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Basic physics of laser propagation in hollow waveguides
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The basic theory of laser propagation in hollow waveguides is considered in the context of laser-plasma
physics. The physical model of waves reflecting between the guide walls is used to show that there is a discrete
series of modes, and to give the mode dispersion relation and losses in terms of a given reflectivity. The
mathematical connection between this model and the solution of Maxwell's equations for lossless propagation
in a cylinder is given. Thus the solutions for low loss propagation for any given reflectivity can be obtained,
provided it is close to 1. Results are given using Fresnel reflectivity for perfect dielectric and finite conductivity
waveguides. The relationship of the breakdown intensity in dielectric waveguides to known breakdown inten-
sities is also derived. The practical implications for the guiding of intense laser pulses and the limitations of the
model are discussed. The theory is shown to explain, at least qualitatively, a number of previous experimental
results.

PACS numbeps): 52.40.Nk, 42.79.Gn, 52.75d

I. INTRODUCTION books on the subject, e.g., Ellii®]. At the other extreme in
wavelength, hollow waveguides have been used for guiding
Free electromagnetic waves of finite extent do not have & rays; for a recent example and further references, see Ref.
unique direction of propagation; they diverge. Thus the in{3]. Numerous papers on the guiding of low-intensity laser
tensity of the wave falls and the forward group velocity ispulses in hollow waveguides have been published. They
less than the speed of light. This is undesirable for a numbenave been used, for instance, in achieving ultrashort laser
of laser-plasma applications, in particular the laser wakefielghulseq 4], and, at intensities of 10 W cm™?2, the genera-
acceleratof1]. To illustrate this, consider a wave propagat- tion of gas harmonics by a short pulse laser was studied in
ing perpendicular to the page. The electric and magnetiglass capillarieg5]. Recently, this subject has become of
fields are perpendicular to the direction of propagation, santerest in the field of laser-plasma physics, with the publi-
we can draw the field lines on the page. XsB=0 the cation of a number of experimental results on the guiding of
magnetic field lines cannot have ends, which if they are finitéhigh intensity, short pulse laser beams in glass capillaries
means they must form closed loops. The electric field line$6—8]. This subject has been studied before in laser-plasma
must then be drawn perpendicular to the magnetic field linegphysics, but with long pulse lasers, using gold capillajégs
inevitably giving convergingdiverging lines. This means Most of these results were interpreted using a simple geo-
there must be at least two charges on the gdgpending on metrical model of rays reflecting between the guide walls,
how convoluted the loops are that you diewhich in prac-  considering either one, average, rg;7] or a continuous
tice means two or more guides running in the direction of theserieq[9], and assumng that all rays cross the axis. Dorchies
wave. It is not a free electromagnetic wave. This is the situet al.[8] based their work on the theoretical results of Mar-
ation in waveguides such as coaxial cables and two wireatiliand Schmeltzgrl0], which are also referred to in many
lines, which are not suitable for guiding intense laser beamsther paper$4—8|; however, as we will show in Sec. VIII,
If we cannot have the field running between two or moredue to the approximations used there are a number of impor-
conductors, we have to bend the field lines out of the pagdant errors in these results. Though this subject was exten-
which then means that propagation is not entirely perpensively studied in the context of microwaves, the emphasis
dicular to the page. In a free electromagnetic waveE  there is on conducting waveguides, which have a signifi-
=0, and both the electric and the magnetic field lines mustantly different behavior at microwave frequencies than at
form closed loops. This follows directly from the wave equa-optical frequencies. The intensity is also not normally con-
tion, which does not give propagation without gradients, andsidered in this context. To study plasma formation at the
vice versa. It also illustrates another important feature ofjuide walls and the breakdown of dielectric waveguides the
finite electromagnetic waves: you cannot define a unique pancident intensity is required. Thus there is a need to re-
larization. In particular, you cannot have a wave which isevaluate this theory in the context of laser-plasma physics. In
entirely s polarized with respect to a given surface, that is anSec. Il we start with a simple physical picture of waves re-
electric field everywhere parallel to the surface, unless thdlecting between the guide walls, showing that there is a
intensity is uniform over the entire surface. The only waydiscrete series of propagating modes in a hollow waveguide,
which remains to prevent the wave from continually diverg-and obtaining the dispersion relation. This illustrates the geo-
ing is to reflect the diverging components between the surmetrical model and its limitations. We then derive the losses
faces of a hollow waveguide. This will maintain the inten- in terms of a given reflectivity, the approach used in Refs.
sity, barring losses, but will still give a forward group [6,7,9. In Sec. Ill we consider cylindrical waveguides, giv-
velocity less than the speed of light. This has been extening the solution of Maxwell's equations in a cylinder assum-
sively studied with microwaves, and there are numerousng a homogeneous, isotropic, and linear internal medium.
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We then consider two cases for the guide medium: in Sec. NAs a simple illustration, for a parallel plate waveguide there
we assume that there is total reflection from the guide wallmust be a half integer number of wavelengths between the
and in Sec. V that the guide is also a homogeneous, isotrglates, givings, =n/L, wheren is an integer mode number
pic, and linear medium. The first case is of particular interestand L the separation between the plates. This can easily be
as we are interested in low loss propagation, and the experextended to a waveguide with rectangular cross section,
ments we wish to analyZé—8] inferred high reflectivities. wherek, has two such components. For a cylindrical wave-
Assuming there is no energy dissipation in the internal meguide the answer is not so obvious, as there is a continuous
dium, it gives a lossless solution, and we analyze this irrange of path lengths possible across a circle, but it is clear
detail. We show the mathematical connection between it anthat the answer should be similar in form, depending on in-
the physical model of wave reflection between the guideeger, aziumthal, and radial mode numbers and the reciprocal
walls, giving the incident intensity at the wall. In Sec. V, for of the radius. This shows the limitation of the geometrical
a guide with infinitely thick walls, we show that, with losses model (rays reflecting between the wajlsin reality only

to the guide walls, there are only rotationally symmetriccertain angles are allowed. Waves with a given valu& of
modes, and give their dispersion relation. In terms of reflecerossing the guide in opposite directions will interfere to give
tion between the guide walls this can be easily understood, asodes propagating in the axial direction, with wave number
without rotational symmetry the effective angle of incidencek,, which we will call 8, to be consistent with the notation
and polarization varies around the wall, and hence the lossage will adopt below. We must havwe>k, , sok, represents
vary. Thus nonrotationally symmetric modes distort as theya cutoff for propagation and we will relabelkt . This gives
propagate. The dispersion relation for rotationally symmetriaus the mode dispersion relation

modes can, in general, only be solved numerically. In Sec.

VI we propose a simple model for low loss propagation, ,82=k2—k§. (&N
using the lossless solution of Sec. IV to give details of the

incident wave at the guide wall and a given reflectivity, asFrom this dispersion relation, or from simple geometrical
outlined in Sec. II. For nonrotationally symmetric modes wearguments, we obtain the group and phase velocities

obtain a loss term averaged around the guide wall. The

model requires the reflectivity to be a given function of angle vg=Cy1—k/K>, 2
of incidence and polarization, and to be close to 1, and the

guide radius to be much greater than the wavelength. Thus c

any theoretical or experimental results for the reflectivity can Vp= 5" (©)
be used, as deemed appropriate. It represents a generalization Vi-kelk

of the procedure used in microwave applicatip2f where

losses to a conducting waveguide are calculated from th hese equations are valid in general for lossless propagation,

. being determined by the guide’s cross section. To include

surface currents, given by the lossless solution, and the su the di : lation has 1o b lized t
face impedance of a plane surface. In using the reflectivity i 0SSes, he dispersion relation has 1o be generalized to com-
lex values. Losses will result from energy dissipation in the

lace of the surface impedance, we greatly extend the appl . . ) .
Eability of the model A?s an examplg in éec Vil we uzglaternal medium and, in the context of this model, from in-

Fresnel's equations to derive loss terms for ideal dielectrié:Omplete reflection from the guide wall. The latter can be

and, in the classical skin effect regime, metal, or plasm;fh%r?ﬁter'ze%m t?rmfsl o{_a reflecnwt_?llf thIS.IS consttantt
waveguides. We show that this approach gives the same r nd the number of refiections per unit engihis constant,
en the intensity of a mode will be given by

sults for the rotationally symmetric modes as an approximat

solution of the dispersion relation given in Sec. V. For con-

ductors we show that, for the same approximations, we ob-
tain the same results as given for microwaves in RBl. N can pe determined from simple geometrical consider-
The issue of dielectric breakdown is considered, and a relaétions For our example of a parallel plate waveguiNe

tion b_etween kn_own_ brgakdown thresholds and that in a d"zmr/ﬂLz. In general the reflectivity is a function of angle
electric waveguide is given. In Sec. VIII we compare our

of incidence, polarization, and intensity. However, if it is a
. ) o function of intensity this simple model breaks down, as the
the errors in their approximations. In_ Sec. IX we show hOWreflectivity would change at each reflection. This is the ap-
th_e theory can be_ applied in mterpretmg experimental resultsproach used to describe the losses in REds7,9], where
Finally, Sec. X gives conclusions. they used just such a two-dimensional modeln this case
being the diameter of the cylindécapillary). Thus they as-
Il. BASIC CONSIDERATIONS sumed that all rays cross_th_e axis, but in genera_l there is no
reason to assume that this is the case. These simple consid-
The wave vector of waves reflecting between the guidesrations also show that to achieve the goals of a high group
walls can be written ak=(k,; =k, ), wherek, is the wave velocity and low losses we requike>k.. This requires that
number along the waveguide axis, dndis the wave vector the linear dimensions of the waveguide cross section be
perpendicular to it. As we saw in Sec. |, there does not exisinuch greater than the laser wavelength. This is inconsistent
a solution withk, =0. The perpendicular wave number gives with tight focusing, requiring high laser powers to achieve
an effective perpendicular wavelength af/X, , which must  high intensities. To achieve low lossespolarized waves
fit the waveguide cross section. Thus only specific values ofvould also be desirable, as in general the reflectivity is much
k, are allowed, giving a discrete set of propagating modeshigher[11]. In three dimensions, this can only be achieved in

I(z)=1(0)RNZ 4
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a cylindrical waveguide, with a rotationally symmetric inten- Y

sity, giving a uniform intensity over the surface. This is be- Eer—J{](kcr)COSH(G*' 6o), (8)
cause the intensity cannot be uniform in both transverse co- ¢

ordinates, as this would imply propagation only in the axial N

direction. In a rectangular waveguide, one might imagine ~_ Yy n ;

that ans-polarized wave reflecting between only one pair of Ey= ke Ker Jn(ker)sinn(d+ o), ©
surfaces would have low losses, as it is not reflecting be-
tween the other pair. However, in general,pgolarized

wave traveling parallel to a surface does not have zero ab- E,=1Jn(ker)cosn(6+ o), (10
sorption[2,11], as this maximizes the electric field perpen-

dicular to the surface. This problem is removed if you re- B E Y E (11
move one set of walls, i.e., in two dimensions. This geometry N yz '

has been used to achieve controlled, monomode guiding of x

rays [3], and was also used by $td and Tsakiris[9] t0 51 for transverse electric modes, & 0),
observe plasma formation in a waveguide. We will now con-

centrate on the case of a cylindical waveguide, of internal

radiusa. These are the natural choices for guiding a laser E =— K LJn(kcr)Sinn(6+ 6o), (12)
beam, and were used in the experiments we wish to examine. ke Ker
. k
IIl. WAVES INSIDE A CYLINDER E,=— k—CJé(kcf)COSH(ﬁJr 0o), (13)

The general problem is not solved; the interaction of an
electromagnetic wavée.g., a laserwith a surface(e.g., a
plasma is still an active area of research, and a cylindrical B =Zz><|§ (14)
surface introduces still further complications. However, for a * ’
homogeneous, isotropic, and linear internal medium, de-
scribed by a complex permittivity and permeabilityand w,
solutions to Maxwell's equations are known. This will be
applicable to evacuated waveguides; to waveguides filled .
with a uniform, very underdense plasnitor which any WhereB, refers toB, andB,, andk. is given by
changes in the plasma conditions will cause a negligible

B,=iJ,(k.r)cosn( 6+ 6,), (15)

variation ine andu); and to most materials at a low enough y?=k?—KZ, (16)
laser intensity.
The fields are assumed to be of the forms wherek?= w?ue. This is the generalization to complex val-
ues of the dispersion relatidiq. (1)] given in Sec. Il. The
E=AE(r,9)ei(“t- 72, (5) imaginary part ofk gives the losses from the internal me-

dium and the imaginary part & gives the losses from the
R _ guide wall. Apart from then=0 modes, the form given here
B=ueAB(r,0)e (@t~ 72, (6) is not unique; any combination of these forms with any val-
ues ofA and 6, will also be a mode. The only combination
whereA is a constantpossibly complexamplitude,w is the ~ Which cannot be written in the form given above is the ad-
laser angular frequency, and dition of two of the forms given here, one with an imaginary
amplitude, the other with a real amplitude and with differing
. values of#,. Of particular interest is the case in which the
Y=p-le, @) magnitudes of the amplitudes are equal, and the values of
né, differ by /2. The forms given above can be thought of
where 3 is the axial wave number and the loss term. as linearly polarized modes, and this as a circularly polarized
Further, assuming a separable solution gives Bessel's equaode. We will adopt this notation and concentrate on these
tion for the radial dependence of both axial field compo-two cases. All that remains is to determike from the
nents. This has either the trivial solution that the axial field ishoundary conditions at=a thatB,, E,, andE, are con-
zero, or a solution in terms of Hankel functiofis2] (also  tinuous. This requires us to make some assumptions about
called Bessel functions of the third kindgiving two inde-  the guide material. The simplest case is that of total reflec-
pendent solutions, one witB,=0 and the other wittE,  tion, i.e.,B,, E,, andE,, are zero at the wall. Though highly
=0. The first gives what are usually referred to as transversgiealized, this can be taken as an approximation of the case
magnetic modes, labeled T), and latter transverse elec- in which the reflectivity is high, which is of relevance, as we
tric modes labeled Tf,. The integersn(=0) and m  are interested in low loss propagation, and the experiments
(>0) are radial and azimuthal mode numbers, respectivelywe wish to examine inferred high reflectivites. We will look
The requirement that the solution does not diverge at thet this solution in Sec. IV. About the only other case of
origin gives a solution in terms of the Bessel functiahs interest which is analytically tractable is for a guide material
and their derivatives],. For transverse magnetic modes which is also homogeneous, isotropic, and linear. We will
(B,=0), look at this for guide walls of infinite thickness in Sec. V.



PRE 62 BASIC PHYSICS OF LASER PROPAGATION IN . .. 7171

IV. LOSSLESS SOLUTION

The cutoff wave number can be written ) « oty \ -

R
Ke==, 17 o

u
a

'S
/ - ol 1l
where for the transverse magnetic modes, M is given by / / /s ~ \\ 'm Mf / PRI N \ \4
the roots of the equatiod,(u) =0, which we write asi,,, ; bl ! ﬁ }f rev Ay :
and for the transverse electric modes, by the roots of A TM }\ﬂ AL A
the equationJ/(u)=0, which we write asu;,. These & \ V- 74 M ﬁ \\# ! / J
values are tabulated in various books. The fundamental mode 3 \ \\_ T ff ’M\ < ,’/
(lowestk;) is TE;; (u=1.84); then comes TY (2.40), \ \ NG f,T___'\_\-f\' - v J
TE,; (3.05), TM;; and TR, (3.84), TE; (4.20), TMy; \ ~ TN /_/-'
(5.14), T, (5.32), etc[2]. Foru>1, approximate formu- \\ - TN ‘//»'
las can be found from the large argument form of the Bessel RN
functions, giving T~ e
Unm~ (M+n/2—1/4), (18 FIG. 1. Vector plot of the transverse=1 fields. The length of

the arrow is proportional to the magnitude of the field. Up to the
Unm=~Un_1m- (190  inner dotted circle gives the electric field of the jjode, and the
outer dotted circle the magnetic field of the TMnode.

In the large argument approximatiof,,= U, 1, but this is
only true forn=0. These formulas are only accurate for them and the class of mode determines where the guide wall
highermvalues, and the higheris the higher the value oh  cuts it off. Figure 3 gives the intensity for the first six
has to be. =0 modes. Contour plots of the intensity for the first two

Assuming thats and u are real givesy real, and thus a =1 and 2, linearly polarized modes are given in Figs. 4 and
lossless solution. In this case the dispersion relation given i, Only the intensity of thev=1 modes peaks on axis. The
Eq. (16) reduces to that given in Sec. [I[Eq. (1)]. We will  other modes have a ring oh2equal peaks, with zero inten-
now examine this solution. In two dimensions we can onlysity on axis. The transverse electric modes have a series of
readily illustrate the transverse fields, i.e., the magnetic fielgych rings, of succesively lower intensities, and the0
of the transverse magnetic modes and the electric field of thgansverse magnetic modest 1 rings. For transverse mag-
transverse electric modes. For a givethey have the same netic modes the wall is always just beyond a peak in the
basic form, the difference being that the magnetic field linesntensity, and for transverse electric modes is at a minimum.
must form closed loops within the guide, whereas the electric \We have given the intensities in terms of the peak inten-
field lines can be cut by the guide wall, giving a surfacesjty. More often we know the average intensity, that is the
charge. This is the basis of the differing cutoff wave num-power divided byma?, and would like to know the corre-
bers. Apart from this difference, you can change between thgponding peak intensity of a mode. We write the ratio of the
modes by swapping the electric and magnetic fields.For peak intensity to the average intensityfas The peak inten-
=0 the lines are concentric circles. Vector plots of the fieldssity depends only on, as all modes of a giveninclude the
forn=1 and 2 are given in Figs. 1 and 2. A simple progres-
sion in the field structure is seen, with each loop in the field e
splitting with increasingh. The intensity is given by o

2
I:A,HL) J2 sir? n( 6+ o) +J'2 cog n( 6+ b;)

Ker ! AN N "A'\
(20) Sl XN NS A S
fr, TRUNANNIIS AT
where A, =¢|A|?wpB/2kZ, and the argument of the Bessel T \\\\ O /,// NN
functions k.r) is no longer explicitly stated. This can be [ I I I 1 I\ A \\,s [’i f 111 ] I I ]
rewritten in the more convenient form: ! Sy //f/, 7 $10 N :
A| \ e //_’\ N \\
2 2 ~ - s T~ BN
=7 [neitIn-172dns1dn-1 cOSN(6+ 6p)]. (21) LT L A NN T,
W P A AN \\;“' . /
. . L ’ 1f \’ """" Yoy hS
As mentioned in Sec. lll, the only combination of these O
forms which is of interest is a combination with real and R NS )
imaginary amplitudes, for which the intensities are simply el - < -

added. The circularly polarized case gives a rotationally
symmetric intensity, equivalent to taking theaveraged val- FIG. 2. As in Fig. 1 fom=2. The inner dotted circle gives the
ues of the intensities given above. The functional form of theelectric field of the T, mode, and the outer dotted circle the mag-
intensity is determined only by the value f The value of netic field of the TM; mode.
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FIG. 3. Mode intensity as a fraction of the peak value for the

) - FIG. 5. As in Fig. 4 forn=2. The inner dotted circle gives the
first six n=0 modes.

TE,»; mode, and the outer dotted circle the JjMnode.

first, and highest, peak of the intensity. The large argumené

: . . ame average intensity. For the=2—4, circularly polarized
form of the Bessel functions givdge1/u, so we write N Y yp

modes,a,, must be multiplied by 0.677, 0.587, and 0.552
f.=a,u, (22) respectively. Fon>1, this tends to 0.5.

In Sec. Il, the fundamental properties of propagation in
wherea,, is a number which, in the large argument approxi-hollow waveguides were attributed to the fact that propaga-
mation, depends only om Evaluatingf, based on the exact tion is due to wave reflection between the guide walls. This
expressiong13] for the n=0-4, linearly polarized modes, solution is in indeed a superposition of four component
we find that this is accurate to about two significant figuresvaves, traveling in opposite azimuthal and radial directions.
for all except them=1 transverse electric modes, giving  The azimuthal components are separated by writing

a ~1.0, 0.80, 0.40, 0.36, 0.31, 23 1 ‘
01,... ( COSH(6+ 90) — E(eln(0+ 0O)+e—ln(0+ 00))’ (25)
exceptfor the TE,; modes, where
~ : 1 .
ap, .. ~11, 1.1, 0.63, 0.57, 0.54; (24 sinn( 9+ 00)=z(e'”(”*ﬂo)—e*'”(ﬁ“’o)); 26)

this givesf, for n=0-4 and any value ai. For then>1

circularly polarized modes the peak intensity is lower thanthus only then>0 modes have azimuthal components, as
that of a corresponding linearly polarized mode with thethey have gradients in the azimuthal direction. The radial
components are obtained in an analagous manner, separating
the Bessel functions into Hankel functions of the first and
second kindH{" andH{®,

0.9

10.8

Jn=%<H(nl)+HEF’>, (27)
°° HO@=3 +jy (28)
n n— n»
05
where the upper sign refers k"), andY,, are either Weber
0d functions, Neuman functions, or Bessel functions of the sec-
ond kind. They diverge at the origin. With the time depen-
03 dencee'®!, H" represents a radially converging wave and
Hﬁz) a diverging wave. This is more obvious from the large
02 argument form

X3/2

; [2
0.1 Hgl),(z)(x)% Re_l(x—(n+l/2)w/2)+ 9]

FIG. 4. Mode intensity for the first twa=1 modes as a frac-
tion of the peak value. Contours are at intervals of 0.1. The inner
dotted circle gives the T mode, and the outer dotted circle the giving waves with radial wave numbersk.. We are inter-
TM4; mode. ested in the total incident intensity at the wa}l,, for which

. (29
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04 ' ' ' - ' ' - ' ' and lowest number of reflections per unit length will be the
TE;; mode. However, in general, we would expect the,TE
mode to have the lowest losses, as it has only an azimuthal
electric field: it iss polarized with respect to the guide wall.
All modes apart from then=0 transverse electric modes
have a radial electric field at the wall, and for the-0
modes this varies witl#. This follows from the simple ar-
guments of Sec. Il, that when the intensity varies over a
surface there is not a unique angle of incidence nor polariza-
tion. Thus, forn>0 modes, we would expect absorption and
plasma formation at the wall to be asymmetrical, and we
could then no longer treat the guide as a cylinder. This indi-
cates that the Tg& mode should be preferred for guiding
intense laser beams. We will now consider this in more detail
for a homogeneous, isotropic, and linear guide medium.

0.35

0.3

Intensity
=]
o o
N o

o
o

0.1

0.05

V. WAVES INSIDE THE WALL

FIG. 6. Axial component of the incident intensity at the wall as r that th id di i also h
a fraction of the peak mode intensity for the first four,JErodes. we assume that the guide medium IS alSo homogeneous,

The result from the large argument approximation for the,TE isotropic, and linear, then we can solve for the fields in the

mode is given by the dashed line; only its amplitude changes for th¥va”' In this case, we also have the boundary conditi(_)ns that
other modes. ¢E, (orD;), B,/u, andBy/u (or H, andH ) are continu-

ous. This assumes that there is no additional surface charge
it is only necessary to consider th&é?) component, without ~ (for D) or current(for H) notaccounted for by the complex
separating out the azimuthal components. This gives an irf€rmittivity and permeability, i.e., that is not induced by the

tensity fields. The solution is basically the same as that given in Sec.
I, except that, as the origin is excluded, tie part of the
ly=1,2+1,r, (30)  Hankel functions need not cancel. If we assume that the wall
is infinitely thick and that there is no wave coming in from
where, for the linearly polarized forms, infinity, then we obtain a solution in terms Bif?), instead of
J,, as inside the cylinder. Applying the boundary conditions
| :|_+ 1(Yn) 31) shows that there im0 solution with n>0. The transverse
zZ 4 4 magnetic modes cannot satisfy the continuitygf E,, and
B, . The transverse electric modes cannot satisfy the conti-
Ake | ) nuity of H, andH,. This means that there is a transverse
=7 E(Yan—Yan)COSZ n(6+6o), (32 electric solution with a specified surface current, but no net

surface charge. The physical relevance of this solution is not

the intensity| and the factoml are given by Eqs(zo) and Cleal’, and we will not consider it. This does not mean that
(21), andI(Y,) signifies these equations in termsYyf in-  there does not exist a nonrotationally symmetric solution of
stead ofJ,,. For the circularly polarized forms the intensity Maxwell's equations, just that there does not exist a solution
is again given by taking th@-averaged values. Using the Of the form given by Eqs(5) and (6). In terms of wave

large argument approximation at the walis¢ 1) gives reflection between the guide walls the reason for this is ob-
vious, because, as mentioned in Sec. Il, we cannot define a

1 Ke unique angle of incidence nor polarization when the intensity
I ~A ﬁCOSZ n(o+ 6o), |r“E . (33 varies over a surface; thus the losses will vary withas we
predicted from the lossless results in Sec. IV. This means
For k.<k the axial component dominates, as would be exthat the modes would not maintain their shape as they propa-
pected for a wave travelling at a small angle to the axis. Théated, which is assumed in Eg5) and(6). With the inclu-
and is particularly poor for the>0 transverse electric tionally symmetric. We can obtain a solution for these
modes. So we plot the axial intensity at the wilh. (32)]  Modes. For th@=0 transverse magnetic modés,is given
for then=1—-4, linearly polarized, Tfg modes in Fig. 6. For implicitly by
then=0 and circularly polarized modes the intensity is uni-
form, though for the circularly polarized modes the energy Jo(kca) 1 keg Ja(kca) 0 (34
flux at the wall has the same form: it is just rotating at the (2) 2 ke H(® -
_ : Ho (kegd) 77 Ke H”(Keqa)
laser angular frequency. The main error in the large argu-
ment form is o_verestimating the contrast in intensity; for theand for then=0 transverse electric modes by
TE,4; modes this has changed to the extent that the peak is at
the minimum given by the large argument approximat_ion. Jo(Kea) keg J1(Kcd)
We can see from these results that the mode with the @ G =0, (35
highest group velocity, lowest effective angle of incidence, Ho”(kegd) ¢ Hi%(Keqa)
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assuming thaH?)(k.qa) and H{?)(k.qa) are not equal to our use of the reflectivity for a plane surface. In addition to
Zero. Wherevzzlu,gsg/,ua is the complex refractive index, the assumptions we make, this also requires the guide to be a
the subscripy refers to the guide, anki, is the value ok, ~ homogeneous, isotropic, and linear medium, and iRais

in the guide, given by dominated by a large imaginary component. This is a spe-
5 ) cialized case of the approach given here, which in general is
keg=ke+ (1= 1)K (36 not applicable to laser applications.

i Given the reflectivity, all we need to do is to determine
In general, Eqs(34) and(35) have to be solved numerically. , N and the polarization for each of the modes. For the
The case of total reflection at the wall, considered in Sec. IV — g modes this is straightforward, as there are only compo-

corresponds to the limit that the modulus of the refractive,enis in the radial and axial directions, and thus all the rays
index tends to infinity, provided that the imaginary part is not.,4ss the axis. The angle of incidengeis given by sinp
positive infinite. In this case, the first term of E@4) and =k./k, the number of reflections per unit length I

the second term of E(35) are dominant, and the Hankel _ y /g2)/25  the transverse magnetic modes polarized,
functions tend to zero, giving the resglts of Sec.(m_éte that and the transverse electric modes aolarized. Then>0
Jo=—1J1). For the transverse electric modes this only re-msdes contain an azimuthal component, and so must include
quires thatk.<kcg, which is true for all situations of inter- ays which do not cross the axis. To characterize a ray cross-
est. For the transverse magnetic modes, however, it requirgsy the cylinder at an arbitrary position, we use the angle of
vkc/keg>1, and we havek.<kgg, so the lossless results jncigencey of its transverse component to the tangent of the
will onlylapply for very high r_efractlv_e indices. Th(_)ugh We circle, where G<y<m/2, being equal tor/2 for a ray that
cannot find a general, analytic solution, we can find an apgrosses the axis. It is given by the transverse fields at the

proximate solution for low loss propagation. wall, F, andF,, i.e., the magnetic field for the transverse
magnetic modes and the electric field for the transverse elec-
VI. APPROXIMATE LOW LOSS SOLUTION tric modes:
To obtain an approximate solution for low loss propaga- 2
tion, we start from the lossless solution of Sec. IV, and use siry= Fo (39)
the simple loss model, given in Sec. llxRN? [Eq. (4)], F2+F?2
whereR is reflectivity andN the number of reflections per
unit length. We assume that the reflectivity is a given func-The angle of incidence is then given by
tion of angle of incidence and polarization, and that it is
close to 1, which is more conveniently expressedrasl, L ke .
where the transmissiom=1—R. We obtain the angle of smgo—?sm 4 (40
incidence, polarization, and number of reflections per unit
length from the lossless solution, by using the incident fieldsand the number of reflections per unit length by
at the wall. By comparing Eq4) with Egs.(5) and (6), we
see that in terms dR andN the loss ternw is given by ke 1
~ B 2asinyg’ (41)
1 1
a=-35NINR~ZNT, 37 The n>0 transverse magnetic modes are giilpolarized,

but the transverse electric modes now hayeas well as an
where we have used the approximatibr1 to give a to  s-polarized component. The parameter®singives a mea-
first order inT. This will give s- andp-polarized loss terms, sure of the degree af polarization of the transverse electric
which we will label @5 and «,. The losses can be repre- modes; it is one if the electric field has only an azimuthal
sented in the physically more intuitive form of a loss lengthcomponent, zero if it has only a radial component, and scales
Lioss: Which we define to be the distance for @ fall in  as the intensity E>+F2 is proportional to the axial inten-
intensity: sity). So we write the loss term for the transverse electric

1 modes as

Llosszz- (38) are=(Sir? ¢) ag+ (1—sir? bap. (42

In effect, we are using a ray tracing approach, treating th@hus the problem is solved. However, these parameters de-
guide wall, point by point, as a plane surface, which requirepend on phase angl which means that the modes consist of
a>N\. In using the lossless results, we are assuming that theays crossing the cylinder at different positions. Indeed, all
valuesg andk. are not significantly changed by the losses;that is required of the rays which make up a given mode is
this requiresa®< kg, which is also satisfied by the require- that they have the same axial velocity. This clearly illustrates
ment thata>\. A similar approach is used to obtain the the fact that thex>>0 modes have components with differing
losses for low loss propagation in microwave applicationdosses, and thus will distort as they propagate. Strictly speak-
[2]. The starting point is also the lossless solution, which isng, however, they are no longer modes. Assuming that the
used to calculate the surface currents instead of the incidefdsses are small everywhere, then the distortion over dis-
fields. The average energy dissipation is then calculated for @nces less than the loss length will be small, and we can
given conductivity, assuming that the surface impedence isalculate an averaged loss term. There is a further complica-
the same as that for a plane surface, which is analagous tmn for then>0 modes, as at each point there are two rays
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incident on the wall, with oppositely directed azimuthal com- A. Ideal dielectrics
ponents. In general, the reflectivity of the two rays combined |, yhis case the refractive index is real, with typical values
is not expected to be the same as that for each ray individy;, e range 1.4—2.12]; thus to haveT<1 we requirek

. ) : 4-2.12]; c
ally. For example, at some points two rays witpolarized | “\herek, is taken to be the value obtained from the

components interfere to give a purely azimuthal electriGqogqjass solution. In this approximation thepolarized loss
field, i.e., ans-polarized wave, and at others to give a purely;q . is

p-polarized wave. However, in obtaining an averaged loss

term, this problem disappears in the averaging. We take the 2 K2
phase andj-averaged values d¥r2 and F%, to give a root aap~ ——>— —; (46)
mean square value of si) weighted according to the inten- Vre—1k

sity, which we will label f,. This gives the same result

2 2
whether or not you separate out the azimuthal componeni¢here we have actually used-A—1)k¢<k?, rather than

and for both linearly and circularly polarized modes: simply ke<k, and thes-polarized loss term is
2
1 n? J2(u)+Ya(u) 1 ke .
Sy T 43) dag™ == (47)
27 w22+ Y3 VriLk

In this approximationf , in Egs.(40) and(41) cancels in the
expressions fow, so only then>0 transverse electric modes
have components with differing losses, the maximum differ-

Using the large argument forms givesfi#1+n?/u?,
which, strictly speaking, is 1 to the order of the approxima-

tion. However, comparison with the exact results shows thaf being a factor of2. However, for the transverse mag-
this is ablreasonable a]E)me)l(ltr*r:atlon f[:j?>nb' TthS_ISZ M hetic modes there is a problem with this approach, because,
reasonable agreement for all the:1 modes, but on= It as we saw in Sec. V, for low values of the refractive index
already requiresn>3 to give agreement within 10%. Equa- yhe gispersion relation for the@=0 transverse magnetic
tions (39)—(42), with f,, in place of sinj, give an averaged ,,qeqEq. (34)] differs significantly from the lossless case.
loss term for then>0 modes, and the correct result for the For (v2— 1)k2<Kk? it is the second term of Eq34) which

C
& minates, rather than the first term as in the lossless case.
. . .~ "Thus we would expeck. to have approximately the same
d!um. In this case, for a plane boundary,_the reflectivity Svalue as for the transvecrse electric modes. To check the so-
given by what are often called the generalized Fresnel €0Y%tion we have obtained here, we will now obtain an approxi-

tions[11]. mate low loss solution of Eq$34) and (35). Though they
only apply to then=0 modes, we take them as a guide to the
VII. LOSSES FROM FRESNEL'S EQUATIONS behavior of then>0 modes. First we simplify the equations.
, . . . For all situations of interest.qa is sufficiently high that we
Fresnel's equations fos- and p-polarized transmissions )2 L .
can useHy”/H}”~—i to a good approximation. Usm@
are 5 0
<(v°—1)k* gives
T 4y, sing 44 ke
= . : , f,—Jo(kea)+iJq(kea)= 4
S |V,2|+2V|: Sln(,D+S|n2(,D vk ‘JO( Ca) I‘Jl( ca) 01 ( 8)
/2 where fV:VZ/\/VZ_l for the transverse magnetic modes
TS(COSZ(p+|V ) .
=T , ' , (45) and 1A/»¥?’—1 for the transverse electric modes. We have
|v'2|sir? ¢+ 2v] cog ¢ sing+cod ¢ f ke./k<1, so the second term is dominant; thus we seek a
solution of the formk.=ky+k;, where ky is given by
wherev'?=1?—cog ¢, and v is the real component of'. Ji(kga)=0, i.e., the value ok, for the transverse electric

v being the complex refractive index. The transmission formodes in the lossless case, aid|<k,. Using a Taylor
boths- andp-polarized waves is zero fas=0 (propagation ~€xpansion of the Bessel functions abéyt to first order in
parallel to the surfageand identical forp=7/2 (normal in-  Ki, gives

cidence, as there is no difference betwesandp polariza-

tion at normal incidence, between these values the ¢ Ko+ k1 tiak =0 49)
p-polarized transmission is higher. Thgolarized transmis- Yok e
sion increases steadily with to a maximum atp= 7/2. The

p-polarized transmission increases more rapidly to a peaklhe imaginary part of this equation gives
then falls. We requiréT<1, which is always the case for

|v2| sufficiently high, fore sufficiently small, and i, van- P Ky

ishes, which occurs i#? is dominated by a, negative, real = rka’
component. We now consider two specific cases of these

equations; ideal dielectrics and conductors. We will furtherwherek,;=k;,+ik;; . This shows that foa>\ (ka>1) the
assume that =&, and thatu = uqy= uo, Where the subscript change ink, due to the losses, which are given ky, is
0 indicates the free space values. negligible. Combined with the real part, this gives

(50
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ko and 3.3 and the Tk values are 1.3 and 1.1 for linearly and
kli”fvﬁ- (51) circularly polarized modes, respectively. These results apply
to single modes; higher intensities can be achieved without
We want to obtairy, which is given by breakdown by a combination of different modes. This calcu-
lation gives a significantly lower peak intensity at breakdown
Kekei Ko f, k2 than using themodeintensity at the wal[8], which may go

~—Kj~—— (52)  to zero even though there is a significant incident intensity,
as the incident and reflected waves can cancel one another.

. . As an example, we will considea=20 um and \
which gives the same result as above, only for the transverse . . L
i . =1 um for a glass waveguide with refractive index
magnetic mode%. is now the same as for the transverse:1 5. We will consider TN}, TEy;, and TG, modes. For
electric modes. The modes are not truly degenerate; as o L 2oL ! '

) . .-~ the TMy; mode we obtainL,,ss=0.53 cm, for the Tk
differs. For then>0 transverse magnetic modes the S'tua“onmodeLmSS:l.Z cm, and for the TG modeL .c.=4 cm.

is not clear; the most obvious approach is to simply assum . . .
PP Py Then=0 results are in excellent agreement with a numerical

.solution of Egs.(34) and(35). For typical values of the re-

that this result carries over, and we have u/,, as for the
n>0 transverse electric modes. Physically, the difference i active index the TE, mode is the lowest loss mode in a
S.(H‘?electric, as it has the lowekt . For comparison, the char-

that in the lossless case the transverse magnetic field ha
o ke bops it 1 gue SIEes i e il S o o o a1 o e
! . X .the Rayleigh length, for a beam with a Gaussian intensity

dense plasmas the fields in the wall are restricted to a skin _r2R2 5 . B .

depth, so the lossless result remains a good approximatioRrofile, =& , is mR7/\. Taking R=a/2 gives a Ray-

In this case losses result in energy deposition at the surfact$igh length of 0.031 cm for this case. For the facigrwe

In dielectrics energy loss is due to wave propagation througQPt&in 33 for the Th; mode, 74 for the Tk, mode, 54 for

the guide wall, so the magnetic field extends throughout th&€ linearly polarized Tg mode, and 110 for t?e C|rcu1a2rly

guide wall, changing. . For the transverse electric modes, Pelarized form. Breakdown intensities ‘,melol Wem

the change between dielectrics and conductors is simply thi{ave been obtained for glass, depending on the pulse length

a lower charge density is induced at the wall in dielectrics. [14]; Gthus '”72”"5 example peak mode intensities up to
These terms will only apply provided that the intensity is ~10 W cm™“ would appear to be the limit. The only way

low enough that the dielectric does not break down. This willtC achieve high intensities in dielectric waveguides is to have

occur when the intensity in the wall exceeds the breakdow®@>\, Which requires high laser power; this is their major

threshold. The required intensity is given by the maximumdrawback for most laser-plasma applications. For guiding in

transmitted intensity. For the breakdown threshold there arélielectric waveguides the circularly polarized ;jEnode is

numerous theoretical and experimental results, and we wilPreferred, having the highest group velocity, lowest losses,

not consider them here. We would like to know the peakand highest breakdown threshold. It has an intensity profile

intensity in the waveguide at breakdown, so we will consider *J5+J5, which can be well fitted by the typical Gaussian

the ratio between the peak mode intensity and the maximurrofile with R=0.77a. However, as the TW mode in di-

transmitted intensity, which we will labé},. Using the large ~ €lectrics is expected to have virtually the same intensity pro-

argument approximation and assuming that the intensity dtle, it will be difficult to excite only this mode.

the wall is dominated by the axial component, we obtain the
B. Conductors

simple form
In this case
f fha 53
b_f,, N ©3 2 wf,g . wcolwgzng
vo=1— 5 S~ > PN (56)
0+ Wy w(w+wg,

wheref, for the linearly polarized modes is given by

where o is the laser angular frequency,q is the guide
plasma frequency, andy, is an effective collision fre-
quency. With the correct choice of parameters, this formula
can fit a wide range of metal and plasma results, e.g., the
f,, ~49, 1.7, 1.3, 1.1. (55) classic_a_l and “anomalous” skin effecfd1]. In fact, most

- reflectivity results have a dependence on angle of incidence

Comparison with the exact results shows that this is accurat@milar to Fresnel's equatiorf€gs. (44) and (45)], particu-

for then=0 modes. For the transverse magnetic modes it i$arly if you take into account that in most real situations you
accurate to around 10% far=1 modes, forn=2 and 3 have a mixture of polarizations; therefore the results can be
modes withm>1, and forn=4 modes withm>2. The fitted by choosing an appropriate refractive index. The physi-
TM,, values are 1.8 and 1.6 for linearly and circularly po- €@l significance of such a fit may, however, be doubtful, but
larized modes, respectively. For transverse electric moded does mean that the applicability of these results is wider
the variation in polarization complicates the situation, andhan might be expected. Typically, we hajué|>1, giving

the validity depends on the refractive index, agreement being K2

better for lower values. For=1.5, it is accurate to around aa~ U - (57)
10% forn=1-4 modes withm>1. The TE, values are 2.2 [v?| K2

for  ~33, 2.5, 1.3, 1.1, 1.0, (54)

and for the circularly polarized modes*0) by
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where againf, cancels, and therefore the separate compo- weg k§
nents have similar losses. In general, fhpolarized term aag~ VE@
cannot be significantly simplified. However, for the disper-
sion relation of then=0 transverse magnetic modgsq. gng
(34)] to tend to the lossless result, we requite.>k, giving

Jwegk 1
v 1 aap~ EE%' (62)

aap% @f_z’ ch>k. (58)
b

(61)

where we have not made use of the approximagesk, so
For k.<k, asvk.>k must apply to the real and the imagi- that we can make a direct comparison with the result given
nary parts, this requireg,> . For vk,<k, in which case by Elliot [2] for the transverse electric modes:

we expeck, to be given by the transverse electric result, we C o )
obtain I L. O (63)
20 _Bk B(uz—nz)

ap~|v?|as, vk.<k. (59

Using 1f3~1+n%u?, with u?>n? and ki<k? we obtain
These results can be verified for the=0 modes following [EQ. (42)]
the same procedure used in Sec. VII A, though the algebra is -
more involved. For many cases neither approximation is Jweo| ke n’k
valid, and a numerical solution will be required for the trans- aate™ \ 5, Bk + ﬁ '
verse magnetic modes. These results show us that the ”
s-polarized losses will be very low, much lower than in di- which for u?>n? agrees with Eq(63). The two results are
electrics, but that the—polarized losses will be significantly identical forn=0. Though the |arge argument form is not
higher. This means that the lowest loss mode will, in generalexplicitly used in the derivation of Eq63), it is implicit in
be the Tk, mode, and that th&é>0 modes will rapidly  the assumption that the wall can be treated as a plane surface.
distort, thep-polarized component being rapidly lost. Con- There is, however, still a slight inconsistency between these
ducting waveguides show what is known as high loss distwo results. This arises from the assumption used in deriving
crimination. Thus the Tg mode is preferred. However, it Eq.(63) that the surface impedanég,/H, was given by the
has a hollow intensity profiléFig. 3), quite different from  yajye for a plane surface/wuo/20. Evaluating the surface

the Gaussian profiles normally considered. A similar i”ten‘lmpedance, assuming?<k?, shows that this is only the

. . . . . C !
sity profile has been generatédl5], with the intention of case foru2s n2,82/k§, in which limit the two results agree.

generating a ponderomotive trap, and has a number of POShe physical reason for the breakdown of the model is the

Siblﬁ ap;EIicationsi g thedi?ter:_tion ifstrt]o g?nerite a ?f”%wpresence of @-polarized term fon>0 [the second terms in
profile, the expected modilication of € INtensity profiie by y,q prackets in Eqg963) and (64)], which would lead to a
propagation in a conducting waveguide could be used foaistortion of then>0 modes

this. Equation56) shows that lower laser frequencies, which To give a specific example we will consider an aluminum

im:oly Iofng;ir v(\j/avelenﬁthts],. V;’]i” give 'O.W.e.r IosL'Jse_s for Eli given waveguide, taking the reflectivity from the experimental re-
value ofa/i, due to the higher permittivity. Using a longer g i of Milchberget al.[16]. They measured the reflectivity

wavelength woqld jla_lr?'o 'mde.lket thfh (;olnstructlon Olf thteof 400-fs, 0.308=m, up to 7-mJ,s- and p-polarized laser
waveguldes easier. This indicates thal longer waveleng ulses, incident at 45° on to an aluminum target, at intensi-

should be preferred. However, shorter wavelengths have t s between 16 and 1685 W em-2 They then fitted the

advantage that, for a given laser power and value/of, data using Eqs(56) and (60), the idea being to obtain the

hIg,zgrf;gtg)r(l;:’ﬂelsecgfnEb;S%;:k\:\lleev\?v(ijli consider the classical conductivity as a function of temperature, which increases
P ‘ with increasing laser intensity. This gave a conductivity

Sk'r.] effec@ regime, prlnC|_paIIy SO that we can make a COMyyhich varied by a factor of around 100, decreasing with
parison with results obtained for microwaves, where

temperature to a minimum between 40 and 60 eV, then in-
2 creasing in a Spitzer-like fashion, as expected for a plasma.
wc0|=wpg80, (60) The plasma frequency did not vary significantly, as alumi-
num already has three free electrons per atom at room tem-
perature. This shows that the behavior of conducting
whereo is the conductivity. This should be valid for incident waveguides can vary considerably with laser conditions, i.e.,
intensities ,A2<10'® W cm~2um? [11]. Conductivities are  prepulse, intensity, and pulse duration. As we have already
typically in the range 19-1Q~! m™! and plasma fre- mentioned, if the reflectivity depen@splicitly on the inten-
quencies, at solid density, are typically in the rangé®20 sity, rather than there simply being a suitable reflectivity for
10" s71, giving collision frequencies from 18 to  the laser intensity used, as Milchbegal. assumed, then the
10'” s 1. The laser angular frequency is 1:880'%\ s !,  simple loss model breaks down. As an example of these
where \ is the laser wavelength in microns. This gives aresults we will consider two extreme casé$} room tem-
considerable variation in the values of refractive index. Fomperature,oc=3.8x10’Q2~* m™?, corresponding to an inci-
long wavelengths, such as for microwaves, whegg>w,  dent intensity less than ¥ W cm™2, and (2) minimum
we obtain conductivity c=5%x10°Q ! m™%, corresponding to an in-

(64)
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cident intensity~10"-10" W cm™ 2, both with w,;=2.4  mode withu=2.40, compared ta=1.84 for the TE; mode.
x10' s Forn=1 um, case(l) givesr=0.454-i12.7  Given the importance of this mode in many applications, this
and cas€2) gives v=3.53-i4.10. Fora=20 um we have is a crucial error. Another error in RdfL0]'s results, which
vk.<k in both cases, for all lower order modes; thus Eqg.appears in the lossless limit, is that there arene0 trans-
(59) applies. For the TN, mode we obtair_;,cc=1.7 cm  verse magnetic modes. We did find that the=0 modes

for case(1) and 0.22 cm for cas€2). Numerical solution of  would be distorted by the losses and that,fkg<<k, the real

Eq. (34) gives 1.9 and 0.27 cm for cas€l and(2), respec- part ofk. was approximately equal for both classes of mode;
tively, with u being 4.25 and 3.96 respectively, compared tothus, approximately, there do exist “modes” with both axial
the predicted value of 3.83. For the gBEnode we obtain field components and combined and p-polarized losses.
Lioss=380 cm for casél) and 9.1 cm for cas€?). A nu-  As, strictly speaking, there are no modes witk-0, it is
merical solution of Eq(35) gives 390 and 9.2 cm for cases possible to construct a variety of approximate>0

(1) and(2), respectively, withu being in excellent agreement “modes.” Our approach has the advantage that it correctly
with the predicted value. For the TEmode we obtain reproduces the known lossless limit of the equations, in
Lioss= 120 cm for casél) and 12 cm for cas€?), so itis,  which case there do exist>0 modes. However, the hybrid
marginally, the lowest loss mode for cag®. However, the modes Marcatili and Schmeltzer gave are wrong: the fields
large difference between ttse andp-polarized losses would do not satisfy Maxwell's equations. Only tteternal fields

be expected to lead to a significant change in the mode praf their n=0 modes satisfy Maxwell’'s equations to first or-
file over this averaged loss distance; thgolarized loss der ink./k, the order of their approximation. Furthermore,
term is roughly 162 times greater than theolarized value then=0 transverse electric modes do not satisfy the require-
for case(1), and 29.3 times greater for ca. For glass we ment for continuity of the azimuthal electric field at the
obtained 0.53, 1.2, and 4.0 cm for the §MTEy;, and TE;  boundary, for the given value & . Obtainingk. from this
modes, respectively. This shows that considerably lowecondition gives fields which do not satisfy Maxwell's equa-
losses can be obtained in conducting waveguides than can tiens. The loss terms given in Réfl0] are the same as we
achieved in dielectric waveguides, as well as higher losses iobtained using Fresnel's equations, fok.<k. The loss
some cases. It also illustrates the high loss discriminatiomerm for the hybrid modes is what one would obtain for a
and the large range of different values which can occur, thisombination of the transverse magnetic and electric modes
makes it difficult to make any precise predictions for con-with f,=1, which also arises from the use of the large ar-

ducting waveguides. gument approximation. Thus we see that the results of Ref.
[10] are clearly incorrect, but that fork,<k and u?>n2,

VIII. COMPARISON WITH THE RESULTS with a>\, they are in general agreement with the results we

OF MARCATILI AND SCHMELTZER obtained using Fresnel's equations. This is to be expected

- from Ref.[10]'s use of the large argument approximation.
The work of Marcatili and Schmeltzgd 0] has become

the standard reference work in the area of laser-plasma phys-
ics. As the results given here differ from their results, it is
necessary to try and explain these differences. The major We will now analyze the experimental results we men-
differences are in the cutoff wave numbexk; in their no-  tioned in Sec. [6-9] in the context of this model, in par-
tation) and the presence of hybrid modes for 0. In terms  ticular those of Jackadt al.[6] and Borgheset al.[7]. In all

of our notation, they givel=u,_ 1, for all modes. This only the experiments the laser pulse had a, roughly, Gaussian in-
agrees with our results for the=0 transverse electric tensity profile centered on the axis of the cylinder. Thus we
modes, and for th&@=0 transverse magnetic modes whenexpectn=1 modes with cutoff wave numbers less than the
vk.<k. Forn>0, it agrees approximately whar>1 [Eq. laser wave number, that is<2ma/\, to be excited. In each
(19)]. Forn>0, Ref.[10] gave only one class of mode, the case this gives a large number of possible modes, as the
electric hybrid modes EH,, with both axial field compo- lowest value ofa/\ used was 20. Of these modes, we expect
nents and mixed- and p-polarized losses. In this case, we most energy to be in modes whose effective angle of inci-
found that there were no modes, as a solution of the forndence falls within the cone angle of the laser beam. This is
given by Eqs(5) and(6) cannot satisfy the boundary cond- normally given in terms of an f numbef,, which can be
tions; however, we took the lossless results as an approximaelated to an effective value of by

tion to the low loss case. Indeed, the fields they give for the

hybrid modes cannot satisfy both the requirements for the B ka

continuity of the azimuthal and the axial electric fields at the u= 2_f#' (65
boundary. The value df; Ref.[10] gave only satisfies the

continuity of the axial component. The origin of the hybrid Thus we expect most energy to be in modes with valuas of
modes is made clear in the lossless limit, that the modulus afip to just above this value. In practice, due to the short pulse
the refractive index tends to infinity, when the fields tend todurations used, there is not a unique valuekafhich will
those of the transverse electric modes. The value given  further increase the spread in the modes. This will lead to
in Ref.[10] is thus wrong; it should be the same as we give.pulse dispersion. The main points for comparison are the
This is because the authors of REf0] used the large argu- transmitted intensity profilegs,7] and the results on break-
ment approximation in solving the dispersion relation, fordown [6,8], for which no real analysis was given. The loss
which u’=u,_4,,. This leads to a significant error for the results were adequately described by the model used in these
fundamental mode; their fundamental mode is the;EH papers of rays bouncing between the walls, because there

IX. COMPARISON WITH EXPERIMENTAL RESULTS
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were a large number of modes present and they did not udey, which may be due to imperfections or misalignment of
capillaries long enough for the losses to significantly reducéhe laser beam or imperfections in the capillaries, such as
this number. In Refd.6,7,9] the model was used to infer an curvature. Another possibility is that it arises from the ion-
average reflectivity, though Jacketl al. [6] also stated that ization of the capillary. For, initiallyn=1 modes this would
using Fresnel's equations gave a good match to the experide expected to first occur at two opposite points on the wall,
mental results. In the cases where plasma was formed at thehich could lead to a change in symmetry frors1 to 2.
walls [6,7,9] the plasma conditions, and hence the reflectiv-Given thatn=2 modes are present, tile=1 mode would

ity, were not known, so a direct comparison was not posbe expected to rapidly dominate due to its lower losses. In
sible, and the model could only be used to infer the averagthe case of Borghest al. the capillary was ionized by the
reflectivity. In this case the model will only be valid if the laser prepulse, which may have created a slightly asymmetric
plasma formed at the walls has a scale length much less thaalasma waveguidé&he possible plasma expansion was much
the radius of the waveguide. As Dorchiesal. [8] tried to  less than the radigiswhich could also, in part, account for
match Marcatili and Schmeltzer's EHmode, and used the the observed distortion of the intensity profile. Thus, though
loss term given for that mode, their model is equivalent toa direct quantitative comparison is not possible, the observed
the model of Refd.6,7] of a single, average, ray with the use distortion of the intensity profile can be qualitatively under-
of Fresnel's equations, as used by Jaakehl. [6]. This is  stood in the context of our model.

because they assumed that there was a single mode and, aslackelet al.[6] obtained the breakdown energy for inter-
we have shown, the loss term given by Marcatili andnal radiia/A=50 and 133. The exact values are not clear,
Schmeltzer is equivalent to using Fresnel’s equations for theut taking them to be given by the sharp turning points in
reflectivity. The value olu they tried to match was 2.40, as their Fig. 4 gives 0.02 and 0.5 J, respectively. Everything
u;;= 1.84 anduj,=5.33 we expect most of the energy to be else being equal, according to our model breakdown the en-
distributed in the TE;, TM;;, TE;,, and TM, modes. The ergy scales asa®. Here we have a change ia® of

use of a single ray is only accurate for distances up tq133/50f~19 and a change in breakdown energy of
roughly the initial, average loss distance, as the differingd.5/0.02=25, in reasonable agreement with the expected
losses of the modes will lead to a fall in the overall loss termscaling. A greater increase is actually expected due to the
with distance. This was observed by Jackelal. [6] and  greater number of modes that could be excited in the larger
Stackl and Tsakirig 9]; the inclusion of a continuous range waveguide. The intensity at breakdown is also of the order
of rays allowed Stokl and Tsakiris to reproduce their re- predicted by our model; an exact comparison is not possible
sults. The other experiments did not use sufficiently longas we do not know exactly what modes were present. Dor-
capillaries to be able to see this within the experimental erchieset al.[8] reported no breakdown for average intensities
rors. Thus the agreement of the results of Dorcleesl.  up to~3x10"@a/\) W cm 2. For their 120-fs pulse dura-
with the model of Marcatili and Schmeltzer is not suprising,tion the breakdown intensity taken from R¢l4] was |,
particularly considering that the lengths of the capillaries~3.3x 10" W cm 2, so this result can be expressed as
they used were comparable to the loss distances they ob-9.5(a/\)l,. This, according to our model, requires the
tained. The fact that the pulse propagated virtually un-energy to be distributed between at least three modes, which
changed is also to be expected, due both to the lengths of thvee expect to be the case. Significantly higher intensities
capillaries used and the low loss discrimination of dielectriccould not be achieved, as they predicted. Thus we conclude
waveguides. As they were operating far from cutokf, ( that the model is also consistent with the available results on
<Kk), no significant pulse dispersion is expected. dielectric breakdown.

Jackelet al. [6] and Borgheskt al. [7] gave transmitted
intensity profiles at intensities where the capillary wall is
ionized. In this case we expect a rapid distortion of the initial
intensity profile, which is clearly seen in all their results. The  Cylindrical waveguides, of whatever type, give a signifi-
profile given by Borgheset al. for a/\ =20, which consists  cant improvement over unguided propagation in terms of the
of two lobes with a line of low intensity in the middle, distance over which the intensity is maintained, the loss
though simple in form, does not look like any of the losslessiength being considerably greater than the Rayleigh length.
modes. However, it does have the symmetrynefl, just  This would be of significant benefit in a number of laser-
without the central peak in intensity, which, intuitively, one plasma applications, in particular to the laser wakefield ac-
might expect from the loss of thepolarized part. The pro- celerator, as the loss length could easily be made comparable
file for a/A=50 shows a whole series of peaks, which isto the dephasing Ieng[h_] by using a suitably Iarge value of
expected from the large number of high order modes whichy/\. However, the reduction in the group velocjigq. (3)]
could be excited and the lower losses, but again does nehust be taken into account, giving a lower maximum energy
have the distinct central peak of the lossless,1 modes. gain. This effect is also minimized by increasiag\, for
The profile given by Jackedt al, though it shares the same a/)\>(u/277)(w/wp), Wherewp is the plasma frequency of
feature of an intensity minimum on axis, looks just like thatthe plasma inside the waveguide; the reduction in the group
of the TE; mode given in Fig. 5, which may well be the velocity from that of a plane wave is negligible. Thus, with
same as the TH mode in this case. Jacket al. gave anf  the use of waveguides, it would not be necessary to work in
number for the output which gives an effectivefrom Eq.  a regime of strong self-focusing, and higher group velocities
(65), of 5.82, asu,,=3.05 andu,,=6.71, this would be con- could be achieved, as in general tighter focusing implies
sistent with a strongn=1 component. The presence of lower group velocities. The requirement for high values of
=2 modes indicates a departure from the expected symmey/\ will, however, require more powerful lasers. X-ray la-

X. CONCLUSIONS
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sers and harmonic generation are other areas which couf@polarized reflectivities, so Gaussian profiles will not be so
benefit from the extended interaction distance which cylin+apidly distorted. For dielectrics the lowest loss mode, indi-
drical waveguides offer. They could also have applicationsated by the lossless results, is the, TBode, which has the
simply as a means of guiding intense laser beams; such a uggivest cutoff wave number, and hence has the highest group
has been suggested in fast ignition schemes, to guide thgs|ocity. In its circularly polarized form it can be well fitted
ignition pulse into a hohlraum or the capsule itdélf. For by a Gaussian profile witlR=0.77a, and can achieve the
the laser parameters typically used in most of these applicarighest peak intensities without breakdown; in glass a peak
tiOI’IS, the guide wall will be ionized. It would also be diffi- intensity of 556/)\) times the breakdown threshold can be
cult to obtain a plasma-filled waveguide without ionizing the gchieved. However, it will start to distort over distances
wall. In this case there is a large difference betweensthe greater than the loss length. With losses, there only exist
and p-polarized reflectivities, which will lead to a high loss rotationally symmetric modes. This is not a problem when
discrimination between the modes and rapid distortion Ofthe losses are very |OW, as with microwaves in Conducting
nonrotationa”y Symmetric field Configurations. The |0W€Stwaveguides’ but, in generaL it will be a pr0b|em in h|gh
loss mode is thus expected to be theyTEode, which also  intensity laser applications. Thus the generation and possible
does not suffer from distortion. It can achieve far lower gpplications of the T mode merit investigation.

|OSSES than can be aChieVed in die|eCtI’iC Waveguides. How- The resuits given here represent a first Step in the basiC
ever, it has a hollow intensity profiléFig. 3), quite unlike  ynderstanding of laser-capillary experiments. To make the
the Gaussian profiles usually considered, which will be disnext step will require numerical modeling, e.g., with electro-
torted, as found in experiment§,7]. This may find applica- magnetic particle in cellpic) codes, as is required in the
tions in itself. The behavior of the waveguides in this case isnore straightforward case of plane targgts).

also expected to vary considerably with the laser parameters.

In some cases such conducting waveguides can give lower
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