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Phase transitions in the kinetic Ising model with competing dynamics
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We study the nonequilibrium phase diagram and critical properties of a two-dimensional kinetic Ising model
with competing Glauber and Kawasaki dynamics suggested by Eoaele OliveirdPhys. Rev. A40, 6643
(1989]. The role of the Kawasaki dynamics, chosen with probabilityd, is to simulate a permanent energy
flux into the system. The theoretical prediction for the phase diagram is improved significantly by using four-
and six-point dynamical mean-field approximations. Monte Carlo simulations support that the ferromagnetic-
paramagnetic phase transition changes from second to first order for sufficientlysiitadl antiferromagnetic
phase is found to be stable for a nonzero valug efren atT=0.

PACS numbgs): 05.50:+q, 02.70.Lg, 05.70.Ln, 64.60.Cn

Nonequilibrium steady states as a consequence of contonstant and the nearest-neighbor coupling constant are unity
peting dynamical processes have attracted considerable intexs usual. The other competing process, occuring with a prob-
est and up to now their understanding is far from completeability 1—p, is the two-spin exchange Kawasaki dynamics
There are numerous generalizations of the well-known ki-characterized by the transition probability of exchanging two
netic Ising model and the resulting steady states exhibit innearest-neighbor spins at siteandj:
teresting features such as ordering in one dimengigrthe
emergence of first-order phase transitidgh3] or the oc- 0, for AE;;<0
curence of a novel ordered stationary state not characteristic wij(0) = 1, for AE; >0, 2
of the corresponding equilibrium modgt]. An example for N
the latter case is the dy,namical generalization of the Ising\,hereAE” is the energy difference between the final and
model suggested by Tomend de Oliveira[5] where the initial configurations. The definition of these transition rates
competition between a spin-flip Glauber and a spin-exchangsimulate the contact of the system with the heat bath at tem-
Kawasaki dynamics results in a nonequilibrium state. In thisperatureT with probability p, and an energy flux into the
model, a modified Kawasaki process is introduced to inpukystem with a probability +p. As a consequence of the
energy into the system while the Glauber process ensures th@mpeting dynamics, there are an ordered ferromagnetic and
contact with a heat bath at temperatdreln spite of the  antiferromagnetic phases separated by a disordered paramag-
ferromagnetic interaction, this model can produce an antifernetic phase in thep,T) phase diagrani5,7]. It is worth
romagnetic ordered state if the energy flux is dominant. SeVmentioning that the Kawasaki dynamics would mimic an an-
eral authors have studied the one-, two-, and threetiferromagnetic Ising model for zero temperature if we
dimensional versions of this model using dynamical pairmodify the Kawasaki rate to allow exchanges of zero energy
approximation and Monte Carl®/C) simulationg6-10l. A difference. This provides a better understanding of the exis-
puzzle still remains why MC simulation and dynamical tence of the antiferromagnetic ordered state in the fow
mean-field theory yield different predictions for the phaseregime_
diagram. This contradiction is rather SUrpriSing since the In this section, h|gher levels of dynamica| mean-field ap-
later method was found to yleld gOOd qualitative results forproximations are app“ed to predict a more accurate phase
several nonequilibrium modef41-18. In this Brief Report,  diagram. Following the standard methdfiyr details see Ref.
we revise the MC simulations and present more accuratpr1]), the calculation of the temperatufer the probability
versions of the dynamical mean-field theory for the two-dependence of the order parameter makes it possible to iden-
dimensional model to eliminate the differences between thgfy the phase_transition point_ The four_pomx_poino ap-
theoretical predictions and MC simulations. proximation involves finding a hierarchy of evolution equa-

We consider a two-dimensional square lattice Witk tjons for the configuration probabilities onx2(2x 3)
=N sites under periodic boundary conditions. The spin varicjusters[13]. The ferromagnetic-paramagnetic phase transi-
able o; at sitei takes the valuest1 and nearest-neighbor tion is described by the variation of the order parameter de-
ferromagnetic interactions are assumed. The transition frofined as the stationary value of the total magnetization. It is

the state represented y={o, ... ,o\} to states’ is de-  important to emphasize that the evaluation of the order pa-
termined by two competing process as rameter as a function of control paramet@rdr p) is “ca-

pable” of distinguishing whether the phase transition is con-

w(o',0)=pwg(a’,0)+(1-p)wk(a', o). (1) tinuous or not, in contrast to the linear stability analysis of

the paramagnetic solutid®]. Evidently, both methods yield
In this equationyv is the usual single-spin-flip Glauber pro- identical results when the transition is continuous. If the tran-
cess occurs with probabilitg. The transition probability of sition is discontinuous, the limit of local stability of the dis-
flipping spini is given by the well-known Metropolis rate ordered phase can also be obtained where the order param-
w;(o) =min[1,expAE;/kgT)], where AE; is the energy eter as a result of an unstable solution becomes zero. Using
change related to the given spin flip. Both the Boltzman’sthe more labor-intensive method, a dynamical tricritical be-
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FIG. 1. Critical temperature of ferromagnetic-paramagnetic  FiG. 2. Finite-size scaling plots of MC data for antiferromag-
transition as a function op. The parameter; is given by »  netic order parameter as a function of redugeat T=0. System
=exp(—4J/kgT). The prediction of two-point(full curve), four- sizes ard. = 16(0), 24(x), 30(A), and 60@). Equilibrium Ising
point (broken curvg and six-point(dotted curvg approximation.  eyponents are used with=0.019. The slopes of the inserted lines
The upper(lower) lines show the limits of stability of the ferromag- 4re 1/8 and— 7/8. The Binder cumulant as a function pfiinsed
netic (paramagneticphases. gives the same critical value @f, .

havior can be observed. At the level of two-point approxi- ) . .

mation, the phase transition changes from second to first off'€"€ iS @ negligible dependence of critipafrom the tem-
der if p<p{®?=0.883 and the transition temperature is Perature when the parameteris varied at fixedT. As an
T§2")=2.546 at the tricritical point. Improving the accuracy example, th(ezp)anuferromagnetm phasg ' stable evei at
of dynamical mean-field theory, the value of the tricritical ~° ' P<Pc(T=0)=0.323. Employing more accurate
point decrease$¢4p):0.743p(6p):0.69). The correspond- a}pproxme}tlons, the qualitative feature of §h|§ phgge _tranS|—
: . t 2 tion remains unchanged, however, the shift in critipalk

ing transition temperatures also decreadé®”=2.278

. . _ ignificant: p{*?(T=0)=0.095 p{®”(T=0)=0.047. Th
T{®P)=2.166. In Fig. 1, the critical temperature is plotted asSignificant: pc™(T=0) P (T=0) ©

: . decrease op. as we employ more accurate approximations
"%‘f“”C“O” ofp where we have adopte_zd .the earlier used_quanéan be understood since the lower level of approximation
tlgybn=he>ﬁp(—4\]/ kgT) [7].fHere, the limits gf local Stab.'“% (such as two-point levitruncates the correlations beyond a
of both the magnetizedferromagnetit and unmagnetize horter distance. Therefore, this level requires a more inten-
(paramagnetDcsteqdy states are plotted for every calculate ive influence of the Glauber process to destroy the antifer-
level of the dy_na_mlcal m_ean-_ﬂeld the_ory. We believe that theromagnetic order. Although the area of the ordered phase
value of the tricritical point will be shifted to a smallprand

th f the “hvst . ion” wh both the ord hrinks if we increase the level of approximation, the anti-
€ area ot the “hysteresis region™ where both the ordere erromagnetic ordered phase remains stable evén=dl for

and the disordered solutions are locally stable will shrink 'fsmall value ofp

we apply a higher level of dynamical mean-field approxima-"—"\, i\ 2teq by the above results of the theoretical predic-

tion. The emergence of first-order transition under the variaf

i f ol ter h readv b b d ions, we have revised the MC simulations for this model. In
lon of Some control parameter nas aiready been ODSEIVed {{e 556 of antiferromagnetic order-disorder transition, the
other nonequilibrium modelg2,16,17. The mechanism re-

o . I S main discrepancy is that previous simulations suggest a
sulting in the first-order transition in our model is similar to pancy P 99

. ) , X .~ stable ferromagnetic phase fall values ofp at T=0 [7].
those Qesgr|ped preyloqsly bY Dickmgi]: The Kawasaki Obviously, the completely ordered ferromagnetic state can-
dynamics is ineffective in a highly magnetized phase wher

interfaces separating domains with different magnetizatioﬁ10t be destroyed by a Kawasaki dynamics. However, if the

are rare but this dynamics can destroy effectively the weakly
magnetized state. Finally, we should mention that the four-
point approximation predicts a weak maximum of critical 0r
temperature ap is varied. A similar observation was sug- 2t
gested in the earlier report of MC simulationg. However,
the more accurate six-point approximation, which yields the
same result in the equilibrium modegb€ 1) as in the four- > 6t
point approximation, predicts monotonic decreas@ in

To study the antiferromagnetic order-disorder phase tran-
sition, the lattice points are divided into two interpenetrating 10 ¢
sublattices. The ordered state is described by the average 22t
sublattice magnetization where the order parametgyf is
the difference of the sublattice magnetizations. As well as for
the ferromagnetic-paramagnetic phase transition, the transi-
tion point is extracted from then,e(p,T) functions[18,19. FIG. 3. Reduced fourth-order cumulawt , for T=1.0, as a
At the level of two-point approximation, our calculations function of p for system sizeL=16(0), 24(xX), 30(A), and
have reproduced the result published previo(iSlyNamely, 60(®).
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process that is energetically unfavorable. In other words, the
large concentration of long-lived point defects results in the

027¢ T unusual decrease in the order parameter. Based on this
simple picture, a master equation for the defects can be con-
A structed to estimate the order parameter at smalhis cal-
= P culation yields
01} F -
Mar(P)=[1+p exp(83/kgT)] . 3

As a result, the saturation of the order parameter can only be

observed ifp<exp(—8J/kgT).

0 i . . . In the case of ferromagnetic order-disorder transition, the

0 0.2 0.4 0.6 0.8 1 crucial question is to decide whether computer simulations
P exhibit the emergence of first-order transition. For this pur-

pose, we determine the fourth-order cumulant of energy

(V= 1—(E*/3(E?)?) as a function of the control param-

FIG. 4. Monte Carlo results{) for the phase diagram. The

solid curves are for continuous phase transitions while the broke ter for diff t i i-d@2] Simulati bi
curve represents discontinuous transition. The antiferromagnetis er for different system sizg22]. Simulations unambigu-

(A), paramagneti¢P), and ferromagneti¢F) phases are indicated. ously have justified that the transition turns to be first-order
. tricriti it 1S ato(MC) (MC) i if p<pM©~0.2,T<TM~1.49. (The six-point approxi-
The tricritical point is atp{”“=0.2 andT{"“=1.49, while the P<Pt T t 49, p pp
six-point approximation predicts{®” =0.69 andT{®")=2.166. mation predictsp{®” =0.69 andT{®”=2.166) The discon-
tinuous transition has been detected if the temperature or the

_— o . parameterp is varied below the tricitical values. Figure 3
initial state is disordered, the system evolves to the antlferiIIustrates the first-order transition where the value¥ ofare

romagnetic ordered state having maximal energy at a small _
value of p. Furthermore, even the ferromagnetic state Con-‘rivf(r;l gl\?lcé: st\é%;(i rlle\élg) Ttteissirrgfp())cr)rt;_nt %g)en?;r?as?ze
taining some defects may decay if the system size is largﬁwat very long MC runs are.necessary to get the correct be-

enough. Finite-size effects are especially serious at low tenhavior. As an example, g1=0.15 andL =30 the ergodic

peratures because a small system may evolve to the com-_ . A i
pletely ordered ferromagnetic state with considerable prol:r){}me is about 5¢10° MC steps but a clear hysteresis is ob

ability and can become trapped. served in the order parameter as a function of temperature if

Our extensive MC simulations support the prediction ofthe observation time is about AMC steps. The

dynamic mean-field theory, namely, the antiferromagnetigerromagnetic—paramagnetic phase transition was also de-

MC)(T=0)= i -
ordered phase exists even at zero temperature for a smafcted at zero temperatufg;” = (T=0)=0.10(5) in agree
value of p. The location of the critical pointf,) at zero ment with the above prediction of dynamic mean-field theo-

temperature was first estimated from the finite-size scaling ofi€S: Our simulations have also supported that the critical
the cumulants of order parametey = 1_<mf\F>L/3<miF>E temperature decreases monotonously if we decrease the com-

[20]. As shown in the inset of Fig. 2, the plot of the reducedpe'[ing parametep. Our results are summarized in a phase

fourth-order cumulant for the different system size indicatesd""Igram shown in Fig. 4 where the size of the boxes indi-

clearly the nonzero value of critical probability. An alternat- cates the statistical error. . .
ing estimate was produced from the scaling plotsngfL 4" In summary, we have shown that starting from the equi-

Uy ) ! ) librium ferromagnetic state, all of the three possible station-

versusLY”|p—p¢|/p.. Assuming that the universality class .
. g : ary states can be reached even at zero temperature by in-

of the transition is that of the equilibrium Ising cld&d], the : . .
L . . creasing the energy flux. The ferromagnetic-paramagnetic

fitting parametemp. was determined by observing the col- " , :
lapse of data. Both methods yield the same resp(T phase transition changes from second to first order for suffi-
—0)=0.019+0.0005. For comparison, the correqsnpuondinguenﬂy smallp. These behaviors are supported by both more

value of the dynamical mean-field six-point approximation isaccurate dynamical mean-field approximations and MC
p(G")—O 047 y P P simulations. The qualitative prediction of the mean-field ap-
C - . .

Itis also i . di h . f th q roximations for the nonequilibrium phase diagram is satis-
tis also interesting to discuss the saturation of the orde actory while the numerical differences between the approxi-
parametem,-— 1 whenp—0 at a fixed value oT. A typi-

X mations and MC simulations are still significant. The
cal value of the order parameter @t-0.005 ism,g(0.005) emergence of the dynamical tricritical point is in agreement

~0.75. If we start from a completely ordered antiferromag-ii earlier observations in similar nonequilibrium models.
netic state at a small value pf only a Glauber process can

generate a point defect with probability The Kawasaki The author thanks Gygy Szabofor stimulating discus-
process leaves this point defect unchanged because tk@ns. He also thanks the HAS for financial support. This
single-point defect is surrounded by (1,1) er{,—1) pairs.  research was also supported by the Hungarian National Re-
The defect can only be repaired by a subsequent Glaubaearch FundOTKA) under Grant No. F-30449.
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