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Measuring statistical dependence and coupling of subsystems

Andreas Schmitz
Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany
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We investigate recently proposed measures for the statistical dependence of systems with complex dynami-
cal behavior. We consider appropriate model systems, to ensure that influences of individual properties of the
systems are excluded. We demonstrate that it is indeed possible to obtain nontrivial directional information, but
we also argue that the interpretation of this information is difficult.

PACS numbegs): 05.45.Tp, 06.20.Dk

The question for dependencies between measured signals Different approaches to analyze dependencies can be de-
occurs in many applications. First, it can be of interest forrived from information theory. A useful quantity is the mu-
very practical reasons. This is, e.g., the case if one wants tial information
avoid the analysis of redundant information in a huge
amount of measured data. On the other hand, often physi- M(EXY)=1(X)+1(Y) = 1(X,Y), 2

cally different signals are taken from one system and the . .
analysis of the dependence between them can give informdn€re!(X), 1(Y) are the respective Shannon entropies of
the variablesX andY, and|(X,Y) is the joint entropy. For

tion of the hidden dynamics of the system. Finally depen- . T
dependent systems the mutual information is zero. The en-

dency measures are useful tools when dealing with couplelf®® ) " .
systems and studying synchronization. tropies can be calculated with a partition scheme or with the

Aside from the simple existence of dependencies, furthege';erall'z‘?d correlation Slfjm]' < oft
questions occur. These involve driver—response relation- Analyzing time series from two or more systems Is often

ships, coupling directions and similar items. To answer suctnotivated by the presumption that the underlying systems

questions, asymmetry of the used measure is a minimal rér® coupled in some way. Aside from the strength of the
quirement. Although many symmetric quantities can be decoupling, also the direction of the coupling is of interest.

symmetrized formally, e.g., by using delays, it is desirable toHowever, symmetric quantities such as the mutual informa-

Use measures that are asymmetric by construction. One cla@n cannot deliver information about the direction.
An approach to extract mutual dependencies was pre-

of such quantities was introduced recerdy4] and we will e
discuss its properties in the later part of this Brief Report. Sented recentlj2,3]. There, the quantities are based on mean
distances in phase space or embedding space. x|et

The simplest and usually first method to search for depen=

dencies is to consider linear correlations. XeandY be two = (Xi Xi+7» - - - Xi4+(m-1);) be the N embedding vectors,
. . . — — wheremand 7 are embedding dimension and the time delay.
random variables with expectation valugs-E[X] andy

- . ; . _ We will use 7=1 throughout the paper. Further, let
=E[Y]. The covarianc€(X,Y) is then given by the expec ri(1), j=1, ... Kk, be the time indices of thienearest neigh-

tation valueE[(x—x)(y—y)]. For time series, the expecta- phors ofx, . The squared mean distance from these neighbors
tion valuesE[ ] are estimated by averaging over time, which g then given by

yields the estimator

1 k
L N RO(X)= K ;1 (Xi_xri(j))z- (3
CXYV)=5 2 (6=x)(yi=Y), (1)

=1 Analogously, R (Y) can be defined by exchangiXgandy.

The corresponding time indices of tkaearest neighbors of

for the covariance, with being the time index. While from i are calleds;(j). Further, theconditionaldistance
nonvanishing covariance a dependency betwéandY can K

be deduced, the opposite conclusion is not allowed. One pos- (k) _- Y 2

sible generalization of Eq1) is to introduce a time lag REXIY) = k ;1 (i =X5j)) @
between the two time series. With this, much additional in-

formation can be gained about dynamical properties of thean be defined, which only differs froR{(X) in the indi-
underlying processes. To avoid the analysis of such vast irees used in the second term. For independent systems we
formation, we will only consider static, i.e., equal time, de- expectR(X|Y)>R{(X), while strongly dependent sys-
pendencies here. Time-delayed generalizations of the megems yield Ri(k)(X|Y)~Ri(k)(X). With these, a measure for
sures used here are quite simple. Another useful modificatiogependence, such as e.g.,

of Eqg. (1) is the introduction of powers different from one,

=

making it nonlinear. The number of higher moments, how- 1 N RO(X)
ever, proliferates so fast that the computational price for be- SK(X|Y)= N > ) (5)
ing able to find any statistical dependence is prohibitive. =1 RI(X]Y)
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FIG. 2. H(X|Y) andH(Y|X) for coupled Haon maps withb,

FIG. 1. H(X]Y) andH(Y|X) for coupled Haon maps witho,
=0.3 andb,=0.1.

=b,=0.3.

can be defined that takes values from nearly zero for indesystemb,=0.1 is used and Ed9) holds for allC>0. Qui-
pendent systems to one for strongly dependent and identicabga et al. give further examples and find E) holding

systems. A measure with similar properties is generally[4].
The shown asymmetry dfl is its main advantage over

1 N Ri(N‘l)(X) similar measures for dependence. The caveat of the above
HOX]Y) == > In———, (6)  examples is that the two involved systems already show dif-
N= 0 ROXY) ferent dynamics on their own. They have, e.g., different en-
) ) ) ) N ~ tropies, dimensions etc. and in all the above examples also
which differs fromS only in comparing the conditional dis- 1(Y)=1(X) holds for allC. In this paper we want to address
tance to the mean distance to all other points and using th@e question whether the asymmetryrbrises from differ-
logarithm. Both quantities have proven to be quite useful ingnt properties of the individual time series or it indeed mea-
real data applicationis8] and simple toy modelt]. While S g ;res the direction of the coupling. To achieve this, we have
andH show the same behavior in all cases studied e, 5 construct systems with unidirectional coupling but other-
more suitable to tell the “direction” of the coupling by its \yise completely identical properties.
more prgnounced asymmetry. We will show two simple ex- Therefore, we consider a coupled map Iattibé}, I
ample_s in the following. . . - =1,... L with periodic boundary conditions. In such a
_ To illustrate the behavior dff we consider two unidirec- “ring” of L maps we have translation invariance and no
tionally coupled Heon maps lattice point is singled out. The unidirectional coupling is
introduced as

X;=1.4- X3+ b,X,,
(7) X, =(1—e)f(x)+ef(x7h). (10)
X5=Xq,
Of course, we neetl>2 to get asymmetry and in the fol-
y;=1.4-[(1—C)y,+Cx.]y;+b,ys, lowing examples we usk=100 to ensure that causal influ-
@  ences in the backward direction are negligible. Fo) the
' tent mapf(x)=1—2|x—3| on the interval[0,1] is used.
Ya=Y1- Figure 3 shows that the asymmetry ldfis also present for

Note that the autonomous systetncan use a different pa- this system, wh|le qu.an.tltles I|ke'the entropgire the same

; X for all lattice sites within numerical fluctuations. Thus the
rameterb than the driven system. For the first example we . N .

T . . . asymmetryH does not rely just on the individual properties

useb,=b,=0.3 and calculatél with an embedding dimen- . .
sion m—E)’: and k=20 nearest neighbors. Figure 1 showsOf the two time series.
¥ X|Y_andH Y|>_( i de endencegof the'coug lina strenath Another interesting observation from Fig. 3 is that E).
C(For)values(C>0)7 theptwo Svstems s nchrr)onigze ider?ti- does not hold for alle. There is a crossover at abost
cally which can/e:aéil, be seen % a shary increasel ad -2 And further, we see thBt(X, 1| X,) does not vanish
the¥o|lowin equalit yoiH(X|Y) andH(Y|Xp) This increase for e=1 where the maps should be uncoupled and only be
can also bg sgen y'th other de endence. measures such Sg ffted by one lattice site in every iteration.

wi P u u SThe reason for the latter is that we used two-dimensional

mutual information(Z) or linear correlatior(1). embedding vectorsnf=2) to calculateH, i.e., we analyzed
For weaker coupling we observe a strong asymmetry the dependence between the two vect(,)rs '
H(X|Y)>H(Y|X). 9) X:—l x!
Xl -1 \x X| ) 1 (11)
i+1 i+1

This behavior can also be seen in Fig. 2, where for the driven
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Comparing the distribution®(X,,X,;1) and p(U,V) for
FIG. 3. H(X||X|.+1) andH(X;4|X) for aring of unidirectional  fixed ¢ in Fig. 5, we see that they are also quite similar.
coupled tent maps. Let us concentrate on the right figure to illustrate the be-
havior of the different distances contributingti{U|V) and
where the arrow symbolizes the mépq 1) =x;,; that for  H(v|u). RN-1(U) and R¥(U|V) are squared mean dis-
e=1is the only direct influence between the components ofances from ¢;,v;) in the horizontal direction. While
the two vector_s. IfH is caIcu_Iated without _embeddingn( Ri(N‘l)(U) averages oveall points, Ri(k)(U|V) averages
=1) we get Fig. 4 andi vanishes fore=1 in both direc- gy overk points lying in a thinhorizontalband around;
tions. _ _ containing its nearest neighbors on thaxis. Ifv; lies in the
To understand the inversion of E() for £>0.5, we  jnterval [¢,1—¢], these points are spread over the full
observe that both|, } andx| , , are influenced by ' and  interval [0,1]. Hence, R®O(U|V) and RN-D(U) are ap-
one other neighboring lattice site. The coupling strength proximately of the same order, independent from the fact
determines the corresponding weights. Neglecting the actiofhat the corresponding distributions are not uniform. This
of the map, we can model this by a simple mixing in the changes ify; <& or v;>1—¢ where the points in the band
following form: are bound to a smalleru region and R(U|V)
<RNY(U). with this tendency to quotients greater than 1

u=ey(M+(1-e)y?, in Eq. (6), the average over all pointsi(,v;) yields a posi-
(120 tive H(U|V).
vi=(1—g)y®+ey?, An analogous reasoning can be followed RN ~1)(V)

andR®(V|U). The squared mean distance from v;) to

whereY®={yM 1=1,2,3, are independent and identically & other pointsRIN~Y(V) in the vertical direction is in fact
L ’ e : (N-1) .

distributed random numbers. In the following we shall showOf the same order &; = ~/(U). Both quantities only depend
that even this toy model gives the same nontrivial results a8n their corresponding univariate probability distribution
the coupled map lattice. If we choose uniform distributionsP(U). respectively,p(V) and the symmetric form of Eq.
(YD) =p(YD)=p(Y®)=1 for YO, the resulting (12 obviously impliesp(U)=p(V). R®(V|U) averages
H(U|V) andH(V|U) does in fact show almost the same Over k points lying in the thinvertical band aroundu; .
dependence as the coupled map lattice shown in Fig. Again, R¥(V|U) is of the same order &N~1)(V) if u; lies
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FIG. 4. Same as Fig. 3, but without embedding. FIG. 6. Same as Fig. 2, but without embedding.
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in the interval[ ¢,1—¢] and deviates from it ifJ; is outside  simple mixing, the asymmetry ofl arises from different

this band. But, as can be seen from Fig. 5, the deviation itnformation contents contributed by a third system. For all

much smaller. For smalle, Ri(k)(V|U) deviates from considered unidirectionally coupled systems, the asymmetry

Ri(N_l)(V) by termsO(e?), while the analogous deviation of of H correctly detects the direction of the coupling if the

R¥WIV) from RN D(U) is O(s). Thus, H(V|U)  coupling strength is small.

<H(U|V). Further, we would like to notice that we considered scalar
The above argumentation is only valid for small The time series without embedding only for simplicity reasons.

observed asymmetry dfl arounde=0.5 in Fig. 4 can be To see the necessity of embedding, compare Fig. 2 with Fig.

best understood by E@12). There, replacing by 1—¢ is 6 where the scalar time series was used and the asymmetry

the same as exchangikfandV. This is, of course, only true of H is broken forC>0.6. As for many other methods in

if p(Y®)=p(Y®), respectivelyp(X,_1)=p(X.1) which  nonlinear time series analysi§], a range of embedding di-

holds in both systems considered here. mensions should be applied and compared to get optimal
Our examples show thai is indeed able to find depen- results.

dencies and directional information from time series. But an

interpretation of the two observed systems as “driver” and We would like to thank Peter Grassberger, Thomas Schre-

“response” would only be possible if the existence of a third iber, Jochen Arnhold, and Rodrigo Quian Quiroga for useful

external driving system can be excluded. In the example ofliscussions.
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