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Simulation of beam-beam effects in a circulare¿eÀ collider

Kazuhito Ohmi
KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

~Received 11 January 2000!

We have carried out a strong-strong simulation to study the beam-beam effect in a circular electron-positron
collider. In the simulation, both the positron and electron beams are represented by macroparticles, and the
interaction between the two beams is obtained by solving the Poisson equation for the charge distribution of
the macroparticles. Using the simulation, we investigate the beam-beam limit and the coherent beam-beam
tune shift, two characteristic phenomena of the beam-beam effect. We also study collision with a finite crossing
angle, and verify its feasibility for the KEKB factory. Our results for KEKB yield an estimated luminosity of
8.531033 cm22 s21, only slightly lower than the design value of 131034 cm22 s21.

PACS number~s!: 29.20.Dh, 29.27.2a, 41.75.Ht
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I. INTRODUCTION

Particle factories, which produceB, charmonium, orf
mesons with high statistics, require high luminositi
(.1033 cm22 s21). They are designed to run at a hig
beam-beam parameter and at a low single bunch current,
to achieve the luminosity by using many bunches. In su
colliders the beam-beam limit can be reached without
countering single bunch collective phenomena, like the he
tail effect and bunch lengthening, i.e., it is the beam-be
effect that limits the luminosity. It is therefore important
study the beam-beam effect for such machines quan
tively.

Computer simulations are necessary to quantitativ
study the beam-beam effect, since the interaction betw
two colliding beams is highly nonlinear. Much work ha
been done on this topic using various types of compu
programs. These can roughly be classified into three kind
methods: the rigid bunch model, weak-strong simulatio
and strong-strong simulations. The rigid bunch model,
simplest of the three, has been used to study the cohe
mode of the two beam system@1#. The weak-strong simula
tion, which is generally used to design colliders@2–5#, can
be used to predict the luminosity and the formation of no
Gaussian halos quantitatively, though coherent effects ca
be addressed. Finally the strong-strong simulation, whic
not as established as the other two methods, has been
by Krishnagopal@6,7# to study the flip-flop effect and beam
size oscillations in CESR and PEP-II.

The strong-strong simulation, which requires lar
amounts of computer resources, has recently become fea
due to the fast progress in computing power during
1990s. In a strong-strong simulation both colliding beams
represented by macroparticles. A large number of macro
ticles is used in order to reduce the effect of statistical no
The electromagnetic field of each relativistic beam is o
tained by solving the two-dimensional Poisson equati
which we here solve using the particle-in-cell~PIC! method.
On each turn the electromagnetic fields are calculated
bothe2 ande1 beams, and then these beams are allowe
interact with each other through the fields.

Let us discuss the beam-beam limit and the cohe
beam-beam tune shift which are essential issues for un
PRE 621063-651X/2000/62~5!/7287~8!/$15.00
nd
h
-

d-

a-

ly
en

r
of
,
e
nt

-
ot
is
sed

ble
e
re
r-

e.
-
,

or
to

nt
r-

standing the beam-beam effect. The beam-beam limit
luminosity saturation phenomenon observed in high inten
collisions. For two Gaussian bunches in collision, the lum
nosity L is expressed

L5
n1n2 f c

2ps̄xs̄y

, s̄ i5As i ,1
2 1s i ,2

2 , ~1!

wheren6 is the number of particles in a bunch,f c the col-
lision frequency, andsx,y

6 the bunch size. Note that1/2 are
used to indicate the properties of thee1/e2 beam. Here the
longitudinal structure of the beam has been neglected. Eq
tion ~1! shows that the luminosity is proportional ton1n2, if
the beam sizes are kept constant.

The beam-beam parameterj is used as a measure of th
strength of the beam-beam effect. It is given by

jx,y
6 5

n7r e

g6

bx,y
6

2psx,y
7 ~sx

71sy
7!

, ~2!

where r e52.82310215 m is the classical electron radius
andb6 andg6 are the beta function and relativistic facto
respectively, of thee6 beam. The beam-beam parameterj6

equals the incoherent tune shift of thee6 beam due to the
interaction with the opposing beam (e7). There are four
beam-beam parameters: for electrons and/or positrons
for the horizontal and/or vertical plane. Note that the bea
beam parameter of each beam linearly depends on the
rent of the opposing beam. We will use the same definit
of the beam-beam parameterj when considering collisions
with a finite crossing angle in Sec. V. In such collisions t
incoherent tune shift becomes somewhat less than the be
beam parameter.

Experimentally the luminosity is found to be proportion
to n1n2 at low currents, then grows more slowly at high
currents, and finally reaches a limit where the tune shif
;0.05. We call this limit the beam-beam limit.

Another issue, the coherent beam-beam tune shift is
evant to the coherent motion of the two colliding beams. T
beams can be considered as two oscillators, each with
own eigenfrequency~tune!. The two oscillators~beams!
couple with each other through the beam-beam interact
7287 ©2000 The American Physical Society
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7288 PRE 62KAZUHITO OHMI
Suppose that the two beams have the same tune. These
degenerate modes split into two modes with different eig
tunes due to the beam-beam interaction. The eigenmode
be represented by mixed states of the two beams. The
modes are called thes andp modes, respectively, represen
ing the case in which the two beams have the same beta
phase, and the case where there is a phase differencep,
respectively. Note that the tune of thep mode is larger than
that of thes mode by;j @1#. These coherent modes hav
been observed in experiments@8#.

In recently constructede1e2 colliders, bunches fill many
rf buckets in order to obtain a high luminosity. A high
luminosity requires a reduced bunch spacing, with the re
that beam collision with a finite crossing angle has be
proposed and studied@5#. Several colliders have been d
signed and constructed with the crossing angle on the b
of such studies, and have now begun their commission
@9,10#. Up to now the luminosity of colliders with a finite
crossing angle has been studied using only weak-str
simulations. In this paper we perform strong-strong simu
tions for beam-beam collisions with a finite crossing an
and investigate the reliability of machine performance
such a configuration.

We begin, in Sec. II, by presenting our model of t
strong-strong simulation. In Secs. III and IV we discuss
beam-beam limit and the beam-beam tune shift, respectiv
In these sections we limit ourselves to two-dimensio
simulations to study the phenomena. Finally, in Sec. V
present results of three-dimensional simulations for a colli
with a finite crossing angle.

II. MODEL OF SIMULATION

In the strong-strong simulation, the calculation of t
beam-beam force is the most important issue. The calc
tion has to be performed rapidly and accurately for bea
with arbitrary distributions. The simulation, in which the ca
culation of the beam-beam force is performed twice in ev
collision, should be continued for several radiation damp
times in order to allow the system to reach a steady st
Symplecticity of the force will be important for long term
stability. The study of the coherent motion of two beams
one of our goals; therefore, the number of macropartic
needs to be significantly large in order to distinguish coh
ent motion from statistical noise.

In our study the collidinge6 beams are assumed to b
ultrarelativistic (g6@1). We use as a dynamical variabl
x(s)5(x,px ,y,py ,z,pz), which is generally used to describ
beam motion in accelerators:px,y is the transverse momen
tum normalized by the total momentum of a reference p
ticle (p05E0 /c), z is the delay time (z5s2ct) scaled by
the light speed, andpz is the energy deviation@pz5(E
2E0)/E0# from that of the reference particle. Heres, which
is the longitudinal coordinate, is treated as a timelike va
able in the motion. The collision point is denoted bys* .

The electric and magnetic fields produced by relativis
charged particles are evaluated by solving a two-dimensio
electrostatic problem, because the strength and directio
the electric force is equal to that of the magnetic force. T
electrostatic potential (f6) due to thee6 beam obeys the
two-dimensional Poisson equation
two
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D2f6~r![S ]2

]x2
1

]2

]y2D f6~r!52
r6~r!

e0
, ~3!

where r6 is the charge distribution ofe6 beam andr
5(x,y). The beam-beam force due to thee7 beam is evalu-
ated from the potential as follows:

Dpx
752

e

p0

]f6~r!

]x
, Dpy

752
e

p0

]f6~r!

]y
. ~4!

The solution of the Poisson equation is expressed as
integral over the Green function,

f~r!52
1

2pe0
E dr8G~r2r8!, r~r8!, G~r!5 lnuru.

~5!

We use the discrete fast Fourier transform~FFT! in two-
dimensional space to perform the integral. The transve
region containing the beam particle distribution is mesh
(nx3ny), andG(r) andr(r) are projected onto the mesh. I
the projection ofr, the charge of macroparticles (x,y) is
deposited on the mesh points with a weight functi
wi j (x,y)5(12ux2xi u/Dx)(12uy2yj u/Dy), where (xi ,yj )
denotes the nearest four mesh points of (x,y) andDx(y) is
mesh size. We do not consider particles outside of thenx
3ny rectangle in the present simulation. The meshed reg
should be chosen with a margin so that macroparticles do
go out of the region. We have to be careful in this rega
when a strong beam blow up is caused by the beam-b
interactions. The FFT’s ofG(r) andr(r) are evaluated, and
their convolution gives the potential, i.e.,

r̂~k!5E r~r!exp~ ik•r!dr, ~6!

Ĝ~k!5E G~r!exp~ ik•r!dr, ~7!

f~r!52
1

2pe0

1

~2p!2E Ĝ~k!r̂~k!exp~2 ik•r!dk. ~8!

The Green function lnuru has a singularity at the originr
50, but its integral is regular. The Green function is int
grated for each mesh cell of areaDx3Dy, and then is trans-
formed intok space,

G~xi ,yj !5E
yj 2Dy/2

yj 1Dy/2E
xi2Dx/2

xi1Dx/2

G~x,y!dx dy, ~9!

Ĝ~kl ,qm!5 (
i , j 51

nx ,ny

G~xi ,yj !exp~ ik lxi1 iqmyj !. ~10!

The integral Eq.~9! is performed numerically for each mes
cell. The integrand is evaluated 10(x)310(y)5100 times
inside the regionDx3Dy. The integration error is 0.7% fo
the mesh point nearest to the origin, and rapidly decrea
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FIG. 1. Beam-beam force calculated by a
electric potential due to a Gaussian bea
100 000 particles are generated in a Gaussian
tribution. The solid line shows the force calcu
lated by the Bassetti-Erskine formula.
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away from the origin.1 To evaluate Eq.~5! for nonperiodic
functions on the meshed space,r(r) and G(r), we use a
2nx32ny mesh and put macroparticles in only annx3ny
region@12#. This method is generally used to treat a poten
problem for an isolated system@f(`)→const#. The poten-
tial, which is given only on the mesh points, can be interp
lated to other points using spline fitting; that is, the spli
functions~first and second derivatives! are calculated on al
the mesh points globally and the potential is estimated
bicubic interpolation@11#, so that the first and second deriv
tives of the potential are continuous everywhere. The sy
plectic condition is guaranteed by the relation,

]2f~r!

]x]y
5

]2f~r!

]y]x
~11!

because of the Poisson bracket$px ,py%50. Note that the
Laplacian off (n2f) is a continuous function ofr.

If the particle distribution is Gaussian, the potential a
the force can be represented analytically, with the fo
given by the Bassetti-Erskine~BE! formula @13#. We have
checked the solution of our Poisson solver for a Gauss
distribution by comparing the result with the force given
the BE formula. Figure 1 shows the beam-beam force al
thex andy axes, as given by our program~the plotting sym-
bols! and by the BE formula~the solid curve!. We see good
agreement.

The strong simulation is performed by combining the
sults of the Poisson solver and of a transfer map for one
revolution. The actual calculation is carried out along t
following steps.

~1! Initialization. We first generate macroparticles with
Gaussian distribution in six-dimensional phase space.
initial emittances of the beam are set to be their nomi
values.

~2! Beam-beam kick.The electric potential and force du
to the two beams are calculated by using the method
scribed above, and then the macroparticles of each beam
kicked by the potential of the opposing beam.

~3! One turn map through the ring.We consider only the
linear map for the revolution of particles, because we h
are concerned only with the core distribution of the bea

1The integral is replaced with the exact solution,** ln(x2

1y2)dx dy523xy1x2 tan21(y/x)1y2 tan21(x/y)1xy log(x21y2)
in the latest version of the code.
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The macroparticle coordinates in both beams are transfe
by multiplying by the revolution matrixM, with 636 com-
ponents,

x~s* 1C!5Mx~s* !, ~12!

whereC is the circumference of the ring.
~4! Radiation damping and quantum excitation.Radiation

damping and quantum excitation are evaluated at only
position in the ring, the interaction point. On the norm
mode Xi of M, the transformation is expressed as follow
@14#:

Xi5Xi~12Di !, ~13!

Xi5Xi1A2« iDi F̂, ~14!

whereDi5T0 /t i is damping rate in one revolution (T0 is the
revolution time,t i is the damping time!, andF̂ is a Gaussian
random variable with unit variance.

~5! The transverse wake force and chromaticity.We may
also take into account the transverse wake force and chro
ticity depending on operating parameters. The code inclu
their effects by a single kick,2

Hc5S pjx

bx
x21

pjy

by
y2D pz , ~15!

Hw5
n6e2

E
$Fx~z!x1Fy~z!y%, ~16!

where Fi(z) is the convolution of the dipole moment o
beam and the transverse wake force@15#. We have found
that, with our parameters, these effects influence the res
only weakly, though they are interesting scientifically. W
will no longer mention these effects in this paper.

After initialization ~1!, we repeat the sequence@~2!–~4! or
~5!# for a period of several radiation damping times.

The luminosity is calculated using the definition

L5 f 0E ds dz dz8E dx dyr1~x,y,z,s!r2~x,y,z8,2s!

3d„s2~z2z8!/2…, ~17!

2The chromaticity kick is not unique. The Hamiltonian is dete
mined by giving the momentum dependence of theb function at the
interaction point for more accurate treatment.
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7290 PRE 62KAZUHITO OHMI
wherer6(x,y,z) is density of thee6 beam. The integration
is evaluated by summing the macroparticle density on
mesh points.

We use this simulation to study the beam-beam effec
the KEKB facotry~KEKB!. KEKB is an asymmetric circular
collider, which consists of a low energy positron ring~LER!
and a high energy electron ring~HER!. The parameters fo
KEKB which are important for the beam-beam effect a
shown in Table I.

We first show the dependence on the statistics and
mesh size in a typical example. Three trials with differe
statistics and mesh size are given in Table II.3 The number of
mesh points (nx and ny) is that of real space where th
macroparticles are mapped. A FFT is performed in 2nx
32ny mesh space, as was mentioned before. Their res
are consistent with each other. Hereafter we use a
364 mesh with a horizontal and vertical size of 1
30.4 mm2, respectively, and takeN5100 000.

III. BEAM-BEAM LIMIT

We discuss here the beam-beam limit using the stro
strong simulation. The beam-beam limit was studied by
ing simulations for various stored currents (n6). The bunch
population of the two beams was varied betwe
20% –140% of the design value, corresponding to a be
beam parameter 0.012<jy<0.083. In our simulations the
condition, n1/n25g2/g1, is always kept; therefore th
beam-beam parameter is often used in place of the b
current hereafter. The beam sizes, the barycenter, and
luminosity were calculated on every turn.

Figure 2 shows the evolution of the beam sizes (sx,y) and
the luminosity~L! for various beam-beam parameters. T
figure shows that an equilibrium is reached at around 20
turns except for calculations using two parameters,j
50.0472 and 0.0533. The different curves in the figure g
results for beam-beam parameters,j50.0356,

3These results are obtained for three-dimensional simulation
a crossing angle, which is discussed in Sec. V.

TABLE I. Basic parameters of KEKB.

HER LER

Particle e2 e1

C 3016 m
E 8 GeV 3.5 GeV
I 1.1A 2.6A
Nbunch ;5000
ne,p /bunch 1.431010 3.331010

bx 0.33 m
by 0.008 m
«u 1.831028 m
«v 3.6310210 m
jx,y

6 ;0.059
nx /ny 0.52/0.08
T0 /txy,z 2.5/5.031024 1.2/2.431024

uc 2311 mrad
e

n

e
t

lts
4

g-
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n
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m
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0

e

0.0415, 0.0472, 0.0533, and 0.0593. Results forj,0.0356
andj.0.0593 are rather smooth, e.g.,sx,y for j,0.0356 is
roughly constant, and that atj.0.0593 increases monoton
cally for j. The figure shows that the vertical beam size a
luminosity fluctuate atj50.0415 and 0.0472, and the lum
nosity for j50.0472 is larger than that of 0.0533, i.e., a
inversion of luminosity occurs.

It is helpful to see the dipole motion to understand t
luminosity behavior. Figure 3 shows the evolution of t
vertical dipole amplitude for variousj. We find that clear
coherent vertical motion occurs forj>0.0593 @see Figs.
3~g!–3~i!#. For j50.0593,0.0652@see Figs. 3~g! and 3~h!#,
the dipole motion dies out with time, while the beam si
enlarges initially and stays large@for j50.0593 as seen in
Figs. 2~c! and 2~d!#. The fall off of the dipole coherent mod
may be due to filamentation of the motion due to
amplitude-dependent tune in the strong nonlinear force
large amplitude~around y50.2 mm). The beam loses a
dipole-type coherence, but retains its large vertical ext
after the initial big displacement. On the other hand, aj
50.0771 the dipole amplitude falls off only slowly, whic
suggests that this simple picture is not the whole story. N
that the amplitude of the dipole motion is not very large:
reaches to only;10% of the natural beam size at its max
mum. The dipole amplitude appears to grow beginning w
j50.0415 @see Fig. 3~d!#. The amplitude continues to in
crease and displays a clear dipole signal beginning witj

th

TABLE II. Check for statistics and mesh size.

N 50 000 50 000 100 000
Mesh 64364 1283128 64364
Mesh size (mm) 1030.4 530.3 1030.4

L 8.731033 8.431033 8.631033

sx(mm)e2/e1 63/66 63/64 62/67
sy(mm)e2/e1 2.4/4.2 2.4/4.4 2.3/4.4

FIG. 2. Evolution ofsy(e
2), sy(e

1), and luminosity for beam-
beam parametersj50.0356,0.0415,0.0472,0.0533,0.0593. Dash
lines give the nominal values. Luminosity is plotted in units
1033 cm22 s21.
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50.0593@Fig. 3~g!#. We may conclude that the region ofj
50.04–0.05 is near the threshold of the dipole instabil
This progression of plots illustrates the phenomenon of
beam-beam limit well.

The relation of the final beam sizes to the luminosity a
function of j is shown in Fig. 4. The dotted lines show th
natural beam sizes and the geometrical luminosity. The h
zontal beam size of thee6 beam decreases with increasingj
at j,0.05. This is due to the dynamic beta effect; that is,
focusing force due to the beam-beam interaction increase

FIG. 3. Evolution of the vertical dipole amplitude of thee1

beam. Vertical axes give the vertical amplitude in units ofmm. The
corresponding beam-beam parameter is written in each figure.

FIG. 4. Beam sizes and luminosity for various currents. Das
lines show the nominal values. Luminosity is plotted in units
1033 cm22 s21.
.
e

a

ri-

e
or

decreases the effectiveb function depending on the betatro
tune. Forj.0.05, sx begins to increase. The size of th
electron beam remains smaller than the natural size, w
that of the positron beam becomes larger than the nat
size. The vertical beam size is about the natural size foj
,0.04, while it enlarges for higherj, with the enlargement
of the positron beam more pronounced than that of the e
tron beam. This difference in behavior is due to the diffe
ence of the two damping times: that of the electron beam
half that of the positron beam~see Table I!. The luminosity
increases quadratically forj,0.05, while it increases more
slowly at higher currents.

IV. COHERENT BEAM-BEAM TUNE SHIFT

Consider two opposing beams with the same tune. W
coupled through the beam-beam force the two eigenmo
will have different tunes. The coherent beam-beam tune s
is defined as the tune difference between the two eig
modes.

We summarize the linear theory of a one-dimensio
model for the coherent tune shift@1#. The two beams are
assumed to be rigid bunches with Gaussian distributions.
two beams are considered to be a coupled, two-oscilla
system connected by the beam-beam force. The beam-b
force is linearized and is expressed as

Dp652
2pj6

b6
~y62y7!. ~18!

The coordinates of the two beams are transferred by
beam-beam force and one revolution through the ring as
lows:

S Y1~s1C!

Y2~s1C!
D 5KM S Y1~s!

Y2~s!
D ,

~19!

Y6~s!5An6g6S y6~s!/Ab6

py
6Ab6 D ,

where K, the transfer matrix for the linearized beam-bea
force, is given by

K5S 1 0 0 0

22pj1 1 2pAj1j2 0

0 0 1 0

2pAj1j2 0 22pj2 1

D . ~20!

M is the revolution matrix for the two beams,

M5S cos 2pn0 sin 2pn0 0 0

2sin 2pn0 cos 2pn0 0 0

0 0 cos 2pn0 sin 2pn0

0 0 2sin 2pn0 cos 2pn0

D .

~21!

d
f



e
he
d-
g-

7292 PRE 62KAZUHITO OHMI
FIG. 5. Fourier spectra of the vertical dipol
motion for various beam-beam parameters. T
vertical axis is in arbitrary units. The correspon
ing beam-beam parameter is written in each fi
ure.
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The eigenvalues of the transfer matrixKM correspond to the
tunes of the eigenmode, which aren5n0 and n5n01(j1

1j2)/2. The eigenvectors are given by

Ys5Y11Y2, Yp5Y12Y2. ~22!

We see that the modes correspond to the correlated bet
motion of the two beams moving in phase and out of ph
by p. These modes are called thes and p modes, respec
tively. Note that the linear theory can be easily extended
allowing a different tune for each beam in Eq.~21!.

These two eigenmodes have been observed in actua
celerators@8#. However, the measured tune difference b
tween the two modes has been reported to be larger
(j11j2)/25 j̄.

An analysis using the Vlasov equation can explain
enhancement of the beam-beam tune shifts observed@16#.
The corrected tune shift is expressed by

np2n05G~r !j̄, r 5sy /~sx1sy!, ~23!

where

G51.3320.37r 10.279r 2, ~horizontal! ~24!

51.3320.37~12r !10.279~12r !2 ~vertical!.
~25!

The tune shifts for KEKB are estimated to beDnx51.32j̄x

and Dny51.23j̄y by substituting r 50.025 (sx577 mm,
sy51.9 mm).

We study this phenomena using the strong-strong sim
tion. Keepingn1g1;n2g2 implies thatj1;j2;j̄.

The data of the dipole amplitudes, which were shown
Fig. 3, are analyzed by performing a fast Fourier transfo
~FFT!. Figure 5 shows the Fourier power spectra of the v
tical dipole motion. In each case two peaks, which cor
spond to the tunes of thes and p modes, are found. The
distance between the two peaks is the coherent beam-b
tune shift. We see that the beam-beam tune shift incre
gradually with increasing beam current (j) and that the Fou-
rier amplitude of thep mode also grows at higherj. The
ron
e
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-
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e
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es

coherent motion seen in Fig. 3 can be considered to
caused by the excitation of thep mode.

We have performed a similar analysis for the horizon
dipole motion. The relation of the beam-beam tune shift a
the beam-beam parameterj is summarized in Fig. 6. The
tune shift is evaluated using the relation,

cos 2pn5cos 2pn012pj sin 2pn0 . ~26!

We see that the vertical beam-beam tune shift linearly
creases forj,0.04 and saturates at aroundj;0.05, while
the horizontal tune shift increases linearly to higherj. The
gradient of the vertical tune shift at lower currents is larg
than the beam-beam parameter, and the horizontal shi
even larger. These features are consistent with experim
and the Vlasov theory.

V. THREE-DIMENSIONAL SIMULATION
WITH CROSSING ANGLE

We have performed three-dimensional simulations of
beam-beam interaction with a finite crossing angle. T
crossing angle is treated in accordance with Ref.@5#. Before
collision, the macroparticles of the two beams are transfer
to the head-on frame using a Lorentz boost. The transfor
tion is given by

FIG. 6. Beam-beam tune shifts vs a nominal beam-beam par
eter. Note that the straight line has a slope of 1.
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x* 5tanfz1S 11
px*

ps*
sinf D x,

y* 5y1sinf
py*

ps*
x,

z* 5
z

cosf
2

H*

ps*
sinfx,

px* 5
px2tanfH

cosf
, ~27!

py* 5
py

cosf
,

pz* 5pz2tanfpx1tan2fH,

where

H5~11pz!2A~11pz!
22px

22py
2,

ps5A~11pz!
22px

22py
2.

A star designates a dynamical variable in the head-on fra
Note that thex* andy* axes are defined in the same dire
tion for both beams, while thes* axis is defined in opposite
directions, since the two beams travel in opposite directio

The bunch is sliced in the longitudinal direction in th
head-on frame. We consider the collision between thei th
(e1) and j th (e2) slices which have longitudinal coord
nateszi

1 and zj
2 , respectively. Herei and j designate the

slice number, counted from the head slice. The collis
point between the two slices deviates byDs1,i j* 5(zi

1

2zj
2)/2 from the interaction points* in the coordinate of the

e1 beam. Since the sign ofs is opposite for thee1 ande2

beams, the deviation is expressed byDs2,i j* 52Ds1,i j* in the
coordinate of thee2 beam.

All particles are transferred to the interaction points*
before collision and are sorted into the slices. The slices
allowed to collide in the order (i , j )5(1,1),(1,2),
(2,1),(1,3),(2,2),(3,1),. . . . Theparticles, which collide at
Ds6,i j* , are transferred to their collision point by@3#

X65D6~Ds6,i j* !x6 ,
~28!

D6~Ds![expS :2
p6,x

2 1p6,y
2

2
Ds: D ,

where D is represented by the Lie operator, i.e
: f (x,p):g(x,p)5$ f ,g% with $ % the Poisson bracket. Th
collision between the slices is performed as follows:

D6~Ds6,i j* !expS :2
e

p0
f7,

i
j~x6,

j
i ,y6,

j
i !: DD6

21~Ds6,i j* !,

~29!

wheref2, j andf1,i are the electric potential due to thej th
electron and thei th positron slices, respectively. The beam
beam interaction in the head-on frame is carried out by
e.

s.

n

re

-

peating the transformation of Eq.~29! for all combinations of
the slices. After the head-on collision, the macroparticles
transferred back to the unboosted frame by the inverse
of Eq. ~27!.

We have performed simulations in which both beams
represented by 100 000 macroparticles and for which f
longitudinal slices are used. The macroparticles are trac
for 50 000 turns, while undergoing the interaction of t
beam-beam force, the one turn map, and synchrotron ra
tion and quantum excitation. Results are similar to the tw
dimensional ones given earlier. We find little enlargemen
the horizontal beam sizes, and a large enlargement in
vertical beam sizes. The luminosity is reduced by the vert
enlargement. The beam sizes and luminosity are smo
function of j; we find no fluctuations. Figure 7 shows th
time evolution of the luminosity for various beam-beam p
rametersj.

The final beam sizes and luminosity for various curre
are summarized in Fig. 8. Here the beam-beam paramet

FIG. 7. Evolution of luminosity. The crossing angle is
311 mrad. Luminosity is plotted in units of 1033 cm22 s21.

FIG. 8. sx , sy , and luminosity for various beam-beam param
eters. The crossing angle is 2311 mrad. Luminosity is plotted in
units of 1033 cm22 s21.
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given by Eq.~2!, and the incoherent beam-beam tune shif
about 90% of the beam-beam parameter due to the cros
angle @17#. The enlargement of the positron beam is e
hanced compared to the case without a crossing angle, w
that of the electron beam is reduced. The design value of
nominal beam-beam parameter is 0.059 for KEKB. T
simulations show that a luminosity of 8.531033 cm22 s21

can be achieved at this current. Note that this luminosity
slightly smaller than the design value of 131034 cm22 s21.

VI. SUMMARY

We have studied the beam-beam effect in a circulare1e2

collider using a strong-strong simulation program. The sim
lation makes it possible to consider beams with arbitr
distributions, since the beam-beam force is calculated b
Poisson solver using the particle in cell method. The bea
beam limit and coherent beam-beam tune shift were stu
for the parameters of KEKB using a two-dimensional sim
lation.

The beam-beam limit phenomenon was seen in the
rent dependence of the luminosity. The simulation show
that the luminosity depends quadratically on the beam-be
parameter forj,0.05, with a somewhat weaker dependen
on j at higher currents. In addition, it was shown that
.
. D
s
ing
-
ile
he
e

is

-
y
a
-
d

-

r-
d
m
e

vertical coherent motion, which corresponds to thep mode,
is induced at higher values of the beam-beam paramete

The coherent beam-beam tune shift was seen in the F
rier spectra of the beam dipole motion given in the simu
tions. It was found that the tune shift increases linearly w
the beam current at lower currents, and saturates at hi
currents. The slope of the tune shift dependence at lo
currents is somewhat larger than predicted by the simple a
lytical estimate. The vertical tune shift saturated atjy
;0.05 where the beam-beam limit occurs. We found, in
dition, that the horizontal tune shift is larger than that of t
vertical one, with a value consistent with the Yokoya fact

A three-dimensional simulation with a finite crossin
angle (uc522 mrad) was also carried out to study the fe
sibility of the KEKB factory design. The calculated lumino
ity is ;8.531033 cm22 s21, which is 85% of the KEKB
design value.
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