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Diffusion of waves in a layer with a rough interface
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Sound trapped between the rough boundaries of a statistically homogeneous layer can exhibit diffusive
behavior which influences the reverberation of a pulsed signal. If the interfaces of the layer can transmit sound,
then eventually sound within the layer will be lost and there will be no diffusion. Nevertheless, if the trans-
mission to the exterior of the layer is weak, there will be a remnant of diffusion. This paper examines the
description of this kind of quasidiffusive behavior for sound which impinges on the rough interface of such a
layer from outside the layer. As in the case of diffuse light scattering by particles in suspension, the diffusion
constant is renormalized according to the delay required to build up resonant energy in the layer. In addition,
when there is a density contrast between the interior and exterior of the layer, or when there is dispersion, the
diffusion constant has another correction associated with energy flux within the layer.

PACS numbes): 43.20+g, 41.20.Jb

[. INTRODUCTION that the potential is frequency dependent, although in a very
simple fashion. They noted that because of this simple fre-
Consider a fluid layer bounded below by an acousticallyquency dependence, and becaMss local in position[it is

impenetrable flat surface and separated from a fluid halfof the form V(r,r')=v(r,w)8(r—r’)], the Ward identity
space above by a rough interface, as indicated in Fig. 1. Thexpressing energy conservation can be generalized to apply
sound speed and density of the layer differ from the soundo fields of differing frequencies. This generalization of the
speed and density of the half-space. If a point source oyvard identity to the case of two frequencies leads to a re-
sound is located in the half-space near the interface, some #fsed diffusion coefficient. Van Tiggelest al.[6], in a com-
the evanescent waves associated with the source may coifent on the work of Barabanenkov and Ozrin, showed that,
cide with what would be normal modes in the layer if thein fact, the renormalization of the diffusion constaBt, in
interface were flat and not rough. How do these waveghis case is related to the potential energy of the resonant
propagate and scatter? In a previous pimén was shown Wwave which is contained within the Scattere[§]. Van
that reverberation from a pulsed source within a |ayeredTigge|enet al. obtained their result by careful consideration
waveguide with rough boundaries behaves diffusively, deof the expression given by Barabanenkov and Ozrin which in
caying slowly as 1/in the absence of attenuation. There areturn is based on the special quadratic dependence of the local
apparently two reasons why this diffusion of process needspotential” on frequency. Though the arguments of Kogan
to be treated with more caution, however. The first involvesand Kaveh seem to be perfectly general, the methods of
the role of the time-reversed sequences of scattering events
that lead to diffusion. These time-reversed sequences lead t z
enhanced backscatterifg], on the one hand, and to infini-
ties in the computation of the diffusion constant in two di- Y
mensions on the oher hafd]. For scattering by layers this
effect was considered by Behez-Gilet al.[4]. It will not be

careful treatment results from resonant scattering. In the cas
of scattering by small objects, Kogan and Kay&hpointed
out that if the Boltzmann equation that governs the scattering C@ p@
is modified to account approximately for the time that light 7= -H
spends rattling around within the scatterers, then the diffu-
sion constant will be reduced. In resonant scattering, waves
can spend a sufficient time within the scatterers to alter th?ne
diffusion constant significantly. The aim of the present papet
is to examine this effect in scattering by a layer which SUPhe
ports normal modes which, when the boundary is rough, beécatter back and forth between the flat surface=at-H and the
come resonant states. rough interface. The transmission amplitude from the half-space
The discussion given by Kogan and Kavid] of the ef-  apove the interface to a half-space below the interface with constant
fect of resonance on diffusive light scattering is somewhatound speed and density andp, is T,4(Q|K). Likewise, upward
phenomenological. To put things on a firmer foundation transmission is described By Q|K) and reflection from below
Barabanenkov and Ozrin considered a frequencypy R, AQ|K). Reflection from the imaginary surface &t —h is
independent dielectric constant. In this case the effectiv@lescribed by(K), assuming that the medium betwesna—H and
scattering potential takes the simple foks e(r)w?/c?, so  z=—h is transversely homogeneous.

FIG. 1. Geometry of scattering by a layer. The dengifyand
sound speed, are the limiting values op(z) andc(z) as the
gh interface is approached from below. Waves are incident on
rough interface from above, penetrate the interface, and then
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Barabanenkov and Ozrin and the comment of Van Tiggelefiormalism allows for depth-dependent sound speeds in the
et al. seem to be tied to this special model of local dielectriclayer. If S(Q|K)=B1(Q)R(Q|K)/VB1(K), then energy
scattering. In the case of acoustic scattering by particles witbonservation is expressed by
a sound speednd density differing from their surroundings, o
their arguments do not seem to work. The situation becomes =sS'0s-i(S'@-09), (©)]
even less clear when scattering by the interface of a layer is
considered. Then the role of the potential is played by thavhere
surface admittance, which is a complicated function of fre- .
guency and, more significantly, is a nonlocal function of po- O(p)= 1 ifp<olc, 4
sition. What this means is that when the admittance is exp- 0 otherwise,
resed in terms of wave vectors, it is not simply a function of
the difference between incoming and outgoing wave vectorsasnd®=1—0 [11].
It is this aspect of the admittance that prevents application of This result accounts for both propagating and evanescent
the methods used by Barabanenkov and OFrih Livdan  waves[Note that the term beginning with i in Eq. (3) was
and Lisyansky[8] also considered the issue of particle scat-given with the incorrect sign in Ref11].] On a flat surface
tering, and showed that, without using the Ward identity forz=0, just above the highest point of the interface we can use
separated frequencies, a second sort of renormalization of thRe reflection operator to construct a formal relationship be-
diffusion coefficient is required, in addition to that consid- tween the field and itg derivative:
ered by Barabanenkov and Ozrin. The purpose of the present
paper is to show how in the case of acoustic scattering by the
interface of a layer, the renormalization of the diffusion con- 924(Q.Z|K)|z-0=— f dPY(Q|P)(P.0[K). ®)
stant is tied to the potential energy of resonant states within
the layer. Furthermore, the second renormalization proposed he minus sign is chosen according to the conventionYhat
by Livdan and Lisyansky is related to the energy flux within relates theoutwardnormal derivative to the field itself. At a
the layer. In this way the idea of Kogan and Kaveh, that thdower boundary, the outward derivative isd,.) The Fou-
delay due to the buildup of energy within scatterers can aftier transform convention used here will be
fect transport properties, is shown to hold in more compli- 1
catgd situations 'Fhan smple Iocql dlel'ectrlc scattgrmgd The lﬁ(Q,ZlK):(—) f dRe 1 Ry(R, Z|K). (6)
main result of this work is contained in E(37), with Ag T
given in Eq.(48), aiin Eqg. (61), andA in Eq. (68). ) . .

The relationship between the reflection operd®and the

admittanceyY is

IIl. FORMALISM FOR INTERFACE SCATTERING

1
Maradudin and co-workers wrote numerous papers ex- R=————-(1+(i/B)Y). (7
ploiting an admittance formalism for surface scattering (A=(/B)Y)
[4,9,10. The advantage of focusing on the admittarioe

impedancg is that energy conservation is expressed by th T . .
simple statement that the admittance operator is Hermitian.en~|e left of aY, itis to be evaluated using the horizontal wave

is the conservation of energy that leads to diffusion. AnotheP’eCtor of the left argument ofY, ie., (81Y)(K|Q)

advantage of focusing on the admittance is that reflection_ P1(K)Y(K|Q). In the special case of a flat interfacezat

amplitudes are then expressed in a form that looks like the 0 @nd a homogeneous layer of densifyand sound speed

resolvent in quantum mechanics, for which there are wellC2: Pounded below az=—H where the field vanishes, the

developed techniques for treating multiple scattering. admittanceY,, is diagonal in wave number, and is given by

If waves are incident from above on the interface, fields in __
the (uppe) half-space can be represented by Yo(Q)= = p1B2(Q)CotB(QH) 2. ®

The order of theB’s andY’s is important. If a3 is located to

. _ For a slightly rough interface a=0, with roughness speci-
#(R,z;K) =exp(iK-R)exp(—iB1(K)2) fied by z=h(R), the surface height, the first-order deviation
of the admittance from the flat interface result is

+J dQexp(iQ-R)exp(+i81(Q2R(QIK).

@ AY(QIK)=h(Q=K)| Yo(Q)(1=p2/p1) Yo(K)
HereK is the horizontal projection of the wave vector of the +(k§—Q- K)— &(kg—Q- K) 9)
incident plane wave. The vertical components of wave vec- P2

tors are denoted b _ . .
y This result can be obtained from the perturbation results of

Ivakin [12]. Note that in previous papefd] Z=1/Y was
Bi(K)=\w?/c/—K?. 2 used; Maradudin used. Also note thatAY is not simply a
function of the wave vector differend®@—K. It is this fact
The sound speed above the interfacecis and the sound that requires a slightly different approach than that used by
speedjust below the interface i,. As will be seen, the Barabanenkov and Ozrin.
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The quantity 3 R not only appears in the Green function  AG(Q,z|K,zy)=(G)(Q,z,z=0)t(Q|K)(G)(K,z=0z),
above the interface, but also can be cast into the form of a (14)
surface Green’s function, since

where
1+R=-2i 1 B1, (10)
9o Y 1
t=———< 15
where 1-u(g)’ (15
9o =—iB1=Yo 1y g
and
ey M v (=1 -1
Thus if the moments of The self-energM is the difference between the admittance
of the mean field and the admittance of a flat interface sepa-
_ 1 (13 rating the two media. This formalism was developed in Ref.
9 951_)’ [9]. Because the admittandgis used rather than the imped-

ance,AG in Eq. (14) involves the average d& rather than
can be found, so can the moments of the scattered fieldbe derivatives of the average Gfas in Ref.[1].
exterior to the scattering layer. The second moment of the scattering operatdtt™), is
Following Maradudin and co-workerg},9,10, fluctua- needed to describe intensities and correlations. To be consis-
tions of the Green's function in the upper half-space argent with Refs.[6,8,13, let the correlation of the surface
given by Green'’s functions be given by

Dp (| Q,0) S(p—K)=(g(P+p/l2 K +k/2,0+ w/2)g* (P—pl2 K —kI20 — 0/2)), (17)

assuming statistical homogeneity. Following Baranbanenkov (j/2)[ g5 1, (Q+ w/2)— g% 1 (Q— w/2)]D (9)Q, )
and Ozrin in Ref[14] (but note that the signs here diffave Optaz Op-a2 Pk

use the notation
_f dp,Up,p’(qlﬂyw)q)p’,k(qlﬂvw)

2iAGH(p|Q, ) =(g)(P+p/2,Q +ie+ w/2
iAGH(P|Q,w)=(g)(P+p +|e+.w ) =AGy(q|Q,0) 5y - (21)
—(@)* (P—pl2Q+ie—wl2), (18)

Diffusion is a consequence of energy conservafignin

2iAMp(p|Q, ®) = M (P+p/2,Q +i e+ w/2) — M* (P—p/2,Q the present case energy conservation is expressed by the
Ward identity[9]. Let S denote the quantity
+ie—wl2), (19

Sp//(k|Q,a)):2i J dp’dep'pl(k|Q,(1))(Dp/'pH(k|Q,(1)).
(22

and for the scattering operatbr write

Upp(0[Q, @) =AGp(q|Q,0)Kp pr (0|2, w)
—AMp(q|Q, @) Fpp (20)

One form of the Ward identity states th@is also given by

_ ’ * _
whereK is the irreducible vertex function. In these expres- Sp"(km’w)_f dpdp’da([yp- qrzpr - gl 2~ ©/2)

sions we assume th&l has a small positive imaginary part

ie, and that the Fourier transform from frequency to time ~Ypr+azpra( 2+ 0/2)]
follows the convention X Op+gr2p+ ki L+ wl2)
><g;/,qlzyp//,klz(ﬂ_a)lz)>. (23)

do . .
f(t)=fze"“’tf(w).
This result can be demonstrated from the Bethe-Salpeter

R tion(21) and licati f
In this way, if f is analytic in the upper half complex fre- equation(21) and application o

guency planef(t)=0 for t<O0. gglg:1+yg. (24)
The correlation functiomb is determined from the Bethe-
Salpeter equation Whenw=0 andq=0, the Ward identity becomes
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waves decay exponentially from the interface. It is in this
f dpU, »(0/Q,0)=0. (25  regime that we can look for diffusion within the layer.

One way to deal with the Bethe-Salpeter equati®D is
quantum mechanical potential scattering, where the roje of Refs.[7,14], and to explore the eigenfunctions and eigenval-
is played by a frequency-independent local potential, the adJes of the operatadri (g, ) given by
mittancey takes the formyp'p,—ﬁ(p—p’). This causes the 4 = (i/2)[g=L QO+ w/2
expression on the right of E423) to vanish independently (@@)pp = (1/2)[Gop g 2+ /2)
of w. In the case of dielectric scattering by particles with —g(’)‘pilqlz(ﬂ—w/Z)]ép’p,—Up’p,(q|Q,w),
frequency-independent dielectric constant, discussed in Refs. ' 28
[6,8,14, the role ofy is played byQ?/c?e(r). This means (28)
that Yo+ qap+ g2 @+ 0/2)=[(Q+ w/2)%/c?]e(p’—p), and  and which appears in Eq21). In terms ofH the Bethe-

that Salpeter equation becomes
[V5 q2p g2l Q@12 = Yo qrop+ gl Q2+ /2)] HO=AG.
=—(20/Q)yy p(). (26)  To determine the echo of a pulse long after it has encoun-

tered the interface for the first time requires examining the
Hence, ifo=0 andk#0, Sp"(kIQ,O)=O. It is this fact that behavior of® for small frequency differences. Since qua-
allows for the simplifications that are described by Bara-sidiffusive behavior is expected in this limit as a result of the
banenkov and Ozrin. For acoustic scattering when there is ulse rattling within the scattering layer, with the wave en-
density contrast, or when the dielectric function is non-local.ergy tending to become uniform, the lingt-0 is also rel-
as in the polariton problem treated by Maraduetral., Eq.  evant. If there is such rattling around it is because wave
(26) is not valid. In particular, in these cases, it is not trueenergy within the layer is nearly conserved. Therefdte,
thaty is a function only of the difference in wave vectors, should be approximated in a way that allows energy conser-

i.e.,Yppr #Y(P—p'). vation to be used explicitly. This is one reason for focusing
Field fluctuations are found from the reducible vertexon the admittance rather than on the scattering amplitudes
function , as in Ref[15]. The energy that is nearly conserved is asso-
ciated with modes in the scattering layer which are nearly
(tt* )= 7=K+ KDK, (27)  trapped there. For these reasons, consider the following di-

vision of the operatoH. Let H=Hy+ AH, with
as in Refs[1,4]. In this paper only the long-time behavior of _
correlations is considered; for this purpose it is sufficient to Hg’p,(q,w)=®(p)(i/2)[ga,}+q,2((2+w/2)
determine the behavior ab for small @ and q. Note that

even if it appears that some contributiondodiverges as the - gé,p—lq/zm —0l2)]pp Up,p’(qm"”)
roughness of the interface vanishes, becdtsanishes as (29)
the roughness vanishes, the consequences of the divergence

of ® for 7 need not be catastrophic. and

AHp 0 (0,0)=0(p)(i/2)[ggps o 2+ ©/2)

—qg*1 _
The principal results of this section are that the long-time 9op-qa Q2= @/2)]5p,pr (30)
behavior of a pulse scattered by a layer with a rough boundg, hig way the entire irreducible vertex functian is con-
ary is given by Egs(36), (37), and(38). The constania is a tained inH®, and the Ward identity can be used to deal with

rEenorSrgahzatlon Icl)f theddlffusmn con;t_arﬁtl, and "?‘ glv§n| N the eigenvalues dfi®. What happens outside the layer, with-
a.(56), generally, and reexpressed in terms of moda avergut considering the coupling to the interior of the layer, is

ages in Eq(61). The renormalization constaAtis given in described byAH, and is to be re :

e, , garded as a perturbation. To
Eq. (68). The method of Barabanenkov and sz'm] 'S treat the smaltj andw limit, consider the expansion ®f to
adapted to the case of scattering by an acoustic layer with st order inw and to second order iq:

density and sound speed which differ from the half-space

above the layer. HY (q.0)=H® ,(q,0)—H° (0,0
Consider Eq(11) for g, *: pp (@) =Hp (0, 0)=H, (0,0

IIl. RENORMALIZATION OF DIFFUSION

1 . — AP, Q2)Qw
9o =—1B1(Q,Q2)—Y,(Q,Q). ~0(p,Q)| —i m
The flat-interface admittancé, is real(as mentioned, if en- U aU
ergy is conservedy will be Hermitian), but the vertical com- +iA(P,Q)q-p |8y p—w P.p._ PP
ponent of the wave vectoB,(Q,{2), can be real or imagi- o' aq’
nary. In the former case, waves are free to propagate away (31)

from the interface, in which case there is scattering from the
interface by waves incident from above. In the latter caseand
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#?H° r=Ao(1+a)Q/(c2\d)=A/(DND). (39
2 . 0 oo 0
The remainder of this section is devoted to determining the
In Eq. (31), constantsa and A. Following van Tiggeleret al. [6], it will
be shown these quantities can be expressed in terms of cer-
A d Reggl tain energylike integrals over the half-space —H.
?: - 902 (33 From the definition ofU and reciprocity ofK, it follows
thatH has a symmetry
and
oRegy H(G@)pp =H(~G0)ypa 202 (g
A=t (34 e T Gy ()
p

For p<Q/cy,A/c2=Y,/dQ2>0. For the flat-surface ad- We Wwill assume that g(—p,©2)=g(p,(2), so that
mittance used here, one can check that? is positive.[By ~ AG-p(—0,@)=AGy(q,w). As indicated in Ref[13] this

using a method similar to that used in Appendix A, it can beM&ans that, in contrast to the usual Hamiltonian in quantum
shown thatA/c?>0 generally. LikewiseA (p,Q) is also mechanics, the operatét has distinct left and right eigen-

positive if gy depends om only throughg; . ] fqnctions. Ifq&g(q,w) is a right eigenfunction oH vyith

The expression foH?2 must be taken with a grain of salt, €igenvaluer"(q,w), then ¢” (—q,0)/AG_,(—q,0) is a
since the nonanalyticity g8, , requires particular care in the left eigenfunction with eigenvalue”(—q,w). In fact, these
expansion of integrals involvingi?; the issue is that the two eigenvalues are equal, since the symmetrii afplies
limits of integration also depend on momentum. Further-
more, g, - has poles as well as zeros. However, siggé 1
multiplies g=1/(g, *—y) in ®=(gg*), it will be assumed f dpdp’ ¢ (=) =———= Hppr (Q) 6p(Q)

0, / : AG_p(—a)

that the poles ofg, - cause no particular problems in the
Bethe-Saltpeter equation. , 1 N

The soIL?tion of?he Bethe-Salpeter equation can be written =7‘n(q)f dpdp d’Tp(_ ) m¢p/(Q) (40)
in terms of the eigenfunctions and eigenvalues Hbf P
¢>g‘(q,w), and \™(q,w). In the case of scattering by par- 1
ticles, when energy is conserveH, has an eigenfunction —\m/_ roamo_ n
whose eigenvalue vanishes wher0 andg=0. Diffusion M q)J’ dpdp’ &= q)AG,D(—q) $p(d)-
is determined by the wave vector and frequency dependence 41
of this eigenvalue wheg andw are near zergthe hydrody-

namic limi. In the present case of a layer coupled to athe o, dependence has been left implicit here. As usual, if
half-space, energy within the layer is not conserved. Neverge gjgenvalues are distinct, the eigenfunctions are orthogo-

theless there will be an eigenvalue, se(q,w), which be- 13| ith weight 1AG. The eigenfunctions can be normalized
comes small in the the hydrodynamic limit, and which would g that

vanish if the coupling to the half-space above the layer were

to vanish. We will suppose that the behaviordffor long 1
times is controlled by this eigenvalue and the corresponding J’ poamo Ny —
eigenfunction. Following Barabanenkov and Ozrin, we write dpdp’¢=p(—a) AG_(—q) $p(A)=nm- (42

0 ~30_: 2 2
M(G,@)=ho—ToQ(1+a)Ao/Cot AL, (39 Furthermore, it will be assumed that the eigenfunctions are

complete. Because of the weighted orthogonality condition,

whereA andc, are averages of andc defined below. The rﬁhis means that

time dependence of the reverberant field is then found fro
the Fourier transfornml],

exq —iwt+iq-R] 2 #3(0,0)8" (~0,0)=AGH(A,0) Fppr . (43
jdqj dw o > 5
N~ iwQAg(1+a)/cg+Aq

2m?ch The correlation functionb is given by
_ ™% ~
(1+a)04pt XA ~RI/(4DY /7], (36) ; .
¢p(q1w)¢,p/(_q,w)
| Pppr= : 44
with p.p zn: "(q,0) (44)
D=Ac)/Ay(1+a)Q 37)

and for smallw andq this sum will be dominated by the first
and term with nearly vanishing eigenvalue.
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Because of the Ward identity, 1,
fdpdp'¢g(0,0)EHp,pI%r(q,w)
¢S<o,0>=AG‘;/N=[g<p,Q+ie)—g*(p,mie)]/(2ih(25) A%(0,@) ~\%(0,0)~

dpe*~ GO —— 0 (0, 0)
is a right eigenfunction oH°(0,0) with eigenvalue 0. The (50)
normalization of¢° is given byN2= fAG%dp. For slightly
rough interfacesg can be approximated as a sum of poles Of course, the perturbed eigenfuncti@‘g(q,w) is re-
corresponding to the normal modes of the layer, plus a conquired if this formula is to be of any use. This situation
tinuous density of states which propagate in the upper halfdiffers slightly from the standard Rayleigh result; when the
space. The location of the poles is slightly shifted, aCCOfding)peratorHO is perturbed becauw and o are nonzero, the
to the self-energy, from where they are in when the inter- weight AG® is also perturbed td G(q, »). Nevertheless the
face between the |ayer and the semi-infinite half-Space is ﬂaberturbation procedure described, for examp|e, in M

The normal modes associated with the poles must decay i§an be used to give the first-order perturbation of the eigen-
the upper half-space, and so the wave vectors of the pol&gnction §¢° as

must satisfyk,,>/c,. In addition to the poles there is a

contribution toAG° from waves which propagate in the up- 0 req 1 1 0

per half-space. In this regimp<Q/c,, gis continuous and 5¢p(q,w)=—J dp’dp"® 7 —5Hy, i (d,0) dp -
given by AGp’ 51)

9(p,Q)=0(p,Q)/[—iB1(p,2)—Yo(p,2)— M(p’Q)(]ziG) The regular contribution to the correlation functiah(®9, is

hus the density of statesG® *)1(2i) b DreY = #5(004%,(00 (52)
Thus the density of statesG"=(g—g*)/(2i) becomes b~ &4 N(0.0-20(0.0

O(Re By +ImM) To determine the coefficient @b in the expansion ok°,
[ReB,+ImM]2+[Yo+ReM]? again follow Ref.[13] in first_ settinggq=0. Then there are
two terms in the perturbation of the operator, one from
5 12 —iA(p,Q)Qw/c(p,Q) and another from the perturbation of
+% 7TGmO(P”—Km).- (47 the vertex function— 039, U(0,0")|q-00'-0. These terms
induce a first-order perturbation of the eigenvalue,

G~

The effect ofAH(0,0) is to perturb the eigenvalue associated A°(0,w) =N\ wQ(1+a)A0/cS, (53)
with ¢°=AGY/N; the first-order perturbation of the smallest
eigenvalue is where
Ao < A(p.Q) > / <
0 0 0 — = ¢O—¢O ¢O ¢ . (54)
. <¢ agol e > meﬁpml(pm]mp c§ AG%C*(p,0) AG®
° J' & #° J' dpAGg ' Thi_s is a positive quantity. The characteristic length is
AGO defined as
“ q-pA(p,Q2)¢°(q)
_ 0 g _ NAO=Iidep - (55
The eigenvalue.” is positive so that if +a>0, the zero of q—0 —ig°N
\(®) is in the lower-half complex» plane as expected. For
small roughness, the eigenvalue is approximated by in Eq. (A31). It follows from Egs.(31) and (50) that the

constanta in Eq. (53) is now given by

,31. 2 2

a=—i(c/(AyQ))) ¢°ia U(g,0")
o'\Ado AGO7 ,

o [ o (Repy)? /
= v ¢°>.
q=0,0"=0
(56

In any event we suppose that some approximation can bgngylar brackets indicate integration over wave vectors, for
found forA” and ¢".

(49

1 ) 0 ] example,
TreatH*(q,) as a small perturbation &f* parametrized
by the difference wave vectarand the difference frequency
) . . (¢%)=| dpg? (57
w, and which vanishes as—0 and w—0. Following the PPp-
standard Rayleigh perturbation schef6|, the perturbation
of the eigenvalue resulting from nonzegoand w is found In the case of dielectric scattering by small particles,

from Barabanenkov and Ozrin were able to exprasa a form



PRE 62 DIFFUSION OF WAVES IN A LAYER WITH A ROUGH . .. 7371

which does not involve the derivative of the vertex function The Ward identity{Eq. (23)] then gives
U. Van Tiggelenret al. went further, showing that could be
expressed in terms of the potential energy within the scatter-

ing particles. However, Livdan and Lisyansky lefin terms —No(®)C2
of 4,U, apparently taking exception to the use of the Ward a= lim Iim—f dpdp’dkdp"([y;_k,zp/_k,Z(Q
identity. w0—0q-020Q A N? '

To see how the Ward identity is used, note that if _ _
b0/ AGO= (1/N)(1+ ), it follows from Eq. (25 and the ©2)=Ypr iizp+kidl O+ ©012)10p s kizpr+ qr2
eigenfunction expansion @b that X(Q+wlz)g;’fklz,p”fqm(ﬂ_w/2)> (59

2 0 If y depends only on wave number differences and de-

=_ ‘o li d S0 (w) 1, pends on frequency only through a quadratic factor, as in

a im | dp ¢ tO(wy). . . : ,
2A0QN " w AGy dielectric scattering, then Eq24) can be used along with

(58 Eq. (26) to give

2
Co
a:

lim fdp[golAGg—megp)xo(w)]/ fdpAGg. (60)

Aoﬂz w—0

This result corresponds to E@L2) in Ref.[14] for the case of scattering by dielectric particles whén) = (Q2%/c?)e(r), and

where the eigenvalug® vanishes for smalk. van Tiggeleret al. started from this result to derive an identity expressirig

terms of the averaged dielectric constant within the particles. For sound scattering from particles or from a layer which differs
in both sound speed and density from its surroundings{Zg).cannot be used. However, the results of Appendix A show that

the renormalization of the diffusion coefficieatcan be written as

2 2 2
CO J’ fw —2 CO -h pe(zvk) _
a=—1+ dp| dze2MmAPzgply — | dpdk [ dz——|y(k)|%(|T1 4% 20
AONCi — p 0 ¢p AoN p u p(Z)C(Z)2|’Y( | <| l,2| >k,p¢p

_Po o x _ 0
p(z)c(z)zzp (z,0Q w/2,p)>7\ (w). (61)

+ i (ZW)chJ d fo d ( O|Q+ 12,p)
m 4 Z, )
o TAN? p i v wl2,p

The last integral expressesas an average of 14€?) in layer (medium 3 to the half-space outside the lay@redium
the immediate vicinity(betweenz=—h and z=0) of the 1). This is the source of the factorsTk/, in Eq. (61). Further
scattering surface:h is just below the lowest point of the discussion of this result is given in Appendix A. In any
ensemble of scattering surfaces considered in the averageéd/ent, this is how the observation made by van Tiggeten
In fact, the integral from-H to —h could be removed, and al., that the renormalization of the diffusica is the mode
the last integral extended to cover the entire scattering layeveighted average of the dielectric function, is expressed for
from z=—H to z=0. In the integral from—H to —h the  layered geometry with both sound speed and density contrast
fields below the lowest point of the scattering surface haveéCross a rough interface.
been expanded in modex(z,k) which satisfy the depth Now consider the perturbation af whenw=0 andq is
separated Helmholtz equation. Such an expansion allows orfnall. To first order ing the perturbatiorH* of H, again
to see explicitly thaty* ) diverges as M(w) asw—0.  Cconsists of two terms:

However, such an expansion is only possibleZer—h. U, ,(q',0)
. . 2 2 1 . o p.p !
In this way,a is an average gf;c§/ (p(z)c*(z)) both over Hy o =iA(P.Q)q-pdypr—Q- oa
the scattering layer where the average is weighted by the q q'=0
interior modes, and outside the layer, where the average is (62)

weighted by the decaying portion of these modes. If the ex-

terior decaying modes have amplitude 1, then the corre- For reasons of isotropy, first-order contributions to the
sponding interior modes have amplitude$ 1, whereT,,  perturbation of\° vanish, and second-ordén q) terms

is the amplitude for transmission amplitude from inside theneed to be considered. #° is isotropic, then
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AN(@)=\%0a,00—\°(0,0~Aq?
r 40 1 1 0
p
1
+ O_HZ 0
1 1
— O_Hl(Dreg_Hl 0
<¢ AG® aco ? >
+ ¢>0—1 H?¢? ). (63)
AGP°

In the case of dielectric scattering, when the dielectri

function is independent of frequency, the generalized Warq

identity holds, and the contribution of the second derivativ
of U, contained inH?, vanishes.

H* is a sum of two terms,H'=iA(p,Q)q-pdy
—q(dU/dq), but the four terms that result from
Hd"9(1/AG®)H? in Eq.(63) can be rearranged using iden-
tity (B13) to give

reg

!
PPTAGY,

1
Ax<q)~f dpdp’ ¢p—5A(p,Q2)q-pP
AG,

><A<p',mp'-q¢2,—J dpA(p,©)

><(q~|o)2(9Re<2g>
ap
+2<¢0iq,gq}regiiq.p/\¢0>
AG? " dq AG°
gt g Mgreat o Y 0
<¢ AT aq T AagoT &q¢>
+<¢°LH2¢°>. (64)
AG°

In the case of no density contrast, which is formally the same

as the case of dielectric scattering without dispersion consi

ered by Barabanenkov and Ozrin, the generalized Ward idetf/"€réAs

tity can be invoked to show that the third and fourth term

vanish, and that all that remains of the last term is the part

resulting fromggl— g5 ~1 i.e., the part that is peculiar to the
layered geometry considered here.
The first two terms can be compared to E2R) in Ref.

[13]. This result, however, in no way depends on the gener-

alized Ward identity. Kogan and Kaveh indicated that th
correction to the diffusion resulting fromis a result of the

BERMAN
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An alternate way of writing the perturbation »ffor non-
zeroq without invoking identity(B13) is

1
Ax(q)~< ¢°Eiq~ pA5¢(q)>

<¢0

0 1 oU
—{ ¢ A—GOQ'E&MQ)

o

The first term on the right gives the standard result when
he generalized Ward identity holds. It contains a term in the
derivative of U which was described explicitly by Livdan

and Lisyansky[17], and which became the expression in-
volving 9 Reg/dp? in Barabanenkov and Ozrin. From the
definition of A given in Eq.(A31), asq— 0 the first term in
Eq. (65 becomes

1 990" ~g5
AG®  dQ;dq;

id;q;
T

d

1 2

AGP 9;0q;

(0i9;/2) ¢0> : (65

c

o1 g AP
¢ Ao d PASH(Q) ) —AoQ”. (66)

The second term on the right of E@5), which involves
second derivatives oggl, is problematic; it appears to be
divergent. If only pole contributions tAG° are retained, as
in the work of Sachez-Gilet al.[4], this term never appears.
The divergence arises from wave vectors near grazing, and
one can only suppose that these need special treatment. In-
vestigation of this term will not be attempted here.

The last terms in Eq(65) can be expressed in terms of

“kinetic-energy-like” integrals over the layer using the re-
sults of Appendix A,

0 1 U
—{ ¢ A—GOQ'%&NQ)

s

is given in Eq.(A54).
Finally, neglecting the problematic terms dAg, *,

1 2

0
¢ AGP 99;0q;

(qiq;/2)¢°> —A10%,  (67)
d_

S
A:A0+A1

=1/ f dQ f dz(Q?/2)e 2 MAQ7B,
Q>0/cy 0

e p

— BG4}

~h
2
+1/Nf dQJlH dz(Q</2) o(2)

time delay associated with resonant wave scattering. Similar
reasoning shows that the correction to the diffusion resulting
from the term indU/dq can be associated with large scatter-
ers, so that energy enters the scatterer at one location and
emerges at another. In Voronovicl’s5] treatment of scat-
tering in a layer, this nonlocal character of the scattering
shows itself in the appearance of the skip distance.

—A 0
+TN°Iim fdp(Zw)zplf d4 F(z/Q,0p,0/2)
—h

qHO

A(9,0)

+F*(2|Q,0p,—a/2)]- 95— —
a?AGp(q)

Bp(0). (68)
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The integration over-h to 0 could be dropped, and the If there is statistical homogeneity in the horizontal directions,
last integral could be extended over the entire layer. Sihce it follows that
is the energy flux wheng—0, it seems that A and the diffu-
sion are intimately related to the flux density in the layer, but

the limiting procedures called for make the connection a bit (9 (r[K=ki2)v(r|K +k/2))

obscure. _ _ =e'kaly* (r—a K —k/2)v(r—alK + k/2)).

In contrast to the case of scattering by small particles, the
correctionsa andA, are not smallproportional to the num- (A3)
ber density of scatterersRather the “1” in 1+a is com-
pletely canceled, as is the, in A=Ag+A;. This must hold for all horizontal translatioms In particular,

if a=R, the horizontal projection of, then
IV. SUMMARY
Equationg37), (61), and(68) can be combined to give an (* (r|Q— w2 K=Kk2)v(r|Q+ w/2 K +k/2))

admittedly unwieldy expression for the diffusion constBnt

_ ik _
Likewise, the decay time follows from Egs.(38), (61), and = (y* (2 R=0|Q - w/2K—kI2)

®. . . , X V(Z,R=0|Q+ w/2.K +Kk/2)
The main point of this paper is that connection between ,
the renormalization of the diffusion coefficient and the ener- =e'*'RE(z|K k,Q, ). (A4)

gylike or fluxlike integrals does not depend on the general-
ized Ward identity of Barabanenkov and Ozrin, which holds .
only for local dielectric scattering. Furthermore, the second' N€ real part ofF(z|Kv,002,0) is the average energy flux
renormalization of the diffusion, considered by Livdan and9ensity- o .
Lisyansky is also related to energy flux integrals. This re- Th_e strategy for c_onnectlng interior fields to surface fields
seach is motivated by the observation that simply stated rdS t© intégrate the divergence ¥ over the volume of the
lationships, such as that discovered by van Tiggeteal., |@yer which extends frone=—H to z=0, which is just
probably have some wide generality, and that the argumenf0ve the rough interface between the layer and the half-

of Kogan and Kaveh seem to capture the essence of waviP@ce above. Then apply Green’s theorem. Assume boundary
diffusion. conditions on the lower surface that insure tmaiW =0

there. The average of the divergencefdéfis given by

APPENDIX A

nection between the quantifand energylike averages over
both the interior and exterior of the scattering layer.

The purpose of this appendix is to demonstrate the con- <V_W>:ei(qk)-R[ —ig-[I(Q+ w/2F(ZK k,Q,0)

Begin by considering a generalized flux within the layer. +i(Q-w2)F*(ZK,~k Q,~ 0)]
DefineW by
(@0 —222 40 (A5)
" p(z,0)c3(z,0) '

W(r,q|Q,w,K,k)=e "R y* (r|Q— w/2 K —k/2)
1 The angular brackets indicate averages over all realizations
XWV¢(V|Q+w/2,K+k/2) of h, ¢, and p. Integrating overdR gives (27)25(q—Kk).
P Hence a subsequent integration ogegives
1
——VF (r|Q— wl2K—k/2
J dRdq(W(0,R))-z

Xp(r|Q+ wl2 K+k/2)|. (A1)

0
=(2w)2f dzk-[(Q+ w/2)F(z|Q, 0K k/2)
If ¢ is a pressure field, then the corresponding velocity field -
is v=—iViyl(pw). Thus if k=0 and =0, the term in H(Q—wl2)F*(Z)Q, - 0,K,—k/2)]
square brackets is proportional to the energy flux.

These fieldsy depend implicitly on the surface roughness 0 ®
h(r), the sound speed within the laye(r), and the density —(ZW)ZJ dZ< P (2,0) —————
within the layer,p(r). If each of these quantities is translated B p(2,0)c%(2,0
horizontally by a vectom the fields are likewise translated (AB)
and multiplied by a phase factor, so that

¢//(z,0)>.

W(r|K,[h(r—a),p(r—a),c(r—a)]) Now evaluate the surface integral directly using the defi-
- ' ’ nition of W and expressing the normal derivatives in terms
=e K 3y(r—alK,[h(r),p(r),c(r)]). (A2) of the admittancéEq. (4)]:
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) 1. Contribution of 1/pc?
f dR(W(OR))-2

Equation (A11) suffices to relate the potential energy
1 1 (1/(pc?)) and the “kinetic e_nergy”pzlg inside the layer to
:f dReiq-R< W= o — = l//> the surface quantity. In this subsection we deal with the
p P renormalization of the diffusion coefficier which comes
from the limit w— 0 afterq has been set to zero. In E§2),

) 1 1 X .
:f dRe'q'R< — =Y+ —Y** ¢,> ais expressed in terms of
p p
0[Q,w) \°
_ L iy IidepSp( [2,0) A (@)
= | dQdP_([Y*(P-a/2Q-a/2) o o AGD
- o* - - AYo(Q 0
Y(Q+0a/2P+0/2)]19* (0.Q—a/2 K —k/2) fd o )qSp (2m2lim Jf dz< 200
X g(0,P+q/2|K +k/2)). (A7) w0 —H
A0
The horizontal Fourier transform of the field in this expres- —wl2) —Qp #(2,0/Q + wl/2) ( )qSO
sion is p(2,0)¢%(2,0) Gp o

] drR (A12)
z/x(O,Q|K+k/2)=f—e"Q'Rw(O,R|K+k/2,Q+w/2). o ] )

2m In the last expression, if the eigenvalue vanishesvasO,
(A8) then the average af* ¢ will diverge as 14°, since the long-
time behavior of the fields within the layer must track the
Iong -time behavior of the fields just outside the layer. As a
result, the limit can be nonvanishing even thoughanishes.

Use

Suppose that the field on the surfaze0 is the sum of an
incident plane wave and the corresponding reflected plane
waves normalized by the vertical wave number, i.e.,

(Q—K)+R
—2iB1(K)

Then the surface integral & involvesg*g . Noting that
the admittancé’ =Y+ is the total admittance and th&fs  which follows from the definition ofA (p,Q)/c(p,Q)? in

expressed, through the Ward identity, in terms of the flucterms of the derivatives afy = —i 3, — Y, to write the first
tuation of the admittancg we can write an alternative result integral as

for the integral in Eq(A7):

#(0QIK)= “=g(Q.K). (A9 No(PQ) _ A@Q aimp,

o Tepn)? 0

(A13)

Y o(Q 20AN c2 dlm
jde()O— 0(1 of B1

f dRdgq(W(0R))-z QTP 2 AoN a(QZ) %
. . (A14)
:;SK(k|Qyw)+;f dP[Y5 (Q— w/2P—k/2) Fields that decay away from the surface do so as

exp(~Im B,2), and the last integral can be written as the
—Yo(Q+ w/2P+k/2)]Pp  (k|Q,w). (AL10) integral of the decaying fields using

Equations(A6) and (A10) together give alm By 1 1

Se(K|Q, o) (0%  22Imp,  clo
(AL5)

:f dPLYo(Q+ w/2P+k/2) = Y5 (A~ w/2P—ki2)] Using this result in Eq(A12), and then Eq(A12) in Eq.

(62), gives

2

SRR I G L
XF(Z]Q,0,K,ki2)+(Q— w/2)F* (2] Q,— 0 K, AoNJp=are, " Jo ¢l

chP,K(k|Q,w)+(zw)zprdzk-[(Qm/z)

B B , [° . B (277') Co .
k/2)]—(2) pf_H dz<¢ (2,010 — w/2 K AN f J dz{ +*(z,0Q— w/2,p)

x—Lt (200 w2p) Mo )¢
p(2,0)c2(2,0) ’ P AG) P

(A11) (A16)

ki2)— 22 00+ w2 K +k/2)
— —_— Z, , .
20220 " N
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In this way a is a field-weighted average of pi?) d 1 d 1 ( 02

within and outside the scattering layer. In the last integral, —=—— =e(z,Q)=——= (2)?
c(z

dz p(z) dz —Q2>e(z,Q),

the limit «— 0 is understood, and one needs to assume that (A17)
since(z,R=0[|Q = w/2,p) is driven by its value on the sur-

facez=0, namely(1/(27))/dQg(Q,p), that the correlation ~With boundary conditions
function ( 4* _1/;) will diyerge asw—0 in Fhe same way that e(—H,Q)=0 (A18)
®=(gg*) diverges, i.e., as 1P(w). It is possible to see

how this can happen by expressing the fields beneath trnd

lowest excursions of the scattering surfaéesthe regionz d

<-—h) in terms of fields which satisfy the depth-separated d_ze(ZaQ)|z:—H:1- (A19)

wave equation
Then the fields/ can be written

1
¥(z,R|Q,K) = ﬁj dQexpiQ-R)e(z,Q)a(Q|K)/(—2i 81(K)) (A20)

for —H<z=<—h. The functionsa(Q|K) are simply the expansion coefficients #fin terms of the basis functiors The
factor 1/(—2iB,) is made explicit becausg=(1+R)/(—2iB).
In the usual fashion, statistical homogeneity means that we can write

(a(p+09/2|Q+wl2p’+q'12)a*
X(p—a/l2Q—w/2p'—q'/2))
=T'pp(0/Q,0)8(9-1q"). (A21)
If the density and sound speed within the layer are independent of surface statistics, then

p

——— " (2,010~ w/2, 0
p(z,O)cz(z,o)w (200~ p)>>\ (w)

lim < U*(2,00Q— w/2,p)

w—0

. dq p .
= lim f (2#)28(q,z>2<m> Fq’p(O|Q,w)7\°(w)/4,81(p,Q+w/Z)Bl(p,Q—a)/2). (A22)

w—0

The next issue to resolve is hdwis related toD. Ris the )
netscattering amplitude from medium 1 back into medium 1. ¢(Z:R|K):(1/(27T))f dQexp(—iQ-R)
The net field scattered is the result of multiple scattering

between the rough interface and tkgossibly refractiny X [exp(—iB2(Q)z)+expli B2(Q)2)V(Q)]
layer bounded below ax=—H, which will now be de- o
e XT(Q|K)/—2i B1(K). (A24)

Betweenz= —h and the rough interface assume that the
density and sound speed are consi@ee Fig. 1 A plane  This expansion is only valid between the rough interface and
wave which is incident from above on the layer between z= —h. In fact, one would have to invoke the Rayleigh hy-
=—h and z=—H from a semi-infinite half-space witk  pothesis to use this expansion up to the lower side of the
=c, andp=p, is reflected with an amplitud€(Q), so that  rough interface. The expansion coefficief(&Q|K) will be
the total field associated with the plane wave is described below.
The field ¢(z,R|Q), which is the continuation of the
plane wave statep,,, into the transversely homogeneous

¢pw(z,R|Q)=[exp(—iBZ(Q))z layer below z=-h, must be a multiple of
+expli B2(QV(Q)exiiQ-R). SPIQ-R)e(z. Q)
(A23) $(ZR)=expiQ-RE(zQ Q).  (A25)

These fieldsp,,,, can be used as a basis to write the scattere€ontinuity of the field and its normal derivative across the
field in the presence of the rough interface as imaginary surface az=—h determine both the reflection
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coefficientV(Q) and the “transmission” coefficieny(Q). D~(Ty T HVV(TT*)/(4B187)
The ratio @d/d2)e(z,Q)|,- _n/e(—h,Q)=A(Q) is the ad-
mittance of the surface=—h, andV is given by

1
=(T12T1)— T / (4B187). (A34)
1+A(Q)/iB2(Q) YY

V(Q)=exp(i2 h) - . (A26
@ Hi252(Q) "1-A(Q)/iB2Q) (A26) The last line follows because it is assumed thAt* =1,
The * . Hicient™ is th . b which is the case, for example, wh¥r= — exp(d3,H). Fur-
e “transmission coefficient™y is then given by thermore(aa* ) =T = yy* (TT*). Let<|T1,2|2>*1 denote the

Y(Q)=[expli Bo(Q)h) +exp(—i Bo(Q)N)V(Q)/e(—h|Q). operator inverse ofT; ,T7 . Then the correlation function
(A27) of T can be written

It follows that in Eq.(A20), L/(4B18Y)=yy*(T12T1 ) @, (A35)
a(Q)=y(Q)T(Q[K). (A28)  and the correlation of fields within the layer belas —h

. . . can be written for smallb as
Now express the net reflection amplitugein terms of T.

The reflection amplitud®(Q|K) is the result of the initial o
encounter with the interface, described By ;(Q|K) plus <1/1*(Z,O|Q—a)/2,p)—21//*(Z,O|Q—w/2,p)>
whatever part of the upgoing waves in selvage regiom p(z,0)¢%(z,0)

<z<h(R) is transmitted by the interface. The amplitude of
the upgoing waves i¥(P)T(P|K) from Eq. (A24), and the _J dq

e(z,0)% v(a)|?

portion that is transmitted up into medium 1 with wave vec- (2m)? p(2,0)c?(z,0)
tor Q is [dPTy Q|P)V(P)T(P|K). Hence the net reflection 1
amplitude is given by X(|T1d%) g pr Ppr p(0]Q, 0)dp". (A36)

_ Combining Eqs(A36) and(A16) and the eigenvalue expan-
R(QIK)=R1x(QIK)+ | dPT1AQIP)V(P)T(PIK). sion of @ yields Eq.(61) of the text. The eigenfunctiog®
(A29) represents a certain incoherent distribution of wave vectors.

_ ) The two integrals in Eq(61) are averages inside and outside
On the other hand, the downgoing waves in the selvagg,e layer ofpcglp(z)c(z)z.

region[whose amplitudes arg(Q|K) in Eq. (A24)] are the
result of transmission of the plane wave incident from above
[described byT, 4(Q|K)] plus the internal reflection of the
upgoing waves in the selvage region, described by The constani in Eq. (30) for the eigenvaluen(q,w) is

2. Contribution of p?

JdPR, AQ[P)V(P)T(P|K). It follows that T satisfies determined from
AXN(q,0
T(QIK) =T24QIK)+ [ dPR, £QIPV(PIT(PIK). A= tim 2299 (A37)
(A30) a0 9
The formal solution of this equation is with AN(q,0) given by Eq.(65) of the text. The aim of this
section is to determine the contributién to A from the last
1 two terms of Eq.(65). Analogously to Eq(62) for a, this
T=1 R, 2\/Tz,l- (A31)  contribution toA can be expressed in terms 8fand then,
’ using Eq.(Al1l1), in terms of depth integrals.
Using this result in Eq(A29) gives From the definition ofS[Eqg. (27)] and the eigenfunction
expansion ofb [Eq. (48)], it follows that
1
1+ R:1+ R1,1+T1’2VmT2’1:1+ R1’1+T1’2VT. A B _1 llm dp%(qlﬂ,o) )\(q,o) O(q)
1~ 5N ’
(A32) 2iN q—0 q2 AGg(q) p
(A38)

Only the last term involves multiple scattering. In the hydro-

dynamic limit, we neglect the single-scatter contribution, anqn the same way that E¢62) follows from Eq.(60). On the
write the the surface correlation functiéschematically as other hand, Eq(A11) for w=0 andg—0 gives

D=(gg*)~((TL V)T  NVT)*)/(4B187). (A33) aY4(Q,p")
’ 0 !

Following Voronovich[15], we argue that the essence of the SP(qu'O): f dp ap’ Py p(a)

ladder approximation, the primary ingredient of the Bethe-

Salpeter equation, is the assumption of uncorrelated succes- ) 0

sive scattering events. The same assumption can be used to +(2m )plf_HQq{F(zIQ,O,p,q)
factor the average on the right of the previous equation, giv-

ing +F*(2]Q,0p,—g)]. (A39)
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Let AI be the contribution t&\; from the first integral inS,

e., the contribution ofY,. Following steps analogous to

those leading from EqA1l) to Eq. (A15), we write

Yo Yo
q- —=ZQ~p—2=ZQ-P
p ap

AP+ Bl

(A40)

Then, using the eigenfunction expansiondaf the contribu-
tion A} can be written

m
=— I|m fdp A
q—>0

> ]qbﬁ(q).
(A41)

d
—A(p, Q)+

The first integral is a wave-vector average /of and moti-
vates the definition

‘pA(p,Q
NAo= lim J dpL(pz)cpg(q). (A42)
q—0 —1q
Using this definition and
Jgmp; 1 f
dze 2'mhrz, A43
op2  2ImBy Jo (A43)

AY becomes

4Q:1dQ; o,

F(Z|K,k,Q,0):<f (272

o

:J(Z’JT

where sum and difference variabl®s=(Q;+Q,)/2 andq=Q,—

ward to show that

DIFFUSION OF WAVES IN A LAYER WITH A ROUGH . ..

S)Q 191 Re(z,Qp) a(Qy K —k/2)/[ — 2|,81(K+k/2)]>

dQ
g e* (2,Q—k/2)e(z,Q+k/2)T gk (k)
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1 - :
AY=—Ag— lim Nj dpfO dze ? 'mﬁlzi]—fwg(q)-
q—0
(A44)

Following Livdan and Lisyanski8] and others, we write the
perturbation of the eigenfunction in the form

Spp(q)=—1ig-pByepp(0), (A45)

so that

1 o
Af=—Ag+ Nj dpfo dz(p?/2)e”?'MA7B ¢
(A46)

and

Ao= J dp(p%/2)A(p,Q)Byep / J dpep. (A47)

Recall thatA (p,{2)>0, so that ifB is positive, as will be
assumed, then is positive.

Now treat the contribution teA; that comes from the
integral of F in S Follow the steps that yield EqA24).
From the definition of andv and Eq.(A17), forz<—h, F
is given by

Re* (2,Qq) a* (Qo|[K—k/2)/[2i BT (K—k/2)]

R=0

Q+k/2
p(2)Q4B1(K+k/2) BE (K—k/2)'

(A48)

Q, have been substituted f@¥; andQ,. It is straightfor-

Pop(=a)*=Tqp(q), (A49)
and then that
Qq-[F(z|P,q,2,0)+F*(z|P,—q,Q,0)]
dQ .
=f(2—)26(2,Q+q/2)e(2,Q—q/2)2Q-qFQ,p(Q)/[4p(Z)B1(P+q/Z)Bl(P—q/Z) 1 (A50)
aa
With this result, the contributioAE of the terms inS which involveF in the region—H<z<—h to A; becomes
e(z,Q+0a/2)e(z,Q—a/2)*q-Q \%(q)
= Jim — dzf dpj dQ o p(q) 0 Bp(q).
40 i9%p(2) 4B1(P+0al2) B1(P—al2)* AGp(q)

(A51)

To obtain to an expression f@r’; which is analogous to the result féﬁ{ in that\? is eliminated, we again use EA35)

and the eigenfunction expansion @f but now for nonzera:
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—I|m— dzfdedQ

q—0
pe(z,Q+0a/2)y(Q+a/2)e(z,Q—a/2)* y(Q—0a/2)*q-Q
ig%p(2)
X[IM(Q+)V* (Q—a) (T1.5TF ) (@) $R(Q). (A52)

Now, however, it is awkward to take thgg—0 limit of where 5[1/G,(q)] is the first-order(in q) variation of
e yy* I(VV*)[(T1 T3 ) 1¢%q). Instead, we simply 1/G,(q). Note thatG,(q)=G_,(—q) and thatgo=¢°

write but that, in general¢p ¢¢m for m#0. These symmetries
mean that
1
lim fe(z Q+me* (z.Q-Myy* ——
a0 Vv BT —HL (04,
pAGO p.p p
X(T1,5T1 D p(0) p(q)dP P
o i 0 1
=+i9-QBg'(2)$3(0) +O(g?) (AS3) =< ¢TPFH£p,,_p(—q>¢3,>
for smallg. In this wayA, is shown to be given by
ot
Aj=A]+A] TPLAGH(g) ) PR
1
=Ao{ —1+1/(NA SN ) pe— L
0 ( 0) <¢ p (AGpr(_Q)) —-p ,—p¢p >
- (B2)
xf dpj dz(p?/2)e 2 'MAPIZR @0
0 The first term on the right can be rewritten as
+1(NA fd f dz(Q?/2 BIY(2) 2
(NAg) | dQ (Q°12) —— ( ) Q (Dog 4 1 i e
_p'AG(ip, —p’.-p -p
+—I|m f dp(2m) plf dZ F(z|Q,0p,9/2)
Na-o0 < bor HH;,,p<—q>¢>[,“> (B3)
(.0 4
+F*(Z1Q,0p,—0a/2)]- q—¢ (). (A54)
| 2AGp( ) because of the inversion symmetry ¢f, and because the

variousp’s are really just dummy variables of integration.
If the selvage region is small, it may be possible to neglecThe third term can be manipulated similarly, and when
the last integral. Alternatively, it may be just as well to ex- H2¢™=\"¢™ is used, the result is
tend the last integral to the regionH<z<0, and drop the
term involving the functlonﬁ'”t(z).

1 1 0
<¢ pAGO r(Q)d’pr>
APPENDIX B

The purpose of this appendix is to establish Egfl) of =( ¢° L L (—q)eM
the text. The main ingredient in the demonstration is the p’AGg, PP P
symmetry expressed by E9). For smallg andw=0 this
symmetry implies

1
+()‘m_)‘°)<¢’m'35(AG( ))¢p> (B4)

P VLI HY i i
AGL(q)) PP AGL(0) p.pr(Q) In the us_uaI schem@uantum mecham¢,sthe we_lght func-
tion AG is replaced by 1, and there is no equivalent of the
( o 1 He (=) last term which involves the variation &G with g. In that
=0| ———— y g ————H__, (—q), i i :
AG_,(—q) p',—p AG_,(0) prpt—d case, equivalence of the first two terms expresses the self

adjoint character ofl. It is the variation ofAG that changes
(B1) matters here.



PRE 62 DIFFUSION OF WAVES IN A LAYER WITH A ROUGH . .. 7379

Equation(64) of the text follows from Eq(B4) and the =~ The dummy variable ing;' needs to be changed top,
definition of the regular part oP, because it isp™, that appears ib"e9.
The first order variation of NG is given by

A
Preo = ——5 B5
p.p ngo )\m_)\o ( ) ,
1 1 JRe
Let é =-— SAG(q)=— ig-p g
AG(q) AGP° AGP° ap?
1 1 (B12)
J= 0 prea_—_H1 0 B6
< ¢ NS A(a) G HY(a)¢ > (B6)
whereA is any operator diagonal ip, e.g., so that
App () =Ap(Q) 5y p - (B7)
1
For the purposes of this paper we use J= < ¢° e 0A(q)<I>’egA 1(q)q5°>
Ap(q)=iq-pA(p,Q). (B8)
Use Eg.(B5) to replace®'? in Egs.(B6) and (B4) to o 1 . JReg 1
replace( p™(1/AG®)H14%). Then note that in the sum over =~ d’—pFAp(q)lq' p 7 Ed’p
states which no longer containg"—\° them=0 term can -P P P
be added freely since in fact isotropy causes it to vanish.
Applying the completeness relation 1
<¢ AGO H;”p(_q)q)rpegp AG A "( q)¢ //> .
% ", =AGS, (B9) p’
then gives the desired result (B13
J={ &° ;A AGYs ! 0 Equation(67) for AN(qg) can be written as
- d)—pAGO p(q) p AGp(q) ¢p q q
-p
1 1
0 1 reg
+ , Ho, (—a)® S —5 Ay . ). 1 1
<¢_p AGS, p ]p( q) p’.p" AG ( Q)¢ > A)\(Q):_< ¢0A OA(bregAGOHl(q)¢O>
(B10)
o 1 N e 1 Il o
Isotropy dictates thab . depends only oipl,|p’| and + ¢> Oq 20 — AG0 A-q- 9 ¢
p-p’. The appearance &.(—q) results from
1 1 d°——H?2¢° ). (B14)
¢8—0Ap(q)¢£“> = < ¢mp—0Ap(Q)¢0p> < AGP
< AG, AGZ,
1
:< ¢Tp—0Ap(—Q)¢8> , If identity (B13) is used in the first term, the perturbation of
A the eigenvalueAN(q), is shown to be given by Ed65) of

(B11) the text.
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