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Energy-flux pattern in the Goos-Hänchen effect

H. M. Lai,* C. W. Kwok, Y. W. Loo, and B. Y. Xu
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China

~Received 16 May 2000!

The ~two-dimensional! wave beam fields and the associated energy flux in the Goos-Ha¨nchen effect are
studied analytically and numerically. In particular, the time-averaged Poynting vector and its flux lines around
the interface are calculated for both states of wave polarization, irrespective of a positive shift~the usual one!
or a negative shift of the reflected beam. For a given transverse field profile of the incident beam, the flux lines
associated with the evanescent waves for the two cases of shift are shown to have the same shape yet to take
opposite directions; they are parabolas if the profile is Gaussian. The flux lines in the first medium are shown
to connect to those in the second medium on the two sides of the interface. In the case of positive shift, the
whole flux pattern expectedly shows the supply of energy from the incident beam to the evanescent wave on
one side and the return of energy on the other side to the reflected beam. In the case of negative shift, on the
other hand, the flux lines nearby the interface form loops, in addition to the expected incoming-outgoing flux
pattern in the remaining region.

PACS number~s!: 42.25.Gy, 01.55.1b, 41.85.2p
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I. INTRODUCTION

The Goos-Ha¨nchen~GH! effect, which refers to the lat
eral shift of a totally reflected wave beam from the pa
usually expected from geometrical optics, was discovered
Goos and Ha¨nchen and theoretically explained by Artman
in the late 1940s@1,2#. It has since then been further studie
theoretically ~see, for example,@3–9#! and experimentally
~see, for example,@10–14#!. Its consideration has been e
tended to cases involving multilayered structures~see, for
example,@15#!, absorptive media~see, for example,@16–
18#!, and nonlinearities~see, for example,@19#!; its relevance
to optical waveguides~see, for example,@20#! and near-field
scanning optical microscopy@~NSOM!, see, for example
@21,22# # has also been investigated. Moreover, attention
been drawn to the existence of a negative GH shift in so
circumstances@15–18,23#.

The energy flux around the interface between the two m
dia in the effect is important in the understanding of t
phenomenon, especially in the case of a negative shift.
thermore, knowledge of the fields, the evanescent wav
particular, is useful in applications related to NSOM and
attenuated total reflection spectroscopy. Yet so far there
been little satisfactory calculation of these quantities. Lot
@4# has calculated the fields and the time-averaged Poyn
vectors using a scheme which starts by expressing every
quantity~including the incident one! as a sum of a dominan
term ~or ‘‘amplitude’’ term! and a subdominant term~or
‘‘amplitude-derivative’’ term!, each with some coefficient
to be determined by boundary conditions. His results
complicated and do not readily give the energy flux lines
the whole region even for simple cases, e.g., the case
Gaussian beam. Moreover, his result on the shift agr
closer with Renard’s@3# than with Artmann’s@2#, which has
led to controversies@7,9,12#. There is, therefore, a need t
reconsider the problem. This is exactly the purpose of
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paper. Our method is different from but simpler tha
Lotsch’s, and leads to results in complete agreement w
Artmann’s and many others. It starts with the~spatial! Fou-
rier integral of the monochromatic~i.e., single-frequency!
incident beam field, which is essentially a linear superpo
tion of sinusoidal plane waves with wave vectors ofdifferent
directions but of thesamemagnitude. This method has bee
widely used to find the shift of the reflected beam@5–9#.
Here we use it to calculate the explicit field variation in t
two media. The well-known reflection and transmission c
efficients for each sinusoidal plane wave can be readily u
under the integral to yield the reflected beam field and
‘‘transmitted’’ ~or ‘‘refracted’’! beam field, hence the Poyn
ting vectors and flux lines in the two media. The bounda
conditions and the energy conservation are automatic
guaranteed. Both states of wave polarization~TE or s state
and TM or p state! as well as both directions~positive and
negative! of shift are considered in one shot. Like Lotsch
our consideration is restricted to two-dimensional fields a
assumes a small divergence angle of the beam, meaning
the wavelength is much smaller than the beam width, wh
is assumed to be of the order of the transverse scale len

In Sec. II general consideration is given, together with
setting up of notations and necessary formulas to be u
later. In Sec. III we evaluate the fields in the lowest appro
mation of a good collimated wave beam. Not only the shift
reflected beam field is calculated, a properly shifted transm
ted beam field~i.e., the evanescent wave field! is also ob-
tained. In Sec. IV the time-averaged Poynting vector in
two media is calculated and the energy flux lines are
tained and plotted under the same approximation. Both ths
state and thep state of polarization, and both the positiv
shift case~the usual one! and the negative shift case, a
considered along the calculation. The negative shift ca
which corresponds to a backward energy flow associa
with the TM-state evanescent waves in the second med
of the negative dielectric constant~or permittivity!, is
stressed; its energy flow pattern in the region around
interface is particularly shown from our quantitative resul
7330 ©2000 The American Physical Society
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PRE 62 7331ENERGY-FLUX PATTERN IN THE GOOS-HA¨ NCHEN EFFECT
Only nonmagnetic media without spatial dispersion
considered, meaning that the Poynting vector gives the
ergy flux density. Furthermore, the cgs Gaussian unit sys
is used throughout the paper.

II. GENERAL CONSIDERATION

Consider two semi-infinite homogeneous media separ
by a flat interface which will be defined as thexy plane. Let
there be an incident plane-polarized monochromatic wav
the form exp(ik•r2 ivt) in the lower (z,0) medium~here-
after referred to as the first medium! with the wave vectork
lying in thexz plane and making an angleu with the z axis.
The wave is either in the TE state or in the TM state. At t
frequencyv, both media are assumed to be nonabsorpt
with the first medium having a real positive dielectric co
stante1 and the second a real dielectric constante2, which
can be either positive or negative. As an example for
latter case, we have in mind a cold field-free plasma av
below the plasma frequency.

As is well known, the incident wave is accompanied by
reflected wave and a ‘‘transmitted’’ wave of the same fo
with the following reflection and transmission coefficients

r 5
kz2mkz

(t)

kz1mkz
(t) and t5

2kz

kz1mkz
(t) , ~1!

wherekz is thez component of the wave vector of the inc
dent wave andkz

(t) is that of the transmitted wave, both sa
isfying their respective dispersion relations:

kz
25e1v2/c22kx

2 and kz
(t)25e2v2/c22kx

2 ~2!

in their corresponding media, withkx being thex component
of the wave vector. Note that in Eq.~1! m is an index for the
state of wave polarization, having the value

m51 or m5e1 /e2 ~3!

for the TE state or the TM state, respectively. Note also th
for the former case where the electric field is along they
direction, the coefficientsr andt are the ratios of the electri
fields while, for the latter case where the magnetic field
along they direction, they refer to the ratios of the magne
fields ~see also@9#!. Furthermore,kx5k sinu and kz5k
cosu, wherek, being equal toAe1 v/c, is the magnitude of
the wave vector in the first medium.

In this paper we shall restrict to the following two case
~a! the usual total internal reflection wheree1.e2>1 and
u.uc , the critical angle defined by sin21Ae2 /e1; ~b! the
total reflection with a negative dielectric constant of the s
ond medium, i.e.,e2,0,e1. They both give the well-
known evanescent waves in the second medium with
same realkx and a purely imaginarykz

(t) , which is often
written as

kz
(t)5 ik with k[Akx

22e2v2/c2.0, ~4!

where 1/k is the ‘‘skin depth’’ of the field in the second
medium@24#. The two coefficientsr and t can now be sim-
plified to
e
n-
m

ed

of

e
e,

e

t,

s

:

-

e

r 5exp~2 if! and t5utu exp~2 if/2!, ~5!

where

f/2[tan21~mk/kz! and utu52kz /Akz
21m2k2. ~6!

Here we note that the phase int is exactly half of that inr.
We now consider a monochromatic wavebeamincident

from below upon the interface with the beam line of ma
mum intensity~hereafter referred to as the beam axis! lying
in the xz plane and passing through the origin. The beam
two-dimensional so that every field quantity is independ
of the y coordinate, and it is either in the TE state or in t
TM state. To facilitate the calculation, we introduce,
shown in Fig. 1, the incidentX8YZ8 coordinate system and
the reflectionX9YZ9 coordinate system in addition to th
original XYZ coordinate system, all with the samey axis
~directed into the plane of the figure! and the same originO.
The z8 axis, which makes an angleu0 with the z axis, coin-
cides with the incident beam axis while thez9 axis coincides
with the reflection beam axis if there is no GH shift. No
that thex9 axis is so chosen that a plane wave of positivekx8
gives the reflected wave again with a positivekx9 ; hence
X9YZ9 is a left-hand coordinate system.

Being monochromatic, the field always depends on ti
through the factor exp(2ivt). Omitting this temporal factor,
the field ~electric for the TE state and magnetic for the T
state! of the incident beam, being a linear superposition
plane sinusoidal waves, can in general be written as

F( i )~x8,z8!5E
2k

k

G~kx8! exp~ ikx8x8

1 ikz8z8!dkx8 ŷ for z<0 ~7!

FIG. 1. The original XYZ coordinate system, the inciden
X8YZ8 coordinate system, and the reflection~left-handed! X9YZ9
coordinate system, all with the sameY axis directed into the plane
of the figure and the same originO. Note that theXY plane sepa-
rates the two media ofe1 ande2.
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in the incident coordinate system, whereŷ is the unit vector
along they axis andkz85Ak22kx8

2. Since we already know
how each incident sinusoidal wave is accompanied by a
flected sinusoidal wave and a transmitted sinusoidal wa
obviously the accompanied reflected and transmitted b
fields are, respectively, given by

F(r )~x9,z9!5E
2k

k

r ~kx8!G~kx8! exp~ ikx8x9

1 ikz8z9!dkx8 ŷ for z<0 ~8!

in the reflection coordinate system, and

F(t)~x,z!5E
2k

k

t~kx8!G~kx8! exp~ ikxx

2kz!dkx8 ŷ for z>0 ~9!

in the original coordinate system, wherer, t, and k, given
respectively by Eqs.~1! and~4!, are functions ofkx8 through
the following transformations:

kx5kx8 cosu01kz8 sinu0 , kz52kx8 sinu01kz8 cosu0 ,
~10!

with kz8 being a function ofkx8 . Note that, in Eq.~8!, we have
made use of the fact that a wave of wave vector (kx8 ,kz8) is
reflected into a wave with exactly the same values
(kx9 ,kz9). Note also that the field in Eq.~9! is simply a linear
superposition of the evanescent waves of differentkx’s.

To find the energy flux, the well-known expression for t
time-averaged Poynting vector, given by

S5
c

8p
Re @E3B* #, ~11!

with Re meaning ‘‘the real part of,’’ turns out to be

S5
c2

8pv
Re @ iF3~“3F!* # ~12!

for the TE state whereF is the electric field~hence2 ic“
3F/v is the magnetic field!, and

S5
c2

8pve
Re @ iF3~“3F!* # ~13!

for the TM state whereF is the magnetic field~henceic“
3F/ev is the electric field!. Therefore, in either case, w
need only to consider the same quantityF3(“3F)* .

At this point, it is worth pointing out that, by definition
the ~instantaneous! Poynting vector for the TE state is con
tinuous across the interface while, for the TM state,eSx and
Sz are continuous across the interface. These boundary
ditions are useful in evaluating the energy fluxes in the t
media. Of course, the continuity of the normal componen
both cases is required by the conservation law.

Furthermore, we want to call attention to the fact that,
the total reflection of an incident sinusoidalplane wave in
e-
e,
m

f

n-
o
n

r

the TM state~i.e., p state!, “3F5 ik(t)3F(t) in the second
medium and the associated time-averaged Poynting vect
Eq. ~13! becomes

S5
c2kx

8pve2
uF(t)u2 x̂. ~14!

As the energy flux density of the evanescent wave, it o
has anx component as expected. Yet it also implies a ba
ward energy flow ife2 is negative. This is important in the
understanding of the negative shift.

III. CALCULATION OF FIELDS

We consider a good collimated incident beam. By this
mean the divergence angle of the beam is very small s
that the integrandG(kx8) in Eq. ~7! is substantial only around
kx850 with a ~spectrum! width nkx8 much smaller than the
integration limit, i.e.,

nkx8/k!1 or kW@1, ~15!

where we have introduced the beam widthW ~or the scale
length of the transverse field! and we have assumed it to b
of the order of the inverse of the~spectrum! width. For a
good laser beam of millimeter width,kW is as large as 104.
A lot of beam properties can be studied analytically with E
~7! through this assumption by expandingkz8 in terms ofkx8
and by setting the integration limits essentially to infinitie
For example, keeping the expansion to the second order
taking

G~kx8!5sF0exp~2kx8
2s2/2!, ~16!

Eq. ~7! gives the following well-known~two-dimensional!
Gaussian beam propagating along thez8 axis and of a mini-
mum root-mean-square widths of the field distribution at
z850 @25,26#:

F( i )~x8,z8!5F0 A s

sz8

expS 2
x82

2sz8
2D eiC(x8,z8) eikz8 ŷ,

~17!

where

sz8[As21
z82

k2s2
~18!

is the root-mean-square beam width atz8, and

C~x8,z8![
z8x82

2ks2sz8
2 2

1

2
tan21

z8

ks2 ~19!

is the additional phase factor.
For our purpose in this paper we shall neglect the seco

~and higher-! order terms in the expansion ofkz8 in Eq. ~7!.
This means

uz8u/kW2!1. ~20!

We shall henceforth restrict our interest to the region not
far from the origin or, noting thatkW2 is essentially the
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Rayleigh range defined for a wave beam@25#, to the region
well within the Rayleigh range from the focus. Cons
quently, the incident beam in Eq.~7! readily reduces to

F( i )~x8,z8!5T~x8!eikz8 ŷ, ~21!

where

T~v ![E
2`

`

G~kx8! exp~ ikx8v !dkx8 ~22!

is the transverse profile of the incident beam field. This is
lowest-order approximation of a good collimated beam.

The reflected field can be obtained in a similar fash
with the additional expansion of the phase in Eq.~5! in terms
of kx8 to the first order. The result has essentially been
tained before@8,9#. It is, from Eq.~8!,

F(r )~x9,z9!5e2 if0 T~x92D !eikz9 ŷ, ~23!

a field shifted from thez9 axis ~in the reflection coordinate
system as shown in Fig. 1! by a distanceD, where

D[
df

dkx8
5

df

kdu
, ~24!

evaluated atkx850 or u5u0, is the well-known expression
for the GH shift first obtained by Artmann@2# through the
method of stationary phase. The explicit form is, in our n
tation,

D5
2m ~12e2 /e1! sinu0

k0 ~cos2 u01m2k0
2/k2!

, ~25!

where

k05kAsin2 u02e2 /e1. ~26!

Three remarks are in order. First, for the usual case of t
internal reflection,D blows up at the critical angle but th
expression is good as long asu02uc.1/kW. The shift
around and off the critical angle has been obtained in@9#.
When compared to a wavelength, it is large around the c
cal angle but otherwise it is of the same order of magnitu
nevertheless, it is always small compared to the beam wi
Second, the method of stationary phase is not necessa
obtaining the result~see@8,9#!; in fact, the reflected field as
expressed by Eq.~23! is good in the region around the inte
face, where the method of stationary phase fails to ap
Third, the shift in Eq.~25! is good for the two states o
polarization (m51 for the TE state andm5e1 /e2 for the
TM state! and for the two directions of shift. In particula
the shiftD has the same sign asm, which is negative for a
negativee2 when the beam field is in the TM state~i.e., the
p state of wave polarization!.

To obtain the transmitted field in Eq.~9! under the same
approximation is a bit more involved. In addition to the e
pansion of the phase oft in a similar fashion, we have to
expandkx , utu, andk to first order inkx8 . The first is readily
obtained from Eq.~10! and the last two have the followin
results in a straightforward way:
-

e

n

-

-

al

i-
;

h.
in

y.

utu5utu0~12akx8! and k5k01bkx8 , ~27!

where

utu052 cos
f0

2
5

2 cosu0

Acos2u01m2k0
2/k2

~28!

and

a5
D

2
tan

f0

2
5

mk0D

2k cosu0
, b5k sinu0 cosu0 /k0 .

~29!

We now substitute all these expansions in Eq.~9! in addition
to that for the phase. The result is

F(t)~x,z!5utu0 e2k0z1 i (kx sin u02f0/2)@T~ x̄ cosu0!

1 i ~a1bz!Ṫ~ x̄ cosu0!# ŷ ~30!

for z>0, where we have assumedz!W so thate2bkx8z51
2bkx8z is valid, and we have also introduced the shift
coordinate variable along thex direction

x̄[x2
D

2 cosu0
~31!

and the spatial derivative

Ṫ~v ![
dT~v !

dv
5E

2`

`

ikx8G~kx8!exp~ ikx8v !dkx8 . ~32!

We see that in Eq.~30! the argument ofT has a ‘‘coordinate
change’’ ofD/2 cosu0 along thex axis, indicating a shift of
the ‘‘transmitted’’ field strength corresponding to the shift
the reflected beam field. The 1/2 factor is due to the phas
t just half as much as that inr, as obvious from Eq.~5!.
Furthermore, we want to point out that the transmitted fi
in such a coordinate-shifted form as given by Eq.~30! has
not been obtained before.

With the F’s in Eqs.~21!, ~23!, and~30!, the correspond-
ing “3F’s are simply

“3F( i )5F2 ik x̂81
Ṫ~x8!

T~x8!
ẑ8GF ( i ), ~33!

“3F(r )5F ik x̂92
Ṫ~x92D !

T~x92D !
ẑ9GF (r ), ~34!

and

“3F(t)5Fk02 ib
Ṫ~ x̄ cosu0!

T~ x̄ cosu0!
GF (t) x̂

1F ik sinu01
Ṫ~ x̄ cosu0!

T~ x̄ cosu0!
GF (t) ẑ, ~35!

whereF ( i ), F (r ), andF (t) are they components of the inci-
dent, reflected, and transmittedF fields, respectively, terms
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of double derivatives ofT have been ignored, and terms wi
a product ofṪ’s are understood to be discarded.

Two points are to be noted. First, the fields obtained
this section can be easily expressed in terms of the orig
coordinate system through the following transformations
tween the coordinate unit vectors:

x̂85 x̂ cosu02 ẑsinu0 , ẑ85 x̂ sinu01 ẑcosu0 ,
~36!

x̂95 x̂ cosu01 ẑsinu0 , ẑ95 x̂ sinu02 ẑcosu0 ,

hence the relation of (x8,z8) or (x9,z9) to (x,z) is also ob-
vious.

Second, these fields~electric or magnetic! satisfy their
respective boundary conditions~i.e., the continuity of the
tangential electric field and the tangential magnetic fi
across the interface atz50) for both the TE state and th
TM state. This can be shown if we note the relationsx8

5 x̄ cosu01D/2 andx92D5 x̄ cosu02D/2, then expand the
T functions in Eqs.~21! and ~23! @or Eqs.~33! and ~34! for
the other field# aroundx̄ cosu0 to first order inD, and com-
pare with the field in Eq.~30! @or Eq.~35! for the other field#
in the second medium, using the relations in Eqs.~25!, ~28!,
and~29!. Though this is expected, it is theshiftedtransmitted
field that makes the boundary conditions nicely satisfied.

IV. CALCULATION OF ENERGY FLUX AND FLUX
LINES

We now use Eqs.~12! and~13! to find the time-averaged
Poynting vector or the energy-flux density in the two med
It turns out that the calculation simplifies a lot and the ph
ics is more transparent if the transverse profileT(x8) of the
incident beam field in Eq.~21! is real. This is what we will
assume in the following.

A. First medium „zÏ0…

With the assumption of a realT(x8), the incident and the
reflection beams, treated separately, are easily shown to
unidirectional flux lines. The time-averaged Poynting vec
corresponding to thetotal field is thus given by

S5S( i )1S(r )1S(m), ~37!

where, except for the factorc2/8pv for the TE case,

S( i )5k@T~x8!#2 ẑ8 and S(r )5k@T~x92D !#2 ẑ9
~38!

are, respectively, the incident beam energy flux and the
flected beam energy flux considered separately, and,
F[2kzcosu01f0,

S(m)52kT~x8!T~x92D !sinu0 cosF x̂1@ Ṫ~x8!

3T~x92D !x̂82T~x8!Ṫ~x92D !x̂9#sinF ~39!

is the mixed-product term or the interference term after so
manipulations. Note that, in the derivation, second-or
terms have been thrown away. The result for the TM stat
the same except for an additional factore1, the dielectric
n
al
-

d

.
-

ve
r

e-
th

e
r
is

constant of the first medium, in the denominator. This
obvious from Eq.~13! versus Eq.~12!.

Because of the shift of the reflected beam as shown by
~38!, it is natural to introduce theshiftedcoordinate system
( x̄,z̄), wherex̄ is defined by Eq.~31! and z̄ by

z̄[z2
D

2 sinu0
. ~40!

This is simply a coordinate system parallelly displaced fro
the original system with the originŌ now being the inter-
section of the incident beam axis and the~actual! reflected
beam axis. Obviously,

x85 x̄ cosu02 z̄ sinu0 and x92D5 x̄ cosu01 z̄ sinu0 .
~41!

Inside the first medium, the situation is therefore like tw
crisscrossing unidirectional beams, one pointing towards
the other pointing away from the new originŌ. Note that the
new origin, though expectedly located in the second med
~or more exactly in the first quadrant of the original coord
nate system! for the case of positive shift, is neverthele
located inside thefirst medium~or more exactly in the third
quadrant of the original coordinate system! for the case of
negative shift.

We now consider the flux lines from the well-known fo
mula

dz̄/dx̄5Sz /Sx , ~42!

where the two components of the Poynting vector, in ter
of ( x̄,z̄), are obtainable from Eqs.~38! and~39!, with the aid
of Eqs.~36! and~41!. To find out the flux lines explicitly, let
us assume a Gaussian profile, i.e.,

T~v !5exp~2v2/2s2!, ~43!

where the coefficient has been ignored without loss of g
erality. We then get

Sx52kT~x8!T~x92D !sinu0

3F cosh
x̄z̄ sin 2u0

s2
1cosF1

z̄ cosu0 sinF

ks2 G ~44!

and

Sz52kT~x8!T~x92D !cosu0

3Fsinh
x̄z̄ sin 2u0

s2
1

x̄ sinu0 sinF

ks2 G ~45!

in a straightforward way, where the terms involving sinF
and cosF are due to interference. We see that outside
overlapped region of the two beams wherex̄z̄/s2@1, the
two hyperbolic functions dominate and Eq.~42! readily re-
duces to

dz̄/dx̄→6 cotu0 for x̄z̄→6`, ~46!
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which clearly refers to the expected straight flux lines of
incident beam and the reflected beam, respectively, at l
distance.

To include the overlapped region, the simplest is to ign
the interference. The flux lines in such a case are in
those corresponding to the Poynting vector spatially av
aged over a wavelength along thez direction. They obey the
following nonlinear equation

dh/dj5tanh 2jh, ~47!

where the dimensionless coordinates

j[ x̄ cosu0 /s and h[ z̄ sinu0 /s ~48!

have been introduced. To our knowledge, the equation
no closed-form solution. Yet it is invariant under the chan
of sign of any one of the two variables. So the general so
tions must be even inj and h. They are numerically ob-
tained and shown in Fig. 2, where the cross-sectional den
of the flux lines tells the intensity of the Gaussian beam, a
the two perpendicular dotted lines~i.e., the jh-coordinate
lines! intersect atŌ, which is not marked in the figure fo
neatness. The whole graph gives the energy-flux patter
the two crisscrossing wave beams, one with the field in
~21! and the other with the field in Eq.~23!, when the inter-
ference is ignored. For the present case of the GH eff
only the flux lines in the regionh,2D/2s ~i.e., the first
medium wherez,0) are physically meaningful, and the
will connect to those in the second medium to be found
Sec, IV B. SinceD can be either positive or negative, w
show in the figure two horizontal dashed lines, the upper
indicating the position of the interface in the case of nega
shift and the lower one in the case of positive shift.

FIG. 2. Solution of Eq.~47! for a Gaussian beam. The tw
dashed lines ath5D/(2s)520.1 and 0.1 indicate the position o
the interface for the case of positive shift and the case of nega
shift, respectively. The bold line on the lower left coincides with t
incident beam axis.
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Including the interference terms, we have the followi
modified equation:

dh

dj
5

sinh 2jh1j tanu0sinF/ks

cosh2jh1cosF1h cotu0 sinF/ks
, ~49!

where F5(2ksh1kD)cotu01f0. The symmetry inh is
broken while that inj remains. Figure 3~a! gives the flux
lines in the TM state for a case of positive shift, wheree1
52.1, e251, u0545°, andks550 have been taken, imply
ing D/2s50.1666 anduc543.64°. To save space, we hav
not shown the flux pattern for the TE state, which is simi
to that for the TM state. Figure 3~b! gives the flux lines in the
TM state for a case of negative shift, wheree151, e25
20.15, u0518°, and ks510, implying D/2s5
20.040 47. In both figures, the two perpendicular dash
lines atj52D/2s and h52D/2s give the original coor-
dinate axes with the originO while the two dotted lines
intersect atŌ. ~Both O andŌ are not marked in the figure
for neatness.! Obviously, the real interface between the tw
media is given byz50 or the horizontal dashed line, onl
below which the flux lines are physically meaningful in o
present consideration of the GH effect. The flux lines are
drawn that the cross-sectional density indicates the stre
of the Poynting vector. The bold line on the lower left giv

ve

FIG. 3. Solutions of Eq.~49! for a gaussian beam in the TM
state. ~a! A positive-shift case wheree152.1, e251, u0545°,
ks550, and~b! a negative-shift case wheree151, e2520.15,
u0518°, andks510. In either figure, only the pattern in the re
gion below the horizontal dashed line is physically meaningful, a
the bold line on the lower left coincides with the incident bea
axis. Note thatD/2s50.1666 anduc543.64° in case~a!, and
D/2s520.04047 in case~b!.
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the incident beam axis which, if extrapolated forward, me
both the pointsO and Ō. The bold line on the lower righ
coincides with the reflected beam axis which, if extrapola
backward, meets onlyŌ. This clearly shows the shift of the
beam upon reflection. Note that we have chosen smaller
ues ofks in both figures to manifest the shift and we s
that, in Fig. 3~b!, there is a flux line in the upper grou
passing through the interface; as we shall see in Sec. I
this gives interesting closed-loop flux lines when the t
media are considered. Note also that the subdominant in
ference terms in Eq.~49! do not have much effect on th
results for a very largeks.

B. Second medium„zÐ0…

With a realT(x8), the Poynting vector in the second m
dium, obtained from the vector product of Eq.~30! and the
complex conjugate of Eq.~35!, can be simplified in a similar
fashion. The result is, again except for the factorc2/8pv2

for the TE state ,

S5utu0
2 e22k0z T~ x̄ cosu0!@k sinu0 T~ x̄ cosu0!x̂

1b Ṫ~ x̄ cosu0! ẑ#, ~50!

implying always a positivex-direction flow. The Poynting
vector for the TM state has again the same form except
the additionale2 in the denominator. It is then the modifica
tion of Eq. ~14! for the evanescent wave in the case o
beam. In particular, it implies a negativex direction~or back-
ward! energy flow for a negative dielectric constant~or per-
mittivity !. Nontheless, the flux lines always satisfy the sa
equation which has the following solution:

k0z5 ln uT~ x̄ cosu0!u1const, ~51!

where we have made use of Eq.~29!. This means that, for a
given transverse field profile of the incident beam, the fl
lines have the samez vs x̄ shape irrespective of any state
wave polarization and any case of the direction of shift,
the flow direction in the case of negative shift is opposite
that in the case of positive shift.

For a Gaussian beam of the form given by Eq.~43!, the
solution reduces to

k0z52 x̄2 cos2 u0/2s21const52j2/21const ~52!

which, symmetric inx̄ as expected, gives parabolic flux line
as shown in Fig. 4~a!. Nevertheless, we want to point ou
that, for a beam profile other than a Gaussian, the flux li
are not at all parabolic. For example, if

T~v !5exp~2v4/4s41v3/9s312v2/3s2# ~53!

a modulated two-hump profile with two different peaks
v/s521 and 4/3, and a trough atv50, the flux lines are
given by

k0z52j2~j2/42j/922/3!1const. ~54!

A few typical lines are plotted in Fig. 4~b!. This example of
a two-hump profile, as we shall see shortly, is useful in
s

d
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e
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derstanding the energy flux pattern throughout the region
view of the parity change~or left-right inversion! of the im-
age in reflection. As another example, let us take

T~v !5
sinpv/s

pv/s
, ~55!

a sinc profile resulted from a single-slit diffraction. The flu
lines are given by

k0z5 lnUsinpj

pj U1const ~56!

and a few of them are plotted in Fig. 4~c!. In all the three
figures, the two ends of every flux line meet the interfa
This implies transfer of energy with the first medium. Fu
thermore, the cross-sectional density of the flux lines in
cates the intensity.

C. The two media combined

First, we want to make sure the boundary conditions
stated near the end of Sec. II are properly satisfied. To s
this we note that the two components of the Poynting vec
in the first medium as given by Eq.~37! can be shown to take
the following boundary values from below:

Sx~z502!52k sinu0~11cosf0!@T~ x̄ cosu0!#2,

~57!

Sz~z502!52kD cos3 u0 T~ x̄ cosu0!

3Ṫ~ x̄ cosu0!/~12e2 /e1!,

where Eqs.~36!, ~40!, and~41! have been used, expansion
of theT functions aroundx̄ cosu0 to first order inD ~like that
at the end of Sec. III! have been made, and terms of seco

FIG. 4. Three flux patterns in the second medium for three
ferent transverse profiles:~a! Gaussian in Eq.~43!, ~b! two-hump in
Eq. ~53!, and~c! sinc function in Eq.~55!, with the cross-sectiona
flux line density proportional to the intensity.
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PRE 62 7337ENERGY-FLUX PATTERN IN THE GOOS-HA¨ NCHEN EFFECT
order have been dropped. Note thatSx is always positive. It
is now easy to see that, for the TE state wherem51, they
are exactly equal to the two components in Eq.~50! at z
50, whereutu0 and b are, respectively, given by Eq.~28!
and Eq.~29!. This means that the flux lines do not bend up
crossing the interface. For the TM state, the two compone
in Eq. ~57! have to be divided bye1 while those in Eq.~50!
are divided bye2 to yield the correct Poynting vectorS(M ),
say. It is then simple to show the continuity ofeSx

(M ) and
Sz

(M ) across the interface, wherem equalse1 /e2. This means
that every flux line has a sudden change of direction u
crossing the interface and there is a discontinuity of
slope. For the case of positive shift, such a changekeepsthe
x direction of the energy flow while, for the case of negati
shift, it reversesthe x direction of the flux lines upon cross
ing the interface.

With the satisfaction of the boundary conditions, we a
now confident to plot the flux lines in the two media. B
cause the time-averaged Poynting vector is divergence
the flux pattern in the whole region can be constructed
combining the two graphs separately obtained in Sec. IV
~for z,0) and in Sec. IV B~for z.0), with the requirement
of the continuity of the lines. In particular, if we so combin
the two graphs in Figs. 3~b! and 4~a!, the closed-loop flux
lines around the interface are obviously obtained. To st
numerically, we can start with the flux pattern in the fir
medium calculated according to the equations in Sec. IV
There are two sets of points of intersection of the flux lin
with the interface, one with the lines directed into, and
other with the lines out of, the second medium. We th
choose the points in one set as the initial points to draw
flux lines in the second medium according to the solutions
Sec. IV B. The return of these lines to the interface sho
exactly end at the points in the other set, which can serv
a check of the correctness of our numerical results.

We now show three such patterns throughout the two
dia in Figs. 5–7, where the two perpendicular dashed~dot-
ted! lines always give the originalxz ~modifiedjh-! coordi-
nate axes with the originO (Ō), and the horizontal dashe
line always gives the position of the real interface.~Both O

and Ō are not marked in the figures for neatness.! Further-
more, all flux lines in these figures are so drawn that
cross-sectional density indicates the intensity.

Figure 5~a! shows the pattern for a Gaussian beam in
TM state with parameters exactly the same as those in
3~a!. As clear from the figure, the flux lines, incident fro
the lower left, have a part penetrating into the second m
dium on the left-hand side, keeping close to the surface
the evanescent wave energy flux lines in parabolic sha
afterwards, and re-entering the first medium on the ot
side. The incident beam axis and the reflected beam
~indicated by the straight bold lines outside the overlapp
region!, if extrapolated forward and backward, respective
can be seen to intersect at the originŌ of the jh-coordinate
system~shown by the two dotted lines! beyond the interface
implying obviously a~positive! shift. Note that the flux lines
are denser nearby the interface in the second medium
also that the pattern below the interface is exactly the sa
as that in Fig. 3~a!. For better visualization, Fig. 5~b! gives
the pattern near the origin, with tenfold magnification alo
ig.
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the h direction. The pattern for a Gaussian beam in the
state is similar in nature and is therefore not given.

Figure 6~a! gives the pattern for a Gaussian beam in t
TM state with parameters now exactly the same as thos
Fig. 3~b!. The patterns below the horizontal dashed line
the two figures are therefore exactly the same. This is
case with negativee2. The intersection of the incident beam
axis and the reflected beam axis, again the origin of
jh-coordinate system shown by the dotted lines, now lies
front of the interface and to the left of the original coordina
system~shown by the two dashed lines!, indicating a nega-
tive shift, albeit a small one. Figure 6~b! is the tenfold mag-
nified pattern~along the vertical direction! of Fig. 6~a! near
the origin except that the lines are five times denser.
expected, we see the existence of closed-loop flux li
around the interface. Moreover, we see the incoming fl
lines do not pass through the interface at all. Note that th
flux lines refer to the flow of energy associated with thetotal
field in the absence of dissipation and they do not cross e
other. The pattern is therefore the only possible pattern in
case of a negative shift. This also makes sense in view of
existence of a backward energy flow associated with the e
nescent wave according to Eq.~14!. Note also that the flux
lines near the interface are denser in the first medium
time and, moreover, there appears an increasing undula
of intensity when approaching the interface from belo
along the central line.

Figure 7 gives the pattern for the nonsymmetric tw
hump profile in Eq.~53! in the TM-state with parameter
exactly the same as those for Fig. 3~a!. Besides the positive
shift which can be seen by a similar method as that for F
5, we also see how the flux lines come in from the lower le

FIG. 5. Flux lines in the two media for a Gaussian beam in
TM state with parameters the same as those in Fig. 3~a!. The two
perpendicular dashed lines give the original coordinate axes,
the bold line on the lower left in pattern~a! coincides with the
incident beam axis. Pattern~b! is a tenfold magnification inh of
pattern~a! near the origin.
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move around with some lines into the second medium
back-and-forth, and finally all go out to the lower right, gi
ing the correct right-left inverted ‘‘image’’ in reflection.

V. CONCLUSIONS AND DISCUSSION

In this paper we have calculated the field and the tim
averaged Poynting vector everywhere around the interfac
the Goos-Ha¨nchen effect in the lowest-order approximatio
of a good collimated beam. Both the TE~or s) state and the
TM ~or p) state of polarization and both a positive shift~the
usual one! and negative shift are considered. They all sati
the respective boundary conditions.

For a Gaussian field profile, the energy-flux lines~associ-
ated with the evanescent wave! take the shape of parabolas
the second medium, irrespective of the state of the polar
tion and direction of shift, and the whole flux patte
throughout the two media for each of the two directions
shift has been plotted. While the general features of the
tern for the case of positive shift are expected, we see h

FIG. 6. Flux lines in the two media for a Gaussian beam in
TM state in the case of a negative shift, with parameters the sam
those in Fig. 3~b!. The horizontal dashed line gives the real inte
face, and the bold line on the lower left in pattern~a! coincides with
the incident beam axis. Pattern~b! is tenfold magnification inh of
pattern~a! near the origin, with five times denser lines.
d

-
in

y

a-

f
t-
w

exactly the field energy~associated with the total field! flows
throughout the region. For the case of negative shift, we
the interesting closed-loop flux pattern nearby the interfa
in addition to the incoming-outgoing flow pattern in the re
of the region. On the other hand, for a non-Gaussian fi
profile, the flux lines in the second medium are not at
parabolas; they are profile dependent.

It is clear that our calculation simplifies a lot with th
assumption of areal transverse field profileT(x8) of the
incident beam in Eq.~21!, and this assumption guarante
the paraxial energy flow. On the other hand, we would like
point out that the same simplification still works ifT is either
~i! a real function multiplied by a complex number or~ii ! a
complex function with the imaginary part smaller than t
real part by at least an order of magnitude. Note that
generally accepted Gaussian beam as given in Eq.~17!, un-
der the approximation in Eq.~20!, exactly meets the secon
condition.

Finally, the negative shift, which occurs for a second m
dium of negative dielectric constant~or permittivity! and for
the TM state of wave polarization, deserves a few m
words. It is well known that a medium of negative perm
tivity does not support the propagation of a plane wave. Y
it supports an evanescent wave via total reflection and
clear from Eq.~14!, the evanescent wave in the TM state h
an energy flowoppositeto the direction of the phase velocit
along the interface. This backward energy flow is in fact t
cause of the negative shift. Hence, an experimental detec
of a negative shift in total reflection is a demonstration of t
existence of a backward flow of energy.

ACKNOWLEDGMENTS

One of the authors~H.M.L.! would like to thank Y. P. Lau
of CUHK and Z. Wu of Rutgers University for fruitful dis-
cussions.

FIG. 7. Flux pattern for the two-hump profile in Eq.~53! in the
TM state with parameters same as those in Fig. 3~a!. The beam is
incident from the lower left and reflected by the interface~horizon-
tal dashed line! to the lower right.
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