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Scattering-theory analysis of waveguide-resonator coupling

Yong Xu, Yi Li, Reginald K. Lee, and Amnon Yariv
Department of Applied Physics, California Institute of Technology, MS 128-95, Pasadena, California 91125
(Received 14 May 2000

Using a formalism similar to the quantum scattering theory, we analyze the problem of coupling between
optical waveguides and higQ resonators. We give the optical transmission and reflection coefficients as
functions of the waveguide-resonator coupling, cavity I@ssn), and cavity resonant frequency. Based on
these results, the recently proposed concept of “critical coupling” is discussed. Using a matrix formalism
based on the scattering analysis, we find the dispersion relation of indirectly coupled resonator optical
waveguides. The coupling between waveguides and multiple cavities is investigated and the reflection and
transmission coefficients are derived.

PACS numbes): 42.79.Gn, 42.25.Bs, 42.60.Da, 42.82.Et

[. INTRODUCTION stood using the tight-binding approximatig29], where the
optical mode of the whole system can be regarded as a linear
It is now well known that a photonic band g4@—3]  combination of the optical modes within each individual cav-
exists for certain types of dielectric structure whose dielectridty. As a result of the direct coupling between the nearest
constant varies periodically in space. These types of dieled€sonators, many interesting phenomena, such as mode fre-
tric structure are generally referred to as photonic crystalsguency splitting in photonic molecules and waveguiding in
By mod|fy|ng some unit cells within the photonic CrystaL we CROW,S, will occur. If we Couple multlple resonators with a
can create defects may support localized igmodeg4—6] wgveguide, then as well as direqt rgsonator-resonator cou-
or propagating waveguide modg 7). If we couple the lo-  Pling the resonators can also be indirectly coupled together
calized defect modes with waveguides, many interestin@y the propagating modes within the waveguide, as shown in
phenomena will occui8—15]. For example, resonant tunnel- Fig. 1(b). We call this type of waveguide an indirect CROW
ing through the photonic crystal via the localized defectsince the cavities are indirectly coupled together. A unique
modes has been numerica”y analyiecg] and experimen_ feature. of S-’Uch an indirect CROW -iS that the t|ght'b|nd|ng
tally observed[10,11. Recently, a channel add-drop filter @PProximation no longer applies, since any two resonators
based on coupled waveguide-resonator systems in a photorfiot just the neighboring resonatprs Fig. 1(b) can be
crystal was proposefd2—14. It was shown that, for defect coupled through the waveguide modes. Based on scattering
cavities satisfying certain symmetry and degeneracy condith€ory, we propose a matrix formalism to study this type of
tions, optical signals can be completely transferred from on&RO
waveguide to another. Waveguide-resonator coupling has Another natural application of scattering analysis is to
also been explored in many other geometries, such al§nd the reflection and transmission coefficients for compli-
coupled fiber-ring geometrj16], coupled fiber-sphere ge- cated coupled waveguide-resonator system. In the literature,
ometry[17,18, or coupled semiconductor slab waveguide-many different numerical algorithn{$,9,30—33 have been
microring geometry{19—21]. It is intuitively clear that the used to find the scattering characteristics of various dielectric
presence of a resonator should have a profound impact on
the reflection and transmission characteristics of the wave- Cavity Coupled to Waveguide
guide. For a system composed of a waveguide and a resona
tor that supports traveling wave modes, it was recently dem-
onstrated that the transmission characteristics depenc 4 N |

critically on the balance between waveguide-resonator cou- N
pling and cavity loss; thus it was named “critical coupling” Waveguide 1 Waveguide 2
[22]. In this paper, we use scattering theory to show that for (a)

the general system of coupled waveguide-resonator as showi

in Fig. 1(a), the reflection and transmission coefficients de-

pend critically on the waveguide-resonator coupling, the

symmetry and degeneracy of the resonant modes, cavity los¢

(gain), and mode resonant frequency. [ < - G yemy ges - . - |
Besides the much studied waveguide-resonator coupling,

multiple optical resonators that are directly coupled together - """""""" -

via an evanescent optical field have also been investigated ir Cavity Cavity Cavity

the literature, such as photonic molecyl28—25, an impu- (b)

rity band in an infinite chain of spheres with negative dielec-

tric constan{26], and coupled resonator optical waveguides FIG. 1. (a) The general geometry of a waveguide coupled with a

(CROW’s) [27,28. All these geometries can be well under- cavity. (b) Example of a CROW with indirect coupling.

Waveguide
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structures. The benefit of the numerical approach is that it is

capable of analyzing dielectric structures of complicated ge- V= 2 Vinalm)(n|+2 (Vi Im(kil + Vi alki)(n).
ometries, such as photonic crystals. On the other hand, the ™" nk (2.30
numerical calculations are often time consuming and cannot '

be easily generalized. Since the dielectric structure considy, this Hamiltonian we usén) to represent thath high Q
ered here can be separated into waveguides and localizeghtical mode with “bare” resonant frequendy, , and|k;)
h|gh Q resona_tors, its scattering amphtgde can be found angg, represent the waveguide mode with wave vektorHere
lytically. In this paper, we use scattering theory to analyzgye assume that the waveguide supports only one propagating
cases where multiple cavities are coupled to a waveguide andsge, since multimode waveguides are usually undesirable

give the scatte_ring amplitude of these structures. It is alsg, optoelectronics applications. Bojky) and|n) are normal-
worth mentioning that coupled mode theory has also beefyoq to 1 according to Eq(2.2. We also requireV

. . . . m,n
used to treat coupled waveguide-resonator systems, if thgvﬁ,m anan,ki:Vﬁi ', since the Hamiltonian is Hermitian.

resonator supports only one highmode[14,34]. ' T . . .
The scattering theory formalism of this paper is based o this Hamiltonian, we ignore the direct coupling between
the waveguide mode(:;e.,vki = 0), which will be justified

the quantum Lippman-Schwinger equati¢85] and re-
sembles the method applied in REE3], where the photonic later in this paper. An explicit form for the perturbation term
crystal defect cavity add-drop filter was analyzed. We brieflyVj; can be obtained from E¢2.1) and Eq.(2.2),

summarize the scattering theory in Sec. Il and discuss some

additional important points that were not previously ad- B o 3 - o sy 2
dressed. In Sec. Ill, we utilize the scattering theory to study  Vii=(¥i[VI#i)= 5| d°r [&o(r)]"A () Ef-Ei,
two generic cases of coupled waveguide-resonator systems (2.4)

and derive their optical reflection and transmission coeffi-
cients. Based on these results, we analyze several simp\I@,I

. : . \ ereE; andE; are, respectively, the electric fields associ-
systems in Sec. IV and discuss in detail the dependence k. \vith modesy,) and|¢;), w; is the resonant frequency
the optical reflection and transmission on the cavity mode ' 1

properties and waveguide-resonator coupling. Next, in Se®f mode|¢;),eo(r) refers to the dielectric constant of the

V, we propose the concept of an indirect CROW and give ainperturbed Hamiltoniakl, andA[1/e(r)] is the difference
expression for its photonic dispersion relation. In Sec. VI, weof 1/e(F) between the full Hamiltoniatd and its Oth order
give the scattering analysis of more complicated coupledpproximationH,.
waveguide-resonator systems. We summarize the results in Following Ref.[13], we use the waveguide modle) as
Sec. VII. the incident optical wave, and assume that the total wave
function is given by|#ia). These two statesk;) and
Il. SCATTERING-THEORY FORMALISM | ota) are related via the scattering matfix[35]

The Maxwell equation can be rewritten in the form 1
|¢total> |k|> wki_ H0+ i EV| ’r/’total> T|k|>v (2 5)

Jd
where € is a positive infinitesimal number to enforce the
L outgoing boundary condition. It is easy to verify that the
E 0 (i/e) VX scattering matrixI can be expressed as

(//: N H: ( |/ = (Zlb)
—i/po) VX 0
0 T o= (ki Tlki)
If we introduce the inner product as 5 4 E V. .G
. = Ok .k W “~ kj,m~m.n
_= 3, (F\E*.F 3y H*.H
<(v[/2|lv[/l>_2 fd rE(r)EZ E1+M0fd rH2 Hl)’ X(wki)Vn,ki, (263
(2.2
it is easy to verify that the HamiltoniaH is a Hermitian Tok =TIk} =2 Gpm(@k)Vink. (2.6b
K ™ ) i |

operator. For the weakly coupled waveguide-resonator sys-

tem as shown in Fig. (&), the HamiltonianH can be sepa- ) S )
rated into a Oth order approximatidd, where the wave- Where in Eq.(2.63 6, \ is 1 if ki=k; and zero otherwise.
guide modes and the localized higQ modes are The physical meaning of Eq2.63 is clear: The statek;)
independent, and a perturbation tekthat couples them can be scattered into the stdig) in two ways, the direct
together, transition as represented liiyj Ko and the indirect transition

through the localized higp modesn) as represented by the
second term on the right-hand side of EB.6a. The term
Gnmn represents the matrix element of the “renormalized”
_ Green functionG and is given byG, ,(w)=(m|(w—H
Ho= kid(ki|+ Q.|nY¥{nl|, 2.3b m,n
0 %" okl ki) kil zn: Il (230 +i€) " Yn). Its inverse matrixG ! can be evaluated as

H=Ho+V, (2.33
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(G_l)m’“:(‘”_ﬂn)&m‘n_zmvn’ (2.7 ‘ Waveguide «----- ; e -
1
Smn(@)= an+2 mGlm K .n- (2.7b .
The derivation of Eqs(2.6) and (2.7) can be found in Ap- (a)

pendix A. Generally, thet matrix has some off-diagonal
elements, so that finding the renormalized Green fundBon

can be quite involved. However, in some cases where the
high Q resonators have definite symmetry propertiEsis ‘ <_-_,
already diagonalized by the unperturbed statg@sTherefore 5
the renormalized Green function can be simply written as Waveguide 1 Cavity Waveguide 2
1 X
Gm,n(w) = (2-8) (b)

w—w,+iI', Omn

FIG. 2. (a) The side coupling case, where a cavity is side
wherew, is the renormalized frequency of mom andl", coupled to a waveguidéb) The resonant coupling case, where two
is the mode decay rate. waveguides are coupled by a hi@hcavity.

Now we can justify the neglect of the direct waveguide _ _
mode interactionV, , in the Hamiltonian Eq(2.3). With ~ Wherek; is the wave vector of the propagating mode, agd
such a term, the écettering matrix will have an additionalrer)r.(:'fsents the photon group.velocny and is assumed to be
nonresonant contribution) , ~Vy,  /(wy — @y +i€) [see positive for anyk;>0. Evaluating the integral, we find
] I I ]

Eq. (2.5)]. Comparing this quantity with the resonant scatter- L 5 )
ing amplitudeT, ,, due to thenth mode, we have IM(Zp0) =~ 2—vg(|vn,ki| Vo9 (212

T Ve G..V If the mode representatiom) is chosen such that only the
Kioki  Tkpn=nntnk; 2.9 diagonal elements aE are nonzero, the total decay rate of

™, ij " ' the mode|n) is simply
i
L
where we have used E(R.63. If the waveguide length is L=+ 5— (Vo 2+ Vo« [?), (213
L.V, x, is of the order ofwy /L according to Eq(2.4), while 204 ' '

Vig nVn K is of the order 0fw2“— Substituting Eq(2.8) into whereI? is the intrinsic cavity decay rate. We should note
the above equation, it is obwous that the indirect scatteringhat in Eq.(2.13 the decay rate is actually independent of
via the nth high Q mode has an enhancement factor ofthe waveguide length, since(k; k=1 and thusVy, . is
wy, /(wk w,tiT,). Therefore, if we are interested in the proportional to 14/L.

resonant behavior, the direct waveguide mode interaction Once the scattering matrik is known, the optical reflec-
Vk K can generally be ignored. tion and transmission coefficients can easily be found as fol-

BeS|des enhanced scattering amplitude, the optical interlows. If we usey;(r),,(r), andy,(r) to represent the inci-
sity in the resonators is also increased. From @b and  dent wave, the reflected wave, and the transmitted wave,
Eq. (2.8), we find the localized mode amplitude to be respectively, then they can be related to Thmatrix through

the following simple relations:
T T|k Vo 2.1
=(n|Tlk)= ————= . - -
o = ([Tl o~ wp+ily’ (210 l//i(f)+l/fr(f):<X—>_°°|T|ki>:§4 <X—’_°C|kj>Tkj,ki,
. . . ' (2.143
which means that the mode amplitude at the resonance is
inversely proportional to the mode decay rate. .

The mode decay ratE, plays an important role in the z//t(r)=<x—>+oo|T|ki>=E (x— +oolkj) Ty k-
problem of waveguide-resonator coupling and can be calcu- ki o
lated as follows. Using Eq2.7), we find (2.14

This method is essentially the same as that in R3]

En,n(w 2 |Vnk| +I
W Tle IIl. OPTICAL SCATTERING IN TWO GENERIC
COUPLED WAVEGUIDE-RESONATOR SYSTEMS
— 2 2 . .
= EJ dwkiv_g(|vn,ki| + [V, )w_wki+i6' We study two generic cases of coupled waveguide-

resonator systems as illustrated in Fig. 2. The case in Fig.
(2.11 2(a) is denoted as the “side coupling” case, since the reso-
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nator is located at the side of an infinite waveguide. For the ) 1 LV_k nVhk
geometry shown in Fig. (), the two half waveguides are P()=—i, . s
coupled together via resonant tunneling through the center m oo ontily Vg

cavity. Consequently we name it the “resonant coupling”

case. It should be noted that the waveguides and resonators > iu (r)ekix (3.5
in Fig. 2 can be of any type. In particular, the analysis of this JN ki ' '

section applies to photonic crystal waveguides and defect
cavities. Therefore, we assume that the waveguides possesffave user andt to denote the amplitude reflection and
one-dimensional discrete translational symmetry. Wavetransmission coefficient, respectively the above results can
guides with continuous translational symmetry, such as slabe summarized as
waveguides or optical fibers, can be regarded as a special
case. _ 1 LV i nVn;

First let us consider the side coupling case. We assume r=—IE o —w+il > ) (3.6a
that the waveguide modé;) has the following general form At HR g
(using the Bloch theorem

1 I—|Vk-,n|2
t=1-i2 : . (36D
¢ki(F)=\/iNUki(F)eikix, (3.1a n wki—wn+|Fn Vg
. L(IVi nl*+ Vi ) -
Uki(F):Uki(F+Re>(), (3.1b n=1p ng . (3.60

whereN is the total number of unit cells in the waveguide The side coupling geometry can actually be regarded as part
and u, (1) is normalized to 1 within a unit celR is the ©Of the photonic crystal add-drop filter considered in Ref.
i . [12-14. The above results are also similar to those in Ref.
length of a unit cell. . : . ., [13]. However, we also point out a subtle but important dif-
We assume that the !nc_ommg waveals;_ the waveguidggence: we consider the possibility of gain or loss in the
mode |k;). Therefore, the incident wavgi(r) in Eq.(2.14  cayity, which is represented d in Eq. (3.6). A more de-
is simply ¢ (r) and the transmitted wavg(r) atx—+%  tailed discussion will be given in the next section.
is Next we study the case of resonant coupling as shown in
Fig. 2(b), which to the best of our knowledge has not been
Vik, L analyzed before using the scattering-theory formalism. Here
o —otiT N for notational convenience we assume that both waveguides
ki ®n n 2N are along thex direction, even though the results do not
Vk . depend on this a_ssumption._ In reality, the two waveguides
f dk; U ek (3.2 can have an arbitrary bending angle, as long as the direct
—vg(kj—k)+ie’ interaction between them can be ignored.
We assume that both waveguides consisNafnit cells,
where Eq.(2.68, Eq.(2.8), and Eq.(2.14 are used, and we anq the normalized waveguide modes in waveguide 1 and
transform the summation ové&y into an integral. Evaluating waveguide 2 are uncoupled and can be expressed, respec-

()= i (N + 2

the integral, we find the transmitted wave to be tively, as
ik x i 1 I—|Vki,n|2 N 1 L . _
Ya(r)= \/—Uk(f)e i —I; or—ontiTy o, |’ <r|ki>=\/ﬁ[uki(r)e'kixntu’,:i(r)e*"‘ix] in waveguide 1;
(3.39 (3.7a

L(|Vki,n|2+|vfki,n|2)

=T+ 20, . (3.3b (rla;)= \/_[v o (NEN+v¥ (r)e 9] in waveguide 2.
. . . (3.7b
In a similar way, we use Ed2.14) and find the optical wave
atx— —o to be We uselk;) and|q;) to represent modes in waveguide 1 and
waveguide 2, withk; andq; referring to their wave vectors.
As before, bothu, (r) andv, (r) are normalized within a
z,b,(r)+ gbr(r) ¢k(r)+§n: Wi —wn+lr 2 d)k O unit cell. We assulme that thqeJ unit cell length in waveguide 1

is R, and the total waveguide lengthlis =NR;. For wave-
Vk; n guide 2, the unit cell length iR, and the total length i&,
X— @4
wki—wk_-l-le —NRz.
! According to Eq.(2.14), the optical wave ak— — (in
We transform the summation ovierinto an integral and find waveguide 1 consists of the incident Wav$i(F) and the
,(r) to be reflected wavey, (r):
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‘//l(r)+‘//r(r) fdk \/—[U e'kJX+C (o]

5 1 Vk]-,nvn,ki
x ki'ki+wki—wkj+ie n wki—wn+irn
(3.9
Evaluating the integral, we find
Yi(r)=—=— = ==y (r)e™ (3.99
1 \/_N 1
1L Vi nl® 2L,
N=——uf(re *x1-i>» ——M— ——|,
lr/lr( ) \/m ki( ) |: ; wki_wn+lrn Ué
(3.9
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1
()= ——uvq (r)e%*
lr//t \/_N q
x| =i L 2szqj’nvn'ki,
n wg—owpt+illy US
(3.110
0 |-1|Vn,ki|2 L2|anj|2
r.=r.,+ Tt > (3.119

v v

9 g

The cavity mode decay ratg, in Eq. (3.119 is different

from Eqg.(2.13), because we assume the waveguide supports
traveling waves in deriving Eq2.13, yet the waveguide
modes we use in the resonant coupling case are essentially
standing wavegsee Eq.(3.7)]. It is interesting to compare

the above results, E¢3.11), with Eq. (3.6), and observe that

the reflection and transmission in the resonant coupling case

wherevé is the photon group velocity in waveguide 1 and is correspond, respectively, to the transmission and reflection in

assumed to be positive. The transmitted wa;(é) at x—
+ (in waveguide 2 can be found similarly, as

- L, :
- < . q;x
(1) w\/ﬁf dqj(vqje i*+c.c)

1 qu ,nVn,ki

X -
wnt+ily

wki—wqj-l-ie nowg—

1 .
= —=uvg (r)e'9%*
V2N
1 LZqu ,nVn,ki

o tiTy 2

-2i>

n wki_

X

(3.10

where g;
waveguide 2 and is determined by the conditioggzwki,

2
and Vg

assumed to be positive.

Since the photons in the high cavity can independently
decay into both waveguide 1 and waveguide 2, the decay rate
of the nth model",, will simply be the sum of the two pro-
cesses. Collecting the results, for the resonant coupling case,

we have
1 |kx
wl(r)—muk(r)e (3.118
()= L, F(r)e ki
r \/_N ki
. 1 2L1|Vki,n|2
x 1_IZ wy,—wp+ily vé '
(3.11b

is the wave vector of the propagating mode in

is the corresponding photon group velocity and is

the side coupling geometries.

The Bloch wave functionﬂki Or vg, in Eq. (3.7) are nor-
malized to 1 within a unit cell. Thus the power fl&xin the
waveguide satisfies the relation

2%
Pox|A] R (3.12
whereR is the size of a unit cellyy is the photon group
velocity, andA is the amplitude of the optical wave. As an
example,A=exp(kix)/v2N for the incident Wave//i(F) in
Eqg. (3.113. Combining Eq.(3.11) and Eq.(3.12), we find

the power reflection coefficieriR and transmission coeffi-
cientT to be

2
r=l1 2 1 2'—1|Vki ,n|2 313
TT'4 wy—wp il vg ‘ - (3132
2 2
_ E 1 2L2qu ,nVn,ki‘ ngl
| T oo tily, v ‘ ViR,
(3.13b

IV. CRITICAL COUPLING IN COUPLED
WAVEGUIDE-RESONATOR SYSTEMS

The simplest case of side coupling is a single mode reso-
nator coupled with a single mode waveguide, as shown in
Fig. 3@. It is worth mentioning that a specific example of

this side coupling geometry has been investigated in Ref.
[34], where the single mode resonator is the quarter wave
shifted distributed feedback resonator. In our case, the cavity
decay ratd™® due to the presence of waveguide is given by

Eq. (2.13,

L L

c_p¢ c _ 2 2
re=re<+r< Zug|V”**k| +ng|vn_k|, 4.7
where  we use TI'®=(L/2vg)|V,_?> and TS

=(L/204) |V, 4|? to represent the decay in thex and +X
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Waveguide

- - - Ehainl 3

c S\ c
I Ly

FIG. 3. (a) Sketch of a single
mode resonator side coupled to a
single mode waveguidd’® and

. : ;
| Sifigle Viaae Cavity I'S are, respectively, the cavity

—_— - x=0 decay rate in the-x and +x di-
X rections. For a resonator with mir-
ror reflection symmetry with re-

(a) spect to thex=0 plane,'® =T¢ .

(b) The resonant{ w=0) reflec-
tion and transmission coefficients
for the waveguide side coupled to
a single mode resonatdr? repre-
sents the intrinsic cavity loss
(gain), andI'¢ is the decay rate of
the cavity mode into the wave-
guide.(c) Reflection and transmis-
sion spectra for four different val-
ues of '/Te,

(2]

—— Reflection Coefficient
=== Transmission Coefficient

N

Reflection

N

|
010

w

n

iy

Resonant Reflection / Transmission Coefficient

Transmission

(b)

directions, respectively. A further simplification is possible if phenomenon of critical coupling observed in R@&], is the
the cavity possesses a mirror reflection symmetry with repossibility of controlling optical transmission and reflection
spect to thex=0 plane, which gived'® =T'¢ =T'/2. From by tuningAw, I'°, or I'°.

Eqg. (3.6, we find the power reflection coefficielR and In reality, it is difficult to fabricate a dielectric structure
transmission coefficient to be with perfect mirror reflection symmetry and there will al-
ways be some small difference betweleh andI'® . With
5 (I'%)? symmetry broken, the reflection coefficigRtand transmis-
R=[r|*= , (423 gjon coefficientT are
Aw?+(T0+1°)2
Cc Cc
T=|t|2=—Aw2+(FO)2 (4.2b R=[r|*="— 41;7% cy2’ (4.33
Aw?+(I0+19? ' Aot {IT+T-+13)
wherel'? represents the intrinsic loggain) of the resonator, , A®+ (4T -T%)?
andAw is w— ), with w being the frequency of the incident T=|t|*= (4.30

2 0 c c\2°
light andQ being the resonant mode frequency. Ao+ I+ +T5)
In Fig. 3(b), we show the resonantA=0) reflection
coefficientR and transmission coefficieflt as functions of
T'9%T°¢. Notice that atl'%/T°=0 the resonant transmission

coefficientT becomes zero and the reflection coefficiBns

These results show that the general reflection and transmis-
sion features of the system are not significantly changed. We
can still achieve zero resonamt ¢ =0) transmission by tun-

1. On the other hand, when the intrinsic cavity loss is muct"Y rozri_gg - Unity transmission can also by achieved
larger than the cavity-waveguide coupling, i.8Y/T¢>1, Py choosingl™=—T". _ _ .

the transmission coefficient approaches 1 and the reflection !N the next case, we consider a side coupled cavity that
coefficient almost vanishes. If we introduce gain into theSUPPOItS two degenerate modes with frequeficyWe re-
cavity and the lasing condition is approached, T&/rc—  Write Eq.(3.6) as

—1, bothR and T become very large. In Fig.(8), we plot )

the transmission and reflection spectra using different values . 1 L NIPRY 44
of I'/T"¢, which clearly shows the critical dependence of the r= _'n:1 Aw+il', v_g —kn¥nk> (4.43
reflection and transmission characteristics on hdvth and

I'%T¢. Of particular interest is the case 6F/T'°=—-0.5, 2 1 .

which gives a flat transmission coefficient equal to 1. An t=1—i _|Vk,n|21 (4.4b

obvious application of this critical dependence, similar to the n=1 Ae+ilyvg
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k> |- k>
. — - k> I- k>

1=0 FIG. 4. (a) Sketch of a wave-
k> S . guide s_ide coupled with a cavity
- — | supportlr_wg two degenerate_modes.
The cavity possesses a mirror re-
flection symmetry with respect to
thex=0 plane and the doubly de-
=0 generate modes have opposite par-
ity under mirror reflection. The
x even mode is|e) and the odd
b mode is|o). (b) The side coupling
(a) (b) geometry where two traveling
waves are supported in the cavity.
The two modes travel in opposite
directions and are degenerate due
to the time reversal symmetry.
The mode traveling in the clock-
wise direction is|+) and the
mode traveling in the counter-
clockwise direction is|—). (c)
The resonant transmission coeffi-
cient as a function of’%/T¢. (d)
The transmission spectrum for dif-
ferent values ol 9/I'C.

k>

Transmission Coefficient

Resonant Transmission Coefficient

(©) (d)

L L wherel'® is ['*=L|V, ¢[?/v4. We notice the remarkable re-
[=To+T=T)+ 5|Vk,n|2+ 5|V—k,n|2' sult that the reflection coefficief remains 0 for all frequen-
’ (4.49  cies. This is a direct consequence of the destructive interfer-
ence between the reflected waves due to the two degenerate
where we use the convention Afw=w— (). cavity modes, as was pointed out in REE2]. In fact, this
For this doubly degenerate side coupling geometry, tweside coupling geometry can be regarded as half of the pho-
simple cases are of special interest. The first example i®nic crystal add-drop filters studied in Ref42—-14. Here
when the resonator possesses a mirror reflection symmettiie coupling to the second waveguide is represented by the
with respect to th&=0 plane and the two degenerate modesintrinsic” cavity decay ratel'°.
have opposite parity, as shown in Figa% Assuming the In addition to the condition of frequency degeneracy and
even mode ige) and the odd mode i®), Eq.(2.4) gives  equal mode decay rate, E@t.6) must also be strictly satis-
fied to eliminate reflection. It is very difficult to simulta-
Vie=V-keVko="V-ko: (4.9 neously realize these requirements during the fabrication
processes. In practice, it is easier to fabricate semiconductor
tring or disk resonatorg19—-21 and dielectric microspheres
[17,18, which support two counterpropagating modes, as
shown in Fig. 4b). In the following analysis, we show that
he reflection and transmission coefficients of a waveguide
oupled to this type of resonator are also described by Eq.
(4.7).
Vieel = [V 4.6 If the waveguide mode and the_ t_raveling wave mode in
: : the resonator are phase matched, it is safe to assume that the
waveguide mode can induce a traveling wave circulating in
only one direction. As shown in Fig.(d), we denote the
2 0 Ten2? clockwise circulating mode ds-) and the counterclockwise
_ Aw?+(I'°-T°) (47) ~mode ag—). Using these notations, the condition for phase-
Aw?+(I0+T1°)2 matched coupling i8/, _=0 andV_, ,=0. Furthermore,

where V, . represents the coupling between the inciden
wave k) and the even cavity mode), andV, , represents
the coupling betweetk) and the odd cavity modm). We
follow Refs.[12,13 and assume that the waveguide mode
|k) couples equally strong with the even mode and the od
mode, i.e.,

Consequently, from Eq4.4) we obtain

R=0,
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Waveguide | - - Waveguide 2

FIG. 5. (a) A sketch of two
waveguides of the same type
(a) coupled together via a higlQ
resonator supporting a single
mode, which is the simplest case
of resonant coupling.(b) The
resonant reflection and transmis-
sion coefficients of the coupled
waveguide-resonator system
shown in (a). (c) The reflection
and transmission spectra of the
coupled waveguide-resonant sys-
tem with different parameters of
rorwe.

Single Mode Cavity

N
(IR

— Reflection Coefficient

25 === Transmission Coefficient

- o

Reflection

o4
o

[}

N

n

Resonant Reflection / Transmission Coefficient
)]
|
o

Transmission

]
o

(b) (©)

using Eq.(2.4) and the time reversal symmetry, we find . L ) . L )
Vi +=V*, . With these conditions, from Eq4.4) we PE=[Voil% TL=""Vagl% (4.99
have g g

R=|r|?=0, (4.89  Where as before we ude® to represent the intrinsic cavity
loss or gainI'® represents the cavity decay rate into wave-
Aw?+(T0—T°)2 gu!de 1, and’S represents the.cavity depay rate into wave-
(4.8b guide 2. From the above equations, we find that at resonance
(Aw=0) it is necessary to satisfy the condition Bf=0
. . andl'® =T to realizeR=0 andT=1 (i.e., photon resonant
Me=——|\V, .[2=—|V_, |2 4.8 tunneling. ' '
2vg| o+l 2vg| = (4.89 To reduce the number of parameters in our analysis, we

_ assumd™® =TS , which allows us to use a single parameter
The above result is the same as E47). =21 and simplify Eq.(4.9) as
In Fig. 4(c), the resonant{w=0) transmission coeffi-

cient was plotted as a function df%I'®. Notice that at

T=t|=——————,
4 Aw?+(I%+T°)?

I'%Tr°=1 Tis always equal to zero. This phenomenon is the _ (Ae)?+(I9)? 4.10
principle behind many add-drop filters studied in the litera- N (Aw)?+(T0+ Fc)z’ 109
ture[12-14,19-2], and was named critical coupling in Ref.

[22]. The above result fof also applies for the case where 5

gain is introduced, i.eI;°<0. The transmission spectrum is _ (re) (4.108
shown in Fig. 4d) for different values of"%T°. We notice (Aw)2+(T0+T°)2’ '

that when the lasing threshold is approachB8/T¢— —1)

the optical wave is amplified and the resonance width is nar-, . . . . . o
rowed. It is interesting to notice that the above result is very similar

to Eqg. (4.2), which gives the reflection and transmission co-

For the case of resonant coupling, we limit ourselves to fficionts f de sid led with inal q
the simplest case, which is composed of two Waveguideg icients Tor a waveguide side-coupied with a singie mode

coupled via a single mode higD resonator, as shown in Fig. \t/r\:aveg#d?_. The or}lfy Q|ff(tergnc§ bzt;veen the twodca?estlhs that
5. As a further simplification, we assume that the two e reflection coefficient in Eq(4.2) corresponds to the

waveguides are the same type and have the same unit cJgnsmission coefficient in Eq4.10), and the transmission

coefficient in Eq.(4.2) corresponds to the reflection coeffi-
lengthR and total length_. Thus Eq.(3.13 becomes cient in Eq.(4.10,
2 0, 7°C _1C2 In Fig. 5b), we show the resonant reflection and trans-
- (Aw)™+ (TH+I% —17) , (4.09  mission coefficients as functions &/T". In Fig. 5c), we
(Aw)?+(T0°+T%+T¢)2 plot the reflection and transmission spectra using various pa-
rameters o %/I'°. As expected, we find that Figs(t§ and
aT°TS 5(c) are the same as Figs(b3 and 3c), if we identify the

= 5 St e (4.9p  transmission and reflection in Fig. 5 with the reflection and
(Aw)*+(T7+1I3+T2) transmission, respectively, in Fig. 3.
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Combining Eq.(5.1), Eq. (5.2), and Eq.(5.4), we find
FIG. 6. An example of an indirect CROW, which consists of a

waveguide side coupled to an array of highresonators. . ieikR B zeik(x|+x|+1) R
I+1 t* t* |
V. DISPERSION RELATION OF INDIRECT CROW =
Bies P kO +%4 1) 1 iR o
In the literature, most of the studies on systems of coupled e €
resonators utilized the tight-binding approximati@3-29.
However, for the structure shown in Fig. 6, where a wave- (5.5
guide is side coupled to an array of highresonators, the . . o .
tight-binding approximation no longer applies. It is obvious_The_ eigenvalue equation for the matrix in the above equation
in Fig. 6 that any two resonators in this type of CROW can'® simply
be coupled to each other via the propagating modes in the
waveguide. We shall name this type of CROW an indirect )\Z_A(EeikR_,_ ieikR) +1=0. (5.6)
CROW, since the resonators are indirectly coupled together t t*

via the propagating modes in the waveguide. In this section,

we develop a matrix formalism to analyze the indirectAccording to the Bloch theorem and the definition/gfand

CROW's. B, in Eq. (5.1), for any propagating wave inside a spatially
To simplify our analysis, we limit ourselves to CROW’s periodic structure, the eigenvalue should be of the form

with large intercavity distancB, which enables us to ignore exp(igR), with 8 being the Bloch wave vector. Conse-

the direct coupling between the resonators. For the structurguently, from Eq.(5.6), we find

shown in Fig. 6, we write the optical wave to the immediate

left of thelth unit cell as 1 1 .
2 cog BR) = Ye"kR+ t:e'kR. (5.7)

() ey, = AUi(r) +Byug () We consider a simple case of a CROW, where the reso-

nator possesses mirror reflection symmetry and supports only

=a|eikx'uk(F)+b|e‘ikx'u’k‘(F), (5.2 a single mode. Under this assumption, the reflection coeffi-
cientt is given by Eq.(3.6),
where uk(F) is defined in Eq.(3.1). We now introduce a t Aw 5.9

matrix formalism, in which a matri®M is used to relate the C Aw+irc’
optical wave to the left and the optical wave to the right of
the Ith unit cell, where we assume the cavity has no loss or gain, I'8.,
=0. The term is defined a°=L|Vy ,|?/v4 and represents
the coupling between the cavity and the waveguide. Using
Eqg. (5.7 and Eq.(5.8), we obtain the dispersion relation for

(5.2 this indirect CROW,

a,
b| )

Qi1

biiy|=M

c

cog BR)=cogkR) + Esin(kR). (5.9

We notice that this approach is similar to the transfer matrix
method that was widely used to describe one-dimensiondlotice thatk represents the wave vector of the pure wave-
multilayer structureg36]. Using Eq.(3.39, Eq. (3.5, Eq.  guide, andB represents the wave vector of the compound
(3.6), and applying time reversal symmetry, we have the fol-system.
lowing relations for the matriM: If the quantitykR# nr, a direct consequence of E¢.9)
is that no propagating mode exists at the renormalized reso-
nance frequencyw={(). In fact, under the condition of

t 1 0 r* sin(kR) not close to zero, for ank w within the range of’°,
o|=M . e [=M] (5.3) thetermI’/Aw will be larger than 1. According to E@5.9),
this means the formation of a band gap of the ordef of

that contains the renormalized resonator frequefcyf an
unperturbed waveguide band traverses the renormalized
From these two equations, the mathikis determined to be resonance frequency kg4, it is necessary that this waveguide
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FIG. 7. The uncoupled waveguide band and the photonic band £ g pispersion relations of the indirect CROW bands. The
of the indirect CROW calculated from Ed5.11). In (& KoR  gpjig Jines are the exact solutions of E(6.11 with Rl /v,
— H — Cc
=m/2 and in(b) kyR=57/6. We choose the paramet®I™™/vy  _( 05, The dashed line represents the uncoupled waveguide band
=0.05. The justification for this value is given in the text. and the stars are the approximate solutions given by(E42. In

) ] ] ) ) (), we usekoR=7/2 and in(b) kyR=5m/6.
band is split and a band gap is formed due to its coupling to

the CROW structure. We assume a linear dispersion relation ) ) )
for the unperturbed waveguide mode, and the photonic bands obtained from the above asymptotic

approximation. It is interesting to notice that the asymptotic
1 approximation actually gives a fairly good description of the
k=kot+ —Aw, (510 indirect CROW bands.
’ In closing this section, we remark that if ckgR)==+1 it
whereAw= w— ). This assumption simplifies E¢5.9) as is possible that one of the split bands becomes extremely flat.
This scenario is illustrated in Fig. 9, whekgR=3.0 and

Aw RI'® RI'“/v4=0.05. The nearly horizontal band lies close to the
cog BR)=cog koR+ F Vg resonance frequenay= wq. The flatness of the band indi-
cates extremely low propagating group velocity. The group
c Aw RIC velocity is reduced to a large extent due to the fact that, when
+ —sin| kgR+ — . (5.1)  propagating through the indirect CROW structure, photons
Aw re v h . ;
9 are trapped inside the resonance cavities most of the time.

This property may find applications when low photon propa-

From this expression, it is obvious that the photonic ban(rj?ating velocity is desired, such as in the case of band edge
structure of the compound waveguide depends critically o fasers[37]

koR, T'¢, and R. For many photonic crystals, the mid-gap
frequency is typically of the valuea/27rc=0.3, wherea is
the photonic lattice spacing ardis the light speed in free 1
spacd 3]. If we consider a compound waveguide formed by
a photonic crystal waveguide and defect cavities, we can
chooseR=5a,v4=0.3, and the cavityQ (consequently
w/T°) between 100 and 1000. From these estimates, we find
that the parameteRI™“/v is of the order of 0.05. In Fig. 7,
we useRI'“/vy=0.05 and plot the indirect CROW band as
calculated from Eq(5.11). It is clearly demonstrated in Fig. 3
7 that the photonic band of the indirect CROW splits at
Aw=0 and its resonant band structure depends critically on
the value ofk,R. 4 Kk R=3.0
On the other hand, if the propagating mode frequency is  _gl ¢
far away from resonance, E(.9) can be solved asymptoti-
cally. ForAw>T°, 3 can be expanded aroukdo obtain an
approximate solution, -10

---  Uncoupled Waveguide
— Indirect CROW

|
N o N S [o2] o] o
T T T T T

—st

0‘.5 ‘i 1:5
BR

_ ) - o ) _ FIG. 9. Near horizontal indirect CROW band. Photon group
which can be easily verified by substituting this result intovelocity is greatly reduced for the middle band shown above. The

Eqg.(5.9. Figure 8 shows the uncoupled waveguide band, thelashed line is the unperturbed waveguide band. WekyBe= 3.0
split waveguide bands around}, calculated from Eq(5.1),  andRI'“/v4=0.05.

BR=KR-T%Aw, (5.12)
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3 R | | reflection symmetry dictates that the wave to the left must be
| A A A Ao | [0 t]. Since the two waves can be related to each other via
b= b — b Bo— matrix M, we have
B0 8. 0o o
i | i b =M , =M , 6.3
1st Cavity Ith Cavity  [+1th Cavity Nth Cavity 0 1 ©.3
x=0 X=X, X=X x=(N-1)R
(a) which gives
t>—r? r
t t
M= 6.4
- (6.4)
t ot

; When we study the case of a waveguide coupledNto

X=X, identical resonators as shown in Fig.(d0Q the scattering by
(b) each resonator can still be described by the matfixas

given by Eq.(6.4). However, to apply Eq(6.4) to describe
FIG. 10. (a) A straight waveguide side coupled horesonators.  the [th resonator, we need to choosgin Eq. (6.2) asx; .

The incident optical wave is described pgb;]; the output optical ~ Therefore, if the sam® matrix is used to describe the next

wave is given by{a,b,]. (b) A straight waveguide coupled to a resonator, we should switch to another basis of wave func-

resonator that possesses mirror reflection symmetry with respect toons wherex, is x,,1=X,+ R. Consequently, we have

the planex=x, .

a

b

Qi1
VI. OPTICAL TRANSMISSION AND REFLECTION [ , (653

b
THROUGH A WAVEGUIDE COUPLED I+l
WITH MULTIPLE CAVITIES

We have discussed the light reflection and transmission
characteristics of some simple coupled waveguide-resonator
systems in Sec. IV. Yet it is of both theoretical and practical
interest to investigate more complicated geometries. As an
example, Fig. 1@ shows a structure composed Mfiden-
gﬁ?r!if?%n2:r31rrs>lirf§rc|1?1?lgilgy2ii? v(\:/guglses(ljjrtr?eatr?;rtaclag;c;[hwri\g.t should be_rer_nembered that the wave function basis for
nator is single mode and possesses mirror reflectiond+1 Di+1] is differentirom that for[a, b]. .
symmetry. Assuming that the center of the first resonator is located at

First we reconsider the case where a straight waveguide 0+ W€ ch_oose the wave function basis according to Eq.
coupled to a single cavity. As shown in Fig. (b} we 6.1 with x,=0. In thesamewave function basis, the output

choose the origin of the coordinate such that=x, is the optical wavd a, b,] after theNth resonator is related to the

mirror reflection symmetry plane of the system. As beforencident wavefa; b;] through
we express the propagating waveguide mode as

(6.5

_{
~| = ~| =

a, e—iNkR 0

bo

q;
bi :

= DN (6.6)

0 eiNkR

Y(r)=ae ey, (r)+be Ky (1), (6.1

where we choose the wave function of the propagating mode We consider the simplest case where the cavity possesses
such that under the mirror reflection operationx,——(x  Mirror reflection symmetry and supports only a single mode,
—X,) wherer can be found from Eq(3.6),

L
_ka,nvn,k- (67)

0O,_, [ek&=xy (r)]=e kx—X)y_ (1), 6.2 f=—8MM—
x=x,| k(r)] k(1) (6.2 Aot i(T0+T9) g

where the operatoO,_y_ represents the mirror reflection Assuming that the parity of the cavity mode is given By
with respect to the plane=x,. Using the same matrix for- from Eq.(2.4), we have

malism as in the previous section, from Eg.6), we know

that if the wave to the left of the resonator is described by V_in=PVin- (6.9

[1 r], then the wave to the right is given py 0]. On the
other hand, if the wave to the right [ 1], the mirror  Using this relation, Eq(6.7) is simplified as



7400 YONG XU, YI LI, REGINALD K. LEE, AND AMNON YARIV PRE 62

=—ji— ) = .
Aw+i(I'%+T°) Aw+i(I'%+T°)
The transmission coefficient is Substituting Eq(6.9) and Eq.(6.10 into Eq.(6.5b), we find
|
e R Aw+i(I0-T9] —iPI /R
D= o iPT e kR e R Aw+i(I+TI%] |- (6.11)
|
To find the reflection and transmission coefficients, we NI NI
calculateDN by using the procedure in Reff38]. First we =70 —P3o
obtain the eigenvalue equation of matbx N—(_1)Nn
g q D"=(—-1) PNF° ) N (6.17
c o o
A2—2\ cogkR)+ ———sin(kR) [ +1=0.
Aw+il’ The power transmission and reflection coefficients of the

(6.12  whole system can readily be calculated as

Then we use the Hamilton-Cayley theor¢8®], which says NIS/TO 12
that the matrix obeys the same equation as its eigenvalue T= (1+NIST0)2’ R= 1+ NLYTO| - (6.18
equation,
It is evident from Eq.(6.18 that under the condition of
5 re ] koR=nm the resonant transmission and reflection character-
D°—2D cos(kR)+msm(kR) +1=0. istics of a waveguide coupled tN equally spaced single

6.13 mode resonators each with intrinsic Ids%are the same as if
the waveguide is coupled tosingleresonator with intrinsic
lossT"%/N, which was analyzed in Sec. IV. In general, how-
ever, such a scaling property with respeci\tdoes not hold
for arbitrary values ofAw andkgR. In the rest of this sec-

re ) tion, we shall use Eq6.6), Eq.(6.14), and Eq.(6.15) to find

cog BR)=cogkR) + ﬁsm(kR), (6.1 the transmission and reflection properties of such coupled
w+il’ . 8 .

waveguide-resonator systems. The paramgtas defined in

Eq. (6.14) is very similar to the Bloch wave vector of the

Thus, if we defineB as

we find[39]
E 1
@
sin(NBR) sin(N—1)8R E,8l k R=n/2
N=D— —l— , (619  §°° ;
sin( BR) sin(BR) Sos r're=0
o
2041
wherel is the identity matrix. £l
With the optical amplitude at the input and output given § .
by Eq.(6.6) and the expression fd@" given by Eq.(6.15), -10 5 10
we can easily evaluate the optical transmission and reflection
coefficients due to the presenceNdfresonators. The results . A e
in general depend critically on the values &, T'°%/T'¢,N, Sosl k,R=r/2
andkgR. However, under the condition @w=0 andkyR EO_G_ rre-o
=nr, the optical transmission and reflection coefficients are (8)04_
of simple form. In this case) andD" can be evaluated as g
5020
o
re re S0 5 10
1- ﬁ - Pﬁ AwT®
D=(-1)" re re |’ (6.16 FIG. 11. The transmission and reflection coefficients of a
PI‘T 1+ 0 straight waveguide side coupled M resonators, wittN=2 and

N=6, respectivelyI'%/T'=0 andk,R= /2 are used in the calcu-
lations. As in the previous calculations of band structuRds{/v
and =0.05.
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FIG. 12. (a) The transmission spectrum of a straight waveguide o ] ) ]
side coupled tN resonators, wittN=2,N=6, andN= 20, respec- FIG. 13. The transmission spectrum of a straight waveguide side

tively. T%T¢=0k,R=0, andRT"*/v4=0.05 are used in the calcu- coupled toN resonators, witiN=2 andN=10, respectively. We
lations. (b) The photonic band of a straight waveguide side coupledconsider the case df%/I'°=0 andko,R=3.0. As in the previous
to an infinite array of resonators like those(@. The band struc-  calculationsRI"*/v4=0.05.
tures are calculated using E¢5.11), with keR=0 and RI**/v
=0.05. It is clear that the band gap (ib) corresponds to the trans- CROW band observed in Fig. 9. The appearance of multiple
mission dip for the case d1=20 in (a). peaks instead of a plateau of high transmission is likely due
to the imperfect coupling between the unperturbed wave-
compound waveguide in the previous section and can bguide band and the flat CROW band.
calculated using the same assumption of linear dispersion. In In Sec. IV, we found that the optical transmission and
all the calculations of, we choose the sam&T“/v reflection depend critically on the cavity loggain). For a
—=0.05. waveguide coupled to multiple resonators, we expect to see
In Fig. 11, we show the transmission and reflection specsimilar critical dependence. In Fig. 14, we calculate the op-
tra for a waveguide coupled td=2 andN=6 resonators. tical transmission and reflection coefficients of a waveguide
We assume that there is no loss or gain &pl=7/2. Itis  coupled to six resonators, withoR=m/2 and RI'“/v
interesting to notice that for only two resonators the trans=0.05. In the presence of cavity loss, we find that the rapid
mission dip and the reflection peak are no longer Lorentzia®scillation of the transmission coefficient vanishes around
and relatively flat. For the case Bf=6, the transmission dip the edge of the transmission dip. This is due to the reduced
aroundA w=0 becomes extremely flat. We also observe thenterference between the lossy resonators. When cavity gain
rapid oscillation of the transmission coefficient around thels introduced, we find that the transmission and reflection are
transmission dip, which is caused by the optical interferenc@reatly enhanced at frequencies corresponding to the band
between the six resonators. edge of the indirect CROW band as shown in Fig. 7. This
In Fig. 12a), we assume tha,R=0"%T"°=0 and show gain enhancement is a direct consequence of the slow group
the transmission spectrum for a waveguide coupledNto
=2N=6, andN=20 cavities. It is interesting to notice that

[\

. 5 koR=m/2 M Zn | — T19%r°=0
only the case oN=20 resonators produces a flat transmis- 2 N=6 n nl--- I9r%=-0.12
sion dip. In Fig. 120), we show the photonic bands in the g, " AR r°me=0.3

indirect CROW that corresponds to the coupled waveguide-
resonator system in Fig. (&. We notice that the band gap
in the indirect CROW corresponds exactly to the transmis-
sion dip of N=20 resonators in Fig. 18). It is interesting - e : _
that in Fig. 11 kgR=m/2), it takes only six resonators to AST®

produce a flat transmission dip, while under the condition of
koR=0 it requires 20 resonators.

We have observed in the previous section that it is pos-
sible to create a very flat photonic band closét=0 in an
indirect CROW(see Fig. 9, wherkyR= 3.0 is usefl We use
the same value okyR to evaluate the optical transmission
through a waveguide coupled M lossless resonators, with
N equal to 2 and 10. The results are shown in Fig. 13. For the -10 -5
case ofN=2, we observe the presence of a narrow transmis-
sion peak arounddw=0. For N=10, multiple high trans- FIG. 14. The transmission and reflection spectra of a waveguide
mission peaks are formed within the frequency range of Qcoupled toN resonators with lossI{®/T'°>0) or gain C'%T°<0).
<Aw/I'°<2.5, which roughly corresponds to the flat We useN=6ko,R= /2, andRI'°/v,=0.05 in the calculations.
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2.5r

\ VIl. SUMMARY
— %0 H . . . .
——= =03/ We generalize the scattering-theory formalism to discuss
------ r’r*=05 | o the coupling between waveguides and higloptical resona-
n tors possessing loss or gain. We calculate the optical trans-
mission and reflection coefficients for two basic coupling
geometries, the side coupling geometry and the resonant cou-
pling geometry. It is found that the optical transmission and
reflection characteristics depend critically on the the cou-
pling between the waveguide and the resonator, the degen-
eracy of the cavity modes, and the cavity loss or gain. We
propose the concept of an indirect CROW formed by cou-
pling an infinite array of highQ optical resonators to a
straight waveguide. The dispersion relation of the indirect
CROW bands is calculated using a matrix formalism based
5 s o T on scattering-theory results. Finally, we derive an analytical
AGT® formula that gives the optical transmission and reflection co-

Transmission Coefficient

efficients for a waveguide coupled td identical optical

FIG. 15. The transmission spectrum of a waveguide coupled Qagonators. Using this result, we discuss the dependence of

20 resonators with loss or gaikeR=0 andRI'*/v =0.05 are used

in the calculations. ous cavity and waveguide parameters.

velocity at the edge of the indirect CROW band. In Fig. 15, ACKNOWLEDGMENTS
whereN=20 andkyR=0, we also find a diminished trans-

mission side lobe in the presence of cavity loss, and sharp This research was sponsored by the Air Force Office of
enhancement of Optica] transmission at the band edge Wh&plentlflc Research and the Office of Naval Research. R.K.L.

the optical transmission and reflection characteristics on vari-

the cavities possess gain. However, comparing Fig. 15 t8/S0 acknowledges support from the National Science and

Fig. 14, we observe that it takes more cavities to obtain th&ngineering Research Council of Canada.
same amount of optical enhancement wkgR=0. Finally,

we study the case di=6 andkyR= 3.0, which is shown in APPENDIX A
Fig. 16. With the presence of cavity [0ES/I"°=0.3, we find . )
that the transmission peaks arouad =0 in the case of To derive Eq(2.6), we first use Eq(2.9) and express the

lossless cavities are greatly reduced. With cavity gaintermﬂki) as the sum of an infinite series,
I%re=-0.12, we find a sharp peak of enhanced optical

transmission close td w=0. Indeed, comparing Fig. 16 to Tlki)y=
Fig. 14, we find that the enhancement of the optical trans-

mission forkyR=3.0 is much larger than the case lkfR ] ) ]
— /2. As a concluding remark, we observe that the phenomYVe define the renormalized Green functiGras
enon of effective gain enhancement is a direct consequence G —(mlG

of the reduced group velocity around the band e&#. mn(@)=(M|G[n)

o)

>

|
=0 (a)ki_Ho"r‘iEV

ki) (A1)

- 1 1 '
=(m> S AY; —| In).
§ — ngll:zfgs ------ < (=0 w—Hgtie\| w—Hgtie ’ >
§ (A2)
s Multiplying Eq. (A1) from the left by |k;) and using the
£ above definition foiG, we find
g
C 10 T 1o = (K[ Tlki)= 8 i
51 SV, Ga(@)V
g4 ror=-0.12 Wi tie fn 9Tk
[
Q
g8 k R=3.0 (A3)
24 Ns
é 5 which is exactly Eq.(2.6a. Equation(2.6b can also be
8 el SRR, proved in a similar way.
= 9% 5 ) 5 1o We notice that for any matriA with all its eigenvalues
Awr® less than 1, we have the identity
FIG. 16. The transmission spectrum of a waveguide coupled to 1 w
six resonatorskoR=3.0 andRI'*/v4=0.05 are used in the calcu- 22 Al (A4)
lations. I-A <
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wherel is a unit matrix. Applying this relation to EqA2),

we find == Q e E Vi, n@ns .
1 - 1 !
— 1 _
G w—Hptie |§0 ( w—Hgp+ie +|§1: Vi, kmvk,n3aln3,2nl : (B2)
1 1 . L . )
= i . To cast this relation in a simpler form, we define the follow-
w—Hg+iel=V/(w—Hg+ie) ing matrix operator within the subspace expanded by the
1 high Q modes|n):
 w—H+tie’ (A5)
G |n >: A (B3a)
where we have used the relatibh=Hy+ V. (n2|Golny w—Q, +ie’
APPENDIX B (N Valn1) =V, s (B3b)
In order to derive Eq(2.7), we start by rewriting Eq(A2)
as
(alVilne) =3 Vi = =5 Vien, (B39

Gny iy =(nz[GIny)= w— Q +| 2 2’ (B13 where the term¥/4 andV; represent the direct and indirect
1 |
"2\ o—Hrie ) |/ .
(B1b) G:(z A|)Go. (B4)
=0

interaction, respectively, between the cavity modes.
The matrix form of Eq(B1) is

where the indices, andn, refer to the optical modes within

the highQ resonator, andi)nl is the frequency of modg,)

as given by the unperturbed Hamiltonibdg.

a'nz,n1=<n2|A.|n1>=<

With the initial conditions forA, given by

We can expresa',]?nl in terms of lower order terms, Ao=1,A1=GyVy, (B5)
1 we find
[
Y (N MY
2:M —Hgti
E @~ Homie G=Gy+Go(Vy+V,)G, (B6)
1
X < Ng|————— V! n1> where we have used the relation EB2).
w—Hgp+ie
Consequently, we have
1 1
-1_p~-1
= —(Vyqt+Vi). B7
+k,2n3<n2w H0+|6V‘k>< w—Hg+ie n3> G Go (Va ) (B7)
1 Using Eqg.(B3), we find that the above equation is exactly
X I=2 Eg. (2.7).
<n3w Hotie l> a.(2.7
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