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Lorentz torque on a charged sphere rotating in a dielectric fluid in the presence
of a uniform magnetic field
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The Lorentz torque exerted by a uniform magnetic field on a charged sphere rotating steadily in a dielectric
fluid is calculated to first order in the charge. For a strongly polar fluid and stick boundary conditions the
torque is enhanced significantly with respect to its vacuum value. The modification from the vacuum value
depends only on the static dielectric constant of the fluid and on the slip parameter. It is independent of the
dielectric response of the sphere and of the shape of the radial charge distribution. There is a nonvanishing
Lorentz torque, even when the charge is concentrated in the center of the sphere.

PACS numbds): 41.20—q, 47.65+a, 77.90+k

I. INTRODUCTION E Q2
{=6mna(l-§)+Crz +0(QY, (1.2
The dynamics of polar liquids in interaction with the elec- 0
tromagnetic field is of theoretical as well as technological
interest[1,2]. To advance understanding of these compli-
cated systems it is useful to consider simple model situation

that can be analyzed theoretically in full detail. A simple } ™, ) o -
situation of interest is the motion of a charged sphere in §_3 for perfect slip boundar_y con_d|t|on. The coefficient
=¢(0) is the value of the dielectric constant at zero fre-

. . . . .. . g9=

ggliiitéﬁgggéigg as;]rgrzll:gggu;he fluid may be assumed to quency, and the coefficiet, is defined by
A charged sphere moving in a dielectric fluid experiences

dielectric friction, aside from the usual Stokes friction, due to M

the relaxation of polarization. If in addition an external mag- 0—0 lw

netic field is applied, then interesting coupling effects arise.

In a theory of the Hall effect in dielectric fluids, we have The coefficientC, was found to bd5]

found earlier that the Lorentz force is strongly reduced by the

presence of the dielectric flu[@]. In the following we show Ci=555[ 17— 54+ 177£2]. (1.9

that, on the contrary, the Lorentz torque on a rotating

charged sphere is significantly enhanced. This value agrees with an earlier result of Hubbard and On-

First, we recall known theoretical results on dielectricsagel{G] for perfect stick €=0) and perfect slipg= 1), but
friction and the Hall effect in polar liquids. Thus we consider y;itfers for intermediate values<0¢< L of the slip parameter

a nonmagnetic sphere of radiaschargeQ, immersed in an  qye to the use of a different boundary condition. One of us
incompressible polar fluid of infinite extent and in the pres-pa5 argued that the discontinuity of the electrostatic stress
ence of an applied uniform magnetic fieldg. The dielectric  tansor must be accounted for in the boundary condit&in

response of the fluid is characterized by a frequencyyt was shown later that the modified boundary condition is
dependent dielectric constar{w). If the sphere moves .gnsistent with Onsager symmefig].

steadily with translational velocity, then the force exerted The Hall numberh, in Eq. (1.1) has been evaluated to

on itis given by zeroth order in the charg®]. We foundh,=h{®+0(Q?)
with

where the first term is the usual Stokes contribution for a
neutral sphere. Herg is the shear viscosity of the fluid, and
2 is the slip parameter taking the valge=0 for stick and

1.3

80_1

__ Q
F=—LU+h_ UXBy, (1. hO=1-C(&)

1.5

€0

where/, is the translational friction coefficient, is the Hall ~ with coefficient

number, anc is the velocity of light in vacuum. The coef-

ficients £, and h, depend on the hydrodynamic boundary C(é)=1%— & (1.6)
conditions applied at the surface of the sphere. The friction

coefficient{; has been calculatedt] as a function of the This shows a strong reduction of the Lorentz force from its
chargeQ. To second order in the charge it is given [B} vacuum value in a strongly polarizable fluid witg>1. We
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have compared with earlier theoretical resfii§ The Hall ~ The dielectric displacemeifit is related to the electric field
effect in electrolyte solutions has been measured bya@e and the polarizatiof® by

et al. [9].
In the following, we consider a sphere rotating steadily D=E+47P. 2.9
\évil\t/zr?rt])g/mar velocity(2. The torque exerted on the sphere 'S The magnetic inductiol is related to the magnetic field

and the magnetizatiokl by
T=—-Q+n7T,, 1.7 B=H+47M. (2.5
where{, is the rotational friction coefficienty, is the rota- | the derivation of Eq(2.3), crucial use is made of irrevers-

tional Hall number, andZ , is the Lorentz torque exerted by jpje thermodynamic§12]. The last two terms on the right-
the magnetic field if the sphere were in vacuum with thenand side are necessary to guarantee a positive entropy pro-

charge concentrated on its surface, duction and a properly Galilei invariant torque dengit].
1 Intrinsic rotation of the fluid molecules has been taken into
T .= Qa’QxB,. (1.8 account. In the steady-state limit, considered here, the aver-
3c age intrinsic angular momentum has relaxed to a constant

value determined by the local torque density and the rota-

The rotational friction coefficiens, has been calculated as a tional viscosity of the fluid. As a consequence, the antisym-
function of the charg¢l0]. To second order in the charge it metric parts of the hydrodynamic and electromagnetic stress
is given by tensor cancel, and only the symmetric parts remain in Eq.
(2.1). Other proposals made for the electromagnetic stress

2 2 . g . .

_ 3 g0 Q tensor violate Galilei invariance of the torque density, and
{r=8m7a (1_3§)+Cf8_g ‘a have not been shown to guarantee a positive entropy produc-

tion in combination with phenomenological relaxation equa-

where the first term is the usual Stokes contribution for dions. Therefore we consider in the following only the form

neutral sphere. The coefficie@, was found to bg10] Eq. (2.3). For further details we refer the reader to Réf3].
In the fluid the fields satisfy the static Maxwell equations

+0(Q%), (1.9

C,=5(1-38)2 1.1
= 5%(1-38) (110 V.00 V.80
In the following, we calculate the rotational Hall number (2.6
h,=h{®+0(Q?) to lowest order in the charge. We find that VXE=0, VXH=0.

for a strongly polarizable fluid witk,>1 the Lorentz torque These equations must be supplemented with constitutive

is enhanced by about 50% from its vacuum value if the . o o .
) guations for polarization and magnetization. The magneti-
charge is concentrated on the surface of the sphere. The c ation is given by[14]

culation follows similar lines as that for the translational Hall

numberh(®. 1
M= ZVxP. 2.7

II. BASIC EQUATIONS
We have omitted terms of the form/g)MXE from Eq.

We have shown in Ref11] on the basis of the de Groot— 5 3) gince these are of ordef/c2. The polarization is given

Mazur equation$12,13 that in a steady-state situation the

total momentum balance equation for fluid and electromag-

netic fields is given by N
+df, (2.9

1
P= Ko E+ EVXB

V- (pW) =V (04t 051) =0, (2.1)
] ) ) ) where ko= x(0) is the zero-frequency susceptibility, which
wrswerep IS éhe mass density(r) is the flow velocity, and s rejated to the dielectric constant Byw)=1+ 4w« (w).
Oy @nd o, are the symmetric parts of the hydrodynamic The |ast term in Eq(2.8) is the additional polarization due to
and electromagnetic stress tensor. The symmetrized hydf@ransport by the flow. The detailed expression up to terms

dynamic stress tensor is given by linear in Q will be given below.
s We take the sphere to be centered at the origin. We regard
Thydap= Ml gt dp0a) ~Pag, (2.2 the steady rotational velocit2 as a small quantity and lin-

_ ) _earize the equations in terms of it. To lowest order, both the
wherep is the pressure. The symmetrized electromagnetigpnhere and the fluid are at rest. In this situation the dielectric

stress tensor is displacementD, and the electric fieldg, in the fluid are
1 given by
02~ [DE+ED+BH +HB—(D-E+B-H)1] . QF
DOZQr_Z’ Eoz_r—z (r>a), (29)
1 1 fo
o VIPXB) 5o (PXB)V. 23 and the polarizatio®, is given by
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Ko F with the force density
POZS_QI'_Z (r>a). (21@
0 Fi(r)=Gy(r)0(r—a)+ gy (f)8(r—a+) (2.19

Th.e zeroth—order magnetic f|e-l<.jh$O=BO. 'I.'he.urjeertur.bed and the usual hydrodynamic boundary conditions, provided
fluid velocity vo and the additional polarizatiod, vanish  ihe surface force density,(f) is evaluated from
identically.

Quantities linear irf2 are denoted by a subscript 1. Since gl(f):[f.ggml]_ (2.20
Vo=0, the linearized momentum balance equati@ri) be-
comes The surface force density was missing in the theory of Hub-
) bard and Onsagéb].
7V —Vp=—Gy, (211 Finally, we must specify the electrical properties of the

sphere. For conceptual clarity we assume that the charge
density and the polarization vanish identically in the shell
G1=V-05,. (2.1  a—6<r<a, wheres may be infinitesimal. In this shell the

electromagnetic stress tensor takes the vacuum form and is

We may formally regards,(r) as a force density acting on automatically symmetric. We assume that the sphere has

the fluid. The pressurp, follows from the condition of in- quadrupolar polarizabilityy,.

compressibilityV - v;=0. The first-order field®,, E;, B,

and H; satisfy the Maxwell equation€.6). The first-order lIl. TORQUE EXERTED ON THE SPHERE

magnetization is given by

whereG; is defined by

The force and torque exerted on the sphere may be evalu-
ated from integrals of the stress tensor over a spherical sur-

M= —ZviXPo. (213 faces,, just enclosing it. To first order i€ the force is
given by
The first-order polarization is given by
1 i Fi= f (Ohyg1t Oomy) TS (3.
P1= o| Ex+ £ V1 X By +dy, (2.14 Sa+
. N o Using the momentum-balance equation for the fluid and
with the additional polarizatiopl1] Gauss' theorem, we may rewrite E@.1) in the form
- g9
dflz_E[(Vl'V)EO_%(VXVl)XEO]- (2.19 Fi= fs (Ohyg1t oomy) T dS, (3.2

We have shown in Ref{14] that, when terms of orderd?  \ pere the integral is over a spherical surface of arbitrarily
are neglected and use is made of the uniformitBeand the 5146 radius. By spherical symmetry the force vanishes iden-
condition of incompressibility, the expression for the forcetically. Similarly, the first-order torque is

density is found to be '

. K T=| rxX[(o},41F oomy) F1dS 3.3
Gy=—$Eo(V-0) — FEox (VX)) + - [(VXvy) ' LN hyas® Comd)-] @3
X (EgX Bg) —BoX (v4-V)Eg]. (2.16  This may be transformed to
The fluid equation of motiof2.11) must be supplemented _ J S s N
with a boundary condition for the fluid velocity at the surface 7= erx [(Ohya1t Fem)-F1dS (3.4
of the sphere. Since the fluid cannot penetrate the sphere, the
radial component of the fluid velocity;, must vanish at The equations presented in the preceding section com-
=a. A natural generalization of the usual tangential condi-pletely determine the problem. We shall not attempt to solve
tion is [4] the equations exactly, but resort to a perturbation expansion

in powers of the charg®. We show by explicit calculation
that to terms linear in the charge the for#g does indeed
vanish. The calculation of; to terms linear inQ yields the
rotational Hall numbeh{® .

The first few terms in our perturbation expansion are

AN s s
V1t=;[r'(0'hyd,1+ Tomils (2.17

where\ is a proportionality constant taking the value 0 for
stick ande for perfect slip. The slip parametéin Eq. (1.2

is related ton by é=\/(a+3\). The square brackets in Eq. V1:V(10)+V(11)+"' '
(2.17) indicate the jump at the surface=a. The solution of
Eq. (2.11) with the above boundary conditions is equivalent E,= E(1°)+E(ll>+-~ ' 3.5

to the solution of

V2V —Vp,=—F4(r), (2.18 By=B{"V+--,
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where the superscript indicates the power of the ch&giée

follows from Egs.(2.16) and(2.20 that the force densit,
and the surface force density start with termsG{") andg}"
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g(l):iaz[E(lO)(a+)_E(lo)(a—)]_ (3.19

1 47

of first order in the charge. Hence to zeroth order the velocitywith Eq. (3.11) this becomes
field V?) satisfies the homogeneous linear Navier-Stokes

equations. These have the well-known solution

QXT
ViO(r)=Aq 2

(r>a), (3.6

Q s e N
oi'=7_[9'(a+)=g'(a=)][Q-Bo—3(F- 2)(7-Bo) IF.
(3.16
Together with the bulk force densil@(ll) in Eq. (3.8 this

where A+ is a hydrodynamic scattering coefficient with the can be used to calculate the first-order flow.

value

Ar=(1-3¢)as. (3.7

It follows from Eq. (2.16 that the first-order force density fro

G{" is given by

K A
G(11>=%SC r—g[em'(l—ff)-so—zﬂ(f.so) +2By(f-Q)].

(3.8

IV. FIRST-ORDER FLOW

We can now solve for the first-order flow velocit§®"

m the linear Navier-Stokes equati¢®.18 with inhomo-
geneous terms given by the volume force denglfy and

the surface force densitg{’). To perform the calculation
explicitly it is necessary to expand the force densities in
terms of vector spherical harmonics. We have demonstrated
the technique in Sec. IX of Ref5]. The complete flow pat-

In a volume element moving with the flow the applied tern can be obtained, but for the calculation of the force and

magnetic field, acts as an electric field polarizing the fluid. torque on the sphere it suffices to find the asymptotic flow.
The polarization in turn generates an electric field. To zerottThis is of the form

order in the charge this electric fiel”) satisfies the equa-

tions

4
VEQ= - 20V (I By),
gpC
(3.9
VXEY=0 [r>(a—d)].

Inserting Eq.(3.6), we find

A
V- (W% Bo)= 3 [3(F- @)(7-Bo) ~ ©-Bol. (3.10

We write E{”= -V ¢{”) and make the ansatz

B 7 =g(N[3(r- Q)(r-B)—r’Q-Be].  (3.11)

Substituting in Eq(3.9), we find the solution

27TKOA-|—+W -
Beec 135 17

g(r)=-— (3.12

with a coefficientW that must be found by application of the
jump conditions at =a. In the neutral shell the radial func-

tion must have the form

g(r)=Y%—1 [(a—d)<r<a], (3.13

wherea, is the quadrupolar polarizability of the sphere, and

QXBy) X
<1>%+

1
Vit (n = Al . or3. @

with the coefficieniA{") to be determined. A flow of the type
(4.1 can be generated only by vector spherical harmonics
Cym, of order/ =1. There are no harmonids,,,, andB;,, of
order/=1, so that the force on the sphere vanishes. In order
to determine the torque on the sphere, we must pick out the
amplitudes of the harmonids,,, in the force densities.

Since the flow is linear if2, we may consider separately
the cases wit2lIB, and QL By. We consider first the case
Q1 B, and choose coordinates such tiat=(Qe, and B,
=Bye,. Then Eq.(3.8) becomes

G(l): KOQ
1 7 2eqC
0

A
r—5T[6nynZ?+2nZey—2nyez]QBo 4.2
and Eq.(3.16) becomes

W2 R —q'(a— ¢

9 =—37-[9'(a+)—g'(a=)Iny,nfQB,. (4.3

We need the following three vector spherical harmonics in
Cartesian coordinatg45]

ASP=35,,+3385,~2n,5,5,

B3P =368,,+385,+3n,8,5—150,ngn,, (4.9

Y is a second coefficient determined by the jump conditions

atr=a. We do not need the explicit expressions Yirand

Y.
The first-order surface force density

1)_re S
g =[f- ogn]

can now be calculated as in Sec. VI[d0]. We find

(3.19

Cl,=€5apg:

where the subscripy denotes the vector component and the
superscripts label the harmonics. It may be seen that

1
nynf= E(A‘éx— BY?), (4.5
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1 seen that only the magnetic part of the stress tensor contrib-
nye,= g (A7"+3Cy), utes asymptotically, so that we get to first order in the charge

1 T<1>:f X (o 1)dS 5.
n.g,= g (AY*~3C)), 217 | P (Omagr) 59

. R L : . with the magnetic stress tensor
with Ci=g,XF. Now it is evident that onlyG{" contains a g

vector spherical harmonic of order unity. A force density s 1 D s o) "
Ci8(r—s) causes a flow velocity Omag1= 7 —[BoB1 "+ B Bo—(Bo By )1]. (5.6

3

1 s At ; ; -
Vc’{(r): 3 FO(s—r)+ = o(r—s)— = ct (r>a). In order to evaluate the integréd.5) it suffices to know the

asymptotic behavior of the magnetic inductiBf. This is
(4.6 given by
From Egs.(4.2) and(4.5) we find the contribution from dif- —1+37f
ferent values os. BV(r) = —>5— -mP+0(r %), (5.7)
Next we consider the cas$l B, and choose coordinates r
such that(2={}e, andB,=Boe,. With the vector spherical - arem() s the total magnetic moment to first ordergn
harmonicB,=f we find and Q. Substituting into Eq(5.6) we find from Eq.(5.5)

nZf= & (A5*~ B~ 58). 4.7 T5=mi"xBy, (5.8

(We use a special notation for the spherical harm@jco  the usual expression for the torque exerted by a magnetic
distinguish from the magnetic fieldit is evident from Eqs. field on a magnetic moment. The magnetic moment is given
(3.8) and(3.16) that for this case the force densities have noby
contribution from vector spherical harmonics of order unity.

Cgmbining the above results, we find for the coefficient m(11)=i r><(.Q><r)q(r)dr+f M(ll)dr, (5.9
AW in Eq. (4.2), 2¢ Ji<a r>a

At
4a°

whereq(r) is the charge distribution of the sphere avi§
is the magnetization of the fluid following from E¢R.13.
We write the first term as

The coefficient vanishes for perfect slip, as one would ex-
pect, since then there is no zero-order flow.

A(l): KOQ AT
! gy 3ma

. 4.9

1 1,
ZﬁsarX(er)q(r)drngaqg_ (5.10

V. TORQUE ON THE SPHERE
If the charge is concentrated on the surface, thgra.

The torque on the sphere is conveniently calculated frong,q, Egs.(2.10, (2.13, and(3.6) one finds for the second
Eq. (3.4), since in contrast to Eq3.3) this requires knowl- o in Eq.(5.9):

edge of only the asymptotic fields. We abbreviate 8

as 81 koQ A
J M(ll)dr=?O—Q—T . (5.11)
T.=T1,1+7;,. (5.0 r>a €oC a
Here, the first term Altogether we find for the torquéZ; to first order in the
charge
T1= f (X (0hyqq1)AS (5.2 w1 o
S T3 =§Qa hi’Qx B, (5.12
may be evaluated from the asymptotic flow calculated in )
Sec. IV. This yields to first order i@ with rotational Hall number
2
87T (0)_aq 80_1 2
T{1= — — 7A@ XB,. (5.3 =2 + 5o (17397 (5.13
The second term in Ed5.1), For ep>1 and the stick boundary condition this shows a

significant enhancement with respect to the first term. This is
in contrast to translational motion, where the Hall number
hﬁo) is decreased from unity by the electromagnetohydrody-
namic coupling. Note that the torqu#Z; is nonvanishing
may be evaluated from the contributions to the electromageven if the charge is concentrated in the center of the sphere.
netic stress tensor listed in E@.17) of Ref.[3]. Itis easily = For a macroscopic sphere the slip paramétar Eq. (5.13

7'2,1=J rX(o5my F)dS (5.4)
S,
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must be put equal to zero. Remarkably, the second term ioharged sphere in gravity in the presence of a horizontal
Eq. (5.13 then depends only on the static dielectric constantnagnetic field. In such a situation, the Lorentz force causes a
of the fluid. deviation from the vertical in proportion to the translational
Hall coefficienth,. If in addition the sphere rotates, for ex-
VI. DISCUSSION ample, because it rolled down an incline before falling into
the liquid, then the Lorentz torque, calculated above, affects
We have shown that the torque on a charged sphere rotathe rotation. The sphere may have a nonconducting insulat-
ing in a dielectric fluid in the presence of a uniform magneticing shell. We predict an effect on the rotation, even if the
field is enhanced significantly from its vacuum value if thecharge is located at the center of the sphere.
fluid is strongly polar. In view of the often disputed ques- A numerical estimate of the torque shows that its effect
tions concerning the correct expression for the electromagshould be detectable. For example, consider a sphere of ra-
netic stress tensor in a polarizable medi{i®3,16—-18, it  diusa=1 cm, with chargeQ =30 esu, rotating with angular
would be of interest to compare our theoretical predictionvelocity Q) =10?sec? in a magnetic fieldB=10*G. Then
with experiment. In our opinion, there is a need for experi-the product Qa’QB/c in Eq. (5.12 takes the value
mental verification of the theoretical expressions for all four10-3dyncm. In water with static dielectric constasat,
transport coefficients,,{, ,h;,h,, considered in the Intro- =80 this is the order of magnitude of the torque for any
duction. The relaxation of polarization of the fluid causesspherical distribution of the charge, since then the rotational
dielectric friction with corresponding dissipative contribu- Hall number in Eq.(5.13 is of order unity. Although the
tions to the friction coefficientg; and {, . The Hall coeffi-  torque is not large, it should be measurable. A conceivable
cientsh, andh, are nondissipative. For slow motion they are experimental situation might involve a charged sphere rotat-
determined by the static dielectric constant of the fluid. ing about an axis perpendicular to a strong magnetic field.
We suggest experimental study of the slow macroscopid@he torque is perpendicular to both the magnetic field and
rigid body motion of a charged sphere in a viscous dielectriche axis of rotation or viscous torque, and tends to tilt the
fluid such as water in the presence and absence of an appliestis. The Lorentz torque or the tilt should be measured. Such
magnetic field. For example, one could study the settling of & measurement would provide a welcome test of the theory.
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