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Contact line deposits in an evaporating drop
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Solids dispersed in a drying drop will migrate to the edge of the drop and form a solid ring. This phenom-
enon produces ringlike stains and occurs for a wide range of surfaces, solvents, and solutes. Here we show that
the migration is caused by an outward flow within the drop that is driven by the loss of solvent by evaporation
and geometrical constraint that the drop maintain an equilibrium droplet shape with a fixed boundary. We
describe a theory that predicts the flow velocity, the rate of growth of the ring, and the distribution of solute
within the drop. These predictions are compared with our experimental results.

PACS numbsefs): 81.15-z, 68.10.Jy, 47.55.Dz, 83.70.Hq

[. INTRODUCTION tion, the presence of surface roughness or chemical hetero-

geneities that produce contact line pinning, and therefore it

The residue left when coffee dries on the countertop or aaccounts for the ubiquitous occurrence of ringlike stains.

the bottom of a mug is typically darkest, and hence most This paper is arranged in five parts; after this Introduction

concentrated, along the perimeter of the stain giving the deSec. Il deals with preliminary experiments that show the

posit a ringlike appearance. Given that the coffee solute wagenerality of the phenomenon. Section III lays out the fun-
uniformly distributed in the liquid prior to drying, its segre- damental mechanism responsible for this effect and describes
gation to the edge is surprising. Ringlike stains are not parthe expected flow mathematically. Section IV presents the
ticular to coffee and are a general phenomenon of whicl¢alculated results. In Sec. V we present the results of several
some of the more commonplace examples are mineral ring@xPeriments that test the theory’s predictions. We found that
left on washed glassware, banded deposits of salt on th@ost of those predictions are in accord with the experiments.
sidewalk during winter, and enhanced edges in water coloFowever, there are some discrepancies that suggest the im-

paintings(see Fig. 1 portance of other mechanisms as well.
Controlling the distribution of solute during drying is vital
in many industrial and scientific processes. For example, Il. EXPLORATORY EXPERIMENTS

paint manufacturers use a variety of additives to ensure that
the pigment is evenly dispersed and remains so during dry- Exploratory experiments using a variety of carrier fluids,
ing, and protein crystallographers are attempting to useéolutes, and substrates indicated that preferential deposition
evaporation driven convection to assemble two-dimensionadt the contact line is insensitive to a wide range of experi-
protein crystald1,2]. Segregation effects are undesirable inmental conditions. We observed ringlike deposits whenever
either of these cases. However, as in the production othe surface was partially wet by the fluid irrespective of the
nanowireq 3] or the patterning of a surfa¢é] the ring effect chemical composition of the substrate; we tried glass, metal,
can be a boon. Understanding the ring formation procespolyethylene, roughened Teflon, freshly cleaved mica, ce-
should be of interest to those attempting to circumvent oramic, and silicon. Rings were found in big dro@s cm
harness this phenomenon. and in small dropgl mm). They were found with aqueous
Ringlike deposits have been previously reported: Bediwiand non-aqueougacetone, methanol, toluene, and ethanol
et al. reported on the difficulties of obtaining a uniform de- solvents. They were found with solutes ranging in size from
posit [5], Parisseet al. investigated the deformation of the molecular(sugar and dye moleculesgo the colloidal
sessile drops due to a sol-gel transition of the solute at th€l0-um polystyrene microsphereand with solute volume
boundary{6,7], Adachiet al. studied the stick-slip motion of fractions ranging from 10° to 10 L. Likewise, environmen-
the contact line of colloidal liquidg8,9], and Conwayet al.  tal conditions such as temperature, humidity, and pressure
measured the effect of ring formation on the evaporation rateould be extensively varied without affecting the ring.
of sessile drop$10]. Effects due to solute diffusion, gravity, electrostatic fields,
With this contribution we expand on an earlier pajEt]
in which we reported the experimental results on ring forma-
tion and demonstrated that these could be quantitatively ac
counted for. In our theory, an outward flow in a drying drop
of liquid is produced when the contact line is pinned so that
liquid that is removed by evaporation from the edge of the
drop must be replenished by a flow of liquid from the inte-
rior. This flow is capable of transferring 100% of the solute (a3
to the contact line and thus accounts for the strong perimeter
concentration of many stains. Furthermore, the theory relies FIG. 1. (a) Coffee stain;(b) dried colloidal microspere(c) salt
only on a generic property of the substrate-solvent interacdeposit. The scale bar corresponds to approximately 1 cm.
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FIG. 2. Schematic illustration of the origin of the advective
current.(@) When the contact line is not pinned, uniform evapora-
tion removes the hashed layer, the interface moves from the solic
line to the dashed line, and the contact line will move from A to B.
However, if the contact line is pinned then the motion from Ato B FIG. 3. Schematic of relevant parameters for the theory. The
must be prevented by an outflow to replenish the liquid removedhick solid line represents the air-liquid interface of half a drop
from the edge(b) Shows the actual motion of the interface. viewed from the side. The contact line is defined as the intersection

of the interface with the dashed line denoted “plane of symmetry.”
and surface tension forces were considered as possible an experiment the substrate would define the plane of symmetry.
sources of contact line deposits. We rejected these on thEhe drop is axisymmetric so that the vertical dashed line denoted
basis of experimental evidence. For these observations wige “axis of symmetry” is the axis of rotation. The dashed curve is
used small drops of a dilute suspension of colloidal particle$® reflection of the interface through the plane of symmetry and
in water, deposited on a glass microscope slide, and viewedhows how the boundary-value problem of a drop, detailed in the
through an optical microscope. We describe the experimerfX!: can be replaced by the boundary-value problem of a lens with
more fully in Sec. V. Diffusion of a solute in the liquid is not Surfaces defined by the thick solid line and dashed curve line. The
the primary agent of segregation because the solute particlG9ram also indicates the origin of the divergent evaporation cur-
clearly move by advection towards the edge of the drop. Thi%ﬁm at the contact line: the discontinuous change in the curvature
can be easily seen under a microscope using large: i to a]E occgrs 23 one passes from the upper suttatil) to the lower
10 um) colloidal particles. Gravitational effects appear un_surace( ashesl
important because the ring produced when the drop is drie

) Lo Hot pinned, during some interval of time the hashed region
upside down(a pendant dropis indistinguishable from the would be removed from the drop, the interface would evolve

one produced by a drop dried right side (#psessile drop. from the solid line to the dashed line, and the contact line

Likewise, ele_ctrlc fields produced by a charged needle N€4lould move from A to B. However, if the contact is pinned
the contact lines showed no perceptible effect on the rin

formation. Several different field configurations with fields%Zemnoigzrirénnﬁjiggi daggom :E:ast ézg(leeg:‘sg(:)isn;h;dIglour:?aéﬁtnf
O.f §everal hundred volts per m|II|mete_r were_trled WIthOUtthe interface evolves as shown in FighRfrom the solid
visible effect. Elnally, temperature gradients did not seem .tcfine to the dashed line and the elasticity of the air-liquid
play an essentla_l role. When the drop was locally h?’ated W'tr?nterface i.e., the tendency of the interface to minimize its
a hOt filament, circulating flows appeared, but the ring depo'surface area, provides the force driving the outward flow of
sition was not fundamentally changed. fluid '

While the effects listed above appear unimportant for ring We now develop these ideas mathematically starting with

formation, two other conditions appear necessary: conta%e flow inside the drop. We consider an axisymmetric drop

line pinning and evaporation from the edge of the drOp.'as shown in Fig. 3. For the moment we ignore any solute in

When either of these conditions is relaxed the final deposit Rhe liquid. The conservation of fluid determines the relation-

uniform. We eliminated pinning by drying the drop on _ : . . .
smooth Teflon. The drying drop contracted as it dried and nosh|p between the vertically averaged radial flow of the fluid,

! . . ) ) v, the position of the air-liquid interfacdy, and the rate of
ring appeared. Likewise we restricted the evaporatmma . o

) ; . mass loss per unit surface area per unit time from the drop by
glass surfaceby covering the drop with a lid that had only a ; oh

: evaporationJs. The rate of change of the amount of fluid in
small hole over the center of the drop through which the_ =" " ="~ S
. . n infinitesimal annular element at a radial distandeom

vapor could escape. This greatly reduced the proportion o

evaporation from the perimeter. The resulting deposit wa%he center of 'ghe drop is equal to the net flux of liquid into
; . he column minus the amount of mass evaporated from the
uniform rather than being concentrated at the edge.

surface of that element:

Ill. THEORY OF SOLUTE TRANSFER dh 19 oh\?
=—pr o (tho) =3\ 1+| 5| . @

The essential physical idea behind our theory is that a Pt ror
pinned contact line induces an outward, radial fluid flow
when there is evaporation at the edge of the drop. This isvheret is time andp is the density of the liquid. The effect
graphically demonstrated in Fig. 2. The solid line in Figp)2 of dh/dr term is nearly always small and can be neglected;
represents the initial position of the air-liquid interface. If the we keep it here only for completeness. We can solve foy
evaporation rate is spatially uniform and the contact line isrewriting this equation in integral form:
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from which it is clear that a nonzeroarises when there is a
mismatch between the local evaporation rate and the rate ¢
change of the interface.
To computev we need to specifit andJg. The profile of
the drop,h(r,t), can be computed from Navier-Stokes equa- e rr s e o 7, AT I I IS
tions, however, we will assume, as in Fig. 2, that the shape o
the drop is a spherical cap so that the profile is

h(r,t)= \/

whereR is the radius of the drop’s base ahd0t) is the
height at the center. This corresponds physically to assuming
that R is small so that the surface tension, which tends to
make drops spherical, is greater than the gravitational force
which tends to flatten drops, and that evaporation occurs
slowly so that dynamic contributions to the pressure, such as g 4. (a) Shows how the probability of escape of an evapo-
viscous dissipation, are negligible. In essence, we have Ngating molecule is affected by its point of departure. A random walk
glected all terms in the Navier-Stokes equation, except theitiated at the center of the drop results in the molecule being
pressure term, so thatp=0 (i.e., we are in the hydrostatic reabsorbed so that the final step is not complétedicated by the
limit). The time dependence ¢f(0t) will be determined dashed ling However, the same random walk initiated from the
below when we compute the evaporation rate. edge allows the evaporating molecule to escape. This demonstrates

With h specified we now computd;. The functional why the evaporation rate is larger at the eddm.A clover shaped
form J; depends on whether the rate-limiting step is thedrop of dried coffee. The extremeties of the drop have the darkest
transfer rate across the liquid-vapor interface or is the diffu-deposits because the probability of escape from these regions is
sive relaxation of the saturated vapor layer immediatelygreatest(c) Two drops dried simultaneously side by side. Region of
above the drop. In the former cask,is a constant, while in greatest proximity to each other shows the weakest deposit because,
the later case, as will be shown belody is strongly en- again, the evaporation rate is lowest where the vapor fields of the
hanced toward the edge of the drop. two drops overlap. The scale bar (ip) and(c) is approximately 1

For the case where the limiting rate is the diffusion of the®™"

liquid vapor, we assume that the evaporation of the drop

rapidly attains a steady state so that the diffusion equatiofing molecule’s escape when leaving from the edge than
reduces to Laplace’s equation when leaving from the center of the drégee Fig. 4. Fur-
thermore, as shown in the Appendix, the expression

h(01)°+R?
2h(0;t)

2, RP=h(0})?
~2h(op)

3

V2u=Dgu=0, (4)
Jo(r, )= fFOV)[1—(r/R)?] ™ (6)

whereu is the mass of vapor per unit volume of air abds
the diffusion constant for vapor in air. The assumption isis an excellent approximation to the analytic solution to the
good for times longer tha®/R? (e.g., for a 1-mm-sized boundary value problem.
drop of water this time is 0.04 secThe boundary conditions From J¢(r,t) we can determine the time dependence of
are that(1) along the surface of the drop the air is saturatedh(0t). The change of the volume of the drop must be ex-
with vapor so therei is a constantis, (2) the current normal  actly equal to the total evaporation rate. Therefore,
to the substrateJ- n=—Dd,u) is zero because the vapor

cannot penetrate the substrate, dB8d u converges to the dM _ d JRd ot Th(r
ambient vapor concentration,, , far from the drop. dt Pt 0 r2arh(r’,
This boundary value problem is identical to that of a
charged conductor if we equatewith the electrostatic po- R 9 2
tential andJ with the electric field. As in the case of an Zfo dr' 2ar’Jds(r',t) \/ 1+ ?h(r’,t) - (7

electric field near a sharp edge on a condu¢og., a light-
ning rod the evaporation current diverges near the conta

line of the drop(see caption for Fig.)3 Close to the contact %Vh”e we have assumed steady stalgy,t) is nonetheless

time dependent because of its dependence on the contact

line angle, which changes during the course of evaporation. The
J(r,)~(R—r)", (5)  Velocity of the fluid can now be computed by combining
Egs.(2), (4), and(6).
where\=(7—26.)/(27—26;) [12] and 6. is the contact Given the velocity in the drop we can also compute the

angle the liquid makes with the substrate. This edge engrowth of the ring. We use our knowledge of the initial dis-
hancement arises from the greater probability of an evapdtibution of solute, namely, that it is constant everywhere in
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the drop at=0, and compute the time it would take a packet
of fluid to reach the contact line having started at some initial
radial distancer,. Within this time all the solute that lay
beyondr, becomes part of the ring. Therefore, the mass of
solute in the ringmg(t) is

| d

R
mR(t(ro))=27rc0J’ dr'r'h(r’,t=0), (8)
"o FIG. 5. lllustrates why (R—r) must scale likel(R—r). Near
. . . the contact line, the compensation for liquid leaving by evaporation
wherec, is the mass of solute per unit volume of solution trough the interface must be increasingly shouldered by the inflow
andt(r,) is the time it takes to go from=r, attimet=01t0 o |iquid because the decrease in volume due to lowering the sur-
r=R and can be calculated by integrationdif/dt=v(r,t)  face becomes increasingly negligible near the contact line.
with the initial condition that (0)=r,. Since we have used
the vertically averaged velocity in this formula we have im-the particles that are at equal or lesser distance from the
plicitly assumed that there is no vertical segregation of thecontact line will be swept into the ring by the time our par-
solute. ticle reaches the edge so that the ring will increase in mass
Lastly, we can compute the distribution of the solute.by mg~(R—r)2. The time this takes i$~ff*dr’/u~(R
However, to do so, without resorting to a lengthier calcula-—)»+1 Therefore, at early times the ring grows in time as
tion of the flow within the drop, we must assume somethinga power law:
about the vertical distribution. For simplicity we start with

the assumption, used above, that the concentratian, is a Mg~ 21N, (10)
function solely ofr (i.e., at a given radial distance the con- . . o .

centration is uniform throughout the liquid colunThere-  There is also a late time regime in which the growth of the
fore, the equation of solute conservation reads ring rapidly increases and diverges. We can demonstrate this

divergence by using a simplified model in which the drop is
19 always thinh(0,t) <R. In this limit it follows thatX is nearly
Z(eh+——-(rchv)=0, (9)  constant because the contact angle does not vary much. For
example, for a drop starting with a contact angle of 1K°,
wherec is assumed to be independentzthe vertical dis- Would increase from 0.455 to 0.5, a 10% change, over the
tance from the substrate, and the diffusion of solute has begftire drying time. Withk constant it follows from Eq(7)
neglected. The mass in the ring can also be determined froffiat the height of the drop decreases linearly in time,

the difference of the mass of solute in the dropga0 and  N(0:)=h(0,0)(1-t/t;), whereh(0,0) is the center height at
the mass of solute left at a later time, =0 andt; is the total drying time. In this simplified case,
fffdr’ 2t 'h(r’ e’ b). the integration of Eq(8) can be done because the time and
space components are separable. This would not be the case
for a thick drop whera\ is time dependent. The result for the
IV. RESULTS thin drop limit is
In Sec. Ill we described how to compute the various

quantitieg v (r,t), mg(t), andc(r,t)] that describe the state

of the drop. Without simplifications, these computations canynherem, is the total mass of solute present initially in the

only be done numerically. However, the qualitative featuresdrop and A (6,)=\(0)=1/2. At early times (<t;) mg
of the theory can be understood without recourse to numer={2/(1+\) gg expected from Eq10). At late timesmg—m,

ics. In this section we will highlight these features. ~(t;—t)1*M”2 ‘which implies that the growth of the ring is
The velocity diverges near the edge of the drop and tOgivergent: dmg /dt=1/(t;—t)¥4 It is this final divergence
wards the end of '_[he drying time. These qualitative featureg,,¢ is responsible for the observed 100% transfer of the
can be deduced directly from Ed2) and(5). Near the edge  goyte to the edge. For a thick drop, where the contact angle
h=(R—r), so that the contribution of thgh term t0 EQ.(2)  yaries appreciably with time as the evaporation takes place,
is negligible in comparison with thé; term and integration  he |ate time result must be obtained numerically. However,
yields v~(R—r) . What is happening physically is that the early time results, before the contact angle changes be-

the change of volume of the wedge near the edge Fig. 5 come important, are the same as described above.
becomes increasingly smaller as the contact line is ap-

proached and therefore the outgoing vapor must be matched
by an equally strong in flow of liquid. In addition, as the
height of the wedge decreases the amount of liquid entering We studied a dilute colloidal suspension of surfactant-
the wedge will not vary by much over the drying time be- free, charge-stabilized, polystyrene microspheres in water.
cause the amount of liquid removed from the surface of théThe mass vs time, shown in Fig(e for drops of various
wedge is almost constant. Therefohe,; must remain con- sizes, is to good approximation linear in time and the evapo-
stant so thab s~ 1/h and diverges as the height goes to zeroration rate rapidly stabilizes to its steady-state value. Thus,
at the end of the drying. the assumption that we can neglect the time dependence in
The ring grows initially as a power law in time. To see the diffusion equatior{4) and thath(0,t)=h(0,0)(1—t/t)
this, consider a particle at a distarRe-r from the edge. All  is supported by data in Fig(®.

mR:mo[l_(1_t/tf)(1+}\)/2]2/(1+)\) (11)

V. EXPERIMENTAL RESULTS
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FIG. 7. Plot of the position of the interface above the substrate
5.0 . vs distance from center in units of pixels. The data are taken at
equal intervals of time. The solid lines running through the data are
o 4or b fits to a circular profile with the same value Rfandt; used for all
E; fits.
g 3.0 B
g a0l | their vapor fields overlap and there is less evaporation, hence
’ less deposition, in the region of greatest proxiniidge Fig.
| @)
By photographing the drop from the side, we measured
0.0 | . | | . | the shape of the interface at various times. These data are
) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 plotted in Fig. 7 for several equally spaced intervals in time.
R (cm) The solid lines running through the data are fits to ).

using the same parameteRsand t; for all fits. Given the
mass loss by evaporatiodM/dt, normalized to 0% relative hu- good agreement with the data, our assumption of By

midity and 20 °C vs the radius of the drop. The data is well fit by @PP€ars reasonable. o _
the form «R indicating that the evaporation rate is diffusion lim-  Another feature demonstrated by the data in Fig. 7, is the

ited. The fitting parameterr=16.1+0.4 glcms is in excellent duration of the pinning. A drop of pure liquid.e., without

agreement with the value of 16.5 g/cm s, calculated from(&g).  Solid componentsdrying on a substrate is thought to evolve
in two distinct modes: an initial pinned phase, in which the

By extracting the slope of these plofand others not base of the drop stays constant and the contact angle de-
shown we can make a plot of evaporation rate vs size of thecreases, followed by a second unpinned phase, in which the
drop. Intuition might suggest that the evaporation rate shoulthase shrinks but the angle remains fix&#8,16. Our obser-
vary as the surface area of the drepR?). While this is the  vations of ring-forming drops indicate that the second phase
case for drops that evaporate uniformly, it is not so foris absent so that the addition of a solid component to the
diffusion-limited evaporation. Consider the case of a spheriliquid that accumulates at the contact line alters the dynamics
cal drop evaporating. The relative humidity around the dropof the contact line. In this sense, we believe that the drop is
isu=R/r (just like a conductor charged to a potential ¢f 1 self-pinning: the initial roughness or chemical heterogene-
the local evaporation rate on the surfaceJis —Dg,u ities of the substrate provides a foothold on which the con-
=DR/R?, and the total evaporation rate i3Xx(area) tact line first sticks; the accumulation of material at the con-
=47R, which is linear inR. In general, the evaporation rate tact line, by the process we have been discussing, then
in the diffusion-limited regime is proportional ®[13]. This  apparently strengthens the pinning, and eventually takes over
counterintuitive result arises because the rate is lessened lag the primary source of pinning.
the finite probability that an evaporating molecule will return  The diffusion-limited theory predicts a velocity diver-
to the drop if it is executing a random walk. Figlhp dem-  gence at the contact line that depends on the contact angle.
onstrates the rate is linear Rand indicates that the evapo- The velocity in the fluid was measured by tracking the mo-
ration rate is diffusion limited14]. tion of 1-u microspheres in a drying drop, a small fraction of

Given that the evaporation of our experimental drops iswhich were fluorescent. A region extending two-thirds of the
diffusion limited, we can immediately surmise some generaway out from the center of the drop up to the contact line
qualitative features about the edge deposition process. For avas imaged by fluorescent microscopy and recorded on vid-
oddly shaped drop, such as the one that resulted in the depeetape. At roughly 80% of the drying time the depth of the
sition pattern depicted in Fig.(d), the evaporation rate is liquid became comparable to the depth of field of the lens
strongest where there is the lowest density of neighboringind particles at all depths were in focus. At this stage the
evaporation sites. The heavy deposition at tips of the “clo-contact angle was around 0.2 rad, and the corresponding ex-
ver” in Fig. 4(b) arises from the strong evaporation from that ponent for the velocity was =0.47+0.01. Several two-sec
location. Also, when two drops are placed next to each otheisequences of images were digitized at 6 Hz and processed

FIG. 6. (@) The mass of the drop vs timet. (b) The rate of
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FIG. 8. The log of the velocity of solute vs the log of the
distance from the contact lin&—r. The solid line is the best fit to
a power law and yields an exponent of 0.54.

using image analysis algorithms for tracking partid&g].
The velocities were binned on a logarithmic scale and plotted
vs logo(R—r) in Fig 8. We measured an exponent of 0.54
+0.06 (the uncertainty arises from5 w uncertainty in the
position of the contact line which is within error of the
predicted value of 0.470.01. FIG. 9. Photographs of the resulting deposit left by three iden-
Several morphological features of the deposition from aical drops dried under different conditions are shown in the left
drying drop can be appreciated from EQO). Three identi- column. The first was allowed to evaporate normally. The second
cal drops were prepared. The first was allowed to evaporateas mounted on a pedestal and surrounded by a bath of water such
normally. The second was mounted on a pedestal and suthat the level of the bath coincided with the base of the drop. In this
rounded by a bath of water such that the level of the bati¢ase, the evaporation rate is to good approximation spatially uni-
coincided with the base of the drop. In this case, the evapdorm. The third drop was surrounded by a chamber with a small
ration rate is to good spatially uniform approximation. Thehole above the center of the drop so that evaporation primarily
third drop was surrounded by a chamber with a small holéccurred at the center. The radius of the initial drop was approxi-
above the center of the drop so that evaporation primaril)mately 4 mm. The_ evaporat_ion rate is plottt_ad schematically_in the
occurred at the center. The results of the experiment arB9ht column. As discussed in the text, the first drop has a singular
shown in Fig. 9. The first and second drop produced ringlikeorOf!le' the _second drop has a uniform profile, and the third has a
deposits, whereas the third produced a uniform deposit. As i&/°€ that is largest at the center and goes to zero at the edge. The
. . . - second curve(dashed ling in the right column represents the
shown schematically to the right of each picture in Fig. 9, the . : )

: . - change of the interface height. When the change of the interface
evaporation rates of drops 1 and 2 differ from th_e profile Ofheight is different from the evaporation profile, a ring is produced
ey ek o o a1 L3 o . owever, s e simlar e
drop. However, the third drop had an evaporation profile tha]; _unlform _deposn is formed. Also note the difference in the ring’s

: weved, st ’ ) hickness in(a) and (b).
was qualitatively similar to the profile of the drop. This pro-

duced little redistribution of the solute. Using the same experimental setup as we used to measure
The difference in the thickness of the rings of drop 1 andine yelocity, we counted the total number of microspheres

2 can also be accounted for qualitatively by our theory. Theyyriving at the contact line at early times. This data is plotted
tQ,?ﬁ% predicts that the first ring will grow at an early time as;, Fig. 108). The solid curve overlaying the data is a one-
t and that the second ring will grow @ [because parameter fit to Eq(10) with the exponent determined from

Js(r,t)=J, is constant and therefore=0]. Since the tWo  the measured contact angle. The prefactor to(EQ). is
curves must tend towards the same value at the end of the

drying (i.e., all the mass must be transferrethe initial / dytand
. . Z N C

growth rate must be larger for the singular evaporation case.

The inner edge of the ring can be considered as a solid-liquid 2

interface that moves inward as material arrives. The propa-

gation velocity of the interface is inversely proportional to where/ is the length of the contact line observes), is the

the height of the liquid surface there since the deposited maaumber of microspheres per unit volume, ahd/dt is the

terial piles up to heighh at that point(i.e., the solute piles up evaporation rate of the drop in units of volume per unit time,

to the maximum height allowed by the liquid surfac&he  which can be approximated by/t;, whereV is the initial

height is frozen in by the solute accumulated at earlier timesmass of the drop ant} is the total drying time. Despite the

a faster initial growth rate leads to a freezing in of a largerexcellent fit to the expected power law there is a discrepancy

height. Therefore the interface velocity is smaller and thinnein the value of the prefactor: given the parameters of our

rings are grown. experiment, the predicted value of the prefactor is 3.5 but the

\

T

(dv/dt)(1+1) | 7N

2V 7rR? M tané,

(12
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FIG. 11. Intensity of light) (r,t), for various times from a drop
containing flourescent microspheres vs the scaled radRsThe
intensity of light is proportional td(r,t)c(r,t) and the factor of
| proportionality is determined by comparing(r,0) with
10° - h(r,0)c(r,0). The solid lines are curves numerically calculated
. from Eg. (9) and converted into intensity curves using the propor-
ZI tionality factor. The systematic bulge aroung 0.8 corresponds to
z r an unanticipated congregation of solute on the surface of the drop.
310 7 The growth of the ring can be seen in the inset.
rate at early timegpower-law behavigrfollowed by a late-
time surge in the growth rate. The fit accounts well for the
210° oot ] early time behavior, as it did in Fig. 18, however, the
10 7.5:10° 8107 8.5x10° 910 theory fails to predict a late-time surge as great as the one
(c t+t seen experimentally. If we force the theory curve to termi-

_ . nate at the same point in thél(t) plane as the data, then the

FIG. 10. () The number of microspheresl) arriving at a sec-  theory curve will be offset above the data by a multiplicative
tion of the contact line of length” vs timet. For this particular run factor, which for this data set is about 2. This is in agreement
=326 s, py=5.4X 1_06 ,m”fB' /=21 pm, R1:382.08_mm,_ and  ith the 50% shortfall we found above. To summarize, the
0.=0.26 rad. The solid line is a fit t=Npy(t/t;) ™, which yields gy harimental data shows and the theory predicts a complete
a value of 1.7 fol,, . As elaborated on ifil1], theN, andt, are  qnqfer of the solute to the contact line, however, the theory
adjustments to compensate for the transients as the evaporation r?;?edicts that the material arrives at the contact line earlier
decays to its steady-state value. For this gitwas set to 2 antt .

o than it actually does.
was set to 2(b) N vs t measured throughout the drying time) LT
. . . The mass distribution of solute was measured throughout
Shows a blow up of the late-time behavigrote change to linear . ; .
scalg. the drying time. A 1ul drop of 0.1um fluorescent micro-
spheres at 10* volume fraction was placed on a microscope

fitin Fig. 10(a) gives a value of 1.7. Therefore, at early times coverslip, isolated from ambient light sources and air cur-
only about 50% of expected solute is reaching the edge. rents, and imaged using fluorescent video microscopy. The

Figure 1@b) shows data for the growth of the ring intensity of fluorescent lightl(r,t), was calibrated and
throughout the drying time. Superimposed on the data is &und to be proportional to the number of particles present.
one-parameter fit of the data to a curve obtained by numeriA representative set of results fofr,t) is shown in Fig. 11
cal integration of Eq(11). The theoretical curve is as ex- for the drop at several stages of evaporation. The solid lines
pected from the above analysis: a steadily increasing growthre the profiles for the same reduced tiitig;,, calculated by
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(b) o being the point of least evaporative heat loss, because it is

S o= v furthest from the substrate, which is the drop’s primary heat
7 ‘ source. Surface tension decreases with rising temperature,
75 . and therefore the surface tension would be greatest at the
‘ pole of the drop. This gradient would drive a radially inward
N surface flow. However, it is difficult to obtain a quantitative

"I ITISII ST IS ST IS ISIT IS IS ST TSI SSS IS ST IS IS ST ISSS |

prediction of the flow speed because there are a number of

FIG. 12. (a) The surface excess layer of solute revealed by dragadditional effects of unknown strength—such as surface
ging a wire through the drop. The radius of the drop was approxipressure due to an adsorbed surfactant or solute, and surface

mately 2 mm.(b) Circulation pattern in drop due to temperature viscosity in the presence of adsorbed molecules—that tend to

driven surface flow. counteract Marangoni flows.
Nonetheless, the phenomena we observe in the drop are
numerical integration of Eq9). gualitatively in agreement with what is expected given the

Comparison of the calculated curves with the data sugtemperature distribution. We expect and observe an inward
gests the presence of an extra solute around®.8R. The flow. We also expect that there will be a stagnation point
effect is more pronounced in drops with larger-sized micro-beyond which the surface flow will be outward. This reversal
spheres where we observe directly a layer of excess materiaf direction would occur at the radial point at which the drag
as shown in Fig. 1@). The layer responds to mechanical on the surface from an underlying liquid, which is diverging
probing with a needle as though it were a solid film; it resistswith the velocity as the contact line is approached, over-
shear and it can be fractured. Identifying the surface layecomes the oppositely directed surface tension gradese
with the excess density in Fig. 11, we estimate from theFig. 12b)]. We observe such a stagnation point. Further-
integrated difference between the observed and theoreticatore, as the drop dries we expect that this point will move
profile that the surface layer accounts for 10% of the totakowards the center of the drop because the overall scale of
solute mass in the drop. We observe that the surface cape bulk flow velocity, and hence the drag on the surface,
grows at the expense of the ring as the solute is rerouted badkcreases as the height of the drop decreases. The ultimate
to the center by a inward surface flow. At late times thedispersal of the surface cap observed experimentally is con-
surface cap breaks up and the particles in it are dragged tistent with this scenario.
the contact line. Given the 50% shortfall measured for the ring growth, it

is appropriate to question the success of our theory. The
pragmatic answer is that the theory is an increasingly useful,
V1. DISCUSSION predictive tool in the limit of small solute particles. The ring

Additional effects not accounted for in the theory can9rowth measurement was done withutn particles and the
modify the deposition significantly. Among these are verticaltn€ory could account for 50% of the observed behavior. For
mixing, viscous stresses, effects of solute interaction, diffufn€ concentration measurement (. particles were used
sion, sedimentation, and Marangoni effects. A homogeneou@nd accuracy of the theory improved significantly. For a sol-
vertical distribution of solute was assumed for E9), which ute of mplecular size ther.e is no dlscermble.stratlflca'uon as
is equivalent to assuming that vertical mixing is vigorous. ItiS Seen in drops of kem-sized microsphere§ig. 12. An-
is unlikely that this is physically realized, so that the theoryOther answer is that our theory captures the essential mecha-
would need to be modified to include stratification effects.NiSm for ring formation and that the understanding achieved
Viscous stresses may in principle perturb the drop away fromihrough it is not diminished by the presence of other types of
the spherical-cap shape we assumed. As the velocity dflows that ultimately do not alter the fact that the 100% of
verges near the edge so does the viscous term in Naviel€ solute is transferred to the edge.

Stokes equation ?v~ d2v ~v/h?) so that at some finite
distance from the edge the surface of the drop will be dis-
torted. For a low viscosity liquids, such as water, this length
scale is insignificant. However, for higher viscosity liquids it  Despite its shortcomings, our theory is a useful tool for
may become a significant fraction of the radius. For a morainderstanding and predicting the ring-formation process. It
concentrated solution the viscosity of the fluid is altered andaccounts for the widespread occurrence of solute rings, be-
the physical dimensions of the ring may be large. Both ofcause few ingredients are required—a weakly pinning sub-
these effects may distort the shape of the drop. If the size dftrate and evaporation—and these ingredients occur com-
the solute particles is small, diffusive currents become commonly; it accounts in a natural way for nearly complete
parable to the advective currents and E%).would need to transfer of the solute to the periphery; and it indicates how
be modified. Finally, if the size of the solute particles be-manipulating the vapor field around the drop provides a
comes too large, sedimentation of the solute will affect themeans of controlling the deposition process.

amount of material arriving at the edge. This may account The potential for controlling deposition on a surface using
for some of the shortfall discussed earlier. These effects prahis contact line deposition remains virtually unexplored.
vide additional avenues to be explored in surface depositiomwo aspects seem particularly promising. On the applied
processes. side, this mechanism provides a means of concentrating a

We believe that Marangoni flows are a significant factordeposit into fine lines, which may rival or exceed what is
in our experiments. For a water drop drying on a glass subeurrently possible using lithographic or etching processes.
strate the apex of the drop ought to be coolest, despite Buch lines can be useful for exploring electronic quantum

VIl. CONCLUSION
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confinement or for writing information at high density. 10° .
Achieving narrow deposits requires increasing dilution of the
depositing solute. Thus we are led to explore contact-line__
deposition when the solute becomes more and more diluteé 1
On the fundamental side, our mechanism seems to rely on 3
mutual reinforcement between contact-line pinning and-g
deposition. This reinforcement appears crucial to the ring-=_
forming process, but has yet to be explored. This reinforce-™
ment must weaken, and ultimately fail, as the solute is di-
luted. The mechanism of this failure would seem to have
widespread implication of its own. Here too, the regime of i
interest is the regime of highly dilute solutes. Our studies of 191 L. . i il v il o
this regime are in progress. 10° 10* 103 107 107 10°
1-1/R
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APPENDIX: THE SOLUTION TO THE BOUNDARY J,=D(cosha+cosB) dgul g3,
VALUE PROBLEM OF A LENS-SHAPED CONDUCTOR c

The problem of a spherical cap on an impermeable sub- = —D(Ug—Us,)
strate can be replaced by the problem of a l@ssshown in
Fig. 3 in free space. The general solution for the electro- .
static potential of a charged conductor with a shape defined +0059c)3/2J Ad7P_ps (X)) T
by two intersecting spheres is given in RE8]. This solu- 0
tion for our specific problenftranslated into the language of

sin(6,)/2+ 2(x

coshmrr '
u(a,B)=U.+ (Us—U,)y2(cosha— cosp) wherer =R\/1—x%/(x+ cos6,) whereR is the radius of the
drop andx is a parameter ranging from 0 to 1.
XfmdrP_l,er,T(cosha) The value of Eq.(A2)_ was compu_ted numerically_ and
0 compared to the approximate form given in E@). In Fig.

13 bothJ exact and) approximate are plotted. The inset is a
coshf.7cosh2m—pB)7 (A1) plot of the percent difference between the td& as can be
coshmrcosi{m—6,)7 "’ seen the error is no greater than 10%.
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