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Intermittent chaos in electron scattering
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The motion of an electron in a uniform magnetic field and positive point charge is not integrable. Phase
space is often divided between regular regions farther from the positive charge and chaotic regions nearby. As
the electron transits the chaotic region, intermittent chaotic behavior ensues. An analytic method to estimate the
location of the transit parameters is also developed.

PACS numbds): 05.45.Ac, 41.20.Gz

The seemingly simple problem of a particle moving in a 9?B2R? (1-r?)2 q0
uniform magnetic field and the electric field of a stationary V(r,z)= s 5 R
charged particle is in fact a problem of considerable com- m r 4megR(r +2z°%)

plexity, since the equations of motion are in general not in- . . . I L
tegrable. Electron-ion collisions in a magnetoplagifidhe To Obga'” a d|menS|onI(_ess H_amlltoman, one divides by
collision takes place inside the Debye sphered the motion  (4BR)7/(8m) to get the dimensionless potential energy,
of charged particles in an electric discharge between a
charged sphere and a distant external conductor in a uniform V(r,z)=(1fk—r)2—
magnetic field 1] are examples of physical situations where ' (r24z3)v2’
this problem arises. The classical limit of a hydrogen or Ry-
dberg atom in a strong magnetic field also falls in this cat-where
egory. It has been studied by several autfj@is but here a
different approach is taken. _ 2mQ

In particular, we analyze in detail a new type of chaotic c== meoqB2R3 (5)
behavior exhibited by this system, which we name “inter- 0
mittent chaos.” Typically, an electron far from the scattererThe minus sign was chosen since we will be concerned with
moves in a regular nonchaotic orbit, then the orbit becomeghe motion of an electron in an attracting electric field, so
chaotic as the scatterer is approached, and later the trajectoqy/q<0 andc>0. Whenc—0, there is no electric field and
becomes regular again as the electron exits the chaotic rgne problem is integrable, while—o eliminates the mag-
gion. This has been noticed by Delesal. (Ref.[2]), but no  netic field, reducing the equations to the integrable Kepler
analysis has been given. Here this phenomenon is analyzefioblem.

in detail, and the parameter regions for this behavior are The equations of motion in these dimensionless units are
found. The analysis was helped by a novel parametrization

4

of the Hamiltonian. . IV . rc
The Hamiltonian is in cylindrical coordinates, r=-— 0_r:2(1/r —r- (rz+—22)3,2 (6)
P,—qBr?/2)?
H=P?(2m)+ Pf/(2m)+M - \Y, zc
2mr? 7=——=——— (7)

Jz (r2+72)32"
q Q

m(er—z)uz (1) These two second-order equations are rewritten into four
0(re+z

first-order equations, with the variables, v, , andv,. Due

_ o ) to energy conservatioil =E=const, only three variables
whereB is the magnetic field strength,is the charge of the  are independent, so the effective phase space is three-
moving particle(in this paper an electrgnand Q is the  dimensional.

stationary charge. The total energy as wellRsare con- Numerical integration can be performed for given values
stants of motion. Since phase space is four-dimensional, thet £ and ¢, and surface of section plots generated. Ehe
system is not integrable unless other conserved quantities areg plane withr andv, plotted is convenient in generating
found. It is convenient to write the constaR,=qBR’/2,  these plots. There are two classes of parameter regions. For
whereR is the radius and wherée/dt=0 (points of zero <, the electron is trapped in the field of the positive

angular momentum One now writes charge, whileE>0 corresponds to electron scattering. Fig-
5 5 ure 1 shows surface of section plots 60 andc=2. As
H=P7/(2m)+P;/(2m)+V(r,z), (2)  one would expect, whek is small enough to contain the

electron near the bottom of the potential well, the motion is
where, introducing the dimensionless lengtliR®—r, z/R  nearly regular and becomes more and more chaotic Bith
, increased.
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FIG. 2. Trajectory forc=2, E=—-0.2. (8 T=100. (b) T
=10000.

In Fig. 2(a), one can see that the trajectory consists of two
parts: a chaotic one for small values |af and apparently
regular helical motion for larger values {#|. The chaotic
motion is intermittent; as soon as the particle moves farther
away from ther axis, the motion becomes regular, but as it
returns to the smallz| region, chaotic behavior is reestab-
lished and lasts as long as the particle stays in this region.

In order to understand this behavior, it is useful to study
the scattering of the electron, launched fr¢zi>1 andE
(c) >0. Whenz is sufficiently large, the electric field can be
ignored. The motion is integrable with a helical path, con-
sisting of circular motion perpendicular Baround the guid-
ing center, which moves with constant velocity along the
magnetic-field lines. The position of the guiding center is

For Fig. Xa), E=—2 close to the minimum potential. approximately at =1 for electrons that do not encircle the
The plot looks regular, and is divided between a large islanéxis. Expanding the potential nea+= 1 gives
on the right and a small one on the left. Figur®)lwith E
= —1.6 shows a typical transition to chaos, with several is- V(1+e,0)=4€2+0O(€3) (8)
lands and a chaotic region comparable in size to the regular
islands. Finally, in Fig. (c) with E=—1, chaos clearly
dominates. The large island in Figgajlland 1b) has shrunk
considerably. .

The trajectories plotted in thez plane are more interest- €+8e=0 C)
ing. Figure 2 shows the plot far=2 andE=—0.2, where
the surface of section plot is completely chaotic. Figu@@ 2 from which the gyration period i¥ = 7/+/2.
shows a short-timeT(= 100) trajectory. The dotted line rep- As |z| is reduced, the effect of the electric field can no
resentsV/(r,z) =E, which limits the extent that the trajectory longer be ignored. It gives rise to & B drift and accel-
can move. The long-timeT(=10000) behavior is shown in eration of the guiding center along tlilines. As long as
Fig. 2(b). Essentially all available space is visited by this certain approximations are valid, the guiding center approxi-
trajectory, as one would expect for parameters where alination can be used, resulting in an approximate conserved
KAM tori have been destroyed. quantity, the adiabatic invariafi8] rendering the equations

.25

FIG. 1. Surface of section plots in tlze= 0 plane, withc—2. (a)
E=-2,(b) E=—1.6, and(c) E=—1.

resulting in the equation of motion
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FIG. 3. Trajectories of electron scattering, wih=0.25.(a) c=0.2, (b) c=0.5,(c) c=1, and(d) c=1.4.

of motion integrable. In terms of the potentM(r,z), there If the parameters are such that during the motiog
is oscillation aroundr =1, with motion in thez direction <1 everywhere, the motion can be expected to be regular
with the adiabatic invariant without chaotic transitions. For=1, energy conservation
gives
§ v, dr=const (10 c
E=vZ2+v22— —. (13)

as long as there is no significant change of the potential 1+27°

function from one period to the next, in the frame moving ) )
with the guiding center. In the-z plane, the trajectory is Theé maximum value ob, is reached whenw,=0 andz
sinusoidal with slowly changing wavelength and amplitude.=0 to givev,=y2(E+c), and yields the condition for the

Such trajectories are seen in FigaR absence of chaos,
The adiabatic invariant equatiqd0) breaks down when
the distance covered by the guiding center during an oscilla- E+c<1/2. (14)
tion period 8=v,T=v,m/\/2 corresponds to a significant
change of potential, In fact, in the examples computed in Fig. 1 as well as other

cases studied, one finds tHat-c~1/2 is a reasonable ap-
proximation for the dividing line between regular and cha-

5d—ZV(1,z)%V(1,z). (1D otic behavior on surface of section plots. This becomes even
more clear when scattering problems wih-0 and the ini-
This gives forz critical (z.), where chaos sets in, tial [z/>1 are computed, as shown in Fig. 3. In all four
figures,E=0.25 and the same initial conditions=1, z=
zg—wvzzcl\/val:O. (12 —50, v,=65) are chosen. In Fig.(8, c=0.2 andE+c

=0.45<0.5. The trajectory moving up from large negatwe
This equation has real roots only foy>(22/m)~1 andis  is almost unchanged as it passes thexis. In Fig. 3b), ¢
an approximate condition for the onset of chaos. In fact=0.5 andE+c=0.75>0.5. There is now a clear change in
numerical investigation of the transition region between orthe helical motion neaz=0, indicating a breakdown of the
der and chaos in Fig.(8) shows that this is a good approxi- adiabatic invariant close to theaxis. In Fig. 3c), c=1 and
mation. Note that in this case<0 and the derivation did E+c=1.25. The adiabatic invariant has changed signifi-
not assumeé=>0. cantly as ther axis is passed. In Fig.(8), c=1.4 andE
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+¢=1.65. The chaotic region occupies now a significant parthis caseP,— —P_, and in Eq.(4) [(1/r)— r]? is replaced

of the r-z plane, resulting in trapping of the particle for a by [(1/r)+r]?. However,[(1/r)+r]?=[(1/)—r]?>+4, so

finite time, and after escaping the chaotic region it movesnly a constant is added to the potential, leaving the equa-

back towardz— —<, with a changed adiabatic invariant. tions of motion in ther-z plane unchanged and the adiabatic

Changing the initial conditions can lead to the ejection aftelinvariant equation(10) still valid. The motion in¢ is of

a chaotic trapping period, either in the positive or negative course different; the guiding center approximation involving

direction. flux conservation inside the particle trajectory no longer
It seems, based on these computations, that the approxiolds. Trapped and free orbits are now separatel-at,

mate condition for the transition between regular and chaotiand Eq(14) becomesE +c<4.5.

behavior,E+c> or <1/2, is remarkably accurate. In factit  To conclude, the system studied exhibits transitions from

also works well forE<O. In Fig. 1@, E+c=0 and the regular to chaotic behavior. A good approximation of the

motion is quite regular; in Fig.(B), which shows the tran- parameter range where this occurs has been derived.

sition to chaosE+c¢=0.4; and in Fig. {c), dominated by

chaotic motion,E+c=1. Computations carried out far

=1 andc=3 have yielded similar results. Finally, the case The work of E.E.K. and J.L.G. has been supported by the

of the electron encircling the axis can also be treated. In AFOSR.
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