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Energy-flux pattern in the Goos-Hanchen effect
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The (two-dimensional wave beam fields and the associated energy flux in the GoosHea effect are
studied analytically and numerically. In particular, the time-averaged Poynting vector and its flux lines around
the interface are calculated for both states of wave polarization, irrespective of a positiighghifsual onge
or a negative shift of the reflected beam. For a given transverse field profile of the incident beam, the flux lines
associated with the evanescent waves for the two cases of shift are shown to have the same shape yet to take
opposite directions; they are parabolas if the profile is Gaussian. The flux lines in the first medium are shown
to connect to those in the second medium on the two sides of the interface. In the case of positive shift, the
whole flux pattern expectedly shows the supply of energy from the incident beam to the evanescent wave on
one side and the return of energy on the other side to the reflected beam. In the case of negative shift, on the
other hand, the flux lines nearby the interface form loops, in addition to the expected incoming-outgoing flux
pattern in the remaining region.

PACS numbds): 42.25.Gy, 01.55t-b, 41.85-p

I. INTRODUCTION paper. Our method is different from but simpler than
Lotsch’s, and leads to results in complete agreement with
The Goos-Hachen(GH) effect, which refers to the lat- Artmann’s and many others. It starts with ttepatia) Fou-
eral shift of a totally reflected wave beam from the pathrier integral of the monochromati@.e., single-frequengy
usually expected from geometrical optics, was discovered bincident beam field, which is essentially a linear superposi-
Goos and Hachen and theoretically explained by Artmann tion of sinusoidal plane waves with wave vectorgligferent
in the late 1940$1,2]. It has since then been further studied directions but of thesamemagnitude. This method has been
theoretically (see, for example[3—-9]) and experimentally widely used to find the shift of the reflected bedf-9].
(see, for example[10—14)). Its consideration has been ex- Here we use it to calculate the explicit field variation in the
tended to cases involving multilayered structutese, for two media. The well-known reflection and transmission co-
example,[15]), absorptive medigsee, for example[16— efficients for each sinusoidal plane wave can be readily used
18]), and nonlinearitiegsee, for exampld19)); its relevance under the integral to yield the reflected beam field and the
to optical waveguidessee, for exampld20]) and near-field  “transmitted” (or “refracted”) beam field, hence the Poyn-
scanning optical microscopf{NSOM), see, for example, ting vectors and flux lines in the two media. The boundary
[21,22 ] has also been investigated. Moreover, attention hasonditions and the energy conservation are automatically
been drawn to the existence of a negative GH shift in somguaranteed. Both states of wave polarizatfdi or s state
circumstance$15-18,23. and TM orp statg as well as both directiongositive and
The energy flux around the interface between the two menegative of shift are considered in one shot. Like Lotsch’s,
dia in the effect is important in the understanding of theour consideration is restricted to two-dimensional fields and
phenomenon, especially in the case of a negative shift. Fuassumes a small divergence angle of the beam, meaning that
thermore, knowledge of the fields, the evanescent wave ithe wavelength is much smaller than the beam width, which
particular, is useful in applications related to NSOM and theis assumed to be of the order of the transverse scale length.
attenuated total reflection spectroscopy. Yet so far there has In Sec. Il general consideration is given, together with the
been little satisfactory calculation of these quantities. Lotsclsetting up of notations and necessary formulas to be used
[4] has calculated the fields and the time-averaged Poyntingater. In Sec. Ill we evaluate the fields in the lowest approxi-
vectors using a scheme which starts by expressing every fielthation of a good collimated wave beam. Not only the shifted
quantity (including the incident oneas a sum of a dominant reflected beam field is calculated, a properly shifted transmit-
term (or “amplitude” term) and a subdominant terrfor  ted beam field(i.e., the evanescent wave figlé also ob-
“amplitude-derivative” term), each with some coefficients tained. In Sec. IV the time-averaged Poynting vector in the
to be determined by boundary conditions. His results arewo media is calculated and the energy flux lines are ob-
complicated and do not readily give the energy flux lines intained and plotted under the same approximation. Botls the
the whole region even for simple cases, e.g., the case of state and the state of polarization, and both the positive
Gaussian beam. Moreover, his result on the shift agreeshift case(the usual oneand the negative shift case, are
closer with Renard’§3] than with Artmann’q2], which has  considered along the calculation. The negative shift case,
led to controversie$7,9,12. There is, therefore, a need to which corresponds to a backward energy flow associated
reconsider the problem. This is exactly the purpose of thisith the TM-state evanescent waves in the second medium
of the negative dielectric constarior permittivity), is
stressed; its energy flow pattern in the region around the
*Email address: hmlai@cuhk.edu.hk interface is particularly shown from our quantitative results.
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Only nonmagnetic media without spatial dispersion are 2z aX"
considered, meaning that the Poynting vector gives the en
ergy flux density. Furthermore, the cgs Gaussian unit systen J
is used throughout the paper. /

S »Z
Il. GENERAL CONSIDERATION
Consider two semi-infinite homogeneous media separatet
by a flat interface which will be defined as thg plane. Let
there be an incident plane-polarized monochromatic wave of /
the form expik - r —iwt) in the lower £<0) medium(here- ; Q s »X

after referred to as the first mediywith the wave vectok &
lying in the xz plane and making an angkewith the z axis.
The wave is either in the TE state or in the TM state. At the
frequencyw, both media are assumed to be nonabsorptive,
with the first medium having a real positive dielectric con- <¥ .
stante; and the second a real dielectric constagt which A
can be either positive or negative. As an example for the %
latter case, we have in mind a cold field-free plasmavat \
below the plasma frequency. \
As is well known, the incident wave is accompanied by a w
reflected wave and a “transmitted” wave of the same form FIG. 1. The original XY Z coordinate system, the incident
with the following reflection and transmission coefficients: X’'YZ' coordinate system, and the reflectifieft-handed X"Y Z
coordinate system, all with the sanYeaxis directed into the plane

kZ—ng) 2k, of the figure and the same origd. Note that theXY plane sepa-
r= Kt ok and t= Kot kD (1) rates the two media of, and e,.
wherek, is thez component of the wave vector of the inci- r=exp(—i¢) and t=[t| exp(—i}/2), 5

dent wave ank{" is that of the transmitted wave, both sat-

isfying their respective dispersion relations: where

k§=61w2/C2—k>2( and kg)ZZGZwZ/CZ_ki ) ¢/25tan*1(,u;</kz) and [t|=2k,/ k§+,u,2K2. (6)

Here we note that the phasetifis exactly half of that irr.

We now consider a monochromatic waleamincident
from below upon the interface with the beam line of maxi-
mum intensity(hereafter referred to as the beam axysng
in the xz plane and passing through the origin. The beam is
two-dimensional so that every field quantity is independent

for the TE state or the TM state, respectively. Note also thatOf the y coordinate, and it is either in the TE state or in the
for the former case where the electric field is along yhe M state. To facmta}te.the calculatlon,' we introduce, as
direction, the coefficients andt are the ratios of the electric Shown in Fig. 1, the incidenX”Y Z" coordinate system and
fields while, for the latter case where the magnetic field isthe reflectionX"YZ" coordinate system in addition to the
along they direction, they refer to the ratios of the magnetic 0riginal XY Z coordinate system, all with the sanyeaxis
fields (see also[9]). Furthermorek,=k sing and k,=k (directed into the plane of the figyrand the same origi®.

cosd, wherek, being equal to/e; w/c, is the magnitude of 1heZz’ axis, which makes an angl with the z axis, coin-
the wave vector in the first medium. cides with the incident beam axis while theaxis coincides

In this paper we shall restrict to the following two cases:With the reflection beam axis if there is no GH shift. Note
(a) the usual total internal reflection wheeg>e,=1 and that thex” axis is so chosen that a plane wave of positiye
0> 6., the critical angle defined by sifye,/e;; (b) the gives the reflected wave again with a positikg; hence
total reflection with a negative dielectric constant of the secX"YZ" is a left-hand coordinate system.
ond medium, i.e..e,<0<e;. They both give the well- Being monochromatic, the field always depends on time

known evanescent waves in the second medium with th&érough the factor expfiwt). Omitting this temporal factor,

same reak, and a purely imaginark”, which is often the field (electric for the TE state and magnetic for the TM
written as statg of the incidentbeam, being a linear superposition of

plane sinusoidal waves, can in general be written as
kD=ix with k=\k’—e0?/c?>>0, (4)

where 1k is the “skin depth” of the field in the second

medium[24]. The two coefficients andt can now be sim- o -
plified to +ik,z")dk, y for z=<O @)

in their corresponding media, withy being thex component
of the wave vector. Note that in E@L) u is an index for the
state of wave polarization, having the value

/.L:]. or ,LL:€1/€2 (3)

_ k
F(')(x’,z’)=J G(ky) explik,x’
K
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in the incident coordinate system, whé/re'as the unit vector
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the TM state(i.e., p statd, VX F=ik®xF" in the second

along they axis andk/,= ’—kz—k)’(z. Since we already know medium and the associated time-averaged Poynting vector in
how each incident sinusoidal wave is accompanied by a reEd- (13 becomes

flected sinusoidal wave and a transmitted sinusoidal wave,
obviously the accompanied reflected and transmitted beam S=

fields are, respectively, given by

k

F(r)(X”,ZH) — f
k

r(k!)G(k.) exp(ik.x"

+ikiz"dk, y for z=<0 (8)

in the reflection coordinate system, and
k
F(‘)(x,z)=J t(ky)G(K;) explikex
-k

—«kz)dk, y for z=0 (9)

in the original coordinate system, wheret, and «, given

respectively by Eqs(1) and(4), are functions ok;, through

the following transformations:

ky=k; cosfgt+k, sinfy, k,=—k; sinfy+k, cosfy,
(10)

with k, being a function okj,. Note that, in Eq(8), we have
made use of the fact that a wave of wave vectdr,k;) is

c?k,

8mwey

|[FO)2 X, (14)

As the energy flux density of the evanescent wave, it only
has anx component as expected. Yet it also implies a back-
ward energy flow ife, is negative. This is important in the
understanding of the negative shift.

Ill. CALCULATION OF FIELDS

We consider a good collimated incident beam. By this we
mean the divergence angle of the beam is very small such
that the integran&(k,) in Eq. (7) is substantial only around
k,=0 with a (spectrum width Ak; much smaller than the
integration limit, i.e.,

Ak /k<1l or kws1, (15
where we have introduced the beam widhkh(or the scale
length of the transverse figldind we have assumed it to be
of the order of the inverse of thespectrum width. For a
good laser beam of millimeter widtkW is as large as T0

A lot of beam properties can be studied analytically with Eq.
(7) through this assumption by expandikfjin terms ofk;,

and by setting the integration limits essentially to infinities.

reflected into a wave with exactly the same values offor example, keeping the expansion to the second order and

(k% ,k2). Note also that the field in Eq9) is simply a linear

superposition of the evanescent waves of diffeigig.

To find the energy flux, the well-known expression for the

time-averaged Poynting vector, given by

C
S=—— Re [ExB*],

8 (17

with Re meaning “the real part of,” turns out to be

C2
S=_-— Re [iFX(VXF)*]

87w (12
for the TE state wher& is the electric fieldhence—icV
X Flw is the magnetic field and

C2

— i *
S=g_—_ Re [iFX(VxF)*]

13

for the TM state wherd= is the magnetic fieldhenceicV

X Flew is the electric fielfl Therefore, in either case, we

need only to consider the same quanity (VX F)*.

taking

G(k))=oFqexp —k;2a2/2), (16)

Eqg. (7) gives the following well-known(two-dimensional
Gaussian beam propagating along #heaxis and of a mini-
mum root-mean-square widttr of the field distribution at
z' =0 [25,26]:

12
F(i)(X',Z’)ZFO A [iex%_ X ) eV(x'.z) gikz' 9’
o 20,°

z!

17
where
212
o= o+ K22 (18
is the root-mean-square beam widthzat and
\P(x’,z’)z%—l tanflz—,2 (19
2koco, e 2 ko

At this point, it is worth pointing out that, by definition, s the additional phase factor.

the (instantaneoysPoynting vector for the TE state is con-

tinuous across the interface while, for the TM stat8, and

S, are continuous across the interface. These boundary co

For our purpose in this paper we shall neglect the second-
(and highery order terms in the expansion ki in Eq. (7).
is means

ditions are useful in evaluating the energy fluxes in the two

media. Of course, the continuity of the normal component in

both cases is required by the conservation law.

|| /kW2<1. (20)

Furthermore, we want to call attention to the fact that, forWe shall henceforth restrict our interest to the region not too

the total reflection of an incident sinusoidalane wave in

far from the origin or, noting thakW? is essentially the
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Rayleigh range defined for a wave be@2b], to the region lt|=]tlo(1—akl) and «k=xo+ kL., (27)
well within the Rayleigh range from the focus. Conse-
quently, the incident beam in E¢7) readily reduces to where
FOX',2')=T(x")e* y, (2D 2 cos
t]o=2 cos%= 0 (29

where \Vc0s? b+ K5k

o and

T(v)sf G(ky) expikyv)dk; (22
- D koD
a= —tan@ H~Eo B=ksinfycosby/ k.

is the transverse profile of the incident beam field. This is the 22 2kcosfy’

lowest-order approximation of a good collimated beam. (29)

The reflected field can be obtained in a similar fashionWe now substitute all these expansions in &yin addition
with the additional expansion of the phase in E5).in terms to that for the phase. The result is '

of kj, to the first order. The result has essentially been ob-
tained beford8,9]. It is, from Eq.(8), FO(x,2)=|t|, e *ozti(kxsinbo=¢o/2[ T(x cosh,)

FO(x",2)=e %0 T(x"—D)e*?" vy, (23 +i(a+B2)T(xcosby)] ¥ (30)

a field shifted from thez” axis (in the reflection coordinate 4, z=0, where we have assumeekW so thate™ A%Z=1

system as shown in Fig) by a distanced, where —Bk,z is valid, and we have also introduced the shifted
dé  do coordinate variable along thedirection

~dk,  kde’ 24 — D
X=X— (31
) ) 2 cosb,
evaluated ak,=0 or 6= 6,, is the well-known expression
for the GH shift first obtained by Artmanf2] through the  and the spatial derivative
method of stationary phase. The explicit form is, in our no-
tation, : dT(v) (= ., ., ., ,
T(v)= v :j ik, G(ky)expikv)dk,. (32
2,LL (1_62/61) Sin00 o
ko (cOS O+ ulk3/k?)’ @9 We see that in Eq:30) the argument oT has a “coordinate
change” ofD/2 cosf, along thex axis, indicating a shift of
where the “transmitted” field strength corresponding to the shift of
the reflected beam field. The 1/2 factor is due to the phase in
Ko=K\Sir? p— €,/ €;. (26)  t just half as much as that in as obvious from Eq(5).

] ) Furthermore, we want to point out that the transmitted field
Three remarks are in order. First, for the usual case of totaly such a coordinate-shifted form as given by E80) has
internal reflectionD blows up at the critical angle but the ot peen obtained before.
expression is good as long a—0.>1kW. The shift With the F's in Egs.(21), (23), and(30), the correspond-
around and off the critical angle has been obtained9h  jng v x F's are simply
When compared to a wavelength, it is large around the criti-

cal angle but otherwise it is of the same order of magnitude; _ LT L]
nevertheless, it is always small compared to the beam width. VXFO=| —jik x"+ Z|FO, (33
Second, the method of stationary phase is not necessary in T(x")
obtaining the resultsee[8,9]); in fact, the reflected field as _
expressed by Eq23) is good in the region around the inter- M| 2 T(x"=D) ., "
face, where the method of stationary phase fails to apply. VXFU=lik x _m z'[FY, (34)
Third, the shift in Eq.(25) is good for the two states of
polarization w=1 for the TE state angk=¢,/€, for the ;4
TM state and for the two directions of shift. In particular,
the shiftD has the same sign as, which is negative for a T(7c056 )
negativee, when the beam field is in the TM statiee., the VXFO=| go—i g——2|FO %
p state of wave polarization T(x cosbp)
To obtain the transmitted field in E¢Q) under the same . —

approximation is a bit more involved. In addition to the ex- ik singot T(x costy) SORE

; X - . o — Z, (35
pansion of the phase dfin a similar fashion, we have to T(x cosfy)

expandk,, [t|, and« to first order ink; . The first is readily '
obtained from Eq(10) and the last two have the following whereF®, F(), andF® are they components of the inci-
results in a straightforward way: dent, reflected, and transmitt&dfields, respectively, terms
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of double derivatives of have been ignored, and terms with constant of the first medium, in the denominator. This is

a product ofT’s are understood to be discarded. obvious from Eq(13) versus Eq(12).

Two points are to be noted. First, the fields obtained in Because of the shift of the reflected beam as shown by Eq.
this section can be easily expressed in terms of the origindB8). it is natural to introduce thehiftedcoordinate system
coordinate system through the following transformations be{x,z), wherex is defined by Eq(31) andz by
tween the coordinate unit vectors:

— D

~% 2singy’

X' =Xxc0sfy—2zsinf,, ' =xXsinf,+2zcosby, (40)

(36)

This is simply a coordinate system parallelly displaced from
the original system with the origi® now being the inter-
section of the incident beam axis and ttaetua) reflected
beam axis. Obviously,

X"=XC0sby+2zsinb,, Z'=xsinf,—zcosb,,

hence the relation ofx(,z’) or (x",Z") to (x,z) is also ob-
vious.

Second, these field&lectric or magnetic satisfy their — — . — —
respective boundary conditiorfge., the continuity of the X =XC€0Sfp—zsinf, and Xx"—D=xcosf+zsinb,.
tangential electric field and the tangential magnetic field (41
across the interface at=0) for both the TE state and the

TM state. This can be shown if we note the relatiods Inside the first medium, the situation is therefore like two

crisscrossing unidirectional beams, one pointing towards and

=X c0osfy+D/2 andx” — D =X cosf,—D/2, then expand the - =

. s the other pointing away from the new origih Note that the
T funcﬂons_ in Eqs(21) and (23) [pr Eqs.(3§) and (34) for new origin, though expectedly located in the second medium
the other field aroundx coséj to first order inD, and com-  (or more exactly in the first quadrant of the original coordi-
pare with the field in Eq(30) [or Eq.(35) for the other field e systemfor the case of positive shift, is nevertheless
in the second medium, using the relations in E@$), (28),  |gcated inside théirst medium (or more exactly in the third
and(29). Though this is expected, it is tishiftedtransmitted quadrant of the original coordinate systefor the case of
field that makes the boundary conditions nicely satisfied. negative shift.

We now consider the flux lines from the well-known for-
IV. CALCULATION OF ENERGY FLUX AND FLUX mula
LINES

We now use Eqs(12) and(13) to find the time-averaged dZ/dx=S,/S;, (42)

Poynting vector or the energy-flux density in the two media. h h f th . .
It turns out that the calculation simplifies a lot and the phys-VNere the two components of the Poynting vector, in terms
ics is more transparent if the transverse profil@’) of the  0f (X,2), are obtainable from Eq$38) and(39), with the aid

incident beam field in Eq21) is real. This is what we will 0f Egs.(36) and(41). To find out the flux lines explicitly, let
assume in the following. us assume a Gaussian profile, i.e.,

_ _ .2 2
A. First medium (z=<0) T(v)=exp(—v207), (43
With the assumption of a redl(x"), the incident and the where the coefficient has been ignored without loss of gen-
reflection beams, treated separately, are easily shown to haegality. We then get
unidirectional flux lines. The time-averaged Poynting vector

corresponding to theotal field is thus given by S=2kT(x")T(x"—D)sin 6,
S=80+ N+ gm, (37) Xz sin 26, Zcosb, sind

X| cosh———+cos® +—————| (44

where, except for the facta?/8mw for the TE case, o ko
SD=KT(x)]?> 2 and SO=k[T(x"-D)]* 2’ and
(38)

S,=2kT(x")T(x"—D)cosf,
are, respectively, the incident beam energy flux and the re- o _
flected beam energy flux considered separately, and, with . Xzsin26, Xxsinfgysind
O =2kzcoy+ ¢y, X | sinh o2 ko2 (45)

SM=2KT(x) T(X"~D)sin o cos® x+[T(x') in a straightforward way, where the terms involving in

and cosb are due to interference. We see that outside the
overlapped region of the two beams whew® o?>1, the

is the mixed-product term or the interference term after soméwo hyperbolic functions dominate and E@2) readily re-
manipulations. Note that, in the derivation, second-ordeduces to

terms have been thrown away. The result for the TM state is o L

the same except for an additional facter, the dielectric dz/dx—* cotf, for xz— *oo, (46)

XT(X"=D)X' —T(x)T(X"=D)X"]sin® (39)
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FIG. 2. Solution of Eq.(47) for a Gaussian beam. The two
dashed lines ay=D/(20)=—0.1 and 0.1 indicate the position of
the interface for the case of positive shift and the case of negative
shift, respectively. The bold line on the lower left coincides with the
incident beam axis. 2 1

Z i h

1 2

SO oz

which clearly refers to the expected straight flux lines of the £ 3. solutions of Eq(49) for a gaussian beam in the TM
incident beam and the reflected beam, respectively, at Iarggqate_(a) A positive-shift case where;=2.1, e,=1, 6,=45°,
distance. ko=50, and(b) a negative-shift case wherg=1, e,=—0.15,

To include the overlapped region, the simplest is to ignoreg,=18°, andke=10. In either figure, only the pattern in the re-
the interference. The flux lines in such a case are in facgion below the horizontal dashed line is physically meaningful, and
those corresponding to the Poynting vector spatially averthe bold line on the lower left coincides with the incident beam
aged over a wavelength along thdirection. They obey the axis. Note thatD/20=0.1666 andf.=43.64° in case(a), and
following nonlinear equation D/20=—0.04047 in cas¢b).

dn/dé=tanh %7, (47) Including the interference terms, we have the following
modified equation:
where the dimensionless coordinates
dn@ sinh 2¢ p+ & tanfsin®/ko

é=xcosy/oc and n=zsinb,/c (48) dé  coshZy+cosd + 7 cotb,sin®/ko’

(49

have been introduced. To our knowledge, the equation haghere ®=(2kon+kD)cotdy+¢,. The symmetry iny is

no closed-form solution. Yet it is invariant under the changebroken while that in{ remains. Figure @) gives the flux

of sign of any one of the two variables. So the general solutines in the TM state for a case of positive shift, whexe
tions must be even i and 5. They are numerically ob- =2.1,e,=1, 8,=45°, andko=50 have been taken, imply-
tained and shown in Fig. 2, where the cross-sectional densityng D/20=0.1666 andd.=43.64°. To save space, we have
of the flux lines tells the intensity of the Gaussian beam, andhot shown the flux pattern for the TE state, which is similar
the two perpendicular dotted lindse., the é-coordinate  to that for the TM state. Figure(B) gives the flux lines in the

lines) intersect atO, which is not marked in the figure for TM state for a case of negative shift, whesg=1, e,=
neatness. The whole graph gives the energy-flux pattern of 0-15,  6,=18°, and k=10, implying D/20=

the two crisscrossing wave beams, one with the field in Eq:~0-04047. In both figures, the two perpendicular dashed
(21) and the other with the field in E¢423), when the inter- lines até=—D/20 and = —D/20 give the original coor-
ference is ignored. For the present case of the GH effeclinate axes with the origi© while the two dotted lines
only the flux lines in the regiom<—D/2c (i.e., the first intersect alD. (Both O andO are not marked in the figures
medium wherez<<0) are physically meaningful, and they for neatnes$.Obviously, the real interface between the two
will connect to those in the second medium to be found inmedia is given byz=0 or the horizontal dashed line, only
Sec, IVB. SinceD can be either positive or negative, we below which the flux lines are physically meaningful in our
show in the figure two horizontal dashed lines, the upper on@resent consideration of the GH effect. The flux lines are so
indicating the position of the interface in the case of negativadrawn that the cross-sectional density indicates the strength
shift and the lower one in the case of positive shift. of the Poynting vector. The bold line on the lower left gives
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@)

the incident beam axis which, if extrapolated forward, meets

both the pointsD and O. The bold line on the lower right
coincides with the reflected beam axis which, if extrapolatedk,z

backward, meets onl). This clearly shows the shift of the
beam upon reflection. Note that we have chosen smaller val
ues ofko in both figures to manifest the shift and we see
that, in Fig. 3b), there is a flux line in the upper group
passing through the interface; as we shall see in Sec. IVC
this gives interesting closed-loop flux lines when the two ¥,z
media are considered. Note also that the subdominant inter
ference terms in Eq49) do not have much effect on the
results for a very larg&o. 0

iy
T

B. Second medium(z=0) (c)

1,2

With a realT(x'), the Poynting vector in the second me- 1| i
dium, obtained from the vector product of E§O) and the

complex conjugate of Eq35), can be simplified in a similar 0 . . —— . .
fashion. The result is, again except for the faatéf8mw? -2 -1 0 1 2
for the TE state , g
FIG. 4. Three flux patterns in the second medium for three dif-
S=|t|2 e %2 T(x cosfp)[ksinf, T(xcosfy)X ferent transverse profile) Gaussian in Eq(43), (b) two-hump in
Eq. (53), and(c) sinc function in Eq(55), with the cross-sectional
+B T(xcosby) Zz], (50)  flux line density proportional to the intensity.

implying always a positivex-direction flow. The Poynting derstanding the energy flux pattern throughout the region in
vector for the TM state has again the same form except foview of the parity changéor left-right inversion of the im-
the additionale, in the denominator. It is then the modifica- age in reflection. As another example, let us take
tion of Eq. (14) for the evanescent wave in the case of a .
beam. In particular, it implies a negatixalirection(or back- T(o)= sinmv/o
> Y . (v)=——F— (55
ward energy flow for a negative dielectric constdat per- mulo
mittivity ). Nontheless, the flux lines always satisfy the same
equation which has the following solution: a sinc profile resulted from a single-slit diffraction. The flux
lines are given by

koz=In|T(x cosp)| + const, (51)

KkoZ=1In +const (56)

sinmé
where we have made use of E&9). This means that, for a wé
given transverse field profile of the incident beam, the flux

lines have the samevs x shape irrespective of any state of and a few of them are plotted in Fig(c}. In all the three
wave polarization and any case of the direction of shift, yefigures, the two ends of every flux line meet the interface.
the flow direction in the case of negative shift is opposite toThis implies transfer of energy with the first medium. Fur-
that in the case of positive shift. thermore, the cross-sectional density of the flux lines indi-
For a Gaussian beam of the form given by E4p), the  cates the intensity.
solution reduces to
C. The two media combined

) 2 _ 2
KoZ= X" COS’ /20 + const= — ¢*/2+ const  (52) First, we want to make sure the boundary conditions as

stated near the end of Sec. Il are properly satisfied. To show
this we note that the two components of the Poynting vector
in the first medium as given by E7) can be shown to take
the following boundary values from below:

which, symmetric inx as expected, gives parabolic flux lines
as shown in Fig. @&). Nevertheless, we want to point out
that, for a beam profile other than a Gaussian, the flux line
are not at all parabolic. For example, if

— — i v 2
T(v)=exp —v*/40*+ 0390+ 20%302]  (53) Sdz=0-)=2ksinfo( 1+ cosgo) L T(xcosto) 57
a modulated two-hump profile with two different peaks at _
vlo=—1 and 4/3, and a trough at=0, the flux lines are S/z=0_)=2kD cos’ 6, T(xcosbo)

iven b . —
gw y XT(X COSGO)/(l_Ezlfl),
KoZ= — E2(£%/4— £19— 2/3) + const. (54) _
where Eqs(36), (40), ang(41) have been used, expansions
A few typical lines are plotted in Fig.(8). This example of of theT functions arounck coséj to first order inD (like that
a two-hump profile, as we shall see shortly, is useful in un-at the end of Sec. lJlhave been made, and terms of second
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order have been dropped. Note ti&tis always positive. It

iS now easy to see that, for the TE state wherel, they
are exactly equal to the two components in EgQ) at z
=0, where|t|, and S8 are, respectively, given by E¢28)
and Eq.(29). This means that the flux lines do not bend upon
crossing the interface. For the TM state, the two components' -1.0
in Eq. (57) have to be divided by; while those in Eq(50)

are divided bye, to yield the correct Poynting vect@&™),

say. It is then simple to show the continuity es{") and 20
S) across the interface, whereequalse; / €,. This means

that every flux line has a sudden change of direction upon
crossing the interface and there is a discontinuity of the
slope. For the case of positive shift, such a chakegpsthe

x direction of the energy flow while, for the case of negative (b)
shift, it reverseghe x direction of the flux lines upon cross- 0.0
ing the interface.

With the satisfaction of the boundary conditions, we are
now confident to plot the flux lines in the two media. Be-
cause the time-averaged Poynting vector is divergence free
the flux pattern in the whole region can be constructed by
combining the two graphs separately obtained in Sec. IVA Lo T <
(for z<0) and in Sec. IV Bfor z>0), with the requirement 02 L
of the continuity of the lines. In particular, if we so combine
the two graphs in Figs.(B) and 4a), the closed-loop flux '
lines around the interface are obviously obtained. To study 2
numerically, we can start with the flux pattern in the first ) ) i ] ]
medium calculated according to the equations in Sec. IV A, FIG. 5. Flux lines in the two media for a Ga_u55|an beam in the
There are two sets of points of intersection of the flux lines'™ state with parameters the same as those in Fi@. Ihe two

with the interface. one with the lines directed into. and theperpendicular dashed lines give the original coordinate axes, and
’ ' the bold line on the lower left in patter(a) coincides with the

other with the lines out of, the second medium. We then ™ . ) A
choose the points in one set as the initial points to draw thénc'dent beam axis. Ea.ttem) 's a tenfold magnification iny of
) . . . . . pattern(a) near the origin.

flux lines in the second medium according to the solutions irP

Sec. IVB. The return of these lines to the interface shouldhe # direction. The pattern for a Gaussian beam in the TE

exactly end at the points in the other set, which can serve astate is similar in nature and is therefore not given.

a check of the correctness of our numerical results. Figure Ga) gives the pattern for a Gaussian beam in the
We now show three such patterns throughout the two meTM state with parameters now exactly the same as those in

dia in Figs. 5—7, where the two perpendicular dasfomt-  Fig. 3(b). The patterns below the horizontal dashed line in

ted) lines always give the originadz (modified¢-) coordi-  the two figures are therefore exactly the same. This is the

nate axes with the origi® (6), and the horizontal dashed €2S€ with negative,. The intersection of the incident beam

; ; " : axis and the reflected beam axis, again the origin of the
line always gives the position of the real interfad@oth O &¢n-coordinate system shown by the dotted lines, now lies in

andO are not marked in the figures for neatngsaurther- ot of the interface and to the left of the original coordinate
more, all flux lines in t_hese figures are so drawn that ItSsystem(shown by the two dashed linesndicating a nega-
cross-sectional density indicates the intensity. tive shift, albeit a small one. Figurgl§ is the tenfold mag-
Figure §a) shows the pattern for a Gaussian beam in thenified pattern(along the vertical directionof Fig. 6a) near
TM state with parameters exactly the same as those in Fighe origin except that the lines are five times denser. As
3(a). As clear from the figure, the flux lines, incident from expected, we see the existence of closed-loop flux lines
the lower left, have a part penetrating into the second mearound the interface. Moreover, we see the incoming flux
dium on the left-hand side, keeping close to the surface anes do not pass through the interface at all. Note that these
the evanescent wave energy flux lines in parabolic shapdiix lines refer to the flow of energy associated with total
afterwards, and re-entering the first medium on the othefield in the absence of dissipation and they do not cross each
side. The incident beam axis and the reflected beam axigther. The pattern is therefore the only possible pattern in the
(indicated by the straight bold lines outside the overlappe@ase of a negative shift. This also makes sense in view of the
region, if extrapolated forward and backward, respectively,existence of a backwa}rd energy flow associated with the eva-
can be seen to intersect at the orignof the £5-coordinate nescent wave according to EQ.4). Note also that the flux

, . lines near the interface are denser in the first medium this
system(shown by the two dotted lingbeyond the interface, time and, moreover, there appears an increasing undulation

implying obviously a(positive shift. Note that the flux lines of intensity when approaching the interface from below
are denser nearby the interface in the second medium ar}:dong the central line.

also that the pattern below the interface is exactly the same Figure 7 gives the pattern for the nonsymmetric two-

as that in Fig. 8). For better visualization, Fig.(B) gives  hymp profile in Eq.(53) in the TM-state with parameters

the pattern near the origin, with tenfold magnification alongexactly the same as those for FigaB Besides the positive
shift which can be seen by a similar method as that for Fig.
5, we also see how the flux lines come in from the lower left,

0.0
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FIG. 7. Flux pattern for the two-hump profile in EG3) in the
TM state with parameters same as those in Fig). rhe beam is
incident from the lower left and reflected by the interfdberizon-
tal dashed lingto the lower right.

exactly the field energgassociated with the total figldlows
---------- throughout the region. For the case of negative shift, we see
the interesting closed-loop flux pattern nearby the interface,
in addition to the incoming-outgoing flow pattern in the rest
of the region. On the other hand, for a non-Gaussian field
profile, the flux lines in the second medium are not at all
parabolas; they are profile dependent.

It is clear that our calculation simplifies a lot with the
o ) _ ) assumption of aeal transverse field profile(x’) of the

FIG. 6. Flux lines in the two media for a Gaussian beam in thejncident beam in Eq(21), and this assumption guarantees
TM state in the case of a negative shift, with parameters the same g§e paraxial energy flow. On the other hand, we would like to
those in Fig. &). The horizontal dashed line gives the real inter- 4int ot that the same simplification still worksTifis either
face, and the bold line on the lower left in pattéan coincides with (i) a real function multiplied by a complex number @) a
the incident beam axis. Pattef) is tenfold magnification iy of complex function with the imaginary part smaller than the
pattemn(a) near the origin, with five times denser lines. real part by at least an order of magnitude. Note that the

enerally accepted Gaussian beam as given in(Ef, un-
er the approximation in Eq20), exactly meets the second

condition.

Finally, the negative shift, which occurs for a second me-
dium of negative dielectric constafdr permittivity) and for
V. CONCLUSIONS AND DISCUSSION the TM state of wave polarization, deserves a few more

In this paper we have calculated the field and the time_vyords. It is well known that a medium of negative permit-

averaged Poynting vector everywhere around the interface iiVity d0€s not support the propagation of a plane wave. Yet

the Goos-Hachen effect in the lowest-order approximation 't SUPPOrts an evanescent wave via total reflection and, as
of a good collimated beam. Both the T&r s) state and the clear from Eq(14), the evanescent wave in the TM state has

TM (or p) state of polarization and both a positive sttfte an energy flowoppositeto the direction of the phase velocity

usual on¢ and negative shift are considered. They all satisi‘yalong the interface_. This_backward energy flpw IS in fact th_e
the respective boundary conditions cause of the negative shift. Hence, an experimental detection

For a Gaussian field profile, the energy-flux lifassoci- of a negative shift in total reflection is a demonstration of the

ated with the evanescent waveke the shape of parabolas in existence of a backward flow of energy.
the second medium, irrespective of the state of the polariza-
tion and direction of shift, and the whole flux pattern
throughout the two media for each of the two directions of One of the authoréH.M.L.) would like to thank Y. P. Lau
shift has been plotted. While the general features of the pasf CUHK and Z. Wu of Rutgers University for fruitful dis-
tern for the case of positive shift are expected, we see howussions.

0.0

-0.1 ;
-2 -1 0 1 2

move around with some lines into the second medium an
back-and-forth, and finally all go out to the lower right, giv-
ing the correct right-left inverted “image” in reflection.
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