Fig. 4, whiclgrowing spikes evident in the profiles shown in Fig. 1, this
compares height probability distributions for systems ofassociation seems very probable in the present instance. In-

1000 and 5000 sites at times corresponding to the dame deed, the mean-square height gradient

12 —

10

Ins

2 " 1 1 L N 1 " 1 " L "
2 4 6 8 10 12 14
Int 100 10° 10° 10°

t

FIG. 6. Growth of the mean-square gradieft)=(Vh)? in
systems withL=1000(+), 2000 (dashed ling and 5000(solid FIG. 8. Growth of the mean-square gradis(t) =(Vh)? in the
line). two-dimensional system with = 256.
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TABLE I. Summary of interface-growth critical exponents for
the contact process obtained in our simulatiods ( —3). Figures
in parentheses denote uncertainties.

Dimension a as Bw K z

d=1 1.331) 0.633) 0.8391) 0.43364) 1.58

d=2 0.911) 0.3855) 0.5505) 0.331) 1.76510)
et L d=3 0.511) 0.092) 0.2741) 0.221) 1.905)
© d=4 0 0 0 0 2

Bw=1—56=0.2741), while our simulation results foW?
give Bw=0.271). We find «=0.51(1), z=1.905), and
k=0.221). Together with Egq. (12), these vyield a,
=0.092). Ourresults for critical exponents are collected in
10° Table I.

107
*

r

FIG. 9. Scaled height-height correlation function versis?
for L=256 in two dimensions. The curvébottom to top corre- IV. SUMMARY
spond tor=2, 4, 8, and 16.
Defining an interface representation for the contact pro-
s(t)zw (12) cess, we verified the expected scaling relafiip=1— 6 in
dimensions 1-3, and the scaling property of the height prob-
diverges as a power laggee Fig. 6. We finds(t)~t2~, with  ability distribution in one dimension. The local roughness
x=0.439(1) for L=1000, 0.433&) for L=2000, and €xponenta, is smaller than the global value, indicating
0.43374) for L=5000; we adopik=0.4336(4) as our best anomalous surface growth. This anomalous scaling is at-

estimate. From [pez’ analysis, one expects tended by a diverging local slops(t)=(Vh)?~t2*. Our
results fork are consistent with the scaling relation E#j2)
ag=a—ZK. (12)  derived by Lgez. There is, on the other hand, no evidence

of multiaffinity in this process.

Inserting our result for x and the DP valuesa An interesting point is that the process continues to ex-

=1.32867(14) andz=1.5808(1) in the RHS, we obtain i anomalous scaling fat=2 and 3, even though<1 in
grcwl;3§?s4§flt)ﬁcalnc%(r)r?a(lja%%;e?mﬁgg\r,]vnh the result found from yheqe cases. While it was pointed out some time agodhat
: o . . >1 implies anomalous growt82], this property appears to

We also studied the generalized helght—helg_ht correlatio, an intrinsic feature of the contact procéssd, by exten-
functionG, [Eq. (9)]f_org4= 1/2, 1,312, 2, and 3, in a System o o other models in the DP universality clasSinally,
with 1,';4_1000’ att=10", and found that the functions e note that we have introduced two critical exponemgs
[G,q]™ are identical and givery=0.62. We may therefore 5,4, and only one scaling relation between them. We
conclude that the DP interface is self-affine, not mUIt'aff'”e'therefore have an independent exponansay, that cannot

In two dimensions we s?udlid systems of up to 2564 (elated to the standard DP exponents in any way. A very
X 256 sites at the critical point,=1.6488. The curves for interesting theoretical task is that of computirgn an ep-

2 . . .
W? again show a good collapgsee Fig. 7,'ahndhthe derived %non expansion around the upper critical dimensiter 4.
exponents are in very good agreement with the expected vahy, . gyess is that this anomalous exponent is related to the

ues. Specifically, we finde=0.971), Bw=0.5505), and  renormalization of a composite operator not considered so
z=1.765(10). Scaling relations combined with known DP (51 in the analysis of Reggeon field theory, but this issue is
exponent values yield=0.970(5) and3=0.5492), while  payond the scope of this paper, and will be studied else-
current best estimates gize=v|/v, =1.766(2) for DP in  \yhere |t is interesting to note, in this connection, that Bhat-
2+1 dimensiong 2831, . tacharjeeet al. showed that for an interface model exhibiting
For smaller system sizes we observe a transieWi@nd  gyper-rougheningi.e., a=1) there exist generic nonpertur-

all other measured quantities, which does not appear in ongative infrared singularities inaccessible to standard dynami-
dimension. Anomalous roughening is also seen in two and 4| renormalization group analygia3).

three dimensions. Figure 8 show§t) growing ~t2* with
xk=0.331). Theheight-height correlation function exhibits
a good collapse, as shown in Fig. 9; the initial power-law
growth yields a,=0.3855); thus the scaling relation Eg.
(12) is well satisfied:a,— a+2zx=0.0Q03). We are grateful to A. P. F. Atman, J. Krug, J. M. pex,

We also determined the interface exponents in three diand J. G. Moreira for helpful comments. This work was sup-
mensions §.=1.3169, system size 3@ites, maximum time ported in part by CNPq, by the European Network Contract
10%), though to somewhat lower precision, owing to the No. ERBFMRXCT980183, and by the Ministerio de Educa-
larger computational demand. The scaling relation yieldsion under Project No. DGESEIC PB97-0842.
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