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Fluctuation-induced transport in a spatially symmetric periodic potential
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We present an analytical investigation of the fluctuation-induced transport of Brownian particles in a deter-
ministic spatial symmetrical periodic potential subject to Gaussian noises. We found that directed motion of the
Brownian particles can be induced by the correlation between a multiplicative white noise and an additive
white noise. The direction of current is determined by the sign of the noise correlation.
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Since the publication of Magnasco’s 1993 wdidd on  In Eq. (1), £(t) and »(t) are two Gaussian white noises with
forced thermal ratchets, many researchers invested time arero mean. They are correlated in the following manner:
thermal ratchet$TR) [2—5]. To biologists, TR has been in-

vestigated as a possible prototype of a molecular mi@pr (§(DE&(L"))=2Q8(t—t"),

To physicists, TR’s importance relies on its relevance to (2a)
fluctuation-induced transpof8-5]. From Refs.[1-4], one (n(t)np(t"))=2Ds(t—t"),

can conclude that there exists no fluctuation-induced trans-

port in a spatial symmetrical periodic potential if all odd (EM) (1) =(n(DE))=21/QDs(t—t").  (2b)

moments of the noise are zero. It should noted that the stud-

ies in[1-5] are subject to the following restriction&t) No  Here,\ denotes the intensity of correlation betwegh) and

quantum effect is included?) only the overdamped Brown- 7(t). Q and D are the noise intensitieg;(x) and g,(x),

ian motion is considered with inertia effect neglecté8)  multiplicative functions, can be nonlinear in general. We as-

only uncorrelated noises are studied. In 1997, Rgf.con- sume that Eq(1) is a Stratonovich stochastic differential

sidered the quantum effect. And, in 1998, Réf] gave a equation. Employing the technique we developed earlier in

study of underdamped ratchets. In recent years, mucRefs.[13], [14], Eq. (1) with Eq. (2) can be transformed into

progress has been obtained of correlated noises in other sysa equivalent form

tems. For example, correlated noises in bistable systems can

induce giant suppression of the activation ik re-entrant X=—-U"(x)+G(x)I'(t) )

phase transitio9,10], and the coexistence of the suppres-

sion and resonance of activatiphl]. In a periodic potential that has the same Fokker-Planck equation as(Bqgln Eq.

system, we expect, correlation between noises should prd3), I'(t) is Gaussian white noise with zero mean and the

duce similar significant impact. This Brief Report presents dollowing correlation:

study that shows that fluctuation-induced transport exists as a , ,

noise correlation effect when all the odd moments of noises (FO(t))=245(t—t"), (4)

are zero and the periodic potential is symmetrical in space. . .

This effect should be experimentally observable in transporg"d G(X) is determined as

in Josephson junctions. In the power spectrum of quasiparti-

cles in Josephson junction, we discovered a pair of nega- G(X):{le(x)2+2)‘@gl(X)QZ(X)J’DgZ(X)Z}M' 5

tively correlated noises with correlation coefficient= ®)

—\/6/3[12]. This correlation has significant implication on The Fokker-Planck equation corresponding to E3}. with

thel-V characteristic$12]. Other applications of this corre- £q (4) can be written ag15]

lation will be presented in a future publication. In the re-

mainder of this Brief Report, we will first present general P(x,t) J 92

solution for the transport in periodic potential subject to a g o AP+ =5 BX)P(X,D), (6)

multiplicative noise and an additive noise. Then we calculate

the fluctuation-induced current caused by the correlated mulypere

tiplicative and additive noises. At the end, we discuss the

experimental implications of this theoretical work. A(X)=—U"(x)+G(x)G'(x) 7
Consider an overdamped Brownian particle in a periodic

potential U(x) that possesses spatial symmetd(x+L) and

=U(x) with L being the spatial period. The stochastic dy-

namics is governed by the Langevin equation B(x)=G(x)>. (8)

x=—U"(X)+g1(x) &)+ gx(x) n(t). (1) By virtue of the generalized potentidi(x) defined as
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xA(y)
(x)=- fo B(y)

The Fokker-Planck operator can be written in the form
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i e7®(x)i e‘b(X)B(X) .

IX ox
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'9A +
X (x)
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PS’((X) =] B(X) —1e—(l)(x) jXJr e(b(y)dy[l_ e(IJ(X+ L)—(D(x)] —1.

X

(13

Normalizing the probabilitypg(x) within a period, e.g.,
[O,L], we get from Eq(13)

1:\][1_e¢)(X+L)*¢7(X)]*l

The stationary current determined by Fokker-Planck equa-

tion (6) reads

1%
J= —e*‘D<X>5e‘D<X>B(x) Poi(X). (12)
Integrating Eq(11) from x to x+L, we have
X+L
Jj e?Wdy=—[e**"HB(x+L)Pg(x+L)
X
—eMB(X)Psi(X)]. (12

Assuming thatg,(x) and g,(x) are also periodic irx with

periodL, thenB(x+L)=B(x). Further, the periodic bound-

ary conditionP(x+L)=P(x) leads to the following station-
ary solution:

2dx/L—2(n—1)d

VOI=1 _ogxiL + 2nd

The two multiplicative functiong,(x) andg,(x) are
C when (n—1)L=x=<(2n—1)L/2
91951 _c when (2n—1)L/2<x=nL
and
g2(x)=1.

In this, &(t) is a multiplicative noise whilep(t) is an addi-
tive noise. Carrying out the integrations in Ef4), a closed
analytical form of the current can be obtained:

_ 1—exd —8\JQDCd/(k;ky)]
A A A AL At Ag

(15

where
k;=QC?+2\{QDC+D,

k,=QC?-2\{QDC+D,

i)

(klkz)lIZefd/kz(efd/kl_ 1)(efd/k2_ 1),

L2
T ad

)

ﬁ ed/ky
d

Aq d
2

Ao g2

L X+L
X f B(x)‘le““x)dxf e®¥dy.
0

X
This leads to the general current formula
J=[1—e‘b(x+ L)*@(X)]

L x+L -1
X f B(x) e *™dx J e‘I’W)dy} . (14
0 X

which is one of the major results in this Brief Report

periodic potentialJ(x) is given by

when (n—1)L=x<(2n—-1)L/2
when (2n—1)L/2<x=nL.

L2

T ad
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FIG. 1. Steady current vs the noise correlation strengkth The
curve that possess extrema fQr=10; the other folQ=40; L=1,

=4, d=3,D=03.

Now we use Eq(14) to evaluate the fluctuation-induced
current in a model system to illustrate the new physics. The
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FIG. 3. Steady current vs the multiplicative noise strengt@.

FIG. 2. Steady current vs the multiplicative noise strengt®. From tqp to bottom, the curves corresponding to the value of noise
From top to bottom, the curves corresponding to the value of nois§0rrelation strengthi: 1_0'051’ —0.1, -03, -05, -0.7, 0.9,
correlation strengti:0.9, 0.7, 0.5, 0.3, 0.1, 0.05, respectively; respectivelyl. =1, C=z, d=3, D=03.

L=1,C=3, d=3, D=0.3.
2 Codik 2 4k possesses a minimum in its dependenc&dsee Fig. 3. In
As=75|€ 2+ (€71 the model system discussed above, transport current exists
4d d Yy , p
even though the Brownian particle is in a periodic potential
In order to illustrate the characteristics of fluctuation-inducedhat is symmetrical in space. The current appears to be in-
current, we plot in Figs. 1-3 the dependencd of Eq.(15)  duced by the correlation between the two Gaussian white
upon noise parameters. The important points are observetbises. Why does the noise correlation induce transport? The
from the figuresi(1) Current reversall~\ curves in Fig. 1  origin lies in the generalized potenti®l(x) that is tilted. It is
pass through the origin and thus the direction of curtent easy to verify that®(x+L)—®(x)=—8\/QDCd/k;k,.
reverses when the sign of the multiplicative and additiveObviously,®(x) is tilted as long a2 is not equal to 0. The
noise correlation\ is changed(2) Existence of extremum. currentJ arises consequently. Another point is that the tilt
The direction of currend is positive wher¢(t) andn(t) are  ®(x+L)—®d(x) changes its sign wher does so, which is
positively correlated, i.e)>0. In this case, the dependence the origin of the current reversal Furthermore, the mecha-
of current upon the multiplicative noise intensifyis non-  nism of the fluctuation-induced transport can be physically
linear and possesses a maxim(sae Fig. 2. For the case of depicted as follows. The multiplicative nois®N) makes
negative noise correlation<<0, the currentl is negative and the potential fluctuate

B [2d/L—C&(t)]x—2(n—1)d when (n—1)L=x=<(2n—-1)L/2

Ur(0)= —[2d/L—C&(t)]x+2nd when (2n—1)L/2<x=nL.

When the MN assumes a positive realization, the slope of thassume a negative value whexit)>0 and that it is more
fluctuating potential-(x) is reduced. Inversely, when MN probable foré(t) to assume a positive value wheift) <O.
assumes a negative realization, the slopelg{x) is en-  An analysis similar to the case af>0 shows that the mo-
hanced. This fact makes the mean current zero. However, then of the Brownian particle points toward the negative di-
MN &(t) is correlated to the additive noisg(t). A positive  rection on the average. Here a conclusion can be easily
correlation {>0) implies that probability foré(t) to as-  drawn: The correlation between the multiplicative noise and
sume a positive value is greater wheft) >0 and that prob- the additive noise not only induges d_irect.ed rr_lotﬁnnnzero
ability for £(t) to assume a negative value is greater whergverage curreitbut also determines its direction. _
7(t)<0. [16] Since both&(t) and 7(t) are white noises, In summary, we have presented an analytical solution for
they fluctuate on the same time scale and thus enhance eadlf Stochastic motion of a Brownian particle in a periodic
other statistically. Therefore, driven by the additive noisePoténtial subject to a multiplicative noise and an additive

and the fluctuating potential -(x) (caused by M, the mo- nojse. Detailed analysis of a modell system shows the corre-
tion of the Brownian particle points toward the positive di- lation between the two noises can induce a nonzero current.

rection on the average. On the other hand, a negative corre- This research was supported by the National Natural Sci-
lation A<0 implies that it is more probable fof(t) to  ence Foundation of China.
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