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Two-parameter families of chirped stationary three-dimensional spatiotemporal solitons in dispersive qua-
dratically nonlinear optical media featuring type-l second-harmonic generation are constructed in the presence
of temporal walk-off. Basic features of these walking spatiotemporal solitons, including their dynamical sta-
bility, are investigated in the general case of unequal group-velocity dispersions at the fundamental and
second-harmonic frequencies. In the cases when the solitons are unstable, the growth rate of a dominant
perturbation eigenmode is found as a function of the soliton wave number shift. The findings are in full
agreement with the stability predictions made on the basis of a marginal linear-stability curve. It is found that
the walking three-dimensional spatiotemporal solitons are dynamis@lbfein most cases; hence in principle
they may be experimentally generated in quadratically nonlinear media.

PACS numbes): 42.81.Dp, 42.65.Ky, 52.35.Sh

[. INTRODUCTION in quadratically nonlinear media has been demonstrated in a
barium metaborat¢Ba,BO,,(BBO)] crystal[34]. The re-

Solitons in optical media with quadratic nonlinearities ex-sulting Y-like geometry of optical STS generation can be
hibit unique dynamical behaviors and have a great potentialsed to implement optical logicalND gates with ultrafast
for applications to photonic devicgs—19. One of the fun-  high-contrast operation. However, 3D STS'’s in quadratically
damentally important properties is the fact that, unlike thenonlinear media have not been observed experimentally thus
Kerr nonlinearity[20], the quadratic nonlinearity does not far.
lead to wave collapse in any physical dimendigh and thus An important feature that must be taken into consideration
it opens a way to generate stable spatiotemporal solitoni& any physically realistic model of second-harmonic genera-
(STS’s, or “light bullets” [20], i.e., fully localized spatio- tion (SHG) media is the fact that the FH and SH waves have
temporal objects that result from the simultaneous balance dfifferent dispersions: while the dispersion at both frequen-
diffraction and dispersion by nonlinear phase modulationcies must be anomalous to support fully stationary STS’s
STS’s in various types of nonlinear optical environments[25], their absolute values are, generally, different. This im-
have attracted a great deal of intergst—31. On one hand, plies that equations describing the structure of the STS in-
STS'’s are challenging objects for fundamental research, adude a spatiotemporal anisotropy which has no analog in the
examples of stable localized objects in two-dimensi¢aB) case of spatial soliton®5].
and, especially, in three-dimension@D) nonlinear media Static (nonwalking STS’s [25—-28 are represented by
are rare in physics. On the other hand, STS’s hold promiseeal solutions to the corresponding coupled nonlinear wave
for potential applications in future ultrafast all-optical logic equations. In this case, STS’'s actually move at a velocity
devices, where each STS may represent an elementary bit ekactlyequal to the group velocity of the carrier waves. In
information, provided that stable STS’s can be formed fronthe SHG model, it is usually assumed that FH and SH group
pulses at reasonable energy levels in available optical mateelocities coincide. Then, the only free parameter of the STS
rials. solutions is their propagation constgnonlinear wave num-

The formation of 2D STS's in quadratically nonlinear me- ber shifj. An important generalization to the case of “walk-
dia has recently been observggP]. In these experiments, ing” STS’s, represented bgomplex(chirped stationary so-
tilted-pulse techniques were used to control the effectivdutions, that move at a finite velocity relative to the carrier-
group-velocity dispersiofGVD) and group-velocity mis- wave group velocity, was recently carried out for a simpler
match (GVM) experienced by the propagating signg88]. 2D case[35]. Such a generalization was necessary, first of
In particular, the effective GVD was made anomalous andill, because, in reality, the FH and SH group velocities are
properly enhanced, while the GVM was reduced. An impor-not exactly equal. Moreover, in a real experimental situation,
tant peculiarity of the results reported [82] is that 2D  the mismatch between the two group velocities may be sig-
STS's can be successfully generated despite a nonvanishimgficant[32], which does not prevent the formation of qua-
value of group-velocity mismatch between fundamental-dratic solitons when the phase mismatch between the waves
harmonic(FH) and second-harmoni(SH) waves. Very re- is correspondingly largg36], but makes a detailed theoreti-
cently, noncollinear generation of optical 2D STS's, basedcal study of the walking effects necessary.
on type-l interactior(that which involves a single FH waye Families of 1D walking solitons have been studied in de-
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tail as solitary-wave solutions of the SHG models in the ar A& L) =UsAn ¢ nexdidiLE7,L,1], (2
presence of spatial or temporal walkpt’5—17. It has been

found that walking solitons have features essentially differ-

ent from static ones, e.g., a different energy distribution bey ., ¢ 7) and ¢, A&, 7,£,7) being real functions, where
tween their FH and SH components, and different soliton, _t_ ¢ is the normalized “reduced time” in the reference
content|37] produced by arbitrarynonsoliton input pulses. ., me moving(along with the solitonat an inverse velocity

From the mathematical viewpoint, walking solitons exh|b|tv relative to the laboratory frame, and the phases are sought

an extra free parameter in comparison with the stati . .
. . . . . = + . -
solitary-wave solutions, viz., the above-mentioned veIocn;for as ¢y =Kk 6+ 11 7,{,7). Here,v is the soliton veloc

of the soliton relative to its carrier-wave’s group velocity. Ity, Ky are ”0”'”?9"” wave number shifts, and the funct|-0ns
The objective of the present work is to construct a two-fl,Z( n,¢,7) describe "_" transverse structgre of the sphton

parameter family of 3D walking STS's, and test their dy- phase front. To obtairg-independent s-tat|onary solutions,

namical stability. The spatiotemporal profile and the stability®N€ needs to set,=2«,+ B. The amplituded); (7.£,7)

of the solitons will be studied as a function of the energy,and the phase-front functiorfs (#,{,7) satisfy the follow-

wave number mismatch between the FH and SH waves, ariflg symmetry propertiedJ, 5(7,{,7) are even functions of

ratio of the SH and FF dispersion coefficients. all the transverse variablesp({,7), while f1(#7,{,7) are
The rest of the paper is organized as follows. In Sec. Ileven functions of §,{) and odd functions of-.

the model giving rise to 3D walking STS’s is presented inits  In order to find steady-shape walking solitons, we solved

nonstationary and stationary versions. In the same sectiomumerically the following coupled system of equations, us-

the model’'s dynamical invariantintegrals of motiol, viz.,  ing a standard band-matrix meth¢@8] to deal with the

energy, Hamiltonian, and momentum, are considered. In Segorresponding two-point boundary-value problem:

[, detailed numerical studies of unique features of the two-

parameter families of solitons and a comprehensive analysis

of their stability is presented. Results obtained in this work r (azul 22Uy (92u1> oy

+ +

are briefly summarized in the final section. - — —iv——kUu;+uju,=0
’ 2\ g o | or TTRTTITETE

Il. TWO-PARAMETER FAMILIES
OF WALKING 3D STS'S

The normalized equations describing type-1 SHG in a 3D — E(

geometry in the presence of chromatic dispersion and GVM 2
can be written as follows$see[4,25]):

(92U2 (92U2 (92U2
2 + 2 to 2
an a¢ ar

. (9U2 2
—I(5+U)E—(2K1+ﬂ)u2+ul

da; r[d%a <92a1Jr #a, ot o(—iBE)=0
i—— a¥a,exp—iBé) =0,
aE 2\ g2 a2 a2 ) T'? =0, ©)

) 0-'3.2 (¢4 028.2 07232 0-'23.2 . L.
i—— = o where the unknown complex functions are split into real am-
& 2\ gnp® 972 at? :
plitudes and phases,
. &aZ 2 .
_'5W+a1 expiB€)=0. (1)

ul,Z( nagiT)EUl,Z( ﬂ:g,T)eXF{ifl,z( 77!5!7-)]'

Here, &, 7, {, andt are, respectively, the normalized propa-

gation (longitudina) coordinate, the two transverse spatial . . . .
coordinates, and the so-called retarded time, wheagasd The associated system of nonlinear equations obtained from

a, are the FH and SH fields is the GVM parametefthe the second-order finite-difference approximation to the sys-
spatial walk-off can be neglected if we assume noncritical oM (3) was solved by the Newton method. In E(B) a, 8,
quasi-phase matchifga=—k; /k,=—0.5, wherek; , are and § are 'Fhe model paramgters, while the nonllnegr wave
linear wave numbers at both frequencies, and the GVM  humber shift; and the velocity parametrize the family of
parameter. For the FH, anomalous dispersion is assumegtationary walking STS’s. In the absence of temporal walk-
hence we set=—1. The parameteB stands for the phase off, one hasé=0, and zero-velocity soliton solutions to the
mismatch between the two waves, amds the dispersion above equations are known to exi26,26,28.
parametef—ao being the ratio of the SH and FH dispersion  In what follows below, we make use of the fact that Egs.
coefficients. The dispersion parametermay have any sign (1) give rise to three conserved quantiti@stegrals of mo-
(but solitons exist only if the SH dispersion is also anoma-tion): the energynumber of photonsl, HamiltonianH, and
lous or exactly zero, i.eg=0 [25]). In the caser=1, Eqs. momentumJ,
(1) feature a formal spherical isotropy.

We are looking for stationary solutions to Eq4) de-
scribing mutually trapped FH and SH pulses walking off the

& axis; hence we set |E|1+|2:f (|A1?+|Az%)d pdZdt, 4
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1 IAL|2 |aAL]2 | 9AL|2 walking STS'’s generated by arbitrary input pulses, provided
H=— Ef r( T ﬂ_g Y ) that the radiation losses may be neglected.
n In order to find the existence condition for walking STS's,
allan,|? | aA,|? IA, |2 , we notice that steady-shape walking soliton solutions to Egs.
+3 o + 73 to| = —BlA,| (3) exist for values of the nonlinear wave number shifts
and transverse velocities such that the soliton is not in
K OAS LA, Y - resonance with the I_inear dispersive waves, to avoid_ energy
+ig AZT_ 2 o + (AT A+ ATAY) |[dpd{dt, leakage from the soliton. We find that the corresponding cut-
off (limit) value of the FH wave number shift itsz(fc)utoff
(5 =(1/2)v?, whereas the resonance of the SH soliton compo-
. nent with the linear dispersive waves occurs for wave num-
. f 2( LA OAT ) bers belowk(2, o= (8+v)2/4(— a)o— BI2. Thus, station-
124 Lo Toat ary walking STS’s exist for values of the nonlinear wave
N number shiftx; above both these cutoffs. We also note that,
N ‘?_A2_A ﬂ) dpdZdt 6) in 1D SHG models, so-called embedded solitons may exist,
2 gt 2 ot 7 ' which are isolated solitary wavese., they do not exist in

families) avoiding resonance with dispersive waves in the
where we have definedl;=a; andA,=a,exp(~ipé). FH component but located inside the continuous spectrum of
The steady-shape walking STS's of the form given by Eqthe SH waves, and may be semistatiaearly stable but
(2) occur as extrema of the Hamiltonian at fixed energy andinstable in the nonlinear approximatjdi39]. It is not ruled

transverse momentum: out that embedded solitons are also possible in the spatiotem-
poral domain, but this problem is beyond the scope of this
5F(H+K1I_UJ):O, (7) work.

Next we consider the condition for lineé@margina) sta-
bility of the two-parameter families of STS’s. By using a
|.multiscale asymptotic approacfl3,16,33, the marginal
linear-stability curve is given by

Sr standing for the variational derivative. By directly ma-
nipulating the governing equatiorid), one finds that the
walking soliton solutions correspond to a value of the Hami
tonian

1 1 2 1 al 93 a9l 4d ~0 11)
H=—§K1|+§ﬁ|2+§UJ—§5J2. (8) Ky dv dv aKl_ : (
When =0, the last two terms on the right-hand side of this Notice that the conditiofi11) is only asufficientcriterion for
expression vanish for the zero-velocity solutions. Howeverinstability and it can also be derived by using geometrical
in the presence of group-velocity mismatch#0), only the ~ methods40].

third term vanishes for the zero-velocity solitons, whereas

the last term contributes to the Hamiltonian. This is an indi- . NUMERICAL RESULTS

cation that the transverse momentum of walking solitons is ] ) .

not simply proportional to their velocity, in contrast with the !N the numerical calculations, we have fixed the value of

walking soliton solutions to Galilean-invariant equations.the GVM paramete6=1 and seta=—0.5 [recall that the
Substitution of Eq(2) into Eq. (6) yields parameter in Egs.(1) was already chosen to bel, i.e., we

consider the case when the dispersion is anomalous at both
: . frequencies In Fig. 1, we plot the energy dependence of the
J= Ef (2U1f 1+ U3f5)dndldr, (9 wave number shific; and HamiltoniarH for both negative
and positive values of the phase mismagseveral differ-
where the overdots stand for the derivative with respeet to ent values of the soliton velocity, and a typical value of the
If traveling-wave solutions can be trivially generated by therelative dispersion parameter. Because the curves plotted
Galilean transformatiotiin a Galilean-invariant modglthe  in Fig. 1 correspond to fixed soliton velocities, the momen-
derivativesi‘l ,are constantflzv andi‘2= —(5+0v)/(a0). tumq i; not cqnstant along the curves. This explains the fact
In general, for walking solitons, these derivatives are nothat it is possible to have stable solitons for a fixed value of
simply proportional to the velocity, and hence neithed.isn ~ enerdy and different values of the Hamiltonian, as is seen in
relation between velocity and momentum for steady walking 19- Xd). As in the case of statitnonwalking 3D STS's
STS's can be elucidated by examining the evolution of the. 26,28, 3D walking STS’s are unstable for both signs of the
energy centroid of the coupled copropagating FH and spphase mismatch, but only in a narrow interval of the wave

fields. One thus finds numbers near cutoffsee the dashed lines in Fig). IThis
result should be compared to the stability of nonwalKiag|
J=vl+6l,+(2ac+1)d,. (100  and walking(for certain choices of the dispersion parameter

o) [35] 2D STS's in the whole range of their existence at
The second term on the right-hand side of Bd) stands for  positive mismatches.
the so-called dragging effect, that is, mutual dragging of the For the sake of comparison, we have plotted in Figs. 2 the
FH and SH componen{d.1]. We notice that from Eq(10) energy dependence of the wave number shjfand of the
one can find an estimate for the eventual velocity of theHamiltonianH, at a fixed value of the soliton velocity, for
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] . (b) 150 @ 150 o
c=1 c=1
L. 100 solitons > 100F solitons
5 4 g 3 N
£ 5 5 I A =05
g no trapping no trapping no trapping no trapping
2 -5.0 -2.5 0.0 25 5.0 -5.0 -2.5 0.0 2.5 5.0
phase mismatch phase mismatch
0 QL=
50 100 150 200 50 100 150 200 FIG. 3. Threshold energy for the formation of the spatiotempo-
energy energy ral soliton vsg. (a) 6=0; (b) §=1. Here,y=—1.
0 300
more than doubles in the interval of variation of the velocity
S 200 = 100 (see Fig. 1 For our choice of the parameters, we notice that
5 = 100 the energy threshold for the formation of walking STS’s de-
Tgv E pends mgnotonically on the soliton velocityee Eig. 19)]
£ -400 1T 300l for negative phase mismatg®, whereas at positive phase
mismatch the dependence of the energy threshold is not
600 500 monotonic[see Fig. b)]. When we fix the value of the

50 100 150 200 50 100 150 200 velocity as in Fig. 2, we find that this threshold monotoni-
energy energy cally increases with increase of the dispersion parameter

FIG. 1. (@) and(b) The wave number shifk; vs the energy; reglargl.essé of thel ‘:f'?hn C;Lthehplrglse mlsrr]lm:?D STS f
(c) and (d) the HamiltonianH vs the energyl. Here ¢=0.5; the n Fig. > we piot the threshold energy Tor orma-

other parameters are indicated on the plots. The continuous ant&pn a,s a function of the_ phase rpismamrﬁor both nonwalk-
dashed lines correspond to stable and unstable solitons, respdBd [Fig. 3(@] and walking STS'4Fig. 3(b)]. Here we have
fixed a representative value of the velocity=—1) of the

walking STS. At the exact-phase-matching poiat0), the

two representative values of phase mismatches and for sefnergy threshold for nonwalking STS’s vanishes, regardless
eral values of the dispersion parameterAs in Fig. 1, we Of the relative dispersiom, and as the phase mismatch is

notice that the momenturhis not constant along the curves mcre,ased more energy IS need?d for the formation of 3D
plotted in Fig. 2. A majority of walking STS’s are dynami- STS'S. Note that low-energy STS's have large widths, which

cally stable, except the ones close to the cutoff, plotted byS & common property of solitons irrespective of the space
the dashed lines in Figs. 1 and 2. In all cases plotted in Figglimension. .

1 and 2, the threshold energy is determined numerically and When é (the GVM parametdris zero, the threshold en-
corresponds to a point wher@/Jx,=0. Notice that, in €rgy scales a$p|'? regardless of the relative dispersion

some regions of the parameter values, the threshold energ@rameter, and at negative phase mismatch it is larger than
at positive phase mismatdisee Fig. 8)], in accordance

(b) with the well-known fact that, at large negative phase mis-
match, the wave-mixing process in a quadratically nonlinear
medium can be viewed as giving rise to an effective self-
defocusing cubic nonlinearity for the fundamental harmonic,
whereas at large positive phase mismatch the effective cubic
nonlinearity is of a self-focusing type. We see from Fi¢)3
that in the case of walking 3D STS'’s the energy threshold is
very asymmetric as a function of the phase mismatch param-
eter 8. Moreover, in order to form a walking STS, one has a
nonzero threshold even at exact phase matching. As in the
case of nonwalking STS's, the threshold energy also depends
on the relative dispersion.

Now, we are ready to briefly discuss the implications of
the Hamiltonian structurg¢41,42 for the stability of the
steady-shape walking STS. The evolution equatidnscan
be written in a canonical variational form, and the stationary
solitons correspond to extrema of the Hamiltonian for given
energy and momentum. As a consequence, the stability of
the stationary solutions can be elucidated by taking into ac-
count that a global minimum oH gives stable STS's,
whereas local maxima yield unstable ones. In the case of
smooth surfaces, the marginal stability curve given by Eq.

FIG. 2. The same as in Fig. 1, but with=—1. The other  (11) separates the lower and upper sheets of the surface. This
parameters are indicated on the plots. is not necessarily the case for nonsmooth surfaces, for in-

tively.

wave number
wave number

0
50 100 150 200
energy

100

-200

Hamiltonian
Hamiltonian

-100

-400 -200 - .
50 100 150 200 50 100 150 200

energy energy
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(a) (b) a
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g t% f= o Ay
21} Y S
. E 4001 - '
1] - : Q - T
-0 05 00 05 10 10 -05 00
velocity velocity 600 v=05
FIG. 4. Domains of soliton existence and stability in the param- " 600
eter plane ¢,«,). Here,6=1 ando=0.5. 120
enepn 0 200 00 ° me“\u‘”‘\
stance, those found in the case of nonwalking solitons sup- nergy 0o
ported by type-ll SHG@43]. (b)
Figure 4 is a summary of the stability analysis results for /\
the two-parameter family of solitons that exists@t ¥ 3, p=3 .
6=1, and 0=0.5, with the velocity in the range.lsU 000 marginal curve
=<1. The values of the nonlinear wave number skiftcor- 1
responding to the cutoff for the soliton existence, and to the
marginal stability condition given by Eq11), are shown, c
respectively, by the full and dashed curves. Above the -2 0
dashed curves in Fig. 4, all 3D STS’s are stable, whereas £ o v=1
unstable ones occur in a narrow region between the cutoff g K
and marginal-stability curves. It is seen from this figure that, T -200 4 K
at negative phase mismatch, the domain of the existence and
stability of 3D STS’s shrinks considerably in comparison
with the case of positive phase mismatch. '40500' 500
In order to give an idea of the shape of the surfate 100 =5 c 300
=H(l,J) for two selected values of the mismatch parameter GNergy 200, 257300 mome“‘
B, we show a few curves of constant velocity lying on this
surface, viz., the dotted lines in Figgah (b). The marginal FIG. 5. The surfaced=H(l,J) for 8=—-3 (a), and for3=3

curve separating the stable and unstable sheets of the surfate Here,6=1 ando=0.5.
H=H(l,J) is also plottedthe full lines in Figs. &a),(b)].

Direct numerical simulations of Eq$l) with the input  as in the case of the two-parameter family of type-l 1D walk-
conditions taken as per the steady-shape walking STS at seing solitons in quadratically nonlinear medib6]. Based on
eral characteristic sets of the parameter values have coike results reported in R€fL6] for 1D walking solitons, and
firmed the dynamical stability of the solitons belonging toin Ref.[28] for 2D and 3D nonwalking ones, we also expect
the lower sheet of the surfadé=H(I,J), whereas, in the to have a nontrivial internal mode in the spectrum below the
course of evolution, the unstable solitons on the upper sheéforder of the continuum spectrum. The corresponding pair of
either spread out or reshape themselves into a stable oscillaigenvalues may be either real or purely imaginary; thus we
ing state close to a stationary walking STS belonging to thexpect that oscillatory instabilities do not occur in the present
lower sheet of the surfacef. the stable oscillatory states model.
close to nonwalking 3D STS’s in the SHG medium that were Instead of solving the eigenvalue problem directly we
found in[28]). have used the method of obtaining the growth rates of domi-

A challenging issue is the possibility of an oscillatory nant perturbation eigenmodes described, e.g. in Refs.
instability, accounted for by possible complex eigenvalueg45,46. This powerful method has been employed recently
generated by the linearization of Eq&) (such an instability in the study of stability of higher-order bound states in satu-
was, e.g., found for two-parameter families of solitons inrable self-focusing medif45,46) and in the study of azi-
cubic nonlinear medig44]). The numerical problem of find- muthal instability of bright vortex solitons in quadratically
ing eigenvalues of the matrix operator generated by the linnonlinear medid47]. The outcome of such growth-rate cal-
earization of Eqs(1) is of formidable complexity and re- culations is shown in Fig. 6 for a typical value of the soliton
quires huge computational facilities. Notice, however, thatvelocity (v=—1) and for different values of the relative
the continuum spectrum of the corresponding operator lieglispersiono. The standard numerical method described in
on the imaginary axis, namely, on the rays;(i») and detail in Ref.[46] permits calculation of both real and imagi-

(—=A\¢,—i®), where nary parts of the dominant perturbation eigenvalue. We have
) found that this dominant eigenvalue has its imaginary part
No=i mint x.— Evz i+ B— (6+v) 12 equal to zero, in accordance with previous calculations in the

¢ o7 (—2a)o|’ case of 1D walking solitonglL6] and 2D and 3D nonwalking
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FIG. 6. The instability growth rate of the dominant perturbation
vs soliton wave numbefa) g=—3, (b) B=3. Here,y=—1 and FIG. 8. The spatiotemporal profile of an unstable walking soli-
the values of the relative dispersienare indicated near the curves. ton. () The fundamental harmonic at=0, (b) the second har-
monic até=0, (c) the fundamental harmonic &= 60, and(d) the
solitons[28]. We see from Fig. 6 that the maximum growth second harmonic a=60. Here,x;=1.56, and the other param-
rates, as a function of the wave number shift, display eters are the same as in Fig. 7.
different behaviors for the two signs of the phase mismatch.
The calculations of the maximum growth rate displayed ininternal mode14,36,49. Notice that the “oscillating” na-
Fig. 6 prove to be in full agreement with the stability resultsture of many solitons in optical media wigf?) nonlinearity,
obtained from the analysis of the marginal stability curveobserved when they are either perturbed or generated from
[see Eq(11)] that is shown in Fig. 4. arbitrary input pulses, was stressed as their characteristic fea-
A typical spatiotemporal profile of a stable walking STS ture in Ref.[36] for 1D and 2D geometries in the case of
at negative phase mismatch is shown in Fig. 7. Here, thequal dispersions at both frequencies, and further confirmed
parameters ar@=—3,v=—1,1=90, ando=0.5. Because in Ref.[28] for 3D geometries in the general case of unequal
the relative dispersionr#1, the soliton displays a spa- dispersions at the two harmonics.
tiotemporal asymmetryellipticity [28]). Finally, we mention that other issues of interest that are
Next, we display a typical unstable propagation of walk-left beyond the scope of the present work are the generation
ing STS’s. We have found that our selected numerical simuef walking STS’s from, e.g., Gaussian chirped input pulses,
lations are all consistent with the stability criteri@hl). We  the so-called soliton contefi87] of an arbitrary input pulse
have used the Crank-Nicholson scheme as a finite-differend@ the same 3D geometry as that considered in the present
approximation to Eqg1). The corresponding system of non- work, and comprehensive analysis of internal modes of STS
linear equations was solved by means of the Picard iteratiogolitons.
method (see details in Ref[48]). Typically, we chose the

angitudinal grid sizeA¢=0.02 and equal _transve.rse grid IV. CONCLUSIONS
sizesAnp=A¢=A7=0.10. The transverse integration win-
dow size depends on the choice of the input paramétznsl In this work, we have studied in detail two-parameter

x1. The walking STS's are unstable near their existence cutfamilies of stationary three-dimensional walking spatiotem-
off (see Figs. 1 and)2In this region of the parameter space,

the stationary STS is rather wide; hence, to exclude possible (a) (b)

boundary effects, large computation windows are needed. Ir 60 60
Fig. 8 we show snapshots of both the FH and SH compo-
nents of unstable STS's after propagating over 60 normal-

ized length units. A typical example of an initially unstable .
STS evolution is displayed in Fig. 9. The propagation takes§
place in the reference frame in which the initial STS is at 40
rest. We see from Fig. 9 that, during the propagation, the 8
soliton changes its velocity and reshapes itself into a stable
near-STS oscillating state. Persistent oscillations of the STE%
peak amplitude, seen in Fig. 9, are due to both the interactior &

40

propagation coordinate

of the soliton with radiation and excitation of the soliton & 20 20
o

(a)
210 4 g0 4
2 & 2 &
= S B 5 A0 &
s @“E’o i %W 6 0 6 12 A2 6 0 6 12

0# 4 & I 0 4 . - - o =

€4 2 0 2 4 v 54202 4 F

space coordinate space coordinate time cordinate time coordinate

FIG. 7. The spatiotemporal profile of a stable walking soliton.  FIG. 9. Gray-scale plots of unstable evolution of the walking
(a) The fundamental harmonic, arfb) the second harmonic. Here, soliton. (a) The fundamental harmonic, ant) the second har-
B=-3,k,=2.34,0=0.5,v=—1, andl =90. monic. The parameters are the same as in Fig. 8.
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poral solitons propagating in dispersive optical media featurtransverse shapes of the three-dimensional light bullets ex-
ing type-1 second-harmonic generation. The temporal walkhibit a spatiotemporal asymmetry.

off between the fundamental and second-harmonic waves A detailed numerical analysis of the consequences of the
was explicitly taken into regard. Parameters characterizingufficient linear-stability criterion for solitons, found from
the soliton family are the nonlinear wave number shift andgSimple geometrical arguments, was given. In the cases when
the velocity of the soliton walk-off relative to its carrier the spatiotemporal solitons are unstable, the corresponding
waves. These walking “light bullets” are fully localized in maximum growth rates have _been calculated as functions of
all three dimensionéwo spatial transverse dimensions andthe nonlinear wave number in the general case of unequal
the temporal one The general analysis of three-dimensional 9"0uP-velocity dispersions at the fundamental and second-
walking spatiotemporal solitons is necessary because, by afff"Monic frequencies. It was found that, excluding a tiny

large in practice, the actual group velocities at the fundamen-;9/on hear the cutoff of their existence, the walking three-

tal and second-harmonic frequencies do not cointidgch, dimensional spatiotemporal solitons atgnamically stable
howgver, dqes not prevent formation of two.—dimensional ACKNOWLEDGMENTS
walking spatiotemporal solitons in a real experimg3g]).
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