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Three-dimensional analysis of harmonic generation in high-gain free-electron lasers
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In a high-gain free-electron laséFEL) employing a planar undulator, strong bunching at the fundamental
wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we
investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich
equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear
amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential
growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the
fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few
harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radia-
tion power is found to approach 1% of the fundamental power level for current high-gain FEL projects.

PACS numbeps): 41.60.Cr, 42.55.Vc, 42.65.Ky

I. INTRODUCTION This paper is organized as follows. In Sec. Il, the coupled
Maxwell-Klimontovich equations are employed for the self-
The ability to generate coherent harmonic radiation is arconsistent treatment of the beam-radiation interaction. Scaled
important aspect of a free-electron lagBEL). In a planar  variables and parameters are introduced to simplify the no-
undulator with a strong magnetic field, spontaneous emistation. In Sec. Ill, we extend the 3D analysis of the linear
sions at the fundamental resonant frequency and its highdfteraction from the fundamental frequency to its higher har-
harmonics induce bunching at their respective wavelengtffonics _and show that the linear amplification process occurs
scales, leading to amplified emissidd3, but the linear am-  Predominantly around the fundamental frequency. The ma-
plification of the higher harmonics is always smaller than therix formulation of Xie[5] is used in solving the dispersion
fundamental. For a fourth-generation light source based on F¢lation to determine the transverse guided mode that has the
single-pass, high-gain FEL amplifier, the fundamental is alJargest growth rate. In Sec. IV, we include nonlinear har-
ways heavily favored because of its advantage in gain lengtilonic interactions into our perturbation analysis and demon-
Even for a subharmonically seeded high-gain harmonic gerstrate that the nonlinear harmonic generation is primarily
eration(HGHG) FEL schemd2] that employs two undula- driven by the radiation field at the fgndamental fr_equency
tors with the second undulator resonant to one of the har@nd can be much stronger than the linear harmonic genera-
monics of the first and a dispersion section between thenfion. Generation of the third-harmonic radiation due to this
the lasing still occurs at the fundamental of the second unbonlinear mechanism is studied for both coherent ampilifica-
dulator. tion and self-amplified spontaneous emission in Sec. V. Nu-
Nevertheless, coherent harmonic emission is generate@erical examples drawn from current high-gain FEL projects
when the laser fundamental bunches the electron bea@€ used in Sec. VI to show that S|gn|f|(_:ant third-harmonic
strongly, producing Fourier components at the harmonicsPower can develop before FEL saturation. A summary of
For a high-gain FEL, a one-dimensior{aD) model[3] and these rgsults aqd some concluding remarks are given in the
a three-dimensional simulation stug] indicate that signifi- concluding section.
cant powers of the first few harmonics are generated through
nonlinear harmonic intergctions. In_ this_ paper, we present 3. COUPLED MAXWELL-KLIMONTOVICH EQUATIONS
3D analysis of harmonic generation in a high-gain FEL
based on the coupled Maxwell-Klimontovich equations. Consider a planar undulator with a sinusoidal magnetic
Starting from the fundamental, we determine the dominanfield in they direction. For an electron beam with average
contributions to the first few harmonics and their radiationenergyyo,mc?, the transverse wiggling motion is accompa-
characteristics such as gain length, transverse profile, amled by a longitudinal oscillation around the average longi-
temporal structure in a high-gain FEL. Since the nonlineatudinal position at twice the transverse frequeray, (a
harmonic generation occurs naturally in one long planar unfigure-eight motion in the electron’s co-moving fram8uch
dulator, it exists both for a self-amplified spontaneous emisa nonsinusoidal trajectory can give rise to harmonic radia-
sion (SASE) FEL with an initially uniform bunch and for the tion. Let us represent the electric field in the form
second stage of an HGHG FEL using a density-modulated
bunch. Thus, such a harmonic generation mechanism may be (= dv e
utilized to reach shorter radiation wavelengths or to relax XJ e E(v,x,z)e' "z, )
some stringent requirements on the electron-beam quality for
a fourth-generation light source. Explicit calculations based
on current high-gain FEL projects show that the power of thevhere x=(X,y) represents the transverse coordinatgs,
transversely coherent third-harmonic radiation can approacFr(Zyécku)/(lJr K?/2) is the fundamental resonant fre-
1% of the fundamental power level. quency.k,=2m/\,, N\, is the undulator period length is
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the undulator parameter, afi(v)| is the field amplitude at  current distribution functions[x—x;(z)] when taking the
frequencyvk,c providing thatE(—»)=E*(v). If Eis as-  wiggling average. Hence, the wiggling averaged E).is
sumed to vary slowly witlz, the Maxwell equation under the nonzero only wherv is close to an odd integdr= — (2p
paraxial approximation becomes +1)=---—5-3,-1,1,3,5..., and weobtain for the field

= dy P amplitudeE(h+ A vy ,X,z) near thehth harmonic
J’ioo 5 IVkl(Z Ct)(2|vk1 +V2 (V,X,Z) a V2
; — 2 ihk, E(h+Av,,X,2)
c at hxz0), @ ek, . kdg .
— e|Avhkuzf > e ive
Wherer is the transverse Laplaciagy is the permittivity 2€0%0 77
of free space, and the transverse current density for a beam Ne
of N, electrons is given by X 21 A(X=X;) (60— 0;). ()
=

N
¢ 1
Jy=ecKcogk,z) 2, —dx—x;(1)]8[z—z(t)], (3)  Here we have defined the effective coupling strength of the
1=17j hth harmonic as

wherey;mc® and (; ,z;) are the energy and the position of K.=K(—1)h-1/2 3 hé)—J heyl, (8
the jth electron. Inverting Eq(2) yields n= KD Lon-0hE) = Jine 1)) (8

P 2 In the forward z direction, the electric field consists of a
(—+ )E(v X,Z) series of nearly monochromatic waves around the odd har-
2iv monic frequencieshck; [1], with the frequency detuning
cdt 9 Av,=v—h<1. Retaining the wiggling motion in the trans-
f 5 e Mklz Ct)ﬁ‘lx(x,z,t) verse current distribution functios{ x— x;(z) ] would lead to
EOC —eelvm even harmonic emission$], which normally have lower
eK (= ck.dt power levels than their odd counterparts for a high-gain FEL
~— 60%[ o e ""k(z=eY cogk,z) [4]. The generation of even harmonics will be neglected in

this paper and will be discussed in a future publicafidh
The microscopic electron distribution in the phase space

x>, SIx—x(t)16[z—z(1)]. (4)  is given by the Klimontovich distribution functiof8]:
=1 N
Here we have approximateg] =y, in the transverse veloc- F(z,6,7,.x,p)= 2 86— 6;) 6(n— 7;) 6(x—X))
ity of the beam(assuming the energy spread is smalhd
performed integration by parts over the time variable. X 8(p—pj), (9)

It is convenient to treat, the distance from the undulator
entrance, as the independent variable, and change the depevhere n=(y— vo)/vo and p=dx/dz are the energy and
dent coordinate front to 6 by 6(z)=(k,+kqi)z—ck;t* transverse momentum variables, respectively, afnds the
= (ky+ky)z—ck t+ ¢ sin(X,2), wherect* denotes the av- peak electron volume density. Equatitf) becomes
erage electron position and=K?/(4+2K?). The right-

2
hand side of Eq(4) becomes a A E(h+Aw,,%,2)
" 2ihk, "
eK J‘oc klda —ive vk 7-+i g n(2k )
- e '"""expivk,z+ivési uZ , de _
€070 ) - 27 =—Khnoe'Ath“Zf—e_|V6f dzpf dnF, (10
. 2
XCOS(kuZ)JZl Sx—x;(z)]86—6;(2)], ®)  wherex,=eK,/(2€570)-

The evolution of the Klimontovich distribution functidn

where 6;(z) describes the FEL bunching action, angz) IS governed by the continuity equation

contains both the transverse wiggling moti@mthe x plane JE JF JE OF O

and the betatron oscillation. Since the FEL interaction and + 66—+ ,7_ X— + p—=0. (11)
the betatron oscillation occur on a scale much longer than the 9z 790 dn  IX ap

fast wiggling motion, we average E(p) over the undulator

period )\, with the help of the Bessel function expansion ~ Here the dot meand/dz and the equations of motion are

+ o . .
gz = g (,¢)ei2Pke ©6) 57=§h: K{]J' d(Avy)e' e AMKZE(h+ Ay, X, 2),
~.P )
" (12)
Furthermore, because the transverse wiggling amplitude is

normally smaller than the transverse dimension of the elec- : Ki 5,200
tron beam, we neglect the wiggling motion in the transverse 0=2ky7 2 (P~ + kX, (13
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p=—k3x, and x=p, (14) iV
—_+|Vh+m

a
9z h

where k|, =eK,/4yimc, andkg is the effective tota(natu-
ral and externalfocusing strength in both transverse planes. LY
The energy equatiofil2) and the phase equatida3) gen- Ky
eralize Colson’s pendulum equatiofid to the 3D case, and
the transverse betatron motion is described by(E4). under
the smooth approximation. When only natural undulator fo- _
cusing is presenk,=Kk,/(2vo), and @*+k5x?) is a con- f=fo+ Fd?E f A %a, (7, X5
stant of motion in the phase equatigh3), as noted by 0 h
Scharlemanii9]. However, in many high-gain FELs, exter- J
nal focusing much stronger than the natural one is required X —1(s, 09, 7,x° p0). (20)
to reduce the gain length. In this case, it can be shil@h an
that the same factorpf+ kzxz) enters the phase equation 0 )
(13) and is also a constant of motion. Here 6”= ¢+ ¢(s—72) is the unperturbed phase,
Using the method of integration along the unperturbed
trajectory[11], the continuity equation can be written as the — 52+F%§2
integral equation b=n——%— (22)

21 2pd6
| e | o[ antzomzp.

(19

describes the inhomogeneous effects of the energy spread

and the emittance, arﬁf kg/(2k,p) is the scaled focusing
strength.

z . .
F(Z’G’n,x,p):Fo_ fodsz Ki"f d(AVh)e'VH(O)ei'AthWS

XE(h+Awp, ,x9,s)
IIl. LINEAR HARMONIC GENERATION

The coupled Maxwell-Klimontovich Eq¥19) and (20)
can be solved in perturbation theory. First, one notices that
whereF is the initial electron distribution that includes the
smooth distribution, the shot noise, and any initial density - I 7208
modulation, and the unperturbed trajectory is described by an( 0,ﬁ—f dvnan(ve,Xx,z)e"* (22)

Jd
X%F(S, 69, 7,x9 p), (15

©) . ki 50 5, is the slowly varying radiation field along the bunch position
07 =0+ 0(s—2)= 0+ 2kyn— 5 (p"+kpr?) |(s—2), 6. The radiation intensity; at the fundamental is expected to
reach saturation whei2]

KO=xcogky(s=2)]+ sirlky(s~2)) Lo, 3

I beam

p@=—kpxsinkg(s—2z)]+pcogks(s—2)]. (16)  wherelpean= Yomcng is the peak electron beam intensity.
In the small signal regime before saturation, the field ampli-
One important quantity of the system is the Pierce paramtudes|ad,|<|&d,;|<1. To the first order in the field amplitudes,
eterp [12], defined through the relatiomngx;=4k2p®. Itis ~ We can replacé at the right-hand side of Eq20) by the
then convenient to introduce the following scaled variables smooth background distributiofy to obtain

. z )
T=20kez, 7= 2, =22, f=fo+fo+ f ds> f d(ve" a7, X©5)
p 2p 0 'h

J— _
Xﬁfo@, 09, 77,x% p©@), (24

_ _ [ k
x=xvy2kikyp, pP=p ﬁ a7
u

where f, contains the shot noise and any initial density
as well as the scaled radiation fiedgl and the scaled distri- modulation(as in a HGHG FEL, and is treated as a first-

bution functionf: order quantity.
We now assume that the initial electron beam is matched
—eK, CiAmk 2k, p? to the undulator channel and is uniform é(this can be
ah:—4ygmczkupe W E(h+Awvy,X,2), f= K, F. approximately satisfied by a bunch that is very long com-

(18 pzied to the fundamental radiation WaveIeI)ngakingf_o
=f0(52+@7,5) in Eq. (24) and inserting it into Eq(19),
Equations(10) and (15) can be scaled accordingly: we find that the field at each frequency amplifies itself
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through the linear interaction and does not interact with other o
Fourier components. The linear harmonic generation is gov- An(Q)= JO RARH(QR)AR(R),
erned by
P I <. \2 AR~ | “Qd0a(QRIAQ). (29
a—?-l-lvh-i-m ah(Vh,ﬁ— K_1
B _ where R=r,, andr=\/x2+y2.Equation(26) can be con-
Xf dZHJ' d;J'ngeihaﬁ(E—?)ah(;h X05) ﬂ_f_o verted to an integral equatids]
0 7 L a’r]
S Ah(Q>=J QdQ'Th(Q,QHAKQ), (29
- &) [ ] afonm B, 25 0
with the kernel
wherefovh(ﬂ) is the Fourier component df, at frequency P
detuningry, near thenth harmonic. We seek a solution of the (0,Q')= h Kn
form e '#n?Al(X), where the complex growth rate, and e (wn—7n) — Q% (2ho?) | Ky
the transverse mode profikah(i) satisfy the dispersion re- .
lation (as shown in Appendix A y fo rdr 3 (iQQ’coskBr
— 0 . —
_f K2 *°°(1+ih@0')2<7')2 1+Ih@0'>2<7
s — L L _ | =h -
|/.Lh+|1/h+ 2ih Ah(ﬂ (Kl) h20'§77'2 - (Q2+Q*2)
Xexpg — —iupr— ——————————|.
o honrn9f0 2(1+ihk5o2T)
25| g7 <O alhd—pp 0 _
xfd pf dﬂﬁwdTAh(X )e h P 0. (26 (30)

I — Here the initial electron-beam distribution is assumed to be
Here X0 =Xcosksn) +(p/kg)sinks 7). This result general-  Gaussian inX;p,7), with o= o\ 2kikep and o, = o, /p
izes the dispersion relation for the fundamental frequencyss the scaled rms transverse size and the scaled rms energy
(h=1)[13,14 to arbitrary harmonics. The 1D, ideal beam gpread, respectively. The electron-beam emittance is given
limit of Eq. (26) (where all transverse modes degeneratey, 2 /i Note that we use slightly different scaling
was studied in Ref.15]. The complex growth ratg,, can be parameters from Ref(5]. By discretizing Q and Q' o

obtained by variational approximatiopb4,5] or by a matrix . .
formulation of Eq.(26) [5]. Among all the transverse modes, Q1.Q2,..-.Qn. EQ.(29) can be cast into a matrix form

the one with the largest imaginary part gf, is the most —T AL=0 31
dominant due to exponential growth and is regarded as the [ n(#n) 1AR=0, 3D
guided mode. Using Van Kampen’s normal-mode expansion . . . . . nn’
illustrated in Appendix A, Eq(25) can be solved for any where | is the identity matrix, the matrix element,

i initial dition. In the high-gain limit, k =Qn(Qn = Qn-1)Th(Qn.Qn) (n and n’=1:2,...,
glr:/lsntrlgl(ljacl)ngg;r:tl?r?odg an% al?rivgaall? mit, We may keep N, Qo=0), and the vectorAh represents the eigenmode

Ah(Q) atQ=Q;,Q,,...,Qy. For a given detuningy,, the

eigenvalue of the matrixl-T,,) that has the largest Imf)

f d?X’ Ag(X" )agn(vh . X') yields the growth rate of the guided mode for each harmonic,
and the Hankel transform of the corresponding eigenmode
yields the transverse profile of the guided mode.

+f dzi'f dZHJ d7fon(vn X .0 7) In general, the growth rate of theh (h>1) harmonic is

much smaller than that of the fundamental frequency be-
cause the harmonic radiation has lower coupling coefficient

: (27 Ji.e., (Ky/K,)?<1] and is more sensitive to the warm-beam

effects(energy spread and emittanadue to theh factor in
the exponent of Eq.26), especially for the x-ray FEL'ésee

The first term in the squared bracket describes the process gfimerical examples in Sec. VIHence the linear gain pro-

coherent amplificatioiCA) [12], which starts from a coher- cess is predominantly the growth of radiation around the

ent input signakyp, with a well-defined frequency detuning fundamental frequency in the exponential growth regime.
v,,. The second term describes the process of SHSEL,

which starts from white noise.

In this paper, we adopt the matrix formulation for the
study of both linear and nonlinear harmonic interactions. When a beam is strongly bunched in the ponderomotive
Following the derivation of Ref[5], we introduce the Han- potential formed by the undulator field and the radiation field
kel transform pair for the guided mode of théh harmonic  of the fundamental frequency, the bunch spectrum develops
field rich harmonic contents. Coherent radiation at the odd har-

a- (v X,2) e “h?AL(X)

0
xf d7AR(X@)el(Né w7

IV. NONLINEAR HARMONIC INTERACTIONS



PRE 62 THREE-DIMENSIONAL ANALYSIS OF HARMONIC . .. 7299

monics can be generated in a planar undulator and significant f=f_o+ FO4 @My (32)
power levels for the first few harmonics can be reached be-
fore the FEL saturatel3,4]. Here we study this process in
detail.

To include nonlinear harmonic interactions, we iterate Eq
(20) to an arbitrary order i® [ dv,e'"’a,=3,e" %, :

where the first-order distribution is given in E@4) and the
‘mth order (m>1) distribution function is

§m72

z . — 0 _. 90
f(m):f d§12 fd(yl)el(h1+2pv1)01 ahl(VlaigO)vsl)ﬁX'“Xj d§n—l
0 h,

0

_ . _ _ _ J
X 2 | A )exd (12070 0 183, (V1K 1 Sme1) =
m-1
A J— gmfl —
K| oS 1,080 7R B+ [0S [ dm
: — J—
% el(hm+2;7Vm)0£T?)ahm(7mj(r'T(])) S ﬁfo(gm ' 0#])) -i?ﬁ?) 'ﬁ(r'no))} (33
Here
0= 0+ $(Sy—2),
X0 =Xcogky(Sn—2) ]+ — sinlky(Sy 2],
Kg
Py = —kgXsinkg(Sn—2)]+Peogks(sn—2)]. (34)
Inserting Eq.(33) into Eq.(19) and integrating ovep, we obtain
7] v? Kn\2 [ oo g P
it = 2h - #(5,-2) - S X E) e X e
ﬁ?+lvh+ 2|h ah Kl Jd pf d??hzs odgle 1 1 jd(vl)ahl(vl,xl,sl) 0_'?><

gm72 — — — — d | gmfl
XJO dgn—lJ d(mel)ahm_l(melaxmflvsmfl)ﬁ fon, * jo dsy,

B U D
X g/Nm#(Sm=2) d(Vm)ahm(ervasm)ﬁ M —wvptwyt -ty (39

where the sum ovens consists of all harmonic interactions rated into two groups: those consisting of at least one

that satisfyh,+---+hy=h. Among them, the term with af(|h|>1) or fo;, would generate nonlinear harmonics be-

hn=h and all otheh’s equal to zero, gives rise to E@®5).  |ow the level of spontaneous harmonic emissions and can be
Let us estimate the relative strengths of harmonic f'e|d$gnored, and those consisting of interactions amangnd

generated from the process of self-amplified spontaneoushl(|h|>1) may generate more harmonic radiation than the
emission. The general solution of E@5) can be written as  jinear harmonic generation. If we further postulate talit

is an|h|™" order quantity, i.e.,
ap—ak+alt, (36) Il Aty

where the linear harmonic field- is given by the second ay“~a', for |h[>1, (37)
term of Eq.(27), and the nonlinear harmonic fiet)" is the

solution due to the nonlinear harmonic interactions. Assumenhen we obtain from Eq35) that

that | fdve'"%ay|<|[dv,e'"%a,|<1 for |h|>1, we havea,

~ak>al'" before saturation. Fgh|>1, af; does not grow

much from the spontaneous emission as shown in Sec. Ill. alt~ a\lh1\+--'+lhm\_ (39)
Thus, the nonlinear interacting terms of E85) can be sepa- hy+-+hp=h
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To be consistent with Eq37), we drop higher-ordefthan  fundamental. At the fifth harmonic the leading nonlinear

thehth orde) terms ofal" by restricting the sum in Eq38)  terms areazal" anda$. Sinceal"~aZ, both terms ofa}"

to those with G<h4,...,h,<h. Thus, we conclude that the are of the same order a§ and are the dominant components

dominant nonlinear harmonic field is determined by all lowerfor ag afterz> (4/5)z.,in a SASE FEL. For a high-gain FEL

nonlinear harmonic fields as well as the fundamental field. where a bunch density modulation or a seed laser at the
For instance, since both the fundamental and the thirdundamental wavelength is present, the nonlinear interactions

harmonic of a SASE FEL start with effective noises on thebecome dominant over the linear interaction for higher har-

order of 14/N,, we have monics at a much earlier stage of the exponential growth
3 regime. Hence we come to the conclusion that the dominant
|a§|~ ielm(lﬂ)?, |a§L|~|a1|3~<ie'm(“1>Z) nonlinear terms foa{}'L are eventually of the same order as
e e all for |h|>1, with a growth rate given bjh| Im(u,). Such

a growth rate scaling was first pointed out using a 1D model
[3,17] and was observed up to the ninth harmonic using a
L _ 2 three-dimensional simulation cofi¢]. Here we present a 3D

az when Z<3 Zsat analysis for this scaling by taking into account all possible
az~ (39  harmonic interactions. In passing, we note that this perturba-
tion analysis is not very accurate wheiis too close t@g;.

If Im(ug)<Im(uy), then

a3~ when ?>§?Sat
_ ) ) V. THIRD-HARMONIC GENERATION
where zg,~ (In Ng)/2 Im(uq) is the saturation length. Thus,
when z>(2/3)zs,, the third-harmonic radiation is com- In this section, we calculate explicitly the nonlinear har-
pletely driven by the third power of the fundamental radia-monic generation f0|a . The governing equation is ob-
tion, with a characteristic growth rate three times that of thetained by settindh=3 andh1:h2= h;=1 in Eq.(35):

_2

J z af,
(?_+IV3+ ay-(vs,%,2) — ( 3) J dzﬁf ng‘z gi3d(s1-2 aNL(Vs X ,Sl)_;
0
K\ 2 (T - = oy —. @
-] [ o[ [ ase s [ amam., 10 s =
K1 0 an
5 5, o
Xf ‘dsyel 452 f d(vip)as(vig, X5 52)—J dsge! #%a72)
0 0
d(vy,)as(vy, ,X3 ) 83) 8(— V3t Va0t Vgt Vly) Fra (40)
|
where the fundamental field is solved in E87) as frequency that is determined by the initial condition. Thus,
B we can drop the frequency dependencelpfamdagL in Eq.
a,(vy,X,2) e “1ZA(X) f d3X Ay (X )ag ((v1,X') (40). Assuming that the FEL operates at the optimal detuning
v, for the fundamental fieldwith a growth rateu, that has

the maximum imaginary pait we have vy,=vig=v1,

+f dZY'f dzﬁf d7fev.X . P 7) =7, andv;=3v,. Equation(40) becomes
0 _ d Vz 3
><J’ d7rA,(XO)e (¢ r7|, (41) a—+3”’°+_ ay-(X,2)— (K fdz_J d7y
e 1
Thus, the properties of the third nonlinear harmonic are com- z &fo
pletely specified by those of the fundamental. In the follow- X Jod§1 S DAt 5y) = Ery

ing, we discuss these properties for both coherent amplifica-
tion and self-amplified spontaneous emission.

Ka\2 z
- K_i) [ a5 a7 ‘s rame 5

A. Coherent amplification

For FEL'’s that start with a coherent inp(ihcluding the ‘7_ Sld§2><ei 45272, (X0 |5,) %
0

X_
HGHG FEL'’s), the fundamental radiation has a well-defined an
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— - 2
% 5.0 65D (50 5 10 i _ 9
x JO dse' 502y 55) . | uo(371+ 274 75) = s, (45)
o and
In view of Eq. (41) we write a;(x,z)=e"'#0?A,(X),
—2
whereA; ~Ag e "X°I7 is the guided mode using the Gauss- _ u
ian apprOX|mat|0r[5] andA, is the appropriate normaliza- S= V+S 2 m '
tion coefficient.'Thius, we can write the third nonlinear har- T 2m=1238IM (K2 =1 7)
monic aj-= e 3#?AJ" with the transverse profild}" by:
= K 5 3 o m 3 L m
. — 1 3 — = i
i R N C RS P R P
f_ 3 m m 2
XJ dry ANL(RE0) 316~ woyr 910 —{E sin( ks>, r,)cos( ks>, 7 || +V2+3V,
_ &77 I=1 =1
K\ 2 0 , 9 .
_| 3 = A= 3i(p—uo)mia (O 1 i
Kl) J d pJ dnf_wdTle Al(xl )07? V= W + mkﬁUx(sTl‘F 27'2+ 7'3) (46)
0 ) J
XJ d7,X ez'("’_“O)TZAl(?gO))a—_ We can ignoreT3(3u0) with respect to the identity matrix
- K because the linear harmonic generation is much weaker com-
0 Pra pared to the nonlinear generation. The transverse profile for
XJ dr3e‘(¢’“0)73A1(§§°))—_0, (43)  the third nonlinear harmonic is obtained after Hankel trans-
—c an forming the solution of Eq(44) and is approximately Gauss-
ian inR, i.e.,

where 7,,=Sy,—Sm_1 for m=1,2,3 ands,=z. We have ex-
tended the lower limit of the integrdld 7, to —o due to the
exponential growth of the field amplitudes. The left-hand NL Ks\? 3

side of Eq.(43) is the same as E@26) for h=3, except we Az (R)%(K—) Aof QdQX(QRH(Q)
replaceu; by 3ug andv; by 3vy. Following the matrix !

formulation for the left-hand side of Eq43) and carrying Kj waR?
out fd?pfd7 for the right-hand side, we arrive at ~lk; HoAge ™7 . (47)
K
[I—T3(3M0)]A’§'L=(K—3) A3H (44)  Thus, the third nonlinear harmonic is also transversely co-
1 herent. In general, the transverse mode size of the third non-

in the Hankel transforme@ space, where theth element of  linear harmonic is always narrower than that of the funda-
the vectorH is mental due to the nonlinear generation mechanis®e

numerical examples with Figs. 1 and 3 in Sec).VI

H ~ 1wy J d f d J d
= 2 71 72 73
) 12( o= vo) = 2Q;/ (307 x) B. Self-amplified spontaneous emission
371(371+275) (371 + 275+ 73) For a SASE FEL, the fundamental radiation starts with a
X U white-noise spectrum and has a finite gain bandwidth. It is
, convenient to solve for the slowly varying electric field
o A,(0) = [dvse’3%a4(vy) along the scaled bunch positigh
exd — - (371 + 27+ 74)2 ag(0) = Jdvze' " as(vy
ex;{ 5 (3nt2mt sy =2p6 and write Eq.(40) as

- 5 B _
i_+i_+L [ K a2p | d7 | “ds;ed e DElt (g.x0 | s)i
- 3 K 7 o 1 P
1

2 _ _

K _(z - = _d (s U

—3) | &5 [ a7 [ aser Ta, 030 5 = [ asest T

K1 0 dm Jo
_ A _of

x*alw.ig‘”,sz)% fo dsze'#s 73,(0,%” 3)(9_70' (48)
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In the absence of an external signal, we drop the first termvherew;, is again the real part of/;. Using Eqs.(53) and
in Eq. (41) and perform the Fourier transformation of the (B8), we simplify Eq.(52) as
second term. In order to estimate the average power of the NL 5
third nonlinear harmonic, we make the following simplifying ( P3 n)~|H 2 16wy, ( Py ’T)gx [ 1 CA (54)

assumption abotd, in the exponential regime. PPiea W3\ pPpea 6 SASE,
o N
= DTS a— izt ivof A a—WiX2 T2 —i0n (D_
a,(0,x,z)~e Age x>, e gy (6—6,,2). VI. NUMERICAL EXAMPLES
j=1
(49) In this section, we illustrate the analytical results of the

o previous sections using two current high-gain FEL projects.
Hereg, (60— 6;,Z) is the longitudinal Green’s function whose The first example is motivated by R¢#], where the steady-
variation inz and 6 is much slower than the exponential State simulation of up to the ninth harmonic is performed for
varaton i EG{49 sce Append B forore dscusson L Lo L o ot e o e
YVNnLtlng as’\,'Lze ot Voep;glL(xf’ 0) and a?%sum[\SLt.hat LEUTL FEL are listed in Table I, from which we find,
A3~ depends only weakly onandé, the equation foA; - is .=0.25, and@=0.46 for our scaled parameters.

=0.56, o

o . I Oy

then very similar _to Eq(43). Following the derivation of Using the matrix formulation of Sec. lll, the complex growth
Sec. VA, we obtain

rates of the fundamental and the third linear harmonic are
B Ks)2 mo=—0.42+0.5 (at the optimal detuningo=—0.42 and
AQ"%(K—) Ageif QdQI(QRH(Q) (3)o=—0.87+0.16 [at (v3)o= —0.87], and the transverse
1 mode calculation yields the guided mode wity=0.16
K 5 R —0.093. Thus, the linear part of the third-harmonic radia-
“(K—)Hvoe YR GY, (50)  tion grows much slower than the fundamental radiation.
! Nevertheless, the third nonlinear harmonic grows three times

whereG;=3N e i%g,(9— 6. 7) can be regarded as a ran- &5 fast as the fundamental and can dominate over the linear
1=3j-18104(0=6;,2) 9 part. In order to compare with Ref4], which starts the

dom phasor sum ank(Q) is described in Eq45). Hence, MEDUSA simulation using a seed laser at the fundamental, we

the third nonlinear harmonic radiation is transversely coher-em lov the formulas of coherent amplification for the non-
ent and longitudinally chaotic, similar to the fundamental ploy P

radiation in SASE FEL. However, the spikes of the thirdlmear harmonic calculation even though the LEUTL experi-

. : ent starts from shot noise. We find thag,=0.39 and
harmonic become more pronounced due to the third-pow i 2 - ' ! .
dependence on the random variaBle, implying higher av- e\HO| =1.4 and plot the transverse profiles of the third non-

. | linear harmonic, the fundamental, and the electron beam in
erage valuthan the corrgspondmg steady—stgtg £ Fig. 1. Note that the third-harmonic radiation is guided in the
more shot-to-shot fluctuations for the total radiation energy, =° """ . . )

exponential regime, with a smaller spot size than that of the

The statistical properties of the third nonlinear harmonic ray ndamental due to the nonlinear oeneration mechanism
diation are discussed in Appendix B. 9 '
In both cases, since the instantaneous third-harmonic r

diation intensity is

This behavior is different from th@EDUSA simulation[4]
%hat shows the spot sizes of higher harmonics expand ini-
tially and focus rapidly in the latter stage of the interaction.

K, 2 Kqi\2 In the exponential growth regime, the third nonlinear har-
|3=P|bean;(K_ Bal =plpeant® 'm(l‘o)i K_) |AYS(R)|2, monic powerP}" is obtained from Eq(54):
3 3
(51) piL o0l P 3
the average power of the third-harmonic radiation is given by PPream | pPpea

for LEUTL FEL (steady-state modle (55)
Pysz dxdy(l3)
where pPpean= 130 MW. Using the fitting formula of the

_ K;\? - saturation poweP g~ 2.1 Im(ug) ?pPpean= 70 MW for the
=e® Mo P'beanZWUi(K—s) j RAR|A;"(R)|) fundamental[19] and assuming that Eq55) is valid till
P,=Ps{2=35 MW, we estimate that the third-harmonic
6 Im( )_A8|H0|2 1 CA, power can reach the 600 kW level. ThieDusA simulation
=pP Ko T ;
PPpeanf aws, <Gi(G§)*) SASE, [4] shows the saturated third-harmonic power at 2.67 MW.

In Fig. 2, we plot the third-harmonic power as a function of
(52)  the undulator distance calculated from Eq(55) with P,
) . given by theMEDUSA simulation. It agrees with thREDUSA
where Ppeani= 20yl heam IS the total electron-beam power, ihird-harmonic power level.
damental power as FEL linac coherent light sourcd.CLS) at Stanford Linear

A2 (1 CA Accelerator Centef20]. Using the current LCLS design pa-
P, = pPpeant? Im(;m)z_o{ " (53  rameters in Table |, we have,=2.8, 0,=0.45, andkg,
4wy, ((G1GT) SASE, =0.29. The fundamental guided mode has a complex growth
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TABLE I. Third-harmonic computation for the LEUTL FEL and the LCLS project.

LEUTL (steady state  LCLS (\,=1.5A) LCLS (\,=4.5A)
e-beam and undulator

energy 220 MeV 14.4 GeV 8.3 GeV
peak current 150 A 3400 A 3400 A
normalized emittance am 1.5um 3 um
energy spread 0.1% 0.02% 0.02%
average beta function 1.5m 18 m 18 m
undulator period 3.3cm 3cm 3cm
undulator strength 3.1 3.71 3.71
fundamental wavelength 518 nm 1.5 A 45 A
Calculated FEL properties
fundamental power gain length 0.67 m 6.1m 50m
fundamental saturation power 70 MW 8 GW 7 GW
third-harmonic power P3)? 600 kw 15 MW 40 MW
third-harmonic bunchingh(s)® 0.3 0.02 0.04
Simulation comparison
MEDUSA saturatedP; 2.67 MW
GINGER saturated; 0.2 0.03 0.05

8 valuated when the fundamental reaches one-half of the saturation power.
®Same as a.

rate wo=—1.2+0.42 and a mode profile determined by the third nonlinear harmonic is smaller than that of the fun-
w;=0.64-0.50 at the optimal detuningy=—1.0, consis- damental. In view of the so-called diffraction-limited criteria
tent with the result of Refl5]. However, the linear growth e<A,/4w to generate transversely coherent radiation at
rate of the third harmonic is almost zero at any detuningwavelength\,, the requirement on the emittaneés further
because the emittance and the energy spread of the beamvislated by a factor of 3 at the third-harmonic wavelength
too large at this wavelengtf0.5 A) to have any linear am- [21], in addition to a factor of 4.5 at the fundamental wave-
plification. Thus, the third-harmonic radiation is largely length due to the optical guiding of the electron befsh
spontaneous in the first two-thirds of the full saturationUsing Eq. (54) for SASE, we obtain the third-harmonic
length, until the nonlinear harmonic generation becomegowerP5" from the nonlinear harmonic generation
prominent. The transverse profile of the third nonlinear har-

monic is obtained from Eq47) and is shown in Fig. 3, with Pyt P, \3
ws,=1.4 and|H,|2=6.3x10"3. In comparison, Fig. 3 also b~ J( W)
shows the electron-beam profile and the fundamental radia- P beam

tion mode in the exponential growth regime. Note that the, _ .
spot size of the fundamental radiation is smaller than théOr LCLS. Hereprejm— 22 GW with the current LCLS
electron-beam size because the effect of diffraction is quité)arameters. We take, = PS?[2%4 GW_before the FEL satu-
small in the x-ray wavelengtlfin contrast to Fig. 1, the ration and estimate the third-harmonic power to be 15 MW.

LEUTL case in the visible wavelengthand the spot size of We also calculate the third-harmonic bunching parameter

56
PPhea (56

108

107¢ "3

> 1.0 1055 - :
= ok ) A
104% T F
»n 0.8] = 1000} P :
c ~— 100§ e F
2L oos R S - F
- 0 o1 /7 i
C— 0.01F  Calculated third harmonic g 3
. 04 i @) 0.0?Ji MEDUSA fundamental g o i
E 0.2 o :g_,g MEDUSA third harmonic < s
. - 10"% 2 %

c 0.0, . . . , 2 4 6 8 10 12

1 ] ; 5 3 4 7 ( m )
X

FIG. 2. Comparison of the calculated third-harmonic power and
FIG. 1. Transverse profiles of the third harmonig)( the fun-  the MEDUSA steady-state simulation for the LEUTL FEL. The solid
damental radiationl¢), and the electron beanid) as functions of  curve is calculated from Ed55) using the fundamental power ob-
the radius in units of electron-beam size, using the LEUTL FELtained frommeDUsA (the dashed curye The dotted curve is the
parameters from Table I. third-harmonic power from the same simulation.
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> 1.0 j " T, 0.07 T T T T T T . .
= > 0.06 Theo
e | . L ry
g 0.8( S S GINGER
le 0.05] --—--=L.
Soel AN - 0.04
I= ,0-041
0.4 O 0.03] ,
S o2 0.02| d
—__ 0.01 /
O . . - /J
c 0.0 SN LT TP - ___///
2.0 2.5 3.0 3.5 102030405060 708090
r/o, z (m)
FIG. 3. Transverse profiles of the third harmonig)( the fun- FIG. 5. Comparison of the calculated third-harmonic bunching

damental radiationlg), and the electron beanidj as functions of and thecINGER SASE simulation for LCLS. The solid curve is

the radius in units of electron-beam size, using the LCS ( calculated from Eq(C4) using the LCLS &,=1.5A) parameters

=1.5A) parameters. and the fundamental power obtained framcer SASE run. The
dashed curve is the third-harmonic bunching output of the same

(defined in Appendix Caccording to Eq(C4) and compare run.

with the GINGER simulation results in Fig. 4 for a steady-state

GINGER run (coherent amplificationand Fig. 5 for a SASE a1y including the effects due to energy spread, emittance,
run. Iﬁeasqnablle ag(rjggment 'Sh found ;:n the (hexpor)entllao{nd betatron focusing of the electron beams, as well as the
growt regime. in a ftion, as shown In Fig. 5 there IS al-giffraction and optical guiding of the radiation field. Driven
most no Ilne;ar growth_ of the third ha”"of“c until the nonlln-_b the third power of the radiation field in the fundamental,
ear harmonic generation becomes prominent above the nma%/e third nonlinear harmonic grows three times faster, is
level. transversely coherertvith a smaller spot size and has a

As another illustration, suppose we reduce the require=." .
ments on electron-beam energy and normalized emittance f&lgmflcant power level for the LEUTL FEL and the LCLS

LCLS to 8.3 GeV and 3r mm mrad, respectivelj22]. If we project. Measurement of these nonlinear harmonics at the
keep the same undulator parameters and other beam paraRl90ing SASE FEL experimerjtl8] at Argonne National
eters(see Table), the fundamental radiation wavelength be- Laboratory and the HGHG experimef3] at Brookhaven
comes 4.5 A. A similar calculation as above shows that thdVational Laboratory is plannef®4]. Practical effects, such
third-harmonic power at 1.5 A can reach 40 MW when the@s undulator separation, misalignment, and magnetic-field er-
power of the fundamental is one-half of the saturation powefors tq these noplinear harmonics, are currently under study.
Ps.=7 GW. The peak brightness of this harmonic radiationAs pointed out in Refs[3,4] and fully analyzed here, the
is about 2< 10°° photons(s mnt mrad). generation of nonlinear higher harmonics could be useful in
extending the short-wavelength reach of a high-gain FEL.

VII. CONCLUSION
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20 40 60 80 100 120 APPENDIX A: VAN KAMPEN'S NORMAL MODE
z ( m ) EXPANSION

FIG. 4. Comparison of the calculated third-harmonic bunching e illustrate Van Kampen's normal-mode expandid5]
and theGINGER steady-state simulation for LCLS. The solid curve is BY solving the initial value problem of the fundamental ra-
calculated from Eq(C4) using the LCLS k,=1.5A) parameters diation field that is initiated by an external signal or by shot
and the fundamental power obtained from a single-frequémti- ~ noise. This extends the treatment of Réf3] to the electron
mal detuning GINGER run. The dashed curve is the third-harmonic beam with finite emittance. First, we introduce the state vec-
bunching output of the same run. tor
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a1 (v1.,%,2) v?
a7 | 2d01 ' (—71+7L ay—ifdzﬁfdﬁf
Lopnz ~| | e vixpmon | M (2) = T
. dTg (0 .0
(A1) _Iayﬁ—F —V¢+I( &—_'i‘pa—ﬁ}fv
wheref , satisfies the linearized Vlasov equation
of ofv  ofw 3fo The scalar product of two state vectors is defined by
a—-Hvd)f +X +p—p a,,& =0, (A2)

(@1, 00)= | @R+ [ o] &5 [ dtfa.
and f (_2+ x ,17) is the smooth background distribution (A5)
of a matched coasting beam. Combining E&2) with the
scaled Maxwell Eq(19), one can write Let us assume the solution of the form

d e A(X)
i — —ipz_ a—ipnz IR
(a? |M><I> 0, (A3) e e Axp7)) (AB)
where Equation(A3) becomes the eigenvalue equation:
|
2
MnAn T _71"_? An_if dzﬁf dﬁfn

(un+M)¥,=0, or _ =0. (A7)

RRPNAL il 2 sl | A
pnFn 1 An— vFi| x=: P35
|
Heren indicates a discrete set of eigenvalues and eigenvec- 2
tors. The second row of EgA7) can be integrated to give (—71+ 5 f dz_f dn FJr
MTwl=
ot
Fo= OJ d7A,(X?)el(vd -7, (A8) —iAl+| —vp+i iﬂ—rma—%}ﬁ

where X9 =X coskg 7+ (p/kg)sinksr. Substituting this into o . . )
the first row of Eq.(A7), we obtain the mode equation for Putting this into Eq(A10) and solving forF, and A, we

the fundamental radiation find that
2 0 .
(—|Mn+|y1 A(X) Fﬁzf_ drANXO)e! (e )7, (A13)
_(© i dfo and thatA! satisfies the same mode equation as @)
_ 25 <O\ pl (vo—pup) T — n .
f d pf d??f LAmAn(XTe "y 0. Hence we seA!=A, and u = u,.

(A9) By virtue of Eq.(All), one immediately obtains
(n— o) (PH T =TT MY ) — (M ¥ )=0.

One can solve the mode equation numericédly illustrated (AL2)

in Sec. lll) to obtain the eigenvalug, and the mode func-
tion A, . .7, is then determined from EQAS8).

To form the orthogonal basis of these eigenvectors, con-
sider the adjoint eigenvalue equation

If these normal modes are not degenerate, ug# wu, for
any n#m, the Van Kampen orthogonality for a discrete set
of eigenvectors follow$25]:

T+MhHw!= A10
(an T M) (A1 (VW)= GV ). (A15)
Here u! andw!= (Al F') are the adjoint eigenvalues and

eigenvectors of the adjoint operatidk, defined through Similarly, one can have orthogonality for a continuous set of

eigenvectors using the Diragfunction instead of the Kro-
MMl ®&)=(¥! Md). (A11)  necker delta functiordy, , [25]. Furthermore, assuming the
set of eigenvectors is complete, we can expand any state
This leads to vector®d as
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[‘P ®(0)]
(W, W)

d(2)= 2 e imZC, W, 2
(A16)

Here the initial state vecto®(0) consists of the external
signala,, and thevth Fourier component of the shot noise

fo,. Thus, we have

(W].0(0)1= [ 0750, (9,
+ [ x| &% [ dfo,zpm

0 )
X J d7A,(X©)e LT (AL7)

and

(wh, n)—fdzx_AZ(_jJrjdz_f dz—f dn&f"

2

0 )
X f d7A,(X?)e (¢~ L7 (A18)

After the completion of this paper, we heard a talk by M. Xie

[26], who has independently obtained these results by an

equivalent method.

APPENDIX B: STATISTICAL PROPERTIES OF THE
THIRD NONLINEAR HARMONIC RADIATION
IN SELF-AMPLIFIED SPONTANEOUS EMISSION

In this appendix, we study the statistical properties of the
third nonlinear harmonic radiation in SAFE. The temporal

ZHIRONG HUANG AND KWANG-JE KIM

PRE 62
_ 2G| |G4[?
[, I,
where the average radiation “intensity” is
— 2
_ —gc
1:<Gle;>=—°:ef(’b_’2 do exg —
Z 0 —6y/2 20?
Go Ne
=—=—\27oy (B3)

for a flat-top bunch with scaled bunch lengtgs>o,. The
average value of theth momentG;|" can be calculated as

n * n2|G1|
(IG4|") = 0 |G, = ex
1

?1/2
1

1Gy/?

d[G,|

1

=T (B4)

n
—+1
2

wherelI'(x) is the Euler gamma function.
The total radiation “energy” is integrated along the pulse

and is given by, = [1,(6)d6=1,6, for the flat-top bunch.
The variance of the radiation energy is

Op/2
ol = J de J
! —0,/2

—— (6,2
=0bl?f "= doyg, (92
— 6/2

de'(I

1

/2 (O)1F(67))—W2

0,/2

(B5)

Here we have used the moment theorem for the complex
Gaussian random variablg29] in deriving the last expres-
sion, andyG is known to be the complex degree of coher-

structure of the fundamental radiation of SASE is essentiallnce of the “9h(29] ie.,

chaotic and has been discussed in REfg] and[28]. For a

monochromatic beam in the one-dimensional limit, the ran-

dom distribution of wave packets is

Ne
G1(6,2)=2, e 'igi(6—6;,2)
j=1
_ 2 2
Gole ( 37 i
=—> e lliex 5 1-—| |,
Zi-1 405(2) V3

(B1)

where §=2p 0 and o,= (2718v3)'? is the coherence length
in units of N\, /(4mp). Sincep<1, the coherence length is
normally much larger than the fundamental radiation wave-
length\, in the exponential regimés, is a random phasor

sum of many Gaussian wave packets and its amplitude obeys

the negative exponential probabilitg9]

— — . KGu(6)GY(6")] — 97
|76, (0—0")|= — o X :
(1G1(0)]%) 8o,
(B6)
Thus, the rms fluctuation for the fundamental radiation en-
ergy is
\/W gb 1/2
=VM,, (B7)
(TWl ( 2\/—0'0) ¢
where M. is roughly the number of coherent modes in a
bunch.

From Eq.(50), the temporal structure of the third nonlin-
ear harmonic is approximately governed ®§. We can ob-
tain the “intensity” of the third nonlinear harmonic by using
Eq. (B4) for n=6:

13=(G3(G})*)=(|G4|% =613 (B8)
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The third-harmonic energy is integrated along the pulse and a0 [% T (T0) J (s T

—_— 1 1p(S1—2 r 1p(So—2Z
is W3=136,. Following the derivation for fundamental ra- ¢ fo ds,e" ™8, (6,x; ’Sl)ﬁfo ds,e' 2
diation, the variance of the third-harmonic energy is

B T 1
P S — Xa (0% S5 = f dsse'*%72(0,x5 55) —=.
a2, = | " da | 7 do' (15(0)1%(0))— W2 dn Jo In
Ws 0p/2 Op/2 3 3
~Yp ~ b
(C2
W3 (g2
— 2 4 6 _
T 7;b/2d6[9|y61(19)| +9076,(N*+1ve, (NIl For ca, 7, is constant ing; for SASE, 3, is approximated
b

by Eqg. (49). In both cases, we can carry out the integrals in
(B9)  X,p,n as before and obtain
Using Eq.(B6), we obtain the rms fluctuation for the third- o 0 o
harmonic energy by=e® |m(ﬂo)?Ag f dTlf d72J d7s

W2 I\ 1
73% 9+3+_) ab ~ C. 371(37’1"‘27’2)(37’1"’272"’ ’7'3)
T, vi V3| 2\moy 4 ” 4wzU
(B10) -
g
Hence, the third nonlinear harmonic signal is about four XeXF{—%’@TﬁZTﬁ 73)? =i po(371+ 275+ 73) ‘
times more noisy than the fundamental in this sense.
1 CA,
: X C3
APPENDIX C: BUNCHING PARAMETER (IG3) SASE, (C3)

In FEL simulation programs such asINGER [30], a
bunching parameter is used to indicate the level of the miynere U is defined in Eq.(46), and G, is the longitudinal

crobunching due to the FEL interaction. For simulations thatzndom phasor sum. Using the relation for the fundamental
keep track ofNg independent beam slicésf length\;), a  54iation power and EqB4) for n=3, we can write the

natural definition would be third-harmonic bunching as
X _ (27Ns d@ : _ 3=8wy; f Tlf Tzf 73
—5 —ihe pP — —eo —
gz | 07 [ 07| e f@e,n,m‘ e

371(3Tl+272)(371+ 27’2+ 7'3)
<1. (C) X 42U
This is indeed the definition for the third-harmonic bunching —2
in GINGER [31], but the fundamental bunching parameter is Xexr{ - ﬁ(371+27-2+73)2—ip,0(371+ 275+ T3)
defined with respect to the fundamental field phédsé.e., 2
b,=|(e”'(**¥))|. From Sec. IV and V, we know the domi-
nant component in the distribution function that drives the

third-harmonic bunching is

1 CA,
X [ (Co
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