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Simulation of beam-beam effects in a circulare*e™ collider
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We have carried out a strong-strong simulation to study the beam-beam effect in a circular electron-positron
collider. In the simulation, both the positron and electron beams are represented by macroparticles, and the
interaction between the two beams is obtained by solving the Poisson equation for the charge distribution of
the macroparticles. Using the simulation, we investigate the beam-beam limit and the coherent beam-beam
tune shift, two characteristic phenomena of the beam-beam effect. We also study collision with a finite crossing
angle, and verify its feasibility for the KEKB factory. Our results for KEKB yield an estimated luminosity of

8.5x10% cm 2571, only slightly lower than the design value o&110** cm 2571,

PACS numbses): 29.20.Dh, 29.2%a, 41.75.Ht

[. INTRODUCTION standing the beam-beam effect. The beam-beam Ilimit is a
luminosity saturation phenomenon observed in high intensity
Particle factories, which produc®, charmonium, or¢ collisions. For two Gaussian bunches in collision, the lumi-
mesons with high statistics, require high luminositiesnosity L is expressed
(>10° cm 2s1). They are designed to run at a high -
beam-beam parameter and at a low single bunch current, and nnrt, —
to achieve thpe luminosity by using magy bunches. In such L=s—== oi=Voi, T,
colliders the beam-beam limit can be reached without en-

countering single bunch collective phenomena, like the headyneren= is the number of particles in a bunch, the col-
tail effect and bunch lengthening, i.e., it is the beam-beanjgion frequency, and", the bunch size. Note that/— are
effect that limits the luminosity. It is therefore important t0 |,saq to indicate the F;(foperties of thé/e~ beam. Here the

study the beam-beam effect for such machines quantitgygitdinal structure of the beam has been neglected. Equa-

tively. . . ___tion (1) shows that the luminosity is proportionaltd n—, if
Computer simulations are necessary to quantitativelyp . peam sizes are kept constant.

study the beam-beam effect, since the interaction between The beam-beam parametgiis used as a measure of the

two colliding beams is highly nonlinear. Much work has strength of the beam-beam effect. It is given by
been done on this topic using various types of computer '

(€Y

-
2moy0y

programs. These can roughly be classified into three kinds of n*r B
methods: the rigid bunch model, weak-strong simulations, & =—r ) )
and strong-strong simulations. The rigid bunch model, the i v 2moy (oy +oy)

simplest of the three, has been used to study the coherent
mode of the two beam systeft]. The weak-strong simula- Wherer,=2.82<10 % m is the classical electron radius,
tion, which is generally used to design collid¢&s-5], can andB~ and y* are the beta function and relativistic factor,
be used to predict the luminosity and the formation of non+espectively, of the™ beam. The beam-beam paramegér
Gaussian halos quantitatively, though coherent effects canneguals the incoherent tune shift of teé beam due to the
be addressed. Finally the strong-strong simulation, which ignteraction with the opposing beane¥). There are four
not as established as the other two methods, has been udeelam-beam parameters: for electrons and/or positrons and
by Krishnagopa[6,7] to study the flip-flop effect and beam for the horizontal and/or vertical plane. Note that the beam-
size oscillations in CESR and PEP-II. beam parameter of each beam linearly depends on the cur-
The strong-strong simulation, which requires largerent of the opposing beam. We will use the same definition
amounts of computer resources, has recently become feasilé the beam-beam parametérwhen considering collisions
due to the fast progress in computing power during thewith a finite crossing angle in Sec. V. In such collisions the
1990s. In a strong-strong simulation both colliding beams aréncoherent tune shift becomes somewhat less than the beam-
represented by macroparticles. A large number of macropabeam parameter.
ticles is used in order to reduce the effect of statistical noise. Experimentally the luminosity is found to be proportional
The electromagnetic field of each relativistic beam is obto n,n_ at low currents, then grows more slowly at higher
tained by solving the two-dimensional Poisson equationcurrents, and finally reaches a limit where the tune shift is
which we here solve using the particle-in-c@llC) method. ~0.05. We call this limit the beam-beam limit.
On each turn the electromagnetic fields are calculated for Another issue, the coherent beam-beam tune shift is rel-
bothe™ ande™ beams, and then these beams are allowed tevant to the coherent motion of the two colliding beams. The
interact with each other through the fields. beams can be considered as two oscillators, each with its
Let us discuss the beam-beam limit and the coherendbwn eigenfrequency(tung. The two oscillators(beam$
beam-beam tune shift which are essential issues for undecouple with each other through the beam-beam interaction.
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Suppose that the two beams have the same tune. These two P2 52 p= (1)
degenerate modes split into two modes with different eigen- Ayp™(1)= —t - (r)=——, 3
tunes due to the beam-beam interaction. The eigenmodes can ax= ay €o

be represented by mixed states of the two beams. The two

modes are called the and 7 modes, respectively, represent- Where p~ is the charge distribution o= beam andr

ing the case in which the two beams have the same betatroh (X,Y). The beam-beam force due to tee beam is evalu-

phase, and the case where there is a phase differenge of ated from the potential as follows:

respectively. Note that the tune of themode is larger than

that of theo mode by~ & [1]. These coherent modes have e dp=(r) ADT e do

been observed in experimens;. Po X Py = Po  dy
In recently constructed” e~ colliders, bunches fill many

rf buckets in order to obtain a high luminosity. A higher  The solution of the Poisson equation is expressed as an

luminosity requires a reduced bunch spacing, with the resulhtegral over the Green function,

that beam collision with a finite crossing angle has been

proposed and studiefb]. Several colliders have been de- 1

signed and constructed with the crossing angle on the basis ¢(r)=— mj dr'G(r—r"), p(r'), G(r)=In|r|.

of such studies, and have now begun their commissioning 0 5)

[9,10]. Up to now the luminosity of colliders with a finite

crossing angle has been studied using only weak-strong,. <o the discrete fast Fourier transfo(BET) in two-

s:imulations. In this paper we perf_orm st_rc.)ng—stron.g SimUIa'dimensional space to perform the integral. The transverse
tIOI’]S.fOI‘ b(_aam-beam cpll|§|_ons with a f|n|te crossing angleregion containing the beam particle distribution is meshed
and investigate the reliability of machine performance for

such a configuration (nyXny), andG(r) andp(r) are projected onto the mesh. In
We begin, in Sec. Il, by presenting our model of thethe projection ofp, the charge of macroparticlex,f) is

) . . deposited on the mesh points with a weight function
strong-strong simulation. In Secs. Ill and IV we discuss thevv-»(x )=(1—|x—x|/AX)(1—|y—y;|/Ay), where & y;)
beam-beam limit and the beam-beam tune shift, respectivel)&é’noégs the nearest four mes%/ pgijnts 3(/)1'5/]! and AX(l)/')y]is

In the;e sections we limit ourselves _to two.—dlmensmnalmesh size. We do not consider particles outside ofrthe

simulations to study the phenomena. Finally, in Sec. V we . . : :
_ : . ) . Xn, rectangle in the present simulation. The meshed region

present results of three-dimensional simulations for a collider, Y ; ; .

with a finite crossing angle should be chosen_wnh a margin so that macropartlc_les do not

' go out of the region. We have to be careful in this regard
when a strong beam blow up is caused by the beam-beam
Il. MODEL OF SIMULATION interactions. The FFT's o&(r) andp(r) are evaluated, and

) ) ) their convolution gives the potential, i.e.,
In the strong-strong simulation, the calculation of the

beam-beam force is the most important issue. The calcula-

tion has to be performed rapidly and accurately for beams ;3(k)=f p(ryexp(ik-r)dr, (6)
with arbitrary distributions. The simulation, in which the cal-

culation of the beam-beam force is performed twice in every

collision, should be continued for several radiation damping é(k):j G(r)exp(ik-r)dr @
times in order to allow the system to reach a steady state. ’

Symplecticity of the force will be important for long term

I+
—_
-
~

stability. The study of the coherent motion of two beams is 1 1 o
one of our goals; therefore, the number of macroparticles  ¢(r)=— 5 J G(k)p(k)exp(—ik-r)dk. (8)
needs to be significantly large in order to distinguish coher- T€o (27)

ent motion from statistical noise.

In our study the collidinge™ beams are assumed to be The Green function In| has a singularity at the origin
ultrarelativistic (y*>1). We use as a dynamical variable, =0, but its integral is regular. The Green function is inte-
X(S) = (X,Px.Y.Py.Z,P;), Which is generally used to describe grated fpr each mesh cell of arAxX Ay, and then is trans-
beam motion in acceleratorp; , is the transverse momen- formed intok space,
tum normalized by the total momentum of a reference par-
ticle (pg=Eq/c), zis the delay time Z=s—ct) scaled by
the light speed, ang, is the energy deviatiorip,=(E
—Eg)/Ey] from that of the reference particle. Hesewhich

yj+Ay/2 Xj+Ax/2
f Goxy)dxdy, (9

G(x ’yj):f

Yj— Ay/2 J xj—Ax/2

is the longitudinal coordinate, is treated as a timelike vari- Ny.Ny
able in the motion. The collision point is denoted &Y. Gk ,qm= 2 G(X,y)explikx +igqmy). (10
The electric and magnetic fields produced by relativistic ij=1 . .

charged particles are evaluated by solving a two-dimensional

electrostatic problem, because the strength and direction dfhe integral Eq(9) is performed numerically for each mesh
the electric force is equal to that of the magnetic force. Thecell. The integrand is evaluated (& 10(y)=100 times
electrostatic potential¢™) due to thee™ beam obeys the inside the regiom\xx Ay. The integration error is 0.7% for
two-dimensional Poisson equation the mesh point nearest to the origin, and rapidly decreases
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FIG. 1. Beam-beam force calculated by an

electric potential due to a Gaussian beam.
100 000 particles are generated in a Gaussian dis-
o1} 4 tribution. The solid line shows the force calcu-
lated by the Bassetti-Erskine formula.
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away from the origirt. To evaluate Eq(5) for nonperiodic  The macroparticle coordinates in both beams are transferred
functions on the meshed spaggr) and G(r), we use a by multiplying by the revolution matriM, with 6 X6 com-
2n,X2ny, mesh and put macroparticles in only apxn,  ponents,

region[12]. This method is generally used to treat a potential

problem for an isolated systefp()—consi. The poten- X(s* +C)=Mx(s*), (12

tial, which is given only on the mesh points, can be interpo- ) ) _

lated to other points using spline fitting; that is, the splinewhereC |s.th.e cwcumf_erence of the ring. - o
functions (first and second derivativesare calculated on all (4 Radiation damping and quantum excitatiétadiation

the mesh points globally and the potential is estimated bylamping and quantum excitation are evaluated at only one
bicubic interpolatiorf11], so that the first and second deriva- Position in the ring, the interaction point. On the normal
tives of the potential are continuous everywhere. The symmodeX; of M, the transformation is expressed as follows
plectic condition is guaranteed by the relation, 14];

X,=X;(1-D)), (13
Pp(r) _9*p(r) 11
gxdy — 9yox (v Xi=Xi+2¢DiF, (14

whereD;=T,/7; is damping rate in one revolutiol § is the

because of the Poisson brackel,p,}=0. Note that the revolution time,r; is the damping time andF is a Gaussian

Laplacian of¢ (A,¢) is a continuous function af.

If the particle distribution is Gaussian, the potential andra'}g;)r_?h\éa{:zgf ;\:'Stg ur;f(g?g?cnecgh d chromaticitve ma
the force can be represented analytically, with the force . v w iciye may
also take into account the transverse wake force and chroma-

given by the Bassetti-ErskingBE) formula[13]. We have s . .
checked the solution of our Poisson solver for a Gaussiaﬁi:é?r/ gﬁgggdg;gaogi:;?ﬁi%g parameters. The code includes

distribution by comparing the result with the force given by

the BE formula. Figure 1 shows the beam-beam force along - p
thex andy axes, as given by our prografthe plotting sym- Hc=( X2 _VyZ) D,, (15)
bols) and by the BE formuldthe solid curvé We see good Bx By
agreement. -
The strong simulation is performed by combining the re- :”7
sults of the Poisson solver and of a transfer map for one ring Hu E {Fd2x+Fy(2)y}, (16)

revolution. The actual calculation is carried out along the

following steps. where F;(z) is the convolution of the dipole moment of
beam and the transverse wake fofd®]. We have found
that, with our parameters, these effects influence the results

(1) Initialization. We first generate macroparticles with a onlv weaklv. thouah thev are interesting scientifically. We
Gaussian distribution in six-dimensional phase space. The Y Y g Y 9 Y-

initial emittances of the beam are set to be their nomina\NIII no longer mention these effects in this paper.

values. _ _ _ After initialization (1), we repeat the sequenf@)—(4) or
(2) Beam-beam kickThe electric potential and force due (5] for a period of several radiation damping times.
to the two beams are calculated by using the method de- The Juminosity is calculated using the definition
scribed above, and then the macroparticles of each beam are
kicked by the potential of the opposing beam.
(3) One turn map through the ringVe consider only the L=fof dsdz dif dxdyp*(x,y,z,8)p " (X,y,2',—9)
linear map for the revolution of particles, because we here

are concerned only with the core distribution of the beam. X 8(s—(z—2")/12), (17
The integral is replaced with the exact solutiofif In(x® 2The chromaticity kick is not unique. The Hamiltonian is deter-
+y?)dx dy= —3xy+x? tan 1(y/x) +y? tan” }(x/y) + xy log(C+Yy?) mined by giving the momentum dependence of @fenction at the

in the latest version of the code. interaction point for more accurate treatment.
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TABLE |. Basic parameters of KEKB. TABLE Il. Check for statistics and mesh size.
HER LER N 50 000 50 000 100 000

—— - " Mesh 64x 64 1284128 64X 64

aricle € € Mesh size fzm) 10 0.4 5% 0.3 10x0.4
c 3016 m
:E 81 ?:V 3'2 eiev L 8.7 10% 8.4x 10% 8.6x 10%
\ : 5000 : o (pm)e /et 63/66 63/64 62/67

bunch - m)e /et 2.4/4.2 2.414.4 2.3/4.4
Nep/bunch 1.4 1010 zaxigo DM
IBX 0.33 m
By 0.008 m 0.0415, 0.0472, 0.0533, and 0.0593. Results&a0.0356
£y 1.8x10°8 m

and§>0.0593 are rather smooth, e.g, , for £<0.0356 is

o 3.6<10° m roughly constant, and that §&0.0593 increases monotoni-
Exy ~0.059 cally for £ The figure shows that the vertical beam size and
vl vy 0.52/0.08 luminosity fluctuate ag=0.0415 and 0.0472, and the lumi-
To/7xy,z 2.5/5.0¢10°* 12/24¢10°%  posity for £=0.0472 is larger than that of 0.0533, i.e., an
bc 2X11 mrad inversion of luminosity occurs.

It is helpful to see the dipole motion to understand the
. ) ) . ] ] luminosity behavior. Figure 3 shows the evolution of the
wherep™(x,y,2) is density of thee™ beam. The integration yertical dipole amplitude for varioug. We find that clear
is evaluated by summing the macroparticle density on th@gnerent vertical motion occurs faf=0.0593 [see Figs.
mesh points. _ 3(g)-3(i)]. For £&=0.0593,0.0654see Figs. &) and 3h)],

We use this simulation to study the beam-beam effect ifpe ginole motion dies out with time, while the beam size
the KEKB facotry(KEKB). KEKB is an asymmetric circular enlarges initially and stays lardéor £=0.0593 as seen in
collider, which consists of a low energy positron rifidER)  Figs 7c) and Zd)]. The fall off of the dipole coherent mode
and a high energy electron ringlER). The parameters for 5y pe due to filamentation of the motion due to an
KEKB which are important for the beam-beam effect are,mpjitude-dependent tune in the strong nonlinear force at

shown in Table I. large amplitude(aroundy=0.2 wm). The beam loses a

We first show the dependence on the statistics and thgisole-type coherence, but retains its large vertical extent
mesh size in a typical example. Three trials with d|fferentafter the initial big displacement. On the other hand£at

statistics _and mesh size are given in Tabl&The number of =0.0771 the dipole amplitude falls off only slowly, which
mesh points 1f, and ny) is that of real space where the suggests that this simple picture is not the whole story. Note
macroparticles are mapped. A FFT is performed im 2 o4 'the amplitude of the dipole motion is not very large: it
x2n, mesh space, as was mentioned before. Their resul$,,ches to only-10% of the natural beam size at its maxi-
are consistent with each other. Hereafter we use a 6fym The dipole amplitude appears to grow beginning with
X 64 mesh with a horizontal and vertical size of 10 £=0.0415[see Fig. &)]. The amplitude continues to in-

X 0.4 um?, respectively, and taki =100 000. crease and displays a clear dipole signal beginning ith

ll. BEAM-BEAM LIMIT 0.1 — —
£ o008 @ el ® oY
We discuss here the beam-beam limit using the strong- ST 3 PV —— I I aviid
strong simulation. The beam-beam limit was studied by do- S oo0sl 4L 4
ing simulations for various stored currents=). The bunch :‘;’ 0.02 |- 4+ -
population of the two beams was varied between 0.005 ———— —
20%—-140% of the design value, corresponding to a beam- 0.004
beam parameter 0.0%2,<0.083. In our simulations the 0.003

condition, n+/n‘=y‘/y*¥, is always kept; therefore the 0.002 F
beam-beam parameter is often used in place of the beam 0.001
current hereafter. The beam sizes, the barycenter, and the 0
luminosity were calculated on every turn.

V. size (mm)

>
Figure 2 shows the evolution of the beam sizeg () and 3 15
the luminosity(L) for various beam-beam parameters. The E 10 &
figure shows that an equilibrium is reached at around 20 000 3
turns except for calculations using two parametefs, ol 1+ v
=0.0472 and 0.0533. The different curves in the figure give 0 10 20 30 40 50
results for  beam-beam parameters, £=0.0356, Turns (x10Kk)

FIG. 2. Evolution ofoy(e™), o,(e"), and luminosity for beam-
beam parameter§=0.0356,0.0415,0.0472,0.0533,0.0593. Dashed
3These results are obtained for three-dimensional simulation wittines give the nominal values. Luminosity is plotted in units of
a crossing angle, which is discussed in Sec. V. 10%® cm?s L.
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0.06

decreases the effectiy@ function depending on the betatron

8'8‘2‘ - (@ 00287 1 © 008 1 [ (0098 ] tune. For&>0.05, o, begins to increase. The size of the
0 electron beam remains smaller than the natural size, while
-0.02 that of the positron beam becomes larger than the natural
-0.04 size. The vertical beam size is about the natural sizeéfor
-0.06 <0.04, while it enlarges for highef, with the enlargement
0.06 .
0.04 of the positron beam more pronounced than that of the elec-
0.02 tron beam. This difference in behavior is due to the differ-
0 ence of the two damping times: that of the electron beam is
:g-gi half that of the positron bearfsee Table)l The luminosity

increases quadratically fg<0.05, while it increases more
slowly at higher currents.

-0.06
0.4

0.2
IV. COHERENT BEAM-BEAM TUNE SHIFT

Consider two opposing beams with the same tune. When
el Lo L coupled through the beam-beam force the two eigenmodes
"0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 will have different tunes. The coherent beam-beam tune shift

-0.2

Turns (x10k) Turns (x10k) Turns (x10k) is defined as the tune difference between the two eigen-
modes.
FIG. 3. Evolution of the vertical dipole amplitude of theef We summarize the linear theory of a one-dimensional

beam. Verti.cal axes give the vertical arpplitqde iq unitsum.. The  model for the coherent tune shift]. The two beams are

corresponding beam-beam parameter is written in each figure.  555umed to be rigid bunches with Gaussian distributions. The
two beams are considered to be a coupled, two-oscillator

=0.0593[Fig. 3(g)]. We may conclude that the region &f syster_n c_onne_cted by the beam-beam force. The beam-beam

—0.04-0.05 is near the threshold of the dipole instability.force is linearized and is expressed as

This progression of plots illustrates the phenomenon of the

beam-beam limit well. L 2mE

The relation of the final beam sizes to the luminosity as a Ap™=———(y —y"). (18

function of ¢ is shown in Fig. 4. The dotted lines show the B

natural beam sizes and the geometrical luminosity. The hori- .

zontal beam size of the™ beam decreases with increasifig The coordinates of the two bea’_“s are transferrgd by the

at £<0.05. This is due to the dynamic beta effect; that is, thi?eam-beam force and one revolution through the ring as fol-

focusing force due to the beam-beam interaction increases WS:
Y*(s+C) Y*(s)
T T T I>< — KM ,

g o01p@ ex 1 Y~ (s+C) Y~ (s)
E e X
; ******¥¥§f+++ - (19)
g 0.05 e- N Y+( : _ y,(s)/\/ﬁ,
T “(§)=ynTy” + o |

0 1 1 1 1 py B

0.006 T T T |>< . . .

. (b) y &x where K t_he transfer matrix for the linearized beam-beam
g 0.004 St o force, is given by
® +
N XX
B 0.002 | ypex XX = 1 0 0 0
> —

0 1 1 1 1 - 27T§+ 1 2wy §+ ¢ 0

K= . (20
15 F T T T P 0 0 1 0
> (©) AT 2mETE 0 —2mE 1
2 10 ¥+
c . . .
§ 5 +* M is the revolution matrix for the two beams,
i B + 7
4
0 o ! ! ! CO0S2mvy  Sin 2wy 0 0
0 0.02 0.04 0.06 0.08 0.1 —sin2mv,  COS 2myg 0 0
Beam-beam parameter _ .
P M= 0 0 CoS2rvy  Sin2mvg
FIG. 4. Beam sizes and luminosity for various currents. Dashed 0 0 —sin2myy COS 27y,

lines show the nominal values. Luminosity is plotted in units of
10*¥® cm ?s™ L. (21
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FIG. 5. Fourier spectra of the vertical dipole
motion for various beam-beam parameters. The
vertical axis is in arbitrary units. The correspond-
ing beam-beam parameter is written in each fig-
ure.

0.1

10000 T
1000 |- 0.0593

0 0.1 02 0 0.1 02 0 0.1 02 0 0.1 0.2
tune tune tune tune

The eigenvalues of the transfer matiid correspond to the coherent motion seen in Fig. 3 can be considered to be
tunes of the eigenmode, which are= vy and v=wvy+ (&* caused by the excitation of the mode.

+£&7)/2. The eigenvectors are given by We have performed a similar analysis for the horizontal
dipole motion. The relation of the beam-beam tune shift and
Y, =Y +Y", Y, =YY, (22)  the beam-beam parametéris summarized in Fig. 6. The

tune shift is evaluated using the relation,
We see that the modes correspond to the correlated betatron

motion of the two beams moving in phase and out of phase

by 7. These modes are called theand = modes, respec- COS 2mv=C0S 2mrvo+ 2mE Sin 2mvyg. (26)
tively. Note that the linear theory can be easily extended by
allowing a different tune for each beam in H@1). We see that the vertical beam-beam tune shift linearly in-

These two eigenmodes have been observed in actual agreases for¥<0.04 and saturates at arouge-0.05, while
celerators[8]. However, the measured tune difference be-the horizontal tune shift increases linearly to hig§efThe
tween the two modes has been reported to be larger thagradient of the vertical tune shift at lower currents is larger
(ET+¢&)2=¢. than the beam-beam parameter, and the horizontal shift is

An analysis using the Vlasov equation can explain theeven larger. These features are consistent with experiment
enhancement of the beam-beam tune shifts obseri/@d  and the Vlasov theory.

The corrected tune shift is expressed by

v V. THREE-DIMENSIONAL SIMULATION
v_—va=G(r)¢, r=o,/(o+0oy), 23
=~ 10=6(r)¢ y/(oxtay) 23 WITH CROSSING ANGLE

where We have performed three-dimensional simulations of the

(24) beam-beam interaction with a finite crossing angle. The
crossing angle is treated in accordance with R&f. Before
collision, the macroparticles of the two beams are transferred

(25) to thg hgad-on frame using a Lorentz boost. The transforma-
tion is given by

G=1.33-0.3%+0.2792, (horizonta)

=1.33-0.371-r)+0.2791—-r)? (vertical.

The tune shifts for KEKB are estimated to e/, = 1.32%,

and Avy=1.2?gy by substitutingr =0.025 (@,=77 um, 0.1 ' R Vo
oy=1.9 pm). . . 0.08 - T, .

We study this phenomena using the strong-strong simula- Y
- O b E 0.06 - ot _ATTT
tion. Keepingn™ y"~n" vy~ implies that§™ ~ & ~¢&. A ' +4 4

. . . . v $

The data of the dipole amplitudes, which were shown in 0.04 - 4
Fig. 3, are analyzed by performing a fast Fourier transform QSF
(FFT). Figure 5 shows the Fourier power spectra of the ver- 002 -
tical dipole motion. In each case two peaks, which corre- 0 | . | |
spond to the tunes of the and = _modes, are found. The 0 002 004 006 008 01
distance between the two peaks is the coherent beam-beam 3
tune shift. We see that the beam-beam tune shift increases
gradually with increasing beam currerd) (and that the Fou- FIG. 6. Beam-beam tune shifts vs a nominal beam-beam param-

rier amplitude of ther mode also grows at high&f. The  eter. Note that the straight line has a slope of 1.
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P .
+—sin¢g
S

E

x* =tan¢z+ ( 1

*
y* =y+sin¢g—ix,
S

s 2 _H
= Cosd p;csmqu,
*_px—tan¢H
* _ py
Py = Cosg’

p¥ =p,—tanpp,+tarf¢H,

where

H=(1+p,) —\(1+p,)>—pi—p,

Ps=(1+p,)?—p%—pl.

A star designates a dynamical variable in the head-on fram
Note that thex* andy* axes are defined in the same direc-

tion for both beams, while thg* axis is defined in opposite
directions, since the two beams travel in opposite direction
The bunch is sliced in the longitudinal direction in the
head-on frame. We consider the collision between ithe
(e™) and jth (e7) slices which have longitudinal coordi-
natesz and z; , respectively. Here andj designate the

slice number, counted from the head slice. The collision

point between the two slices deviates m/s’fw:(zi+
—z; )/2 from the interaction poirg* in the coordinate of the
e” beam. Since the sign afis opposite for thee™ ande™
beams, the deviation is expressedAs’ ;= —As? ;; in the
coordinate of thee™ beam.

All particles are transferred to the interaction posfit

before collision and are sorted into the slices. The slices are

allowed to collide in the order i(j)=(1,1),(1,2),
(2,1),(1,3),(2,2),(3,1), ... Theparticles, which collide at
As’;ij , are transferred to their collision point H$]

X.=D.(As% )x.,

2 o2 (28
Di(As)Eex%:—wAs:),
where D is represented by the Lie operator, i.e.,

f(x,p):g(x,p)={f,g} with {} the Poisson bracket. The
collision between the slices is performed as follows:
e
D.(Ast i')exl{:_ — ¢z i(Xe i,y i) D;l(AS{‘: i)
) Po ] g ' )
(29)

where¢_ j and ¢, ; are the electric potential due to thh

electron and théth positron slices, respectively. The beam-
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FIG. 7. Evolution of luminosity. The crossing angle is 2
X 11 mrad. Luminosity is plotted in units of ¥cm 2571,

peating the transformation of E(9) for all combinations of

the slices. After the head-on collision, the macroparticles are
transferred back to the unboosted frame by the inverse map
of Eq. (27).

We have performed simulations in which both beams are
represented by 100000 macroparticles and for which five
longitudinal slices are used. The macroparticles are tracked
for 50000 turns, while undergoing the interaction of the
beam-beam force, the one turn map, and synchrotron radia-
éion and quantum excitation. Results are similar to the two-
dimensional ones given earlier. We find little enlargement in
the horizontal beam sizes, and a large enlargement in the
vertical beam sizes. The luminosity is reduced by the vertical
enlargement. The beam sizes and luminosity are smooth
function of ¢; we find no fluctuations. Figure 7 shows the
time evolution of the luminosity for various beam-beam pa-
rameterse.

The final beam sizes and luminosity for various currents
are summarized in Fig. 8. Here the beam-beam parameter is
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FIG. 8. o, oy, and luminosity for various beam-beam param-
eters. The crossing angle isx21 mrad. Luminosity is plotted in

beam interaction in the head-on frame is carried out by reunits of 13* cm 2572,
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given by Eq.(2), and the incoherent beam-beam tune shift isvertical coherent motion, which corresponds to thenode,
about 90% of the beam-beam parameter due to the crossing induced at higher values of the beam-beam parameter.
angle [17]. The enlargement of the positron beam is en- The coherent beam-beam tune shift was seen in the Fou-
hanced compared to the case without a crossing angle, whilger spectra of the beam dipole motion given in the simula-
that of the electron beam is reduced. The design value of thigons. It was found that the tune shift increases linearly with
nominal beam-beam parameter is 0.059 for KEKB. Thethe beam current at lower currents, and saturates at higher
simulations show that a luminosity of 83.0°3 cm 2s™!  currents. The slope of the tune shift dependence at lower
can be achieved at this current. Note that this luminosity iurrents is somewhat larger than predicted by the simple ana-

slightly smaller than the design value ok1L0* cm ?s™ !, lytical estimate. The vertical tune shift saturated &t
~0.05 where the beam-beam limit occurs. We found, in ad-
VI. SUMMARY dition, that the horizontal tune shift is larger than that of the
) ) ) vertical one, with a value consistent with the Yokoya factor.
We have studied the beam-beam effect in a circefa A three-dimensional simulation with a finite crossing

collider using a strong-strong simulation program. The simuyngle (9,=22 mrad) was also carried out to study the fea-

lation makes it possible to consider beams with arbitrarysjpility of the KEKB factory design. The calculated luminos-
distributions, since the beam-beam force is calculated by gy js"~8.5x10% cm 2s %, which is 85% of the KEKB

Poisson solver using the particle in cell method. The beamgesign value.
beam limit and coherent beam-beam tune shift were studied
for the parameters of KEKB using a two-dimensional simu-
lation.

The beam-beam limit phenomenon was seen in the cur-
rent dependence of the luminosity. The simulation showed The author thanks K. Yokoya and K. Oide for many fruit-
that the luminosity depends quadratically on the beam-bearful discussions concerning the algorithm of the strong-strong
parameter fog<0.05, with a somewhat weaker dependencesimulation. The author also thanks K. Bane for reading the
on ¢ at higher currents. In addition, it was shown that amanuscript.
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