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Phase transitions in the kinetic Ising model with competing dynamics
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We study the nonequilibrium phase diagram and critical properties of a two-dimensional kinetic Ising model
with competing Glauber and Kawasaki dynamics suggested by Tome´ and de Oliveira@Phys. Rev. A40, 6643
~1989!#. The role of the Kawasaki dynamics, chosen with probability 12p, is to simulate a permanent energy
flux into the system. The theoretical prediction for the phase diagram is improved significantly by using four-
and six-point dynamical mean-field approximations. Monte Carlo simulations support that the ferromagnetic-
paramagnetic phase transition changes from second to first order for sufficiently smallp. The antiferromagnetic
phase is found to be stable for a nonzero value ofp even atT50.

PACS number~s!: 05.50.1q, 02.70.Lq, 05.70.Ln, 64.60.Cn
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Nonequilibrium steady states as a consequence of c
peting dynamical processes have attracted considerable i
est and up to now their understanding is far from comple
There are numerous generalizations of the well-known
netic Ising model and the resulting steady states exhibit
teresting features such as ordering in one dimension@1#, the
emergence of first-order phase transition@2,3# or the oc-
curence of a novel ordered stationary state not character
of the corresponding equilibrium model@4#. An example for
the latter case is the dynamical generalization of the Is
model suggested by Tome´ and de Oliveira@5# where the
competition between a spin-flip Glauber and a spin-excha
Kawasaki dynamics results in a nonequilibrium state. In t
model, a modified Kawasaki process is introduced to in
energy into the system while the Glauber process ensure
contact with a heat bath at temperatureT. In spite of the
ferromagnetic interaction, this model can produce an anti
romagnetic ordered state if the energy flux is dominant. S
eral authors have studied the one-, two-, and thr
dimensional versions of this model using dynamical p
approximation and Monte Carlo~MC! simulations@6–10#. A
puzzle still remains why MC simulation and dynamic
mean-field theory yield different predictions for the pha
diagram. This contradiction is rather surprising since
later method was found to yield good qualitative results
several nonequilibrium models@11–15#. In this Brief Report,
we revise the MC simulations and present more accu
versions of the dynamical mean-field theory for the tw
dimensional model to eliminate the differences between
theoretical predictions and MC simulations.

We consider a two-dimensional square lattice withL3L
5N sites under periodic boundary conditions. The spin va
able s i at site i takes the values61 and nearest-neighbo
ferromagnetic interactions are assumed. The transition f
the state represented bys5$s1 , . . . ,sN% to states8 is de-
termined by two competing process as

w~s8,s!5pwG~s8,s!1~12p!wK~s8,s!. ~1!

In this equation,wG is the usual single-spin-flip Glauber pro
cess occurs with probabilityp. The transition probability of
flipping spin i is given by the well-known Metropolis rat
wi(s)5min@1,exp(2DEi /kBT)#, where DEi is the energy
change related to the given spin flip. Both the Boltzma
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constant and the nearest-neighbor coupling constant are u
as usual. The other competing process, occuring with a p
ability 12p, is the two-spin exchange Kawasaki dynami
characterized by the transition probability of exchanging t
nearest-neighbor spins at sitesi and j:

wi j ~s!5H 0, for DEi j <0

1, for DEi j .0,
~2!

whereDEi j is the energy difference between the final a
initial configurations. The definition of these transition rat
simulate the contact of the system with the heat bath at t
peratureT with probability p, and an energy flux into the
system with a probability 12p. As a consequence of th
competing dynamics, there are an ordered ferromagnetic
antiferromagnetic phases separated by a disordered para
netic phase in the (p,T) phase diagram@5,7#. It is worth
mentioning that the Kawasaki dynamics would mimic an a
tiferromagnetic Ising model for zero temperature if w
modify the Kawasaki rate to allow exchanges of zero ene
difference. This provides a better understanding of the e
tence of the antiferromagnetic ordered state in the lowp
regime.

In this section, higher levels of dynamical mean-field a
proximations are applied to predict a more accurate ph
diagram. Following the standard method,~for details see Ref.
@11#!, the calculation of the temperature~or the probability!
dependence of the order parameter makes it possible to i
tify the phase-transition point. The four-point~six-point! ap-
proximation involves finding a hierarchy of evolution equ
tions for the configuration probabilities on 232(233)
clusters@13#. The ferromagnetic-paramagnetic phase tran
tion is described by the variation of the order parameter
fined as the stationary value of the total magnetization. I
important to emphasize that the evaluation of the order
rameter as a function of control parameter (T or p) is ‘‘ca-
pable’’ of distinguishing whether the phase transition is co
tinuous or not, in contrast to the linear stability analysis
the paramagnetic solution@5#. Evidently, both methods yield
identical results when the transition is continuous. If the tra
sition is discontinuous, the limit of local stability of the dis
ordered phase can also be obtained where the order pa
eter as a result of an unstable solution becomes zero. U
the more labor-intensive method, a dynamical tricritical b
7466 ©2000 The American Physical Society
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havior can be observed. At the level of two-point appro
mation, the phase transition changes from second to firs
der if p,pt

(2p)50.883 and the transition temperature
Tt

(2p)52.546 at the tricritical point. Improving the accurac
of dynamical mean-field theory, the value of the tricritic
point decreases (pt

(4p)50.743pt
(6p)50.69). The correspond

ing transition temperatures also decrease:Tt
(4p)52.278

Tt
(6p)52.166. In Fig. 1, the critical temperature is plotted

a function ofp where we have adopted the earlier used qu
tity h5exp(24J/kBT) @7#. Here, the limits of local stability
of both the magnetized~ferromagnetic! and unmagnetized
~paramagnetic! steady states are plotted for every calcula
level of the dynamical mean-field theory. We believe that
value of the tricritical point will be shifted to a smallerp and
the area of the ‘‘hysteresis region’’ where both the orde
and the disordered solutions are locally stable will shrink
we apply a higher level of dynamical mean-field approxim
tion. The emergence of first-order transition under the va
tion of some control parameter has already been observe
other nonequilibrium models@2,16,17#. The mechanism re
sulting in the first-order transition in our model is similar
those described previously by Dickman@11#: The Kawasaki
dynamics is ineffective in a highly magnetized phase wh
interfaces separating domains with different magnetiza
are rare but this dynamics can destroy effectively the wea
magnetized state. Finally, we should mention that the fo
point approximation predicts a weak maximum of critic
temperature asp is varied. A similar observation was sug
gested in the earlier report of MC simulations@7#. However,
the more accurate six-point approximation, which yields
same result in the equilibrium model (p51) as in the four-
point approximation, predicts monotonic decrease inTc .

To study the antiferromagnetic order-disorder phase tr
sition, the lattice points are divided into two interpenetrati
sublattices. The ordered state is described by the ave
sublattice magnetization where the order parameter (mAF) is
the difference of the sublattice magnetizations. As well as
the ferromagnetic-paramagnetic phase transition, the tra
tion point is extracted from themAF(p,T) functions@18,19#.
At the level of two-point approximation, our calculation
have reproduced the result published previously@5#. Namely,

FIG. 1. Critical temperature of ferromagnetic-paramagne
transition as a function ofp. The parameterh is given by h
5exp(24J/kBT). The prediction of two-point~full curve!, four-
point ~broken curve!, and six-point~dotted curve! approximation.
The upper~lower! lines show the limits of stability of the ferromag
netic ~paramagnetic! phases.
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there is a negligible dependence of criticalp from the tem-
perature when the parameterp is varied at fixedT. As an
example, the antiferromagnetic phase is stable even aT
50 if p,pc

(2p)(T50)50.323. Employing more accurat
approximations, the qualitative feature of this phase tran
tion remains unchanged, however, the shift in criticalp is
significant: pc

(4p)(T50)50.095 pc
(6p)(T50)50.047. The

decrease ofpc as we employ more accurate approximatio
can be understood since the lower level of approximat
~such as two-point level! truncates the correlations beyond
shorter distance. Therefore, this level requires a more in
sive influence of the Glauber process to destroy the anti
romagnetic order. Although the area of the ordered ph
shrinks if we increase the level of approximation, the an
ferromagnetic ordered phase remains stable even atT50 for
small value ofp.

Motivated by the above results of the theoretical pred
tions, we have revised the MC simulations for this model.
the case of antiferromagnetic order-disorder transition,
main discrepancy is that previous simulations sugges
stable ferromagnetic phase forall values ofp at T50 @7#.
Obviously, the completely ordered ferromagnetic state c
not be destroyed by a Kawasaki dynamics. However, if

FIG. 2. Finite-size scaling plots of MC data for antiferroma
netic order parameter as a function of reducedp at T50. System
sizes areL516(h), 24(3), 30(n), and 60(d). Equilibrium Ising
exponents are used withpc50.019. The slopes of the inserted line
are 1/8 and27/8. The Binder cumulant as a function ofp ~inset!
gives the same critical value ofpc .

FIG. 3. Reduced fourth-order cumulantVL , for T51.0, as a
function of p for system sizeL516(h), 24(3), 30(n), and
60(d).
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initial state is disordered, the system evolves to the anti
romagnetic ordered state having maximal energy at a s
value of p. Furthermore, even the ferromagnetic state c
taining some defects may decay if the system size is la
enough. Finite-size effects are especially serious at low t
peratures because a small system may evolve to the c
pletely ordered ferromagnetic state with considerable pr
ability and can become trapped.

Our extensive MC simulations support the prediction
dynamic mean-field theory, namely, the antiferromagne
ordered phase exists even at zero temperature for a s
value of p. The location of the critical point (pc) at zero
temperature was first estimated from the finite-size scalin
the cumulants of order parameterUL512^mAF

4 &L/3^mAF
2 &L

2

@20#. As shown in the inset of Fig. 2, the plot of the reduc
fourth-order cumulant for the different system size indica
clearly the nonzero value of critical probability. An alterna
ing estimate was produced from the scaling plots ofmAFLb/n

versusL1/nup2pcu/pc . Assuming that the universality clas
of the transition is that of the equilibrium Ising class@21#, the
fitting parameterpc was determined by observing the co
lapse of data. Both methods yield the same result:pc(T
50)50.01960.0005. For comparison, the correspondi
value of the dynamical mean-field six-point approximation
pc

(6p)50.047.
It is also interesting to discuss the saturation of the or

parametermAF→1 whenp→0 at a fixed value ofT. A typi-
cal value of the order parameter atp50.005 ismAF(0.005)
'0.75. If we start from a completely ordered antiferroma
netic state at a small value ofp, only a Glauber process ca
generate a point defect with probabilityp. The Kawasaki
process leaves this point defect unchanged because
single-point defect is surrounded by (1,1) or (21,21) pairs.
The defect can only be repaired by a subsequent Gla

FIG. 4. Monte Carlo results (h) for the phase diagram. Th
solid curves are for continuous phase transitions while the bro
curve represents discontinuous transition. The antiferromagn
~A!, paramagnetic~P!, and ferromagnetic~F! phases are indicated
The tricritical point is atpt

(MC)50.2 andTt
(MC)51.49, while the

six-point approximation predictspt
(6p)50.69 andTt

(6p)52.166.
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process that is energetically unfavorable. In other words,
large concentration of long-lived point defects results in
unusual decrease in the order parameter. Based on
simple picture, a master equation for the defects can be c
structed to estimate the order parameter at smallp. This cal-
culation yields

mAF~p!5@11p exp~8J/kBT!#21. ~3!

As a result, the saturation of the order parameter can only
observed ifp,exp(28J/kBT).

In the case of ferromagnetic order-disorder transition,
crucial question is to decide whether computer simulatio
exhibit the emergence of first-order transition. For this p
pose, we determine the fourth-order cumulant of ene
(VL512^E4&L/3^E2&L

2) as a function of the control param
eter for different system sizes@22#. Simulations unambigu-
ously have justified that the transition turns to be first-ord
if p,pt

(MC)'0.2;T,Tt
(MC)'1.49. ~The six-point approxi-

mation predictspt
(6p)50.69 andTt

(6p)52.166.! The discon-
tinuous transition has been detected if the temperature o
parameterp is varied below the tricitical values. Figure
illustrates the first-order transition where the values ofVL are
averaged over 23106 MC steps ~for L516) and 5
3107 MC steps~for L560). It is important to emphasize
that very long MC runs are necessary to get the correct
havior. As an example, atp50.15 andL530 the ergodic
time is about 53106 MC steps but a clear hysteresis is o
served in the order parameter as a function of temperatu
the observation time is about 105 MC steps. The
ferromagnetic-paramagnetic phase transition was also
tected at zero temperature„pc

(MC)(T50)50.10(5)… in agree-
ment with the above prediction of dynamic mean-field the
ries. Our simulations have also supported that the crit
temperature decreases monotonously if we decrease the
peting parameterp. Our results are summarized in a pha
diagram shown in Fig. 4 where the size of the boxes in
cates the statistical error.

In summary, we have shown that starting from the eq
librium ferromagnetic state, all of the three possible statio
ary states can be reached even at zero temperature b
creasing the energy flux. The ferromagnetic-paramagn
phase transition changes from second to first order for su
ciently smallp. These behaviors are supported by both m
accurate dynamical mean-field approximations and M
simulations. The qualitative prediction of the mean-field a
proximations for the nonequilibrium phase diagram is sa
factory while the numerical differences between the appro
mations and MC simulations are still significant. Th
emergence of the dynamical tricritical point is in agreem
with earlier observations in similar nonequilibrium models
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@5# T. Toméand M.J. de Oliveira, Phys. Rev. A40, 6643~1989!.



E

PRE 62 7469BRIEF REPORTS
@6# B.C.S. Grandi and W. Figueiredo, Mod. Phys. Lett. B10, 945
~1996!.

@7# B.C.S. Grandi and W. Figueiredo, Phys. Rev. E53, 5484
~1996!.

@8# Y. Ma and J. Liu, Phys. Lett. A238, 159 ~1998!.
@9# S. Artz and S. Trimper, Int. J. Mod. Phys. B12, 2385~1998!.

@10# J.R.S. Lea˜o, B.C.S. Grandi, and W. Figueiredo, Phys. Rev.
60, 5367~1999!.

@11# R. Dickman, Phys. Lett. A122, 463 ~1987!.
@12# G. Szabo´, A. Szolnoki, and L. Bodo´cs, Phys. Rev. A44, 6375

~1991!.
@13# G. Szabo´ and A. Szolnoki, Phys. Rev. E53, 2196~1996!.
@14# A. Szolnoki, J. Phys. A30, 7791~1997!.
@15# G. Szabo´ and I. Borsos, Phys. Rev. E49, 5900~1994!.
@16# R. Dickman and T. Tome´, Phys. Rev. A44, 4833~1991!.
@17# R.M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett.56,

2553 ~1986!.
@18# for details, see R. Dickman, Phys. Rev. A41, 2192~1990!.
@19# A. Szolnoki and G. Szabo´, Phys. Rev. E48, 611 ~1993!.
@20# K. Binder, Z. Phys. B: Condens. Matter43, 119 ~1981!.
@21# G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett.55,

2527 ~1985!.
@22# M.S.S. Challa, D.P. Landau, and K. Binder, Phys. Rev. B34,

1984 ~1986!.


