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Intermittent chaos in electron scattering

George Schmidt, Erich E. Kunhardt, and Joseph L. Godino
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~Received 23 March 2000!

The motion of an electron in a uniform magnetic field and positive point charge is not integrable. Phase
space is often divided between regular regions farther from the positive charge and chaotic regions nearby. As
the electron transits the chaotic region, intermittent chaotic behavior ensues. An analytic method to estimate the
location of the transit parameters is also developed.

PACS number~s!: 05.45.Ac, 41.20.Gz
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The seemingly simple problem of a particle moving in
uniform magnetic field and the electric field of a stationa
charged particle is in fact a problem of considerable co
plexity, since the equations of motion are in general not
tegrable. Electron-ion collisions in a magnetoplasma~if the
collision takes place inside the Debye sphere! and the motion
of charged particles in an electric discharge betwee
charged sphere and a distant external conductor in a unif
magnetic field@1# are examples of physical situations whe
this problem arises. The classical limit of a hydrogen or R
dberg atom in a strong magnetic field also falls in this c
egory. It has been studied by several authors@2#, but here a
different approach is taken.

In particular, we analyze in detail a new type of chao
behavior exhibited by this system, which we name ‘‘inte
mittent chaos.’’ Typically, an electron far from the scatte
moves in a regular nonchaotic orbit, then the orbit becom
chaotic as the scatterer is approached, and later the traje
becomes regular again as the electron exits the chaotic
gion. This has been noticed by Deloset al. ~Ref. @2#!, but no
analysis has been given. Here this phenomenon is anal
in detail, and the parameter regions for this behavior
found. The analysis was helped by a novel parametriza
of the Hamiltonian.

The Hamiltonian is in cylindrical coordinates,

H5Pr
2/~2m!1Pz

2/~2m!1
~Pw2qBr2/2!2

2mr2

1
q

4p«0

Q

~r 21z2!1/2
, ~1!

whereB is the magnetic field strength,q is the charge of the
moving particle ~in this paper an electron!, and Q is the
stationary charge. The total energy as well asPw are con-
stants of motion. Since phase space is four-dimensional
system is not integrable unless other conserved quantitie
found. It is convenient to write the constantPw5qBR2/2,
whereR is the radius and wheredw/dt50 ~points of zero
angular momentum!. One now writes

H5Pr
2/~2m!1Pz

2/~2m!1V~r ,z!, ~2!

where, introducing the dimensionless lengthsr /R→r , z/R
→z,
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V~r ,z!5
q2B2R2

8m

~12r 2!2

r 2
1

qQ

4pe0R~r 21z2!1/2
. ~3!

To obtain a dimensionless Hamiltonian, one divides
(qBR)2/(8m) to get the dimensionless potential energy,

V~r ,z!5~1/r 2r !22
c

~r 21z2!1/2
, ~4!

where

c52
2mQ

pe0qB2R3
. ~5!

The minus sign was chosen since we will be concerned w
the motion of an electron in an attracting electric field,
Q/q,0 andc.0. Whenc→0, there is no electric field and
the problem is integrable, whilec→` eliminates the mag-
netic field, reducing the equations to the integrable Kep
problem.

The equations of motion in these dimensionless units

r̈ 52
]V

]r
52~1/r 32r !2

rc

~r 21z2!3/2
, ~6!

z̈52
]V

]z
52

zc

~r 21z2!3/2
. ~7!

These two second-order equations are rewritten into f
first-order equations, with the variablesr, z, v r , andvz . Due
to energy conservationH5E5const, only three variables
are independent, so the effective phase space is th
dimensional.

Numerical integration can be performed for given valu
of E and c, and surface of section plots generated. Thez
50 plane withr andv r plotted is convenient in generatin
these plots. There are two classes of parameter regions
E,0, the electron is trapped in the field of the positi
charge, whileE.0 corresponds to electron scattering. Fi
ure 1 shows surface of section plots forE,0 andc52. As
one would expect, whenE is small enough to contain th
electron near the bottom of the potential well, the motion
nearly regular and becomes more and more chaotic witE
increased.
7512 ©2000 The American Physical Society
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For Fig. 1~a!, E522 close to the minimum potentia
The plot looks regular, and is divided between a large isla
on the right and a small one on the left. Figure 1~b! with E
521.6 shows a typical transition to chaos, with several
lands and a chaotic region comparable in size to the reg
islands. Finally, in Fig. 1~c! with E521, chaos clearly
dominates. The large island in Figs. 1~a! and 1~b! has shrunk
considerably.

The trajectories plotted in ther -z plane are more interest
ing. Figure 2 shows the plot forc52 andE520.2, where
the surface of section plot is completely chaotic. Figure 2~a!
shows a short-time (T5100) trajectory. The dotted line rep
resentsV(r ,z)5E, which limits the extent that the trajector
can move. The long-time (T510 000) behavior is shown in
Fig. 2~b!. Essentially all available space is visited by th
trajectory, as one would expect for parameters where
KAM tori have been destroyed.

FIG. 1. Surface of section plots in thez50 plane, withc22. ~a!
E522, ~b! E521.6, and~c! E521.
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In Fig. 2~a!, one can see that the trajectory consists of t
parts: a chaotic one for small values ofuzu and apparently
regular helical motion for larger values ofuzu. The chaotic
motion is intermittent; as soon as the particle moves fart
away from ther axis, the motion becomes regular, but as
returns to the smalluzu region, chaotic behavior is reestab
lished and lasts as long as the particle stays in this regio

In order to understand this behavior, it is useful to stu
the scattering of the electron, launched fromuzu@1 andE
.0. Whenz is sufficiently large, the electric field can b
ignored. The motion is integrable with a helical path, co
sisting of circular motion perpendicular toB around the guid-
ing center, which moves with constant velocity along t
magnetic-field lines. The position of the guiding center
approximately atr 51 for electrons that do not encircle thez
axis. Expanding the potential nearr 51 gives

V~11«,`!54e21O~e3! ~8!

resulting in the equation of motion

ë18e50 ~9!

from which the gyration period isT5p/A2.
As uzu is reduced, the effect of the electric field can n

longer be ignored. It gives rise to anE3B drift and accel-
eration of the guiding center along theB lines. As long as
certain approximations are valid, the guiding center appro
mation can be used, resulting in an approximate conser
quantity, the adiabatic invariant@3# rendering the equation

FIG. 2. Trajectory for c52, E520.2. ~a! T5100. ~b! T
510 000.
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FIG. 3. Trajectories of electron scattering, withE50.25. ~a! c50.2, ~b! c50.5, ~c! c51, and~d! c51.4.
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of motion integrable. In terms of the potentialV(r ,z), there
is oscillation aroundr 51, with motion in thez direction
with the adiabatic invariant

R v rdr5const ~10!

as long as there is no significant change of the poten
function from one period to the next, in the frame movi
with the guiding center. In ther -z plane, the trajectory is
sinusoidal with slowly changing wavelength and amplitud
Such trajectories are seen in Fig. 2~a!.

The adiabatic invariant equation~10! breaks down when
the distance covered by the guiding center during an osc
tion period d5vzT5vzp/A2 corresponds to a significan
change of potential,

d
d

dz
V~1,z!'V~1,z!. ~11!

This gives forz critical (zc), where chaos sets in,

zc
22pvzzc /A21150. ~12!

This equation has real roots only forvz.(2A2/p)'1 and is
an approximate condition for the onset of chaos. In fa
numerical investigation of the transition region between
der and chaos in Fig. 2~a! shows that this is a good approx
mation. Note that in this caseE,0 and the derivation did
not assumeE.0.
al

.

a-
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-

If the parameters are such that during the motionuvzu
!1 everywhere, the motion can be expected to be reg
without chaotic transitions. Forr 51, energy conservation
gives

E5v r
2/21vz

2/22
c

A11z2
. ~13!

The maximum value ofvz is reached whenv r50 and z
50 to givevz5A2(E1c), and yields the condition for the
absence of chaos,

E1c!1/2. ~14!

In fact, in the examples computed in Fig. 1 as well as ot
cases studied, one finds thatE1c'1/2 is a reasonable ap
proximation for the dividing line between regular and ch
otic behavior on surface of section plots. This becomes e
more clear when scattering problems withE.0 and the ini-
tial uzu@1 are computed, as shown in Fig. 3. In all fo
figures,E50.25 and the same initial conditions (r 51, z5
250, vz565) are chosen. In Fig. 3~a!, c50.2 andE1c
50.45,0.5. The trajectory moving up from large negativez
is almost unchanged as it passes ther axis. In Fig. 3~b!, c
50.5 andE1c50.75.0.5. There is now a clear change
the helical motion nearz50, indicating a breakdown of the
adiabatic invariant close to ther axis. In Fig. 3~c!, c51 and
E1c51.25. The adiabatic invariant has changed sign
cantly as ther axis is passed. In Fig. 3~d!, c51.4 andE
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1c51.65. The chaotic region occupies now a significant p
of the r -z plane, resulting in trapping of the particle for
finite time, and after escaping the chaotic region it mov
back towardz→2`, with a changed adiabatic invarian
Changing the initial conditions can lead to the ejection a
a chaotic trapping period, either in the positive or negativz
direction.

It seems, based on these computations, that the app
mate condition for the transition between regular and cha
behavior,E1c. or ,1/2, is remarkably accurate. In fact
also works well forE,0. In Fig. 1~a!, E1c50 and the
motion is quite regular; in Fig. 2~b!, which shows the tran-
sition to chaos,E1c50.4; and in Fig. 1~c!, dominated by
chaotic motion,E1c51. Computations carried out forc
51 andc53 have yielded similar results. Finally, the ca
of the electron encircling thez axis can also be treated. I
lis
,

rt

s

r
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ic

this casePw→2Pw , and in Eq.~4! @(1/r )2r #2 is replaced
by @(1/r )1r #2. However, @(1/r )1r #25@(1/r )2r #214, so
only a constant is added to the potential, leaving the eq
tions of motion in ther -z plane unchanged and the adiaba
invariant equation~10! still valid. The motion inw is of
course different; the guiding center approximation involvi
flux conservation inside the particle trajectory no long
holds. Trapped and free orbits are now separated atE54,
and Eq.~14! becomesE1c!4.5.

To conclude, the system studied exhibits transitions fr
regular to chaotic behavior. A good approximation of t
parameter range where this occurs has been derived.
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