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Proteins with selected sequences: A heteropolymeric study
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Protein sequences are expected not to be random but selected in order to form a stable native structure that
is kinetically accessible. Therefore our model contains a selective temperature in sequencéapgge
Ramanathan and E. Shakhnovich, Phys. Re®0E1303(1994)] ) to optimize the sequence for the target
conformation statistically. Replica calculations, which go beyond quadratic approximations in the field-
theoretical Hamiltonian, are presented. A phase diagram indicating the temperatures and selective temperatures
at which transitions to a frozen globule, i.e., the native state, occur is obtained. It is shown that going beyond
the quadratic approximation in the field Hamiltonian is very important, since it results in a significant change
of the phase diagram. Moreover, we suggest that a one-step replica permutation symmetry scheme is sufficient
to solve the model. In addition to this we present a result for the sequence correlation function along the chain
in the case of a short-ranged potential between the monomers. A correlation function between monomers that
form a contact in the native state is given depending on the temperature and the interaction parameter.

PACS numbegs): 87.15.Nn, 64.60.Cn, 64.60.Kw

I. INTRODUCTION [14]. Such an energy spectrum can be designed by the intro-
duction of phenomenological models, which are motivated
Real proteins are composed out of a set of 20 differenby the idea of nonrandomness in protej2s12,13. These
kinds of amino acids, which leads to a complex interactionmodels favor native-state contacts energetically, thus pulling
potential between the monomers of the protein. Since it iglown the energy of the native structure.
impossible to deal with all these interactions analytically, the ~There is, however, the caveat that the fundamental inter-
statistical-mechanical approach to protein folding is based oAction in proteins is basically the same as in random hetero-
the investigation of simple models of heteropolymers. A firstP0lymers. According to[14] the ability of folding into

step in this context is an approach where the heteropolymefdlidue structure might be achieved by the optimization of
are made up of only two kinds of monomers; thus similarth€ sequence of amino acids.[l the statistical-mechanical

monomers attract each other, whereas unlike monomers rgropertles of heteropolymers with designed sequences are

pel each other. These two monomers represent hydrophili|(r:1ve$t|gated. The sequences are designed in the sense that a

. . . L canonical distribution in sequence space depending on the
(A) and hydro_phobloiB) amino acids. This simplified mo_del native conformation and a selective temperafligaveights
for proteins still supports the important feature that the inter

) . . ‘the probability of the occurrence of a certain sequence. Con-
action energy is characterized by the sequence of the mong—equently some sequences are favored over others.
mers of the protein, which is an advantage over the indepen- 5 phase diagram within Gaussian approximation for such
dent interaction model, where the interaction energies arg heteropolymer depending on the selective temperatyre
considered as independet-6]. _and the real temperatuf®is calculated if1] using a one-
_ The statistical mechanics of random copolymers consistgie, replica symmetry breaking ansatz. In the present work
ing of two different kinds of monomers has been studied in,a show that this phase diagram is changed significantly by

previous paper$6—11. Though different kinds of mono- ing heyond the Gaussian approximation after investigating
mers repel each other, the monomers are not able to separ question as to whether a higher-order replica symmetry

into hydrophobic- and hydrophilic-rich macroscopic regionspeaking ansatz is necessary. The calculations show that a

at low temperatures because of the presence of chain connegmmeiry breaking ansatz of higher order reduces to a one-
tivity. The positions of neighbors are not independent, Wthhstep replica symmetry breaking scheme.

Ieads_, to frustration. ) ) Finally we present a sequence correlation function for a
It is suggested ifi10] using the one-step replica symme- ghort ranged potential between the monomers. The depen-

try breaking ansatz that the energy levels show a continuoUgence on the strength of the interaction and the polymeriza-
spectrum for large values of the energy and a discrete speggp, temperature is analyzed.

trum for lower values. As in the independent interaction

model the system freezes into the lower part of the energy

spectrum if the temperature is decreased sufficiently. The Il. MODEL AND DEFINITIONS
ability, however, to fold into a kinetically accessible unique | ot the set{r;} represent the conformation of the hetero-
native state requires that the energy level of this state be ferg1 :

) Polymeric chain, where the indexrefers to theith mono-
below the discrete part of the energy spectrum of the chaily,e; Then the interaction term in the Hamiltonian reads
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with N the number of monomers in the chain abdr;

—r;) a short-ranged potential. The binary interaction virial F=—kT(In Z{Ui}>av:—kT{z_ InZ{oi}P{oi}. (6)

coefficients are given b15] oit

_ (---)av denotes averaging over all possible sequeregs

by =2[bo + Al + o) T xoioy], @ with' a probability distributionP{c;}. The conformational

where the sequence of monomers is described by the set Btition functionZ for a given sequencfy;} can be written
variables{o}. If monomeri is of type A, theno;=1 and a5

o;=—1 in case that this monomer is of type B. Here we are H{r)
interested in the case that similar monomers attract each z=>, exp( - ! ) IT g(risi—ro), )
other, which means that the Flory paramegteis smaller rif kT i

than zero. The parametér vanishes if the interactions be- where the functiong for next neighbors along the chain,

tween' similar monomers are equal, Wh'Ch.'S as;umed n th\(%/hich ensures the connectivity of the chain in its standard
following. To make sure that we are dealing with compactGaussian form, is given 6]

globular statesh is set to negative values, which implies a

certain overall attraction independent of the specific se- 1 (Fiia—1)2
quence of the monomers. 9(rjp1—1))=——5——¢ F{— 1”—21 G)
The set{r’} represents the conformation of the target or (2ma%)(3/2) 2a

native structure for which the sequence of monomers shoul
be designed. The potential energy of the chain consisting o
the sequencéo;} folded to the native structure is given by

ith a the segment length in the discrete polymer model.
The calculation of the free energy according to Ej.is
very difficult, caused by the occurrence of the logarithm in
1 N this equation. To solve this problem we make use of the
Ho({oi}) == 2 bi,-U(riO—r?)- () replica trick (see, e.g.[17]), which requires the calculation
2 17 of the averageath power of the partition function

In the canonical ensemble of sequences in sequence space . W bo N
according to this Hamiltonian we get the following distribu- <Zn>av:2 f Drifgriyi—riexpg — PIRE
tion function for sequence sefs} [14]: toil "

Tt

1
P{oi} s exr{ T,
N o with Ui =U(r{*—r{") andr{" the position of théth monomer
where the sequence space partition function is given by i, replica «. SinceU is a nonlocal potential, we perform a
) Hubbard-Stratonovich transformation and calculate the trace

xex;{—z > o=y |Plol, ©

a=1 1i,j

(4)

2:2 ex _M (5) over g;. By setting
{oi} Ts .

with the polymerization temperature or selective temperature $a(Rp)= b_f dR;U™H(Ry—R)#o(Ry),  (10)

Ts. The sequence is treated as a frozen disorder; thus to get “

the free energy we have to average the logarithm of the pawhere s, is the Hubbard-Stratonovich field in theth rep-

tition function in the conformational space over the probabil-lica, b, equals— x/T for the zeroth replica¢=0), and

ity distribution given by Eq(4). So the free energy reads  — x/T for all other replicas, we get

l n
<Zn>aV:'E< J' D(I)DzD(DOeXF{_ 20 baf dedRZ(Da(Rl)(I)a(RZ)
n
XU(R{—R,)+2 >, babﬁf dR,dR,® (R))U(R;—R})
a,f=0

X f dR,dR;® ,(R2)U(R;—R3)Qp(R1—Ry)

4
=33, bubsbb; | ARIGR] - dRGRD(ROU(RI=R)) - (RYU(Ri—R)
a, B,

X >, 8(rf—Ry)8(rf—Ry) 8(r7— R@&(rf—&)b : (12)
! th
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The thermal average - - )y, includes the integrals ovédr?}
and {r{*}, which are not given explicitly in Eq(11). The
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type hierachical matrix for the order paramet@; is
formed by dividing all the replicas in groups by the follow-

parameteQ,,; describes the overlap between replicas and isng scheme: Two replicas and 8 are in the same group if

defined as

Qaﬁ(Rl—Rz>=Z S(ri—=RpS(rf—Ry). (12

they overlap on a microscopic scale, which implies that the
overlap parameteQ ,z(R;—R;)=pd(R;—R,) with p the
density of the system. The replicasand 8 are in different
groups if they do not overlap, which m eans that the overlap
parameter vanishes, i.€,,5,=0.

This one-step replica symmetry breaking scheme implies

Neglecting terms of ordex?, which means considering the that the overlap between the replicas and the target confor-

case of weak interactions and assuming function for the
short-ranged potentidJ,

U(R1=Rz)=6(R1—Ry), (13

Eqg. (11) can be evaluated by switching @, variables,
which yields

<Zn>aV: j DQaﬁ exq - E{Qaﬁ} + S{QaB}L (14)

where the effective energy terBin the Gaussian approxi-

mation is given by
E{Qaﬁ}zlnf D(ba(k)ex% _Va,,BEZO ; [baﬁaﬁ

—2b,bgQ.p(K)1ha(K) Pp(— k)} (19

with V the volume of the system ardis the wave vector.

mation does not vary continuously but can only assume two
possible values. As a consequence there is a sharp change
from the disordered globule or frozen globule to the target
conformation, which depends on the selective temperature
and the real temperature. If a conformation in replica
folded into the target state, then we def,=pd(R;—Ry)
andQq,=0 otherwise.

We are now going to show that this one-step replica sym-
metry breaking scheme, which was introduced 1h quite
intuitively, is the appropriate one for our model. It can be
seen that a two-step replica symmetry breaking ansatz re-
duces to the one-step symmetry breaking scheme. This im-
plies that there is indeed a sharp change from the disordered
or frozen globule to the target conformation.

The energy depending on the order param€gy ac-
cording to Eq.(15) within the replica formalism is given by
[17]

1
E{Qqp}=lim ETr I[P ,z]. (18

n—0

The entropyS, which corresponds to the change of the vari-In the disordered or frozen state, when there is no overlap

ables, reads

S{Qupt= In< 5( Qup(Ri—Ro)— Z o(r'—=Ry)

X 5(rF—R2)>) (16)

th

For more details of the derivation of Eq4.1) and (15) see
[1]. Performing the integrals over the field, (k) for «
=0,...,nin Eq. (15 one obtains

f dk In[detP ,5(k)], (17)

with P ,g(k)=b,6,5—2b,bsQ,s(K) a symmetric matrix.

Ill. REPLICA SYMMETRY BREAKING
INVESTIGATIONS

In [1] the energy represented by Ed5) is calculated by

with the native state, this expression can be calculated in
terms of the Parisi functiom(x) (x=0,...,1) asfollows
[18]:

1
lim - Trin[P,z]

n—0

=In[bs—2bZp]+In

fl dx
0 x?

b—2b%p— fldx a(x)+ fxdy aly)—xa(x)
0 0

1
b—2b%p— f dx a(x)
0

XIn

b—2b2%p— fldx a(x)
0
(19

The entropy ternS is calculated in[3] within a Gaussian

a one-step replica symmetry breaking scheme. The Parisapproximation in terms of the Parisi function as
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S=NnZa2j a(x)dx. (20)
0

Equation(19) and(20) lead to the following mean-field free
energy density, which has to be maximiZdd] with respect
to the Parisi function:
fl dx
0 x?

b—2b%p— fldx a(x)+ fxdy a(y)—xa(x)
0 0

f 2
- =In[b—2bZp]+In

1
b—2b2p—f dx a(x)
0

XIn I
b—2b2p—f dx a(x)
0

- ;1 azfla(x)dx. (21)

0

Now we are introducing in addition to the one step in the

Parisi function, which was already done [ih] and[10], a
second step according to the scheme

a(x)=0 for x<Xq,

a(x)=a; for Xg=x=xy,

a(x)=a,=—2b% for x;<x=<1. (22)
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1
— — In[1—xy(a;+2bp)]
X1

Xoay (a1 +2bp)
+
[1—xy(as+2bp)J[1+x0a; —X1(a;+2bp)]

NESEE aj+2bp
X1 Xo| X1 1+Xxpa;—Xi(a;+2bp)
3,
—Za b(a;+2bp)=0 (24
and
1 1 X1 1 X1—Xo
Xo X1]1—xq(a;+2bp) Xo 1—(X;—Xg)a;—2bpx,

3
— 78%b(x;—X0) =0,

Z (25

with aj=a,/b. A simple algebraic analysis of these equa-
tions shows that for a dense globular system the only real
solution for x; is x;=x%, and thereforea;=a,=—2b?%p.

This result implies that the two-step replica symmetry break-
ing scheme reduces to a one-step scheme. The stability of the
one-step replica symmetry breakifl@SB) solution was ob-
served in all microscopic studies of three-dimensional het-
eroplymerd3-5,19. One-step RSB suggests that the energy
landscape of a polymer is “rugged,” consisting of well-

In contrast to the one-step replica symmetry breakingjefined local energy minima such that it is a consequence of

scheme we get two additional parametagsand x;. After
insertion of the step function given in Eq&2) for the Parisi
function the free energy density reads

f
~=In[bg— 2b2p]+In[b— (x;—Xg)a; — X, 2b%p]

1 1 b—x,(a;+2b%p)
+|———]In
_Xl XO b—(Xl—XO)al—XIZpr
b
+|1——]In
L Xl b—(Xl—Xo)al—X12b2p

3 2
—22 [(X1—=Xp)ay—(1—x;)2b%p]. (23

the topology of the three-dimensional space that makes
“half-folded” states unfavorable: loss of energy due to sev-
ering some favorable contacts is not fully compensated by
entropy gain in such “half-folded” states. This is in contrast
to low-dimensional heteropolymers where the mean-field so-
lution features continuous RSB. Plotket al.[20] postulated

the possibility of a continuous replica symmetry breaking in
their phenomenological description of random heteropoly-
mers based on the generalized random energy model. In con-
trast, our analysis based on thaicroscopicmodel shows
that a stable mean-field solution for three-dimensional het-
eropolymers features one-step replica symmetry breaking.

IV. PHASE DIAGRAM BEYOND THE GAUSSIAN
APPROXIMATION

In [1] terms of higher order than quadratic in the field
Hamiltonian given in Eq(11) were neglected. Within this
Gaussian approximation a phase diagram was calculated. In

Maximizing the free energy density with respect to the pa-the following we show that this phase diagram is changed
rametersa; andx, leads to two coupled mean-field equa- qualitatively if terms of higher order in the fielg are in-
tions, which are calculated by setting the partial derivativescluded. Therefore we make the following perturbation ex-
with respect taa; andx; to zero. These equations are given pansion of the averaged replicated partition functj.

by

AD]:
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1 n
<Zn>aV%E< f DCI)LYDCI)OGX[{ - 2 baf dedRZCI)a(Rl)(Da(RZ)
a=0
n
XU(R;—Ry)+2 > babﬁf dR,dR,® (R))U(R;—RY})
a,f=0
XJ ddeRé(Da(Ré)U(Rz_Ré)QaB(Rl_Rz)}

4
X[1-—= > babﬁbybgj dR;dR}- - -dR,dR}

3 a,B,v,6

X ®(RPU(Ry—R})- - @ (RHU(Rs—R})

X2, 8(rf—Ry)8(rf—Ry) 8(r)—Rga) 8(r{— R“)D : (26)
! th

Here terms of higher order thapi* were neglected. It is useful to consider this expression in Fourier space, where it has the
following form:

n n

> ; b, ® (K)D o (—k)+2 ;_0 b.bg

a=0

(Z™ o~ %< f DCI)QD(I)OeX[{ -

X ; Qaﬁ(k)q)a(k)q)ﬁ( - k):| |: 1- f E bablgb.yblsf dkldkzdksdk4

3 a,B,7,0
> . (27
th

The first integral in Eq(27) is a gaussian integral in the fieldi@}. It has already been treated|[it0] i.e., in[1]. A one-step

replica symmetry breaking scheme was applied to this problem, which is valid as we pointed out in the previous paragraph.
The replica symmetry breaking parameter is referred tq,asd within this scheme for the unperturbated free energy one gets
[10]

X2 (ke klriaq)ﬂ( ka)e™ ol Akg)e™ kT y(ky)e kar{
I

| —
C(xg)=In(b)+ w - Xi (28)
0 0

wherep is the density of the system asds the flexibility parameter or entropy per monomer definedssyn(a®v) with a3
the volume of a monomer andthe excluded volume. Sa*/v is the number of possibilities to place a certain monomer along
a given chain structure to achieve coincidence with this structure on a microscopic level. For further details on the motivation
of the definition ofs see[10].

In the second integral in E@27) only terms that contain pairwise replica indices from the same group will survive, since
Q,.(Kk) vanishes fore and 8 belonging to different groups. This leads to

16 . a_ By _ .6 _ _
(Z”)a\,~C(xo)—C(xo)<§klzk2 B o s s 2 Dabpy DTN P T () [P 1]55<k2>>
' ' ' e th

16 — .
—c<x0><32 > 33 bbgbletali ek P (k)

, (29)
ky.ky (A) a,BeA;a,#0

bs—2b§p> "

with A and B denoting the different groups of replicaB. (k) is the inverse Parisi matrix represented [pgk) for the
off-diagonal elements ang(k) for the diagonal elements:

y(K)

PO = BT 5 (K)%]

(30

and
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~ 1+ y(K)(1—Xo)

b1 (k%] o

with y(k) =2bp. Suppose thab andy do not depend ok. Then

- 1) [(Xo—1)XoPp+Xop]?

<Zn>ava(X0)_ C(Xo) ;(2 b4X X

0

><<2 eikl(rf“rf“)eikz(riyfiy)> ——C(xO 2 b*—
1

th kikz %o

X[3Xo(Xo— 1)(Xo—2) (Xo— 3)p?+ Xo(Xo— 1)(Xo—2)(2p+ pp)
+ 3Xo(Xo— 1)pp+ 3X052+X0(X0_ 1)(2p%+p?)]

b2b?

X<E eikl(riar;l)eikz“‘ar‘a)> _§C Xo)x_ 2 [(Xo— 1)X0p+Xop]—
i th 0 kq,kp _2b

% < E eikl(ri“ri“)eikz(r?r?)> _ (32
I th
Therefore

492C(Xo)(N—Xg)N B 4C(Xp) yysh
3(1—yxo)? 3(1—yXo)(1—s)

(Z")a=C(x0)—

492C(xo)N[3Y2(X3—5X5+ 9xo— 3) — Y(X5+ 4xo—3) + Xo+ 2]
3(1— yxo)?

: (33

which leads to the following free energy density of the system:

B 492C(Xo)(N—Xo) - 4C(X0) vs
n 3(1— y%o)? 3(1—yXo)(1—s)

492C(xo)[37Y2(X3—5x3+ 9xy— 3) — y(X5+ 4Xo— 3) + Xo+ 2]
3(1— y%o)? '

(34

Fluctuations of the order paramet€,,, which describes o o

the overlap of theath replica with the target state, might €o=iy| & ori—ryari-ry)) . (36)
affect the free energy density. This effect was investigated in h th

[1], where bilinear termsp (k) ¢o(—k) in the field theory

were taken into account. The result of this consideration is

that the correction of the free energy density due to the flucthe thermal expectation value in E@6) is the number of

tuations reads contacts different folds and the target configuration have in
f €YY common. The overlap is mainly due to the contacts of neigh-
s . o . .
n :m' (39 boring monomers which is neglected in the mean-field
cor 0 S theory for Qq, and might become important when the flex-

€0 is a small parameter of a perturbation expansion definetPility of the chain increases. The overall free energy is the
by sum of Egs(35) and (34)
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T i 17O x0) __ 4C(x0)ys
N 31—k 31X (1)
47°C(X)[3Y2(X3—5x5+ 9% — 3) — Y(X5+ 4% —3) +Xo+ 2] €07 Vs

3(1— yxp)2 (1= %) (1= 79)" 37

This expression for the free energy has to be maximized with respect to the one-step replica symmetry breaking ggrameter
Therefore we calculate the partial derivative and set the result to zero:

ofin \ 4y°C’(Xo)Xo  4¥°C(Xo) 1 2yXo 4C' (X0) ¥Ys 4C(X0) ¥*¥s
' (xy)— _ _ _
9Xo " 3(1-yx0)? 3 (-2 (1-yx0? 3(1=X0)(1=7) 3(1—yx)A1—7s)
€0V Ys 492C' (xo)[372(x3—5x3+ 9xXg— 3) — Y(X5+ 4%Xo— 3) + Xo+ 2]
(1= X0)*(1—ys) 3(1-¥%o)?
4v2C(Xo)[3Y3(X3— 9o+ 6) — y2(9x5— 34xo+ 33) + yXo— 1] o -
+ = L]
3(1—yXo)®
[
with C'(Xg) = dC(Xp)/dxo. Due to the logarithmic terms in It is important to mention that Eq.39) only delivers a

C(xp), this is a transcendent equation. So the general solwsolution for the transition temperatufg if — x/T, is not too
tion for xg is unknown. For our purpose, however, we do notsmall. On the other hand, our theory only is valid if
need to know the solution foty, since we are mainly inter- — x/T. is not too big i.e., at least smaller than 1. It is, how-
ested in calculating the temperatufrg at which a transition ever, easy to show that E(B9) gives a solution for a wide
from the disordered phase to the frozen phase of the considange of— x/T.. Equation(39) is equivalent to

ered system occurs. At this freezing transition the replicas

start to form groups, which means thgf becomes smaller —X 33T§ 6 s sT,

than 1. Consequently at the transition point we gg(T.) —=eXp 5~ 55~ 5 5= |- (40)
=1. Considering Eq(38) at T=T, for small interaction pa-

rametersy (i.e., x/T<<1) yields . I
(i x )y To ensure that- /T, is smaller than 1, which is necessary

since the theory is based on an expansion with respect to
2x°p% 32 3% [—x —x/ T, the argument of the exponential function in E40)
- T2 - 372 5= 372 In has to be negative. This implies
Cc C C

16x%p?s 3sT2 6 s sT,
- +0(x%)=0. (39) — e+ E (42)
3T Ts 3% 32 p? 2Ts
The restriction to only small interactions is consistent withAll in all we get
the fact that terms of higher order in the field theory are
neglected. The analysis of E(B9) clearly shows that the xX° 3s 42
Y ; . ) NS ,
critical temperatureT,. increases for decreasing selective T§ 325+ 6p?+16p2sT. /T4

temperature§ g, which is in contrast to the dependence of
T. on T calculated if 1]. Though Eq(39) cannot be solved
analytically, it can be solved numerically in order to plot a
phase diagram.

It is interesting to consider the limit of a high selective
temperaturel in Eqg. (39), which represents the case of a
random copolymer. It is well known that random copolymers
show a finite freezing temperatufe , which was calculated
by Sfatoset al.[10] with a similar formalism than presented
in this work. Like in[1] Sfatoset al. [10] made a quadratic
approximation in the fields as pointed out above. It can be
seen from Eq(39) that considering infinite selective tem- To>—2yp=
peraturesT gives a finiteT,>0 depending on the interac- s
tion parametey, the densityp, and the flexibility parameter
S. T<—2xp. (43

which is satisfied in a wide range ef x/T. even for smalk,
since the right hand side vanishessagoes to zero.

In order to complete the phase diagram of our considered
system we have to compare the free energy in the different
phases. 1] the free energy density of the native state was
calculated as

F=—2bp/(1—2bgp)—s,

3 2
~ 760/ (PDS)[1—1(2bsp)] s,
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A phase transition in the sequence space of the monomers detween the disordered globule and the single native state.
the inhomogeneous target conformation was observad at Another first-order transitiofl] occurs between the disor-
=T¢=—2xp, which is analogous to the ferromagnetic- dered globule and the native state below the line denoted by
paramagnetic transition in a ferromagfiel This means that  T;. This T; line represents the ferromagnetic like transition
the two kinds of monomers A and B form domains of equalwithin the native state in sequence space. The dotted vertical
monomers when synthezised. If the protein is for exampléaine labeledT}, is the asymptote for th&, transition line in
exposed to water, it will establish a hydrophobic core and ahe limit of high selective temperaturds, which creates a
hydl‘OphIhC surface beIovU'f. random Copo|ymer_

The comparison of the free energy density of the native This phase diagram is qualitatively different in one aspect
state abovd'¢, Eq.(43), and of the frozen globule, E37)  from the phase diagram presented[ 1, which was calcu-
atT=T,, which impliesxo=1, gives the transition tempera- lated within the Gaussian approximation of the field Hamil-
ture in sequence spad& between the native state and the tonian. The major difference is that due to # correction
frozen globule. Note thal, which can be calculated nu- in the field Hamiltonian the freezing temperatdrg for the
merically, is independent of the temperature in real spacdransition between the disordered and the frozen globule de-
since the entropy of both the native state and frozen globulereases with an increasing selective temperature, whereas
vanishes. within the Gaussian approximati¢a] T, is slightly increas-

The transition line between the disordered globule and théng with an increasing selective temperature. This is in ac-
native state can be calculated in the neighborhood of theordance with the intuitive understanding which suggests
frozen globule, which means that the free energy densities dhat the freezing temperature increases as the selective tem-
the native state abové;, Eg. (43) and of the disordered perature decreases, since the sequence becomes more or-

globule, Eq.(37), for x,=1 are equal. dered by lowering the selective temperature. We note that
Below the temperatur&; the free energy density of the the very weak dependence @f on selective temperature
disordered globule can be obtained to[lhé observed in1] was due to fluctuations in the order param-
eter Q,z that physically take into account the fact that all
3 /1 2 conformations share same set of lo@bng the chaipcon-
- sz b (44) tacts(the relative contribution of local contacts is given by

parametere®). The slight decrease df, at lower selective
Comparing this free energy density with the one for the natemperature was due to the fact_that sequence selef:t|on in-
tive state below the sequence space temperdaty@ne ob- duced some short-range correlation, maklng the chain more
tains a transition line for low real temperatures and sequend@omopolymer like. We note that neglect of fluctuations of

space temperatures defined [y Q.p in the Gaussian approximatiofi.e., setting e’=0)
leads to the independence ®f on selective temperature.
Toch. (45  The reason for this is simple: in the Gaussian approximation

optimization of sequences to fit the target conformation does
The results are summarized in the phase diagram given ifiot induce any correlations in sequendes T; other than
Fig. 1. related to contacts present in the target conformatsee
The line denoted byTg is the transition line from the below). Since the structural overlap between the native state
frozen globule to the native state, whereasThdine repre-  and any of the frozen conformations is small, in the thermo-
sents the transition between the disordered globule and thgynamic limit (because of the one-step RSB solution for
frozen globule abovel{. The part of this line belowly  Qg,) the sequences, in the Gaussian approximation, are ef-
indicates a first-order transition to the native state. This tranfectively random from the point of view of freezing into
sition is of first order since there is a entropy differencerandom conformations: hence, the independencd .obn
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selective temperature, apart from local correlation effects In the previous section it was provend that there is no
(governed bye®), in this approximation. When higher-order two-step replica symmetry breaking in the Gaussian approxi-
terms in¢ are included, the situation changes as sequenceation. There, however, might be a break of the replica sym-
fluctuations are treated more consistentljhis is usual— metry of higher order if one goes beyond the Gaussian ap-
departure from the Gaussian approximation allows us tgroximation, which might have an effect on the phase

properly take into account fluctuationspparently these se- diagram presented here. This will be investigated in future
quence fluctuations affect the freezing transition as seen iork.

the phase diagram.
V. SEQUENCE CORRELATION FUNCTION

Since the monomer sequence of the chain is selected and not random within our model, the sequence correlation function
is an important quantity to study. It is defined as

ot

g0 = |0 ex 46
171 +k/av 75 191+k Ts

Here(- - -),, represents the average over all sequences with a fixed conformation of the chain. This expectation value can be
rewritten as

1
<U|<T|+k>av:~z {;} U'IO'erXF{st def dRzZ Ui5(r?_R1)U(R1_R2)§j: cr,-&(r?—Rz)} (47)

Introducing a field theory by performing a Hubbard-Stratonovich transformation the second exponential functiofdin Eq.
becomes

1
f Dw(R)exr{— mj def dsz(R1>u-1(R1—R2>w(R2>+f dRY(R) ai(s(r?—R)}. (49
Performing the trace ovdio;} and implementing Eq48) into Eq. (47) yields

<U|U|+k>av:~%f Dl//(R)eXF{_%bsf def dR;

XP(RYUTHR=R)Y(Rp)+ > In

sinl-( f dR z/x(R)&(r?—R)”

+ > In

i#l,1+k

cos?‘(dez//(R)é(r?—R))H. (49

Developing In(sinh) and In(cosh) up to second order in the fielohe obtains

1

1
<mo|+k>av~§f Dwfdefddef(Rl)w(Rz)é(r?—Rl)(s(r&k—Rz)exr{—4—bJ def dR;

1
XP(RYUTHRI—R)P(Re) 5 2 W(R)Y(R) AP =Ry (7= Ry)

1
3 2 w(Rﬂw(Rz)a(r?—Rl)a(r?—Rzﬁ. (50

#1,1+

Including terms of higher order in the field like we did in the previous section is not recommended at this point, since here
it just makes things more complicated and does not give any deeper insights.

The next step is to make a field transformation from the Hubbard-Stratonovich/fieldhe field ¢ defined in Eq.(10).
Furthermore, we assume that the short-ranged potdutiala § function. Then Eq(50) becomes
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1
(or0r-0ar=5 | Do [ aR [ AR o 1P Ro) 0.~ R s [ oR (R

2

+§b§_ delf dR,¢(R1) ¢(Ry) 8(r2—Ry) 8(r’—Ry)
=TTk

+2b2 X f dR; f dde)(Rl)qa(Rz)é(r?—Rl)a(r?—Rg}. (51)
i#l,1+k

The functional integral on the right hand side of Egl) only has a contribution if?zrﬂrk which means that the monomers
| andl +k form a native contact. In particular we get

2bg1-4b,
<0'I0'I+k>av:ﬁ5(rl_rl+k)- (52
(1‘5*’8)

For a weakly interacting system, which means srball this equation reduces to

2x
(010141 av=2Ds8(r) =17, ) = — T—gé(r."—r&k). (53)

This indicates that there is a correlation between the monomers that form a native contact, which is proportional to the strength
of interaction and inversely proportional to the temperature in sequence space. Note t6&j Epnly valid for a sufficiently
small interaction parametdy;, since our theory breaks down for too strong monomer-monomer interactions.

VI. CONCLUSION the freezing temperaturE, for a random copolymer. In the
%hase diagram presented[ih] the native state is accessible

two-letter heteropolymer with selected sequences, which is -y this sense, though it is required that the selective tempera-

good analytical model for proteins. The same major phasel® Pe a certain amount smaller tHEp The calculations in
as in [1], [21], and [22]—disordered, frozen, and target this paper, however, show that the native state is even acces-

states—uwere found. sible for all selective temperatures beldy.

The sequence of the monomers was treated as a frozen The phase diagram also shows a transition Tipg which
disorder. To deal with this problem the replica trick was'epresents a transition in sequence sga¢eThis transition
employed. We showed that a one-step replica symmetr}ﬁ analogous to a ferromagnetic-paramagnetic transition. Be-
breaking scheme like was applied [it] is appropriate to low a certain temperaturg; in sequence space the two kinds
solve the problem. The physical meaning of this result is thaPf monomers tend to form domains. For selective tempera-
there exists a sharp transition into the native state. turesT <T; there is another transition line between the dis-

Furthermore, to calculate the phase diagram we went perdered and the native state. This transition line suggests that
yond a Gaussian approximation, which resulted in a qualitathe smaller the selective temperature, the smaller the transi-
tive change of the phase diagram compared to that given iHon temperature, which can be explained by the fact that the
[1]. As presented in the phase diagram the transition betweeggquence forms domains beldw, so that the sequence de-
the disordered phase and the native state is thermodynangign process is disturbed.
cally of first order, which is due to the selection of the mono- Moreover, a sequence correlation function along the chain
mers. For higher selective temperatues T¢ the selection depending on the selective temperature in sequence space
is much weaker and we get a transition of second order. Thiand the strength of the interaction between the monomers
result is consistent with experiments which show that thevas calculated. The result suggests that in the sequence de-
formation of the molten globular state occurs as a first-ordesign scheme employed here special emphasis is laid on the
transition[23,24 in contrast to the behavior of random se- native contacts. It also has practical applications for finding
quenceg25]. As was mentioned ifl] for the kinetical ac- the native contacts in a protein. Our sequence correlation
cessibility of the native state it is important that this state befunction implies that those pairs of monomers are candidates
accessible from the disordered state for temperatures abover forming a native contact which have a peak in this cor-

In the present paper we studied the phase diagram of
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