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Contact line deposits in an evaporating drop

Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greg Huber, Sidney R. Nagel, and Thomas A. Witten
James Franck Institute, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 14 December 1998; revised manuscript received 26 October 1999!

Solids dispersed in a drying drop will migrate to the edge of the drop and form a solid ring. This phenom-
enon produces ringlike stains and occurs for a wide range of surfaces, solvents, and solutes. Here we show that
the migration is caused by an outward flow within the drop that is driven by the loss of solvent by evaporation
and geometrical constraint that the drop maintain an equilibrium droplet shape with a fixed boundary. We
describe a theory that predicts the flow velocity, the rate of growth of the ring, and the distribution of solute
within the drop. These predictions are compared with our experimental results.

PACS number~s!: 81.15.2z, 68.10.Jy, 47.55.Dz, 83.70.Hq
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I. INTRODUCTION

The residue left when coffee dries on the countertop o
the bottom of a mug is typically darkest, and hence m
concentrated, along the perimeter of the stain giving the
posit a ringlike appearance. Given that the coffee solute
uniformly distributed in the liquid prior to drying, its segre
gation to the edge is surprising. Ringlike stains are not p
ticular to coffee and are a general phenomenon of wh
some of the more commonplace examples are mineral r
left on washed glassware, banded deposits of salt on
sidewalk during winter, and enhanced edges in water c
paintings~see Fig. 1!.

Controlling the distribution of solute during drying is vita
in many industrial and scientific processes. For exam
paint manufacturers use a variety of additives to ensure
the pigment is evenly dispersed and remains so during
ing, and protein crystallographers are attempting to
evaporation driven convection to assemble two-dimensio
protein crystals@1,2#. Segregation effects are undesirable
either of these cases. However, as in the production
nanowires@3# or the patterning of a surface@4# the ring effect
can be a boon. Understanding the ring formation proc
should be of interest to those attempting to circumvent
harness this phenomenon.

Ringlike deposits have been previously reported: Bed
et al. reported on the difficulties of obtaining a uniform d
posit @5#, Parisseet al. investigated the deformation o
sessile drops due to a sol-gel transition of the solute at
boundary@6,7#, Adachiet al. studied the stick-slip motion o
the contact line of colloidal liquids@8,9#, and Conwayet al.
measured the effect of ring formation on the evaporation
of sessile drops@10#.

With this contribution we expand on an earlier paper@11#
in which we reported the experimental results on ring form
tion and demonstrated that these could be quantitatively
counted for. In our theory, an outward flow in a drying dr
of liquid is produced when the contact line is pinned so t
liquid that is removed by evaporation from the edge of
drop must be replenished by a flow of liquid from the int
rior. This flow is capable of transferring 100% of the solu
to the contact line and thus accounts for the strong perim
concentration of many stains. Furthermore, the theory re
only on a generic property of the substrate-solvent inter
PRE 621063-651X/2000/62~1!/756~10!/$15.00
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tion, the presence of surface roughness or chemical het
geneities that produce contact line pinning, and therefor
accounts for the ubiquitous occurrence of ringlike stains.

This paper is arranged in five parts; after this Introduct
Sec. II deals with preliminary experiments that show t
generality of the phenomenon. Section III lays out the fu
damental mechanism responsible for this effect and descr
the expected flow mathematically. Section IV presents
calculated results. In Sec. V we present the results of sev
experiments that test the theory’s predictions. We found t
most of those predictions are in accord with the experime
However, there are some discrepancies that suggest the
portance of other mechanisms as well.

II. EXPLORATORY EXPERIMENTS

Exploratory experiments using a variety of carrier fluid
solutes, and substrates indicated that preferential depos
at the contact line is insensitive to a wide range of expe
mental conditions. We observed ringlike deposits whene
the surface was partially wet by the fluid irrespective of t
chemical composition of the substrate; we tried glass, me
polyethylene, roughened Teflon, freshly cleaved mica,
ramic, and silicon. Rings were found in big drops~15 cm!
and in small drops~1 mm!. They were found with aqueou
and non-aqueous~acetone, methanol, toluene, and ethan!
solvents. They were found with solutes ranging in size fro
the molecular~sugar and dye molecules! to the colloidal
(10-mm polystyrene microspheres! and with solute volume
fractions ranging from 1026 to 1021. Likewise, environmen-
tal conditions such as temperature, humidity, and press
could be extensively varied without affecting the ring.

Effects due to solute diffusion, gravity, electrostatic field

FIG. 1. ~a! Coffee stain;~b! dried colloidal microspere;~c! salt
deposit. The scale bar corresponds to approximately 1 cm.
756 ©2000 The American Physical Society
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PRE 62 757CONTACT LINE DEPOSITS IN AN EVAPORATING DROP
and surface tension forces were considered as pos
sources of contact line deposits. We rejected these on
basis of experimental evidence. For these observations
used small drops of a dilute suspension of colloidal partic
in water, deposited on a glass microscope slide, and vie
through an optical microscope. We describe the experim
more fully in Sec. V. Diffusion of a solute in the liquid is no
the primary agent of segregation because the solute part
clearly move by advection towards the edge of the drop. T
can be easily seen under a microscope using large (1mm to
10 mm) colloidal particles. Gravitational effects appear u
important because the ring produced when the drop is d
upside down~a pendant drop! is indistinguishable from the
one produced by a drop dried right side up~a sessile drop.!
Likewise, electric fields produced by a charged needle n
the contact lines showed no perceptible effect on the r
formation. Several different field configurations with field
of several hundred volts per millimeter were tried witho
visible effect. Finally, temperature gradients did not seem
play an essential role. When the drop was locally heated w
a hot filament, circulating flows appeared, but the ring de
sition was not fundamentally changed.

While the effects listed above appear unimportant for r
formation, two other conditions appear necessary: con
line pinning and evaporation from the edge of the dro
When either of these conditions is relaxed the final depos
uniform. We eliminated pinning by drying the drop o
smooth Teflon. The drying drop contracted as it dried and
ring appeared. Likewise we restricted the evaporation~on a
glass surface! by covering the drop with a lid that had only
small hole over the center of the drop through which
vapor could escape. This greatly reduced the proportion
evaporation from the perimeter. The resulting deposit w
uniform rather than being concentrated at the edge.

III. THEORY OF SOLUTE TRANSFER

The essential physical idea behind our theory is tha
pinned contact line induces an outward, radial fluid flo
when there is evaporation at the edge of the drop. Thi
graphically demonstrated in Fig. 2. The solid line in Fig. 2~a!
represents the initial position of the air-liquid interface. If t
evaporation rate is spatially uniform and the contact line

FIG. 2. Schematic illustration of the origin of the advecti
current.~a! When the contact line is not pinned, uniform evapo
tion removes the hashed layer, the interface moves from the s
line to the dashed line, and the contact line will move from A to
However, if the contact line is pinned then the motion from A to
must be prevented by an outflow to replenish the liquid remo
from the edge.~b! Shows the actual motion of the interface.
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not pinned, during some interval of time the hashed reg
would be removed from the drop, the interface would evo
from the solid line to the dashed line, and the contact l
would move from A to B. However, if the contact is pinne
then there must be a flow that replenishes the liquid tha
removed from the edge. In this case of a pinned contact l
the interface evolves as shown in Fig. 2~b! from the solid
line to the dashed line and the elasticity of the air-liqu
interface, i.e., the tendency of the interface to minimize
surface area, provides the force driving the outward flow
fluid.

We now develop these ideas mathematically starting w
the flow inside the drop. We consider an axisymmetric dr
as shown in Fig. 3. For the moment we ignore any solute
the liquid. The conservation of fluid determines the relatio
ship between the vertically averaged radial flow of the flu
v, the position of the air-liquid interface,h, and the rate of
mass loss per unit surface area per unit time from the drop
evaporation,Js . The rate of change of the amount of fluid
an infinitesimal annular element at a radial distancer from
the center of the drop is equal to the net flux of liquid in
the column minus the amount of mass evaporated from
surface of that element:

r
]h

]t
52r

1

r

]

]r
~rhv !2Js~r ,t !A11S ]h

]r D 2

, ~1!

wheret is time andr is the density of the liquid. The effec
of ]h/]r term is nearly always small and can be neglect
we keep it here only for completeness. We can solve forv by
rewriting this equation in integral form:

-
lid
.

d
FIG. 3. Schematic of relevant parameters for the theory. T

thick solid line represents the air-liquid interface of half a dr
viewed from the side. The contact line is defined as the intersec
of the interface with the dashed line denoted ‘‘plane of symmetr
In an experiment the substrate would define the plane of symme
The drop is axisymmetric so that the vertical dashed line deno
the ‘‘axis of symmetry’’ is the axis of rotation. The dashed curve
the reflection of the interface through the plane of symmetry a
shows how the boundary-value problem of a drop, detailed in
text, can be replaced by the boundary-value problem of a lens
surfaces defined by the thick solid line and dashed curve line.
diagram also indicates the origin of the divergent evaporation c
rent at the contact line: the discontinuous change in the curva
that occurs as one passes from the upper surface~solid! to the lower
surface~dashed!.
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758 PRE 62ROBERT D. DEEGANet al.
v~r ,t !52
1

rrhE0

r

dr r S Js~r ,t !A11S ]h

]r D 2

1r
]h

]t D
~2!

from which it is clear that a nonzerov arises when there is
mismatch between the local evaporation rate and the rat
change of the interface.

To computev we need to specifyh andJs . The profile of
the drop,h(r ,t), can be computed from Navier-Stokes equ
tions, however, we will assume, as in Fig. 2, that the shap
the drop is a spherical cap so that the profile is

h~r ,t !5AFh~0,t !21R2

2h~0,t ! G2

2r 22
R22h~0,t !2

2h~0,t !
, ~3!

whereR is the radius of the drop’s base andh(0,t) is the
height at the center. This corresponds physically to assum
that R is small so that the surface tension, which tends
make drops spherical, is greater than the gravitational fo
which tends to flatten drops, and that evaporation occ
slowly so that dynamic contributions to the pressure, such
viscous dissipation, are negligible. In essence, we have
glected all terms in the Navier-Stokes equation, except
pressure term, so that¹p50 ~i.e., we are in the hydrostati
limit !. The time dependence ofh(0,t) will be determined
below when we compute the evaporation rate.

With h specified we now computeJs . The functional
form Js depends on whether the rate-limiting step is t
transfer rate across the liquid-vapor interface or is the di
sive relaxation of the saturated vapor layer immediat
above the drop. In the former case,Js is a constant, while in
the later case, as will be shown below,Js is strongly en-
hanced toward the edge of the drop.

For the case where the limiting rate is the diffusion of t
liquid vapor, we assume that the evaporation of the d
rapidly attains a steady state so that the diffusion equa
reduces to Laplace’s equation

¹2u5D] tu.0, ~4!

whereu is the mass of vapor per unit volume of air andD is
the diffusion constant for vapor in air. The assumption
good for times longer thanD/R2 ~e.g., for a 1-mm-sized
drop of water this time is 0.04 sec!. The boundary conditions
are that~1! along the surface of the drop the air is satura
with vapor so thereu is a constantus , ~2! the current normal
to the substrate (J•n52D]nu) is zero because the vapo
cannot penetrate the substrate, and~3! u converges to the
ambient vapor concentration,u` , far from the drop.

This boundary value problem is identical to that of
charged conductor if we equateu with the electrostatic po-
tential andJ with the electric field. As in the case of a
electric field near a sharp edge on a conductor~e.g., a light-
ning rod! the evaporation current diverges near the con
line of the drop~see caption for Fig. 3!. Close to the contac
line

Js~r ,t !;~R2r !2l, ~5!

wherel5(p22uc)/(2p22uc) @12# and uc is the contact
angle the liquid makes with the substrate. This edge
hancement arises from the greater probability of an eva
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rating molecule’s escape when leaving from the edge t
when leaving from the center of the drop~see Fig. 4!. Fur-
thermore, as shown in the Appendix, the expression

Js~r ,t !'Jof ~l!@12~r /R!2#2l ~6!

is an excellent approximation to the analytic solution to t
boundary value problem.

From Js(r ,t) we can determine the time dependence
h(0,t). The change of the volume of the drop must be e
actly equal to the total evaporation rate. Therefore,

dM

dt
5r

d

dtE0

R

dr8 2pr 8h~r 8,t !

5E
0

R

dr8 2pr 8Js~r 8,t !A11S ]

]r 8
h~r 8,t !D 2

. ~7!

While we have assumed steady state,Js(r ,t) is nonetheless
time dependent because of its dependence on the co
angle, which changes during the course of evaporation.
velocity of the fluid can now be computed by combinin
Eqs.~2!, ~4!, and~6!.

Given the velocity in the drop we can also compute t
growth of the ring. We use our knowledge of the initial di
tribution of solute, namely, that it is constant everywhere

FIG. 4. ~a! Shows how the probability of escape of an evap
rating molecule is affected by its point of departure. A random w
initiated at the center of the drop results in the molecule be
reabsorbed so that the final step is not completed~indicated by the
dashed line!. However, the same random walk initiated from th
edge allows the evaporating molecule to escape. This demonst
why the evaporation rate is larger at the edge.~b! A clover shaped
drop of dried coffee. The extremeties of the drop have the dar
deposits because the probability of escape from these region
greatest.~c! Two drops dried simultaneously side by side. Region
greatest proximity to each other shows the weakest deposit bec
again, the evaporation rate is lowest where the vapor fields of
two drops overlap. The scale bar in~b! and ~c! is approximately 1
cm.
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PRE 62 759CONTACT LINE DEPOSITS IN AN EVAPORATING DROP
the drop att50, and compute the time it would take a pack
of fluid to reach the contact line having started at some ini
radial distancer o . Within this time all the solute that lay
beyondr o becomes part of the ring. Therefore, the mass
solute in the ringmR(t) is

mR„t~r o!…52pcoE
r o

R

dr8 r 8h~r 8,t50!, ~8!

whereco is the mass of solute per unit volume of solutio
andt(r o) is the time it takes to go fromr 5r o at timet50 to
r 5R and can be calculated by integration ofdr/dt5v(r ,t)
with the initial condition thatr (0)5r 0. Since we have used
the vertically averaged velocity in this formula we have im
plicitly assumed that there is no vertical segregation of
solute.

Lastly, we can compute the distribution of the solu
However, to do so, without resorting to a lengthier calcu
tion of the flow within the drop, we must assume someth
about the vertical distribution. For simplicity we start wi
the assumption, used above, that the concentration,c(r ), is a
function solely ofr ~i.e., at a given radial distance the co
centration is uniform throughout the liquid column!. There-
fore, the equation of solute conservation reads

]

]t
~ch!1

1

r

]

]r
~rchv !50, ~9!

wherec is assumed to be independent ofz, the vertical dis-
tance from the substrate, and the diffusion of solute has b
neglected. The mass in the ring can also be determined f
the difference of the mass of solute in the drop att50 and
the mass of solute left at a later tim
*0

Rdr8 2pr 8h(r 8,t)c(r 8,t).

IV. RESULTS

In Sec. III we described how to compute the vario
quantities@v(r ,t), mR(t), andc(r ,t)] that describe the stat
of the drop. Without simplifications, these computations c
only be done numerically. However, the qualitative featu
of the theory can be understood without recourse to num
ics. In this section we will highlight these features.

The velocity diverges near the edge of the drop and
wards the end of the drying time. These qualitative featu
can be deduced directly from Eqs.~2! and~5!. Near the edge
h.(R2r ), so that the contribution of the] th term to Eq.~2!
is negligible in comparison with theJs term and integration
yields v;(R2r )2l. What is happening physically is tha
the change of volume of the wedge near the edge~see Fig. 5!
becomes increasingly smaller as the contact line is
proached and therefore the outgoing vapor must be matc
by an equally strong in flow of liquid. In addition, as th
height of the wedge decreases the amount of liquid ente
the wedge will not vary by much over the drying time b
cause the amount of liquid removed from the surface of
wedge is almost constant. Therefore,hvs must remain con-
stant so thatvs;1/h and diverges as the height goes to ze
at the end of the drying.

The ring grows initially as a power law in time. To se
this, consider a particle at a distanceR2r from the edge. All
t
l
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the particles that are at equal or lesser distance from
contact line will be swept into the ring by the time our pa
ticle reaches the edge so that the ring will increase in m
by mR;(R2r )2. The time this takes ist;* r

Rdr8/v;(R
2r )l11. Therefore, at early times the ring grows in time
a power law:

mR;t2/(11l). ~10!

There is also a late time regime in which the growth of t
ring rapidly increases and diverges. We can demonstrate
divergence by using a simplified model in which the drop
always thinh(0,t)!R. In this limit it follows thatl is nearly
constant because the contact angle does not vary much
example, for a drop starting with a contact angle of 15°,l
would increase from 0.455 to 0.5, a 10% change, over
entire drying time. Withl constant it follows from Eq.~7!
that the height of the drop decreases linearly in tim
h(0,t)5h(0,0)(12t/t f), whereh(0,0) is the center height a
t50 and t f is the total drying time. In this simplified case
the integration of Eq.~8! can be done because the time a
space components are separable. This would not be the
for a thick drop wherel is time dependent. The result for th
thin drop limit is

mR5mo@12~12t/t f !
(11l)/2#2/(11l) ~11!

wheremo is the total mass of solute present initially in th
drop and l(uc).l(0)51/2. At early times (t!t f) mR
.t2/(11l) as expected from Eq.~10!. At late timesmR2mo
.(t f2t)(11l)/2, which implies that the growth of the ring i
divergent:dmR /dt.1/(t f2t)1/4. It is this final divergence
that is responsible for the observed 100% transfer of
solute to the edge. For a thick drop, where the contact an
varies appreciably with time as the evaporation takes pla
the late time result must be obtained numerically. Howev
the early time results, before the contact angle changes
come important, are the same as described above.

V. EXPERIMENTAL RESULTS

We studied a dilute colloidal suspension of surfacta
free, charge-stabilized, polystyrene microspheres in wa
The mass vs time, shown in Fig. 6~a! for drops of various
sizes, is to good approximation linear in time and the eva
ration rate rapidly stabilizes to its steady-state value. Th
the assumption that we can neglect the time dependenc
the diffusion equation~4! and thath(0,t)5h(0,0)(12t/t f)
is supported by data in Fig. 6~a!.

FIG. 5. Illustrates whyv(R2r ) must scale likeJs(R2r ). Near
the contact line, the compensation for liquid leaving by evaporat
through the interface must be increasingly shouldered by the infl
of liquid because the decrease in volume due to lowering the
face becomes increasingly negligible near the contact line.
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760 PRE 62ROBERT D. DEEGANet al.
By extracting the slope of these plots~and others not
shown! we can make a plot of evaporation rate vs size of
drop. Intuition might suggest that the evaporation rate sho
vary as the surface area of the drop (;R2). While this is the
case for drops that evaporate uniformly, it is not so
diffusion-limited evaporation. Consider the case of a sph
cal drop evaporating. The relative humidity around the d
is u5R/r ~just like a conductor charged to a potential of 1!,
the local evaporation rate on the surface isJ52D] ru
5DR/R2, and the total evaporation rate isJ3(area)
54pR, which is linear inR. In general, the evaporation ra
in the diffusion-limited regime is proportional toR @13#. This
counterintuitive result arises because the rate is lessene
the finite probability that an evaporating molecule will retu
to the drop if it is executing a random walk. Fig. 6~b! dem-
onstrates the rate is linear inR and indicates that the evapo
ration rate is diffusion limited@14#.

Given that the evaporation of our experimental drops
diffusion limited, we can immediately surmise some gene
qualitative features about the edge deposition process. Fo
oddly shaped drop, such as the one that resulted in the d
sition pattern depicted in Fig. 4~b!, the evaporation rate is
strongest where there is the lowest density of neighbo
evaporation sites. The heavy deposition at tips of the ‘‘c
ver’’ in Fig. 4~b! arises from the strong evaporation from th
location. Also, when two drops are placed next to each ot

FIG. 6. ~a! The mass of the dropM vs time t. ~b! The rate of
mass loss by evaporation,dM/dt, normalized to 0% relative hu
midity and 20 °C vs the radius of the drop. The data is well fit
the form aR indicating that the evaporation rate is diffusion lim
ited. The fitting parametera516.160.4 g/cm s is in excellent
agreement with the value of 16.5 g/cm s, calculated from Eq.~A2!.
e
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their vapor fields overlap and there is less evaporation, he
less deposition, in the region of greatest proximity@see Fig.
4~c!#.

By photographing the drop from the side, we measu
the shape of the interface at various times. These data
plotted in Fig. 7 for several equally spaced intervals in tim
The solid lines running through the data are fits to Eq.~3!
using the same parametersR and t f for all fits. Given the
good agreement with the data, our assumption of Eq.~3!
appears reasonable.

Another feature demonstrated by the data in Fig. 7, is
duration of the pinning. A drop of pure liquid~i.e., without
solid components! drying on a substrate is thought to evolv
in two distinct modes: an initial pinned phase, in which t
base of the drop stays constant and the contact angle
creases, followed by a second unpinned phase, in which
base shrinks but the angle remains fixed@15,16#. Our obser-
vations of ring-forming drops indicate that the second ph
is absent so that the addition of a solid component to
liquid that accumulates at the contact line alters the dynam
of the contact line. In this sense, we believe that the dro
self-pinning: the initial roughness or chemical heteroge
ities of the substrate provides a foothold on which the c
tact line first sticks; the accumulation of material at the co
tact line, by the process we have been discussing, t
apparently strengthens the pinning, and eventually takes
as the primary source of pinning.

The diffusion-limited theory predicts a velocity dive
gence at the contact line that depends on the contact an
The velocity in the fluid was measured by tracking the m
tion of 1-m microspheres in a drying drop, a small fraction
which were fluorescent. A region extending two-thirds of t
way out from the center of the drop up to the contact li
was imaged by fluorescent microscopy and recorded on
eotape. At roughly 80% of the drying time the depth of t
liquid became comparable to the depth of field of the le
and particles at all depths were in focus. At this stage
contact angle was around 0.2 rad, and the corresponding
ponent for the velocity wasl50.4760.01. Several two-sec
sequences of images were digitized at 6 Hz and proce

FIG. 7. Plot of the position of the interface above the substr
vs distance from center in units of pixels. The data are taken
equal intervals of time. The solid lines running through the data
fits to a circular profile with the same value ofR andt f used for all
fits.
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PRE 62 761CONTACT LINE DEPOSITS IN AN EVAPORATING DROP
using image analysis algorithms for tracking particles@17#.
The velocities were binned on a logarithmic scale and plo
vs log10(R2r) in Fig 8. We measured an exponent of 0.
60.06~the uncertainty arises from65 m uncertainty in the
position of the contact line!, which is within error of the
predicted value of 0.4760.01.

Several morphological features of the deposition from
drying drop can be appreciated from Eq.~10!. Three identi-
cal drops were prepared. The first was allowed to evapo
normally. The second was mounted on a pedestal and
rounded by a bath of water such that the level of the b
coincided with the base of the drop. In this case, the eva
ration rate is to good spatially uniform approximation. T
third drop was surrounded by a chamber with a small h
above the center of the drop so that evaporation prima
occurred at the center. The results of the experiment
shown in Fig. 9. The first and second drop produced ring
deposits, whereas the third produced a uniform deposit. A
shown schematically to the right of each picture in Fig. 9,
evaporation rates of drops 1 and 2 differ from the profile
the drop and, therefore according to Eq.~2!, give rise to a
nonzero velocity that is able to rearrange the mass within
drop. However, the third drop had an evaporation profile t
was qualitatively similar to the profile of the drop. This pr
duced little redistribution of the solute.

The difference in the thickness of the rings of drop 1 a
2 can also be accounted for qualitatively by our theory. T
theory predicts that the first ring will grow at an early time
t2/(11l) and that the second ring will grow ast2 @because
Js(r ,t)5Jo is constant and thereforel50]. Since the two
curves must tend towards the same value at the end o
drying ~i.e., all the mass must be transferred! the initial
growth rate must be larger for the singular evaporation ca
The inner edge of the ring can be considered as a solid-liq
interface that moves inward as material arrives. The pro
gation velocity of the interface is inversely proportional
the height of the liquid surface there since the deposited
terial piles up to heighth at that point~i.e., the solute piles up
to the maximum height allowed by the liquid surface!. The
height is frozen in by the solute accumulated at earlier tim
a faster initial growth rate leads to a freezing in of a larg
height. Therefore the interface velocity is smaller and thin
rings are grown.

FIG. 8. The log of the velocity of solutev vs the log of the
distance from the contact line,R2r . The solid line is the best fit to
a power law and yields an exponent of 0.54.
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Using the same experimental setup as we used to mea
the velocity, we counted the total number of microsphe
arriving at the contact line at early times. This data is plot
in Fig. 10~a!. The solid curve overlaying the data is a on
parameter fit to Eq.~10! with the exponent determined from
the measured contact angle. The prefactor to Eq.~10! is

l fN tanuc

2 S ~dV/dt!~11l!

2lpR22l tanuc
D 2/(11l)

~12!

wherel is the length of the contact line observed,fN is the
number of microspheres per unit volume, anddV/dt is the
evaporation rate of the drop in units of volume per unit tim
which can be approximated byV/t f , whereV is the initial
mass of the drop andt f is the total drying time. Despite the
excellent fit to the expected power law there is a discrepa
in the value of the prefactor: given the parameters of
experiment, the predicted value of the prefactor is 3.5 but

FIG. 9. Photographs of the resulting deposit left by three id
tical drops dried under different conditions are shown in the
column. The first was allowed to evaporate normally. The sec
was mounted on a pedestal and surrounded by a bath of water
that the level of the bath coincided with the base of the drop. In
case, the evaporation rate is to good approximation spatially
form. The third drop was surrounded by a chamber with a sm
hole above the center of the drop so that evaporation prima
occurred at the center. The radius of the initial drop was appro
mately 4 mm. The evaporation rate is plotted schematically in
right column. As discussed in the text, the first drop has a sing
profile, the second drop has a uniform profile, and the third ha
profile that is largest at the center and goes to zero at the edge
second curve~dashed line! in the right column represents th
change of the interface height. When the change of the inter
height is different from the evaporation profile, a ring is produc
as in the first and second drop. However, if profiles are similar t
a uniform deposit is formed. Also note the difference in the ring
thickness in~a! and ~b!.
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fit in Fig. 10~a! gives a value of 1.7. Therefore, at early tim
only about 50% of expected solute is reaching the edge.

Figure 10~b! shows data for the growth of the rin
throughout the drying time. Superimposed on the data
one-parameter fit of the data to a curve obtained by num
cal integration of Eq.~11!. The theoretical curve is as ex
pected from the above analysis: a steadily increasing gro

FIG. 10. ~a! The number of microspheres~N! arriving at a sec-
tion of the contact line of lengthl vs timet. For this particular run
t f5326 s, fN55.43106 mm23, l 521 mm, R52.08 mm, and
uc50.26 rad. The solid line is a fit toN5Np(t/t f)

1.38, which yields
a value of 1.7 forNp . As elaborated on in@11#, the No and to are
adjustments to compensate for the transients as the evaporatio
decays to its steady-state value. For this plot,No was set to 2 andt0

was set to 2.~b! N vs t measured throughout the drying time.~c!
Shows a blow up of the late-time behavior~note change to linea
scale!.
a
ri-

th

rate at early times~power-law behavior! followed by a late-
time surge in the growth rate. The fit accounts well for t
early time behavior, as it did in Fig. 10~a!, however, the
theory fails to predict a late-time surge as great as the
seen experimentally. If we force the theory curve to term
nate at the same point in the (N,t) plane as the data, then th
theory curve will be offset above the data by a multiplicati
factor, which for this data set is about 2. This is in agreem
with the 50% shortfall we found above. To summarize, t
experimental data shows and the theory predicts a comp
transfer of the solute to the contact line, however, the the
predicts that the material arrives at the contact line ear
than it actually does.

The mass distribution of solute was measured through
the drying time. A 1-m l drop of 0.1-mm fluorescent micro-
spheres at 1024 volume fraction was placed on a microsco
coverslip, isolated from ambient light sources and air c
rents, and imaged using fluorescent video microscopy.
intensity of fluorescent light,I (r ,t), was calibrated and
found to be proportional to the number of particles prese
A representative set of results forI (r ,t) is shown in Fig. 11
for the drop at several stages of evaporation. The solid li
are the profiles for the same reduced time,t/t f , calculated by

rate

FIG. 11. Intensity of light,I (r ,t), for various times from a drop
containing flourescent microspheres vs the scaled radiusr /R. The
intensity of light is proportional toh(r ,t)c(r ,t) and the factor of
proportionality is determined by comparingI (r ,0) with
h(r ,0)c(r ,0). The solid lines are curves numerically calculat
from Eq. ~9! and converted into intensity curves using the prop

tionality factor. The systematic bulge aroundr̃ .0.8 corresponds to
an unanticipated congregation of solute on the surface of the d
The growth of the ring can be seen in the inset.
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PRE 62 763CONTACT LINE DEPOSITS IN AN EVAPORATING DROP
numerical integration of Eq.~9!.
Comparison of the calculated curves with the data s

gests the presence of an extra solute aroundr .0.8R. The
effect is more pronounced in drops with larger-sized mic
spheres where we observe directly a layer of excess mat
as shown in Fig. 12~a!. The layer responds to mechanic
probing with a needle as though it were a solid film; it resi
shear and it can be fractured. Identifying the surface la
with the excess density in Fig. 11, we estimate from
integrated difference between the observed and theore
profile that the surface layer accounts for 10% of the to
solute mass in the drop. We observe that the surface
grows at the expense of the ring as the solute is rerouted
to the center by a inward surface flow. At late times t
surface cap breaks up and the particles in it are dragge
the contact line.

VI. DISCUSSION

Additional effects not accounted for in the theory c
modify the deposition significantly. Among these are verti
mixing, viscous stresses, effects of solute interaction, di
sion, sedimentation, and Marangoni effects. A homogene
vertical distribution of solute was assumed for Eq.~9!, which
is equivalent to assuming that vertical mixing is vigorous
is unlikely that this is physically realized, so that the theo
would need to be modified to include stratification effec
Viscous stresses may in principle perturb the drop away fr
the spherical-cap shape we assumed. As the velocity
verges near the edge so does the viscous term in Na
Stokes equation (¹2v;]z

2v;v/h2) so that at some finite
distance from the edge the surface of the drop will be d
torted. For a low viscosity liquids, such as water, this len
scale is insignificant. However, for higher viscosity liquids
may become a significant fraction of the radius. For a m
concentrated solution the viscosity of the fluid is altered a
the physical dimensions of the ring may be large. Both
these effects may distort the shape of the drop. If the siz
the solute particles is small, diffusive currents become co
parable to the advective currents and Eq.~9! would need to
be modified. Finally, if the size of the solute particles b
comes too large, sedimentation of the solute will affect
amount of material arriving at the edge. This may acco
for some of the shortfall discussed earlier. These effects
vide additional avenues to be explored in surface deposi
processes.

We believe that Marangoni flows are a significant fac
in our experiments. For a water drop drying on a glass s
strate the apex of the drop ought to be coolest, despit

FIG. 12. ~a! The surface excess layer of solute revealed by dr
ging a wire through the drop. The radius of the drop was appro
mately 2 mm.~b! Circulation pattern in drop due to temperatu
driven surface flow.
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being the point of least evaporative heat loss, because
furthest from the substrate, which is the drop’s primary h
source. Surface tension decreases with rising tempera
and therefore the surface tension would be greatest at
pole of the drop. This gradient would drive a radially inwa
surface flow. However, it is difficult to obtain a quantitativ
prediction of the flow speed because there are a numbe
additional effects of unknown strength—such as surfa
pressure due to an adsorbed surfactant or solute, and su
viscosity in the presence of adsorbed molecules—that ten
counteract Marangoni flows.

Nonetheless, the phenomena we observe in the drop
qualitatively in agreement with what is expected given t
temperature distribution. We expect and observe an inw
flow. We also expect that there will be a stagnation po
beyond which the surface flow will be outward. This revers
of direction would occur at the radial point at which the dr
on the surface from an underlying liquid, which is divergin
with the velocity as the contact line is approached, ov
comes the oppositely directed surface tension gradient@see
Fig. 12~b!#. We observe such a stagnation point. Furth
more, as the drop dries we expect that this point will mo
towards the center of the drop because the overall scal
the bulk flow velocity, and hence the drag on the surfa
increases as the height of the drop decreases. The ultim
dispersal of the surface cap observed experimentally is c
sistent with this scenario.

Given the 50% shortfall measured for the ring growth,
is appropriate to question the success of our theory.
pragmatic answer is that the theory is an increasingly use
predictive tool in the limit of small solute particles. The rin
growth measurement was done with 1-mm particles and the
theory could account for 50% of the observed behavior.
the concentration measurement 0.1-mm particles were used
and accuracy of the theory improved significantly. For a s
ute of molecular size there is no discernible stratification
is seen in drops of 1-mm-sized microspheres~Fig. 12!. An-
other answer is that our theory captures the essential me
nism for ring formation and that the understanding achiev
through it is not diminished by the presence of other types
flows that ultimately do not alter the fact that the 100%
the solute is transferred to the edge.

VII. CONCLUSION

Despite its shortcomings, our theory is a useful tool
understanding and predicting the ring-formation process
accounts for the widespread occurrence of solute rings,
cause few ingredients are required—a weakly pinning s
strate and evaporation—and these ingredients occur c
monly; it accounts in a natural way for nearly comple
transfer of the solute to the periphery; and it indicates h
manipulating the vapor field around the drop provides
means of controlling the deposition process.

The potential for controlling deposition on a surface usi
this contact line deposition remains virtually unexplore
Two aspects seem particularly promising. On the appl
side, this mechanism provides a means of concentratin
deposit into fine lines, which may rival or exceed what
currently possible using lithographic or etching process
Such lines can be useful for exploring electronic quant

-
i-
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confinement or for writing information at high densit
Achieving narrow deposits requires increasing dilution of
depositing solute. Thus we are led to explore contact-
deposition when the solute becomes more and more di
On the fundamental side, our mechanism seems to rely
mutual reinforcement between contact-line pinning a
deposition. This reinforcement appears crucial to the ri
forming process, but has yet to be explored. This reinfor
ment must weaken, and ultimately fail, as the solute is
luted. The mechanism of this failure would seem to ha
widespread implication of its own. Here too, the regime
interest is the regime of highly dilute solutes. Our studies
this regime are in progress.
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APPENDIX: THE SOLUTION TO THE BOUNDARY
VALUE PROBLEM OF A LENS-SHAPED CONDUCTOR

The problem of a spherical cap on an impermeable s
strate can be replaced by the problem of a lens~as shown in
Fig. 3! in free space. The general solution for the elect
static potential of a charged conductor with a shape defi
by two intersecting spheres is given in Ref.@18#. This solu-
tion for our specific problem~translated into the language o
diffusion! is

u~a,b!5u`1~us2u`!A2~cosha2cosb!

3E
0

`

dtP21/21ıt~cosha!

3
coshuct cosh~2p2b!t

coshpt cosh~p2uc!t
, ~A1!
,
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whereP21/21ıt(x) are Legendre functions of the first kind,a
andb are toroidal coordinates in which toroidal surfaces a
labeled witha and spherical surfaces withb, and the two
surfaces are atb153p2uc and b25p1uc . Since we are
interested in the evaporation at the surface we calculaJ
52D¹u normal to the surface:

Js5D~cosha1cosb!]buub53p2uc

52D~us2u`!Fsin~uc!/21A2~x

1cosuc!
3/2E

0

`

dtP21/21ıt~x!t

3
coshuct tanh~p2uc!t

coshpt G , ~A2!

wherer 5RA12x2/(x1cosuc) whereR is the radius of the
drop andx is a parameter ranging from 0 to 1.

The value of Eq.~A2! was computed numerically an
compared to the approximate form given in Eq.~6!. In Fig.
13 bothJ exact andJ approximate are plotted. The inset is
plot of the percent difference between the twoJs; as can be
seen the error is no greater than 10%.

FIG. 13. The value ofJs calculated with the full analytic form
compared to the approximate form. The two curves are appr
mately equal. As is shown in the inset, the upper bound on
difference is 10%.
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