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Two-parameter families of chirped stationary three-dimensional spatiotemporal solitons in dispersive qua-
dratically nonlinear optical media featuring type-I second-harmonic generation are constructed in the presence
of temporal walk-off. Basic features of these walking spatiotemporal solitons, including their dynamical sta-
bility, are investigated in the general case of unequal group-velocity dispersions at the fundamental and
second-harmonic frequencies. In the cases when the solitons are unstable, the growth rate of a dominant
perturbation eigenmode is found as a function of the soliton wave number shift. The findings are in full
agreement with the stability predictions made on the basis of a marginal linear-stability curve. It is found that
the walking three-dimensional spatiotemporal solitons are dynamicallystablein most cases; hence in principle
they may be experimentally generated in quadratically nonlinear media.

PACS number~s!: 42.81.Dp, 42.65.Ky, 52.35.Sb
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I. INTRODUCTION

Solitons in optical media with quadratic nonlinearities e
hibit unique dynamical behaviors and have a great poten
for applications to photonic devices@1–19#. One of the fun-
damentally important properties is the fact that, unlike
Kerr nonlinearity @20#, the quadratic nonlinearity does no
lead to wave collapse in any physical dimension@3#, and thus
it opens a way to generate stable spatiotemporal soli
~STS’s!, or ‘‘light bullets’’ @20#, i.e., fully localized spatio-
temporal objects that result from the simultaneous balanc
diffraction and dispersion by nonlinear phase modulati
STS’s in various types of nonlinear optical environme
have attracted a great deal of interest@21–31#. On one hand,
STS’s are challenging objects for fundamental research
examples of stable localized objects in two-dimensional~2D!
and, especially, in three-dimensional~3D! nonlinear media
are rare in physics. On the other hand, STS’s hold prom
for potential applications in future ultrafast all-optical log
devices, where each STS may represent an elementary b
information, provided that stable STS’s can be formed fr
pulses at reasonable energy levels in available optical m
rials.

The formation of 2D STS’s in quadratically nonlinear m
dia has recently been observed@32#. In these experiments
tilted-pulse techniques were used to control the effec
group-velocity dispersion~GVD! and group-velocity mis-
match~GVM! experienced by the propagating signals@33#.
In particular, the effective GVD was made anomalous a
properly enhanced, while the GVM was reduced. An imp
tant peculiarity of the results reported in@32# is that 2D
STS’s can be successfully generated despite a nonvanis
value of group-velocity mismatch between fundamen
harmonic~FH! and second-harmonic~SH! waves. Very re-
cently, noncollinear generation of optical 2D STS’s, bas
on type-I interaction~that which involves a single FH wave!
PRE 621063-651X/2000/62~5!/7340~8!/$15.00
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in quadratically nonlinear media has been demonstrated
barium metaborate@Ba2BO4,(BBO)# crystal @34#. The re-
sulting Y-like geometry of optical STS generation can
used to implement optical logicalAND gates with ultrafast
high-contrast operation. However, 3D STS’s in quadratica
nonlinear media have not been observed experimentally
far.

An important feature that must be taken into considerat
in any physically realistic model of second-harmonic gene
tion ~SHG! media is the fact that the FH and SH waves ha
different dispersions: while the dispersion at both frequ
cies must be anomalous to support fully stationary ST
@25#, their absolute values are, generally, different. This i
plies that equations describing the structure of the STS
clude a spatiotemporal anisotropy which has no analog in
case of spatial solitons@25#.

Static ~nonwalking! STS’s @25–28# are represented by
real solutions to the corresponding coupled nonlinear wa
equations. In this case, STS’s actually move at a velo
exactlyequal to the group velocity of the carrier waves.
the SHG model, it is usually assumed that FH and SH gro
velocities coincide. Then, the only free parameter of the S
solutions is their propagation constant~nonlinear wave num-
ber shift!. An important generalization to the case of ‘‘walk
ing’’ STS’s, represented bycomplex~chirped! stationary so-
lutions, that move at a finite velocity relative to the carrie
wave group velocity, was recently carried out for a simp
2D case@35#. Such a generalization was necessary, first
all, because, in reality, the FH and SH group velocities
not exactly equal. Moreover, in a real experimental situati
the mismatch between the two group velocities may be
nificant @32#, which does not prevent the formation of qu
dratic solitons when the phase mismatch between the wa
is correspondingly large@36#, but makes a detailed theoret
cal study of the walking effects necessary.

Families of 1D walking solitons have been studied in d
7340 ©2000 The American Physical Society
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tail as solitary-wave solutions of the SHG models in t
presence of spatial or temporal walkoff@15–17#. It has been
found that walking solitons have features essentially diff
ent from static ones, e.g., a different energy distribution
tween their FH and SH components, and different soli
content@37# produced by arbitrary~nonsoliton! input pulses.
From the mathematical viewpoint, walking solitons exhi
an extra free parameter in comparison with the sta
solitary-wave solutions, viz., the above-mentioned veloc
of the soliton relative to its carrier-wave’s group velocity.

The objective of the present work is to construct a tw
parameter family of 3D walking STS’s, and test their d
namical stability. The spatiotemporal profile and the stabi
of the solitons will be studied as a function of the energ
wave number mismatch between the FH and SH waves,
ratio of the SH and FF dispersion coefficients.

The rest of the paper is organized as follows. In Sec.
the model giving rise to 3D walking STS’s is presented in
nonstationary and stationary versions. In the same sec
the model’s dynamical invariants~integrals of motion!, viz.,
energy, Hamiltonian, and momentum, are considered. In S
III, detailed numerical studies of unique features of the tw
parameter families of solitons and a comprehensive ana
of their stability is presented. Results obtained in this wo
are briefly summarized in the final section.

II. TWO-PARAMETER FAMILIES
OF WALKING 3D STS’S

The normalized equations describing type-I SHG in a
geometry in the presence of chromatic dispersion and G
can be written as follows~see@4,25#!:

i
]a1

]j
2

r

2 S ]2a1

]h2
1

]2a1

]z2
1

]2a1

]t2 D 1a1* a2 exp~2 ibj!50,

i
]a2

]j
2

a

2 S ]2a2

]h2
1

]2a2

]z2
1s

]2a2

]t2 D
2 id

]a2

]t
1a1

2 exp~ ibj!50. ~1!

Here,j, h, z, andt are, respectively, the normalized prop
gation ~longitudinal! coordinate, the two transverse spat
coordinates, and the so-called retarded time, whereasa1 and
a2 are the FH and SH fields,d is the GVM parameter~the
spatial walk-off can be neglected if we assume noncritica
quasi-phase matching!, a52k1 /k2.20.5, wherek1,2 are
linear wave numbers at both frequencies, andd is the GVM
parameter. For the FH, anomalous dispersion is assum
hence we setr 521. The parameterb stands for the phas
mismatch between the two waves, ands is the dispersion
parameter~–as being the ratio of the SH and FH dispersio
coefficients!. The dispersion parameters may have any sign
~but solitons exist only if the SH dispersion is also anom
lous or exactly zero, i.e.,s>0 @25#!. In the cases51, Eqs.
~1! feature a formal spherical isotropy.

We are looking for stationary solutions to Eqs.~1! de-
scribing mutually trapped FH and SH pulses walking off t
j axis; hence we set
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a1,2~j,h,z,t !5U1,2~h,z,t!exp@ if1,2~j,h,z,t!#, ~2!

U1,2(h,z,t) and f1,2(j,h,z,t) being real functions, where
t[t2vj is the normalized ‘‘reduced time’’ in the referenc
frame moving~along with the soliton! at an inverse velocity
v relative to the laboratory frame, and the phases are so
for asf1,25k1,2j1 f 1,2(h,z,t). Here,v is the soliton veloc-
ity, k1,2 are nonlinear wave number shifts, and the functio
f 1,2(h,z,t) describe a transverse structure of the solit
phase front. To obtainj-independent stationary solution
one needs to setk252k11b. The amplitudesU1,2(h,z,t)
and the phase-front functionsf 1,2(h,z,t) satisfy the follow-
ing symmetry properties:U1,2(h,z,t) are even functions of
all the transverse variables (h,z,t), while f 1,2(h,z,t) are
even functions of (h,z) and odd functions oft.

In order to find steady-shape walking solitons, we solv
numerically the following coupled system of equations, u
ing a standard band-matrix method@38# to deal with the
corresponding two-point boundary-value problem:

2
r

2 S ]2u1

]h2
1

]2u1

]z2
1

]2u1

]t2 D 2 iv
]u1

]t
2k1u11u1* u250,

2
a

2 S ]2u2

]h2
1

]2u2

]z2
1s

]2u2

]t2 D
2 i ~d1v !

]u2

]t
2~2k11b!u21u1

2

50, ~3!

where the unknown complex functions are split into real a
plitudes and phases,

u1,2~h,z,t![U1,2~h,z,t!exp@ i f 1,2~h,z,t!#.

The associated system of nonlinear equations obtained f
the second-order finite-difference approximation to the s
tem ~3! was solved by the Newton method. In Eqs.~3! a, b,
and d are the model parameters, while the nonlinear wa
number shiftk1 and the velocityv parametrize the family of
stationary walking STS’s. In the absence of temporal wa
off, one hasd50, and zero-velocity soliton solutions to th
above equations are known to exist@25,26,28#.

In what follows below, we make use of the fact that Eq
~1! give rise to three conserved quantities~integrals of mo-
tion!: the energy~number of photons! I, HamiltonianH, and
momentumJ,

I[I 11I 25E ~ uA1u21uA2u2!dhdzdt, ~4!
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H52
1

2E F r S U]A1

]h U2

1U]A1

]z U2

1U ]A1

]t U2D
1

a

2 S U ]A2

]h U2

1U ]A2

]z U2

1sU ]A2

]t U2D 2buA2u2

1 i
d

2 S A2

]A2*

]t
2A2*

]A2

]t D 1~A1*
2A21A1

2A2* !Gdhdzdt,

~5!

J[J11J25
1

4i E F2S A1*
]A1

]t
2A1

]A1*

]t D
1S A2*

]A2

]t
2A2

]A2*

]t D Gdhdzdt, ~6!

where we have definedA1[a1 andA2[a2exp(2ibj).
The steady-shape walking STS’s of the form given by E

~2! occur as extrema of the Hamiltonian at fixed energy a
transverse momentum:

dF~H1k1I 2vJ!50, ~7!

dF standing for the variational derivative. By directly m
nipulating the governing equations~1!, one finds that the
walking soliton solutions correspond to a value of the Ham
tonian

H52
1

3
k1I 1

1

3
bI 21

2

3
vJ2

1

3
dJ2 . ~8!

Whend50, the last two terms on the right-hand side of th
expression vanish for the zero-velocity solutions. Howev
in the presence of group-velocity mismatch (d5” 0), only the
third term vanishes for the zero-velocity solitons, where
the last term contributes to the Hamiltonian. This is an in
cation that the transverse momentum of walking solitons
not simply proportional to their velocity, in contrast with th
walking soliton solutions to Galilean-invariant equation
Substitution of Eq.~2! into Eq. ~6! yields

J5
1

2E ~2U1
2 ḟ 11U2

2 ḟ 2!dhdzdt, ~9!

where the overdots stand for the derivative with respect tt.
If traveling-wave solutions can be trivially generated by t
Galilean transformation~in a Galilean-invariant model!, the
derivativesḟ 1,2 are constant,ḟ 15v and ḟ 252(d1v)/(as).
In general, for walking solitons, these derivatives are
simply proportional to the velocity, and hence neither isJ. A
relation between velocity and momentum for steady walk
STS’s can be elucidated by examining the evolution of
energy centroid of the coupled copropagating FH and
fields. One thus finds

J5vI 1dI 21~2as11!J2 . ~10!

The second term on the right-hand side of Eq.~10! stands for
the so-called dragging effect, that is, mutual dragging of
FH and SH components@11#. We notice that from Eq.~10!
one can find an estimate for the eventual velocity of
.
d

-

r,

s
-
is

.

t

g
e
H

e

e

walking STS’s generated by arbitrary input pulses, provid
that the radiation losses may be neglected.

In order to find the existence condition for walking STS
we notice that steady-shape walking soliton solutions to E
~3! exist for values of the nonlinear wave number shiftsk1
and transverse velocitiesv such that the soliton is not in
resonance with the linear dispersive waves, to avoid ene
leakage from the soliton. We find that the corresponding c
off ~limit ! value of the FH wave number shift isk1,cutoff

(1)

5(1/2)v2, whereas the resonance of the SH soliton com
nent with the linear dispersive waves occurs for wave nu
bers belowk1,cutoff

(2) 5(d1v)2/4(2a)s2b/2. Thus, station-
ary walking STS’s exist for values of the nonlinear wa
number shiftk1 above both these cutoffs. We also note th
in 1D SHG models, so-called embedded solitons may ex
which are isolated solitary waves~i.e., they do not exist in
families! avoiding resonance with dispersive waves in t
FH component but located inside the continuous spectrum
the SH waves, and may be semistable~linearly stable but
unstable in the nonlinear approximation! @39#. It is not ruled
out that embedded solitons are also possible in the spatio
poral domain, but this problem is beyond the scope of t
work.

Next we consider the condition for linear~marginal! sta-
bility of the two-parameter families of STS’s. By using
multiscale asymptotic approach@13,16,35#, the marginal
linear-stability curve is given by

]I

]k1

]J

]v
2

]I

]v
]J

]k1
50. ~11!

Notice that the condition~11! is only asufficientcriterion for
instability and it can also be derived by using geometri
methods@40#.

III. NUMERICAL RESULTS

In the numerical calculations, we have fixed the value
the GVM parameterd51 and seta520.5 @recall that the
parameterr in Eqs.~1! was already chosen to be21, i.e., we
consider the case when the dispersion is anomalous at
frequencies#. In Fig. 1, we plot the energy dependence of t
wave number shiftk1 and HamiltonianH for both negative
and positive values of the phase mismatchb, several differ-
ent values of the soliton velocityv, and a typical value of the
relative dispersion parameters. Because the curves plotte
in Fig. 1 correspond to fixed soliton velocities, the mome
tum J is not constant along the curves. This explains the f
that it is possible to have stable solitons for a fixed value
energy and different values of the Hamiltonian, as is see
Fig. 1~d!. As in the case of static~nonwalking! 3D STS’s
@26,28#, 3D walking STS’s are unstable for both signs of t
phase mismatch, but only in a narrow interval of the wa
numbers near cutoff~see the dashed lines in Fig. 1!. This
result should be compared to the stability of nonwalking@27#
and walking~for certain choices of the dispersion parame
s) @35# 2D STS’s in the whole range of their existence
positive mismatches.

For the sake of comparison, we have plotted in Figs. 2
energy dependence of the wave number shiftk1 and of the
HamiltonianH, at a fixed value of the soliton velocityv, for
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two representative values of phase mismatches and for
eral values of the dispersion parameters. As in Fig. 1, we
notice that the momentumJ is not constant along the curve
plotted in Fig. 2. A majority of walking STS’s are dynam
cally stable, except the ones close to the cutoff, plotted
the dashed lines in Figs. 1 and 2. In all cases plotted in F
1 and 2, the threshold energy is determined numerically
corresponds to a point where]I /]k150. Notice that, in
some regions of the parameter values, the threshold en

FIG. 1. ~a! and ~b! The wave number shiftk1 vs the energyI;
~c! and ~d! the HamiltonianH vs the energyI. Here s50.5; the
other parameters are indicated on the plots. The continuous
dashed lines correspond to stable and unstable solitons, re
tively.

FIG. 2. The same as in Fig. 1, but withv521. The other
parameters are indicated on the plots.
v-

y
s.
d

gy

more than doubles in the interval of variation of the veloc
~see Fig. 1!. For our choice of the parameters, we notice th
the energy threshold for the formation of walking STS’s d
pends monotonically on the soliton velocity@see Fig. 1~a!#
for negative phase mismatchb, whereas at positive phas
mismatch the dependence of the energy threshold is
monotonic @see Fig. 1~b!#. When we fix the value of the
velocity as in Fig. 2, we find that this threshold monoton
cally increases with increase of the dispersion parametes,
regardless of the sign of the phase mismatchb.

In Fig. 3 we plot the threshold energy for 3D STS form
tion as a function of the phase mismatchb for both nonwalk-
ing @Fig. 3~a!# and walking STS’s@Fig. 3~b!#. Here we have
fixed a representative value of the velocity (v521) of the
walking STS. At the exact-phase-matching point (b50), the
energy threshold for nonwalking STS’s vanishes, regard
of the relative dispersions, and as the phase mismatch
increased more energy is needed for the formation of
STS’s. Note that low-energy STS’s have large widths, wh
is a common property of solitons irrespective of the spa
dimension.

When d ~the GVM parameter! is zero, the threshold en
ergy scales asubu1/2, regardless of the relative dispersio
parameters, and at negative phase mismatch it is larger th
at positive phase mismatch@see Fig. 3~a!#, in accordance
with the well-known fact that, at large negative phase m
match, the wave-mixing process in a quadratically nonlin
medium can be viewed as giving rise to an effective se
defocusing cubic nonlinearity for the fundamental harmon
whereas at large positive phase mismatch the effective c
nonlinearity is of a self-focusing type. We see from Fig. 3~b!
that in the case of walking 3D STS’s the energy threshold
very asymmetric as a function of the phase mismatch par
eterb. Moreover, in order to form a walking STS, one has
nonzero threshold even at exact phase matching. As in
case of nonwalking STS’s, the threshold energy also depe
on the relative dispersions.

Now, we are ready to briefly discuss the implications
the Hamiltonian structure@41,42# for the stability of the
steady-shape walking STS. The evolution equations~1! can
be written in a canonical variational form, and the stationa
solitons correspond to extrema of the Hamiltonian for giv
energy and momentum. As a consequence, the stabilit
the stationary solutions can be elucidated by taking into
count that a global minimum ofH gives stable STS’s,
whereas local maxima yield unstable ones. In the case
smooth surfaces, the marginal stability curve given by E
~11! separates the lower and upper sheets of the surface.
is not necessarily the case for nonsmooth surfaces, for

nd
ec-

FIG. 3. Threshold energy for the formation of the spatiotemp
ral soliton vsb. ~a! d50; ~b! d51. Here,v521.
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stance, those found in the case of nonwalking solitons s
ported by type-II SHG@43#.

Figure 4 is a summary of the stability analysis results
the two-parameter family of solitons that exists atb573,
d51, and s50.5, with the velocity in the range21<v
<1. The values of the nonlinear wave number shiftk1 cor-
responding to the cutoff for the soliton existence, and to
marginal stability condition given by Eq.~11!, are shown,
respectively, by the full and dashed curves. Above
dashed curves in Fig. 4, all 3D STS’s are stable, wher
unstable ones occur in a narrow region between the cu
and marginal-stability curves. It is seen from this figure th
at negative phase mismatch, the domain of the existence
stability of 3D STS’s shrinks considerably in comparis
with the case of positive phase mismatch.

In order to give an idea of the shape of the surfaceH
5H(I ,J) for two selected values of the mismatch parame
b, we show a few curves of constant velocity lying on th
surface, viz., the dotted lines in Figs. 5~a!, ~b!. The marginal
curve separating the stable and unstable sheets of the su
H5H(I ,J) is also plotted@the full lines in Figs. 5~a!,~b!#.

Direct numerical simulations of Eqs.~1! with the input
conditions taken as per the steady-shape walking STS at
eral characteristic sets of the parameter values have
firmed the dynamical stability of the solitons belonging
the lower sheet of the surfaceH5H(I ,J), whereas, in the
course of evolution, the unstable solitons on the upper s
either spread out or reshape themselves into a stable osc
ing state close to a stationary walking STS belonging to
lower sheet of the surface~cf. the stable oscillatory state
close to nonwalking 3D STS’s in the SHG medium that we
found in @28#!.

A challenging issue is the possibility of an oscillato
instability, accounted for by possible complex eigenvalu
generated by the linearization of Eqs.~1! ~such an instability
was, e.g., found for two-parameter families of solitons
cubic nonlinear media@44#!. The numerical problem of find
ing eigenvalues of the matrix operator generated by the
earization of Eqs.~1! is of formidable complexity and re
quires huge computational facilities. Notice, however, t
the continuum spectrum of the corresponding operator
on the imaginary axis, namely, on the rays (lc ,i`) and
(2lc ,2 i`), where

lc5 i minH k12
1

2
v2,2k11b2

~d1v !2

~22a!sJ , ~12!

FIG. 4. Domains of soliton existence and stability in the para
eter plane (v,k1). Here,d51 ands50.5.
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as in the case of the two-parameter family of type-I 1D wa
ing solitons in quadratically nonlinear media@16#. Based on
the results reported in Ref.@16# for 1D walking solitons, and
in Ref. @28# for 2D and 3D nonwalking ones, we also expe
to have a nontrivial internal mode in the spectrum below
border of the continuum spectrum. The corresponding pai
eigenvalues may be either real or purely imaginary; thus
expect that oscillatory instabilities do not occur in the pres
model.

Instead of solving the eigenvalue problem directly w
have used the method of obtaining the growth rates of do
nant perturbation eigenmodes described, e.g. in R
@45,46#. This powerful method has been employed recen
in the study of stability of higher-order bound states in sa
rable self-focusing media@45,46# and in the study of azi-
muthal instability of bright vortex solitons in quadratical
nonlinear media@47#. The outcome of such growth-rate ca
culations is shown in Fig. 6 for a typical value of the solito
velocity (v521) and for different values of the relativ
dispersions. The standard numerical method described
detail in Ref.@46# permits calculation of both real and imag
nary parts of the dominant perturbation eigenvalue. We h
found that this dominant eigenvalue has its imaginary p
equal to zero, in accordance with previous calculations in
case of 1D walking solitons@16# and 2D and 3D nonwalking

-

FIG. 5. The surfaceH5H(I ,J) for b523 ~a!, and forb53
~b!. Here,d51 ands50.5.
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solitons@28#. We see from Fig. 6 that the maximum grow
rates, as a function of the wave number shiftk1, display
different behaviors for the two signs of the phase misma
The calculations of the maximum growth rate displayed
Fig. 6 prove to be in full agreement with the stability resu
obtained from the analysis of the marginal stability cur
@see Eq.~11!# that is shown in Fig. 4.

A typical spatiotemporal profile of a stable walking ST
at negative phase mismatch is shown in Fig. 7. Here,
parameters areb523, v521, I 590, ands50.5. Because
the relative dispersions5” 1, the soliton displays a spa
tiotemporal asymmetry~ellipticity @28#!.

Next, we display a typical unstable propagation of wa
ing STS’s. We have found that our selected numerical sim
lations are all consistent with the stability criterion~11!. We
have used the Crank-Nicholson scheme as a finite-differe
approximation to Eqs.~1!. The corresponding system of non
linear equations was solved by means of the Picard itera
method~see details in Ref.@48#!. Typically, we chose the
longitudinal grid sizeDj50.02 and equal transverse gr
sizesDh5Dz5Dt50.10. The transverse integration win
dow size depends on the choice of the input parametersI and
k1. The walking STS’s are unstable near their existence
off ~see Figs. 1 and 2!. In this region of the parameter spac
the stationary STS is rather wide; hence, to exclude poss
boundary effects, large computation windows are needed
Fig. 8 we show snapshots of both the FH and SH com
nents of unstable STS’s after propagating over 60 norm
ized length units. A typical example of an initially unstab
STS evolution is displayed in Fig. 9. The propagation ta
place in the reference frame in which the initial STS is
rest. We see from Fig. 9 that, during the propagation,
soliton changes its velocity and reshapes itself into a sta
near-STS oscillating state. Persistent oscillations of the S
peak amplitude, seen in Fig. 9, are due to both the interac
of the soliton with radiation and excitation of the solito

FIG. 6. The instability growth rate of the dominant perturbati
vs soliton wave number.~a! b523, ~b! b53. Here,v521 and
the values of the relative dispersions are indicated near the curve

FIG. 7. The spatiotemporal profile of a stable walking solito
~a! The fundamental harmonic, and~b! the second harmonic. Here
b523, k152.34, s50.5, v521, andI 590.
h.
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internal mode@14,36,49#. Notice that the ‘‘oscillating’’ na-
ture of many solitons in optical media withx (2) nonlinearity,
observed when they are either perturbed or generated f
arbitrary input pulses, was stressed as their characteristic
ture in Ref. @36# for 1D and 2D geometries in the case
equal dispersions at both frequencies, and further confirm
in Ref. @28# for 3D geometries in the general case of uneq
dispersions at the two harmonics.

Finally, we mention that other issues of interest that
left beyond the scope of the present work are the genera
of walking STS’s from, e.g., Gaussian chirped input puls
the so-called soliton content@37# of an arbitrary input pulse
in the same 3D geometry as that considered in the pre
work, and comprehensive analysis of internal modes of S
solitons.

IV. CONCLUSIONS

In this work, we have studied in detail two-paramet
families of stationary three-dimensional walking spatiote

.

FIG. 8. The spatiotemporal profile of an unstable walking so
ton. ~a! The fundamental harmonic atj50, ~b! the second har-
monic atj50, ~c! the fundamental harmonic atj560, and~d! the
second harmonic atj560. Here,k151.56, and the other param
eters are the same as in Fig. 7.

FIG. 9. Gray-scale plots of unstable evolution of the walki
soliton. ~a! The fundamental harmonic, and~b! the second har-
monic. The parameters are the same as in Fig. 8.
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poral solitons propagating in dispersive optical media fea
ing type-I second-harmonic generation. The temporal wa
off between the fundamental and second-harmonic wa
was explicitly taken into regard. Parameters characteriz
the soliton family are the nonlinear wave number shift a
the velocity of the soliton walk-off relative to its carrie
waves. These walking ‘‘light bullets’’ are fully localized in
all three dimensions~two spatial transverse dimensions a
the temporal one!. The general analysis of three-dimension
walking spatiotemporal solitons is necessary because, by
large in practice, the actual group velocities at the fundam
tal and second-harmonic frequencies do not coincide~which,
however, does not prevent formation of two-dimensio
walking spatiotemporal solitons in a real experiment@32#!.

We have investigated the properties of chirped walk
spatiotemporal solitons, including their dynamical stabili
in the general case of unequal group-velocity dispersion
the fundamental and second-harmonic frequencies.
um

n
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at
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transverse shapes of the three-dimensional light bullets
hibit a spatiotemporal asymmetry.

A detailed numerical analysis of the consequences of
sufficient linear-stability criterion for solitons, found from
simple geometrical arguments, was given. In the cases w
the spatiotemporal solitons are unstable, the correspon
maximum growth rates have been calculated as function
the nonlinear wave number in the general case of uneq
group-velocity dispersions at the fundamental and seco
harmonic frequencies. It was found that, excluding a t
region near the cutoff of their existence, the walking thre
dimensional spatiotemporal solitons aredynamically stable.
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