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Tsallis maximum entropy principle and the law of large numbers
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Tsallis has suggested a nonextensive generalization of the Boltzmann-Gibbs entropy, the maximization of
which gives a generalized canonical distribution under special constraints. In this Brief Report, we show that
the generalized canonical distribution so obtained may differ from that predicted by the law of large numbers
when empirical samples are held to the same constraint. This conclusion is based on a result regarding the large
deviation property of conditional measures and is confirmed by numerical evidence.
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[. INTRODUCTION sponds to a microcanonical ensemble. If we vigwas a
sampling distribution, then the empirical distribution of fre-
From considerations of multifractals, Tsal[i$] was led quencies obtained from a random sample ... X, con-
to conjecture a generalization of the Boltzmann-Gibbs enverges tou almost surely as grows large. This well-known
tropy given by result, originally due to Boltzman|¥], may be viewed as an
. example of thestrong law of large numbers. Sincg, has a
q global extremum aj, the distribution predicted by extrem-
{1_2 Pi } (1) izing S, agrees with the actual asymptotic empirical distri-
bution.
where p=(py, ...,py) is a probability distribution for a Placing additional constraints when extremizig may
discrete random variable with values, . . . &, andgis any ~ resultin a distribution dependent upgni.e., one at variance
real number different from oné, is defined to be the usual With that predicted from the Boltzmann-Gibbs casel. As
Boltzmann-Gibbs entropy, in agreement with the limjit @ generalization of the internal energy constraint, Tséffs
—1. (Boltzmann’s constant is set to on&lon-Gibbsian dis- has suggested the following constraint be used when extrem-
tributions are obtained by extremizing the Tsallis entropy!Zing Sq:
under special constraints, described below, while usjreg
an adjustable parameter. The parametdypically has no
direct physical interpretation, but when it is used as an ad-
justable parameter the resulting distributions can give sur-
prisingly good agreement with experimental data in a widewhereu is a given fixed constant. Far=1 this of course
variety of fields[2]. In a few casegj is uniquely determined reduces to the usual expectation value constraint. By extrem-
by the constraints of the problem and may thereby bear somieing Eq. (1) subject to Eq.(2), one obtains a solution in
physical interpretatiofn3,4]. general different from the Boltzmann distribution. This solu-
Although the Tsallis entropy preserves all of the familiar tion is given explicitly by
thermodynamic formalism, Curad6] has noted that this is Y(1-q)
true of a much broader class of entropies. Given the myriad pic[1-(1-qa(g—u)]""7, )
of possible entropy functions, one is led to ask why the Ts-

allis entropy is special, and a natural place to look for an_wherea is chosen such that E) is satisfied. It has been

swers is in the theory of large deviatiof@J, which gives a noted that th@s explicit form of the distribution appears to_b_e
probabilistic justification for the maximum entropy principle more ”“mef'ca”y robunft tr;an the more common implicit
in terms of a unique entropy function. In this Brief Report, ©orm for which a= /=72 ,pj' [9]. , _

we compare the probabilities obtained by Tsallis’s maximum FOr =1 the constraint on the expectation may be inter-
entropy principle with the asymptotic frequencies predicted?’€tation as a constraint on the sample mean, the two being
by large deviation theoryi.e., the law of large numbers equivalent for large samples. Thgs, if we consider random
under similar constraints. We find that the two do not inS@MPIesty, ... X, from . that satisfy

general agree.
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If no constraints are imposed upepr(other than that it be then the empirical distributions of such samples will ap-

nonnegative and normalizgdS, is readily seen to be ex- proach the Boltzmann distributiop;><e”“< as n grows
tremized byp;=1/m= ;. (The casey=0 is special, a§yis large.
a constant function. This conclusion, independent df, The question arises of whether a similar interpretation
agrees with the usual Boltzmann-Gibbs result and corremay be made of the constraint in E) for q# 1 and, more
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importantly, whether the resulting empirical distribution con- V. COMPARISON OF THE TWO DISTRIBUTIONS
verges to that given by E@3). As our observable is discrete,
let f, (X1, ... X, denote the observed frequency &fin
the samplexy, ... X,. (There is no obvious interpretation
for continuous valuesWe may interpret Eq(2) to mean

For q=0, Eq. (3) gives pij=[1—a(&—u)]/m, with «
unrestricted, while Eq(9) implies P;=1/m. Clearly, both
agree ifa is arbitrarily chosen to be zero. However, as we
have noteds, is a constant function, so the entropy extrem-

m ization procedure may be expected to break down in this
2, (6= Wfni(xe, ... X,)I=0. (5  case.
=1 ' Takingu to be the equilibrium value, == ;& /m also
results in general agreement betwgeand P for all gq+#0.
We will show that random samples drawn fromthat sat-  |pdeed, by choosingr=8=0 we see thap;=1/m is the
isfy Eqg. (5) do not in general give rise to empirical distribu- unique solution for both Eq3) and Eq.(9). This agreement

tions that converge to the Tsallis prediction of E8). simply reflects the fact that bot8, and S, have the same
global extremum.
I1l. CONDITIONAL CONVERGENCE OF THE EMPIRICAL Whenm=2 the two constraints are sufficient to uniquely
DISTRIBUTION determine the distribution, and for this reason general agree-

o ment is also expected. In particular, we find
The general problem we are considering is the conver-

gence in probability of the empirical frequencief,
=(fn1, ... fom), wheref is a random vector with domain
{€1,...,en}" taking values in the convex seP={p

e R™p;=0,2" ,p;=1}. Unconstrained, an infinite random
samplexq,X,, ..., from w gives rise to a sequence of em-
pirical frequenmes that converge in probablhty;to_Sanovs. Disagreement betweep and P is therefore expected
theorem[7] gives the large deviation rate function for this . .

when m=3. To show this explicitly, we may compuie

convergence to be just the negative of the Boltzmann—Gibb§rom Eq.(3) for an arbitaryu and then search for a value of
entropy: B such that Eq(9) is satisfied wherp is substituted forP.
__ _ The claim is that a singlgg cannot always be found that
I =-S Inm. 6
w(P) (p)—inm © satisfies this equation for all values iolvhenm=3.

Loosely speaking, Sanov's theorem states that for 1hecas&=1/2is particularly amenable to analytic study
ACP, u"[fne Al~exg—ninf,_al ,(p)] for large n (cf. [11] and appears in an early a.ppllca_t|on of the Tsallis en-
the Boltzmann-Einstein formulaV=e%). The asymptotic tropy to tu_rbulence in a two-dimensional e_Ie_ctrc_)n plasma
measureu is the unique minimum of the rate functidn , [12]. For thlg case, Eq3) may be solved explicitly in terms
which is continuous and strictly convex. of u to obtain
When we impose additional constraints dn, the "
asymptotic value changes fromto a new distribution that 1 E 2
minimizes| , under the added restrictiofi,10]. If we con- Pl = (ej—u) = (&—u)(u,—u)| . (11)
dition on the sample mean, for example,

p=Poc((e;—u) M, (u— )19, (10

assuminge;< e, andg#0. It is readily verified that Eq(2)
is satisfied. By solving for and 3, Eqgs.(3) and(9), respec-
tively, may be satisfied as well.

2

m Using a given value ol and the corresponding given

S e, (% X.)=U @) above, we then consider zeros of the functidns where
p itn,i ’ \n ’
=
exd —B(e—up; ]
the resulting asymptotic distribution is no longerbut the di(B)=—F -pi, (12
canonical distributiorP;<e™#4, whereg satisfies 2 exq_B(ej_u)p;1/2]

=1

m
i:El &Pi=u. B fori=1,... m. A plot of these functions is shown in Fig. 1
for selected parameter values. The failure of all three graphs
It is in this sense that finding the asymptotic empirical dis-t0 have a zero at the same valueffndicates thap andP

tribution under Eq(7) is equivalent to maximizing, under ~ are in this case distinct. _
Eq. (8). From this example, one can derive a general necessary

More generally, imposing conditiori5) results in an condition for agreement witR. Suppose that for giveq, e,

asymptotic distribution that minimizek, (maximizesS,) ~ andu there exists a simultaneous solution to both Egs.
subject to Eq(2). This distribution is given implicitly by and(9). [More generallyp may be any probability distribu-
tion satisfying Eq(2).] Substituting the former into the latter

Piocexif — B(ei—u)Pi1], (9  wefind

whereg is such that Eq(2) is satisfied withp replaced byP. pi=exd - B(e—uwpf 1/Z(B), (13
Comparison with Eq(3) shows that botlp andP will agree
wheng—1. where
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FIG. 1. Plot ofd;(B)=pi(B)—p; for e=(0,1,2),q=1/2, and
u=7/11, for which p=(289,121,25)/435. The positive roots are
found numerically to be 0.514509, 0.637 715, 0.360 903 ifor
=1,2,3, respectively.

Z<ﬁ>=;l exd — B(e—u)pf 1. (14)

The value of eaclp; is fixed in terms of the given param-
eters, so a single value ¢f must simultaneously satisfy Eq.
(13) fori=1, ... m.If any p;=0, then Eq(13) cannot pos-
sibly be satisfied, so suppose @ are nonzero. For any
givenj #i,

B=—[Inp;+InZ(B)V/[(g-u)pj 1. (19
Substituting this expression back into Ed@3) gives

(ei—U)p?rl'”f’i_(q_u)p?jmpi' (19
(g=wpf = (e—wp{

InZ(pB)=

The RHS of Eq(16) is invariant under the interchange of
i andj, so it has at mostn(m—1)/2 distinct values. The

LHS, of course, is the same for all choicesiandj. Now,

the RHS will be independent of the choiceiandj if either

(1) g=1, (2 m=2, or (3) pj=p; for all i andj, the latter
being equivalent tau=u, , which is equivalent tow=0.
Assuming none of these three conditions hold, the RHS must
be the same for all choices ofand] if indeed p=P. This
gives a necessary condition for agreement.

V. DISCUSSION

We have compared the probability distribution owvar
states predicted from Tsallis’s maximum entropy principle,
which constrains the normalizeglexpectation to a valua,
to the asymptotic frequencies when the empirizaixpecta-
tion is similarly constrained. The two will always agree if
either(1) g=1, (2) m=2, or(3) u=u, . A specific example
for whichg=1/2 andm=3 was used to demonstrate numeri-
cally that the two distributions may be different. For the case
in which none of these three conditions hold, we derived a
necessary condition to be satisfied by any candidate distribu-
tion in order that it be identical to true asymptotic distribu-
tion.

From the point of view of large deviation theory, the
maximum entropy principle specifies the overwhelmingly
most probable distribution to be realized by a large-sample
empirical distribution under given constraints. The unique-
ness of the rate function in large deviation theory implies
that the Boltzmann-Gibbs entropy plays a special role in de-
termining this most likely distribution. For this reason, en-
tropy functions such as that proposed by Tsallis may give
results that are at variance with actual sample frequencies
except, as observed, in some special cases.
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