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The learning properties of finite-size polynomial support vector machines are analyzed in the case of
realizable classification tasks. The normalization of the high-order features acts as a squeezing factor, intro-
ducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the
corresponding generalization error presents a crossover, more or less abrupt depending on the distribution’s
anisotropy and on the task to be learned, between a fast-decreasing and a slowly decreasing regime. This
behavior corresponds to the stepwise decrease found by Dietradh[Phys. Rev. Lett82, 2975(1999] in the
thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.

PACS numbds): 87.10+€, 02.50--r, 05.20—y

I. INTRODUCTION separablen feature space. In that case the learning problem
is reduced to that of training a simple perceptron. For ex-
In the last decade, the typical properties of neural netample, if the feature space includes all the pairwise products
works that learn classification tasks from a set of examplesf the input vector components, the SVM may implement
have been analyzed using the approach of statistical mecha@ny classification rule corresponding to a quadratic separat-
ics. In the general setting, the value of a binary output neuroing surface in input space. Higher-order polynomial SVMs
represents whether the input vector, describing a particulaand other types of SVMs may be defined by introducing the
pattern, belongs or not to the class to be recognized. Mangorresponding features. A big advantage is that learning a
script character recognition and medical diagnosis are exinearly separable rule is a convex optimization problem. The
amples of such classification problems. The process of inferifficulties of having many local minima, that hinder the pro-
ring the rule underlying the input-output mapping given a setcess of training multilayered neural networks, are thus cir-
of examples is called learning. The aim is to predict correctlycumvented. Once the adequate feature space is defined, the
the class of novel data, i.e., to generalize. SVM selects the particular hyperplane called maximal mar-
In the simplest neural network, the perceptron, the inputgin (or maximal stability hyperplane(MMH ), which lies at
are directly connected to a single output neuron. The outpuhe largest distance to its closest patterns in the training set.
state is given by the sign of the weighted sum of the inputsThese patterns are called support vect@¥s). The MMH
Then, learning amounts to determine the weights of the corsolution has interesting propertigg]. In particular, the frac-
nexions in order to obtain the correct outputs to the trainingion of learning patterns that belong to the SVs provides an
examples. Considering the weights as the components of #pper bound1] to the generalization error, that is, to the
vector, the network classifies the input vectors according t@robability of incorrectly classifying a new input. It has been
whether their projections onto the weight vector are positiveshown[3] that the perceptron weights are a linear combina-
or negative. Thus, patterns of different classes are separatéi@n of the SVs, an interesting property in high dimensional
by the hyperplane orthogonal to the weight vector. Beyondeature spaces, as their number is bounded.
these linear separations, two different learning schemes have A perceptron can learn with very high probability any set
been suggested. Either the input vectors are mapped by li®f examples, regardless of the underlying classification rule,
ear hidden units to so called internal representations thdtrovided that their number does not exceed twice its input
must be linearly separable by the output neuron, or a morépace dimensiopd]. However, this simple rote learning does
powerful output unit is defined, able to perform more com-not capture the rule underlying the classification. As it may
plicated functions than just the weighted sum of its inputs. arise that the feature space dimension of the SVM is compa-
The first solution is implemented using feedforward lay-rable to, or even larger than, the number of available training
ered neural networks. The classification of the internal reppatterns, we would expect that SVMs have a poor generali-
resentations, performed by the output neuron, corresponds #ation performance. Surprisingly, this seems not to be the
general to a complicated separation surface in input spacéase in the applicatior$].
However, the relation between the number of hidden units of Two theoretical paperi6,7] have recently addressed this
a network and the class of rules it can infer is still an operinteresting question. They determined the typical properties
problem. In practice, the number of hidden neurons is eithe®f a family of polynomial SVMs in the limit of large dimen-
guessed or determined through constructive heuristics.  Sional spaces, reaching completely different results in spite
A solution that uses a more complex output unit, the supof the seemingly innocuous differences between the models.
port vector machinéSVM) [1] has been recently proposed. Both papers consider polynomial SVMs in which the
The input patterns are transformed into high-dimensionainput vectorsxe RN are mapped onto quadratic features
feature vectors whose components may include the origingP. More precisely, the normalized mapping ®,(x)
input together with specific functions of its coordinates se-= (%, XX/ N, XX/ N, . .. xnx//N) has been considered in
lected a priori, with the aim that the learning setlinearly = Ref. [6]. The nonnormalized mapping ®,,(X)
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=(X,X1X,X2X, ... XX) has been studied in Ref7] as a calculation. Numerical simulation results are compared to
function ofk, the number of quadratic features. kot N the  the corresponding theoretical predictions in Sec. . The two
dimension of both feature spaces is the same, correspondiriggimes of the generalization error and the asymptotic be-
to a linear subspace of dimensid and a quadratic sub- haviors are discussed in Sec. IV. The conclusion is left to
space of dimensiomN?. The mappings only differ in the Sec. V.
distributions of the quadratic components in feature space.
Due to the normalization, those @b, are squeezed by a Il. MODEL
normalizing factorm= 1/\/N with respect to those ab,,. In
the case of learning a linearly separable rule with the non
normalized mappingP,,, the generalization error at any
given learning set size increases dramatically with the num=" P ) .
ber k of quadratic features includgd]. On the contrary, in _1’. T ’M) w_here X 1s an input vector in the
the case of mappin®, , the generalization error exhibits an N-dimensional input space, a”‘?*E{‘l’l} IS its c!ass. we
interesting stepwise decrease, also found within the Gibb&Sume that the componends (i=1,... N) are indepen-
learning paradigm in a quadratic feature sp&8g If the dent |qlent|gally dl_stnbuteo! random variables dr_awn_from
number of training patterns scales wih the dimension of Gaussian distributions having zero mean and unit variance
the linear subspace, it decreases up to an asymptotic lower N
bound. If the number of examples scales proportionally to P(x)=H Lexp{ X
N?, it vanishes asymptotically. In particular, if the rule to be =127 2
inferred is linearly separable in the input space, learning in
the feature space with the mappidg, is harmless, as the In the following we concentrate on quadratic feature spaces,
decrease of the generalization error with the number of trainalthough our conclusions are more general, and may be ap-
ing patterns presents a slight slow down with respect to thaglied to higher-order polynomial SVMs, as discussed in Sec.
of a simple perceptron learning in input space. IV. The mappings ®,,(X)=(X,X1X,XzX, ... XyX) and

As this stepwise learning is exclusively related to the faCt(I)n(x):(x,xlx/\/N,xzx/\/N, o ,xNx/\/N) are particular in-
that the normalizing factor of the quadratic features vanishestances  of  mappings of the form ®(x)
in the t_hermod_ynamlc liMitN—oo, in tr_lg present paper We = (¢, ¢,, ..., pn,d11,012, - - . ,dnn) Whereg;=x;, and
determine the [nﬂuence of the norm'all'2|ng' factor on the typl-d)” =aXin , wherea is the norma“zing factor of the qua-
cal generalization performance of finite size SVMs. To thisgratic componentsa=1 for mapping®,,, anda= 1/J/N for

end, we introduce two parametersandA characterizing the  @_. The patterns probability distribution in feature space is
mapping of theN-dimensional input patterns onto the feature

space. The variance reflects the width of the high-order N dx x2
features distribution and is related to the normalizing factor P(<I>)=f 11 —'exp( - —')
i=1 27 2
N

_ We consider the problem of learning a binary classifica-
tion task from examples with a SVM in polynomial feature
spaces. The learning set contailb patterns x*, ) (u

2

@

a. The inflation factorA accounts for the proportion of qua-
dratic features with respect to the input space dimenbion
Actual quadratic S\/_Ms are characterize_d by different values X 8( by _Xi)H S(pij—axx;). )
of A ando, depending oN anda. Keepingo andA fixed =1
in the thermodynamic limit allows us to determine the typi-
cal properties of actual SVMs, which have finite compressClearly, the components sp are not independent random
ing factors and inflation ratios. variables. For example, a numb@&(N?) of triplets of the
In fact, the behavior of the SVMs is the same as that of dorm ¢;; ¢ $y; have positive correlations. These contribute
simple perceptron learning a training set with patterns drawito the third-order moments, which should vanish if the fea-
from a highly anisotropic probability distribution, such that a tures were Gaussian. Moreover, the fourth order connected
macroscopicfraction of components have a different vari- correlations[9] do not vanish in the thermodynamic limit.
ance from the others. Not surprisingly, we find that theNevertheless, in the following we will neglect these and
asymptotic behavior corresponding to both the small andigher order connected moments. This approximation, used
large training set size limits, is the same as the one of thén Ref.[7] and implicit in Ref.[6], is equivalent to assuming
perceptron’s MMH. Only the prefactors depend on the mapthat all the components in feature space are independent
ping used by the SVM. Gaussian variables. Then, the only difference between the
As expected, the stepwise learning obtained with the normappings®, and ®,,, lies in the variance of the quadratic
malized mapping in the thermodynamic limit becomes acomponents distribution. The results obtained using this sim-
crossover. Upon increasing the number of training patternglification are in excellent agreement with the numerical
the generalization error first present an abrupt decrease, th@sts described in the next section.
corresponds to learning the weight components in the linear Since, due to the symmetry of the transformation, only
subspace, followed by a slower decrease corresponding t8(N+1)/2 among theN? quadratic features are different,
the learning of the quadratic components. The steepness bEreafter we restrict the feature space and only consider the
the crossover not only depends Anand o, but also on the nonredundant components, that we dendte (&,.&,).
task to be learned. The agreement between our analytic rdts first N componentst, = (&4, . .. ,&y), hereafter calledi
sults and numerical simulations is excellent. components, represent the input pattern of unit variance, ly-
The paper is organized as follows. In Sec. Il we introduceing in the linear subspace. The remaining comporgnts
the model and the main steps of the statistical mechanics (&5, 4, .. . ,&) stand for the nonredundant quadratic fea-
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tures, of variancer, hereafter called- componentsN is the Considering the cog®) as an energy, the partition func-

dimension N=N(1+A) of the restricted feature space, tion at temperature B'is written as
where the inflation ratid\ is the relative number of nonre-
dundant quadratic features per input space dimension. The Z(K,ﬂ;ﬁM)=f exd — BE(W, k; Ly)Ip(w)dw.  (7)
quadratic mapping ha&d=(N+1)/2.

According to the preceding discussion, we assume tha\}V
learning N-dimensional patterns selected with the isotropic

distribution (1) with a quadratic SVM is equivalent to learn- R - )
sphere of radiudl*?, i.e., p(w) = 8(w-w—N), meaning that

ing the MMH with a simple perceptron in a&4-dimensional he student weight lized in feat In th
space where the patterns are drawn using the following arf'¢ StUdent WeIghts are normalized in feature space. in the
isotropic distribution: imit B—x, the corresponding free enerdyx,B;Ly)=

—(1/BN)In Z(x,B;,Ly) is dominated by the weights that
1 & N 1 & minimize the cost6).
Po=]] —==exg — _'> 11 —ex;{ — _J) ) The typical properties of the MMH are obtained by look-
i=1 27 2/ ing for the largest value of for which the quenched average
(3 of the free energy over the patterns distribution, in the zero
temperature limif3— oo, vanishes. This average is calculated
by the replica method, using the identity

ithout any loss of generality, we assume that the a priori
distribution of the student weights is uniform over the hyper-

The second moment of thefeatures ig £2)=N and that of
the o features is(£2)=NAo?. If o?A=1, we get(&)

=(&%), which is the relation satisfied by the normalized 1 1 InZ"(k, 3; Ly)
mapping considered in Ref6]. The non-normalized map- f(«,8)=— N—In Z(Kk,B;Ly)=— NG Iimf,
ping corresponds t@?A=N. In the following, instead of B B o

selecting either of these possibilities a priori, we consiler ®)

and o as independent parameters, that are kept constanth h i s th
when taking the thermodynamic limit. In order to compareVN€reé the overline represents the average aygr com-

the theoretical predictions to the results of actual SVMs withpof/sd OL pz_attek:ns se_lecited accqrdin? LO @i/lmMH d
finite input space dimension and finite inflation facfarthe e obtain the typical properties of the correspond-

ertinent quantity isr2A, with i.ng.to given values Oﬁ. ando by taking the thermodynamic
perti quantity | w limit N—c, M—oo, with a=M/N, A ando constant. No-

d?A=1 for @, (4) tice that the relation between the number of training ex-
, amples and thdeature space dimensiong=M/N=a/(1
o°A=2A~-1 for ®,,. (5 +A), is finite. Thus, not only are we able to study the de-

. h | be inferred 4o be i endence of the learning properties as a function of the train-
Since the rules to be inferred are assumed to be linegpy et size as usual, but also of the inflation factor that

separations in feature space, we represent them by & aracterizes the SVM, as well as of the variance of the
weightsw* = (w3 ,w3 , ... wg) of a teacher perceptron, so guadratic components. As we only consider realizable rules,
that the class of the patternsis-sgn@-w*). Without any i.e., classification tasks that are linearly separable in feature
loss of generality we consider normalized teachetfs w* space, the energi) is a convex function of the weights,
=N. The training set in feature space is thefy, and replica symmetry holds.
={(& ™} 1w For any k<kmax there are a macroscopic number of
In the following we study the typical properties of poly- weights that minimize the cost functidf). In particular, in
nomial SVMs learning realizable classification tasks, usinghe case ofk=0, the cost is the number of training errors,
the tools of statistical mechanics.Mf=(wy, ... wg) isthe and is minimized by any weight vector that classifies cor-
student perceptron weight vectar*= r“&*.w/\w-w is the ~ rectly the training set. The typical properties of such solu-
stability of patternu in feature space. The pertinent cost tion, called Gibbs learning, may be expressed in terms of
function is several order parameterd11l]. Among them, qﬁb
y =3 (WWDN,  g2P=3 (wAWPYN,  and QP
E(W, ;L) = > O(k—74). ©  =tn-(Ww)/N, wherea+b are replica indices and
u=1 (---) stands for the usual thermodynamic averdgéth

) Boltzmann factor corresponding to the partition function
«, the smallest allowed distance between the hyperplane aqq)] q2® and g?° represent the overlaps between different
* u g

the training patterns, is called the margin. The MMH corre- luti in th dth b tiveNO |
sponds to the weights with vanishing c@6} that maximize solutions In thed and theo SUDSPACES, respec ivelQ® is
the typical norm of ther components of replica. Because

K. .

The typical properties of cog6) in the case of isotropic °f brephca symmetry we have)®= Q°=Q, q;’=q, and
pattern distributions have been exhaustively studzd2. Yu =du fo all a, b. Upon Increasing, the vplume of t.he
The case of a single anisotropy axis has also been investfolutions in weight space shrinks, and vanishes wkées
gated[10]. Here we study the case of the anisotropic distri-maximized. Correspondinglyg,—1—Q and q,—Q, with
bution (3), where amacroscopicfraction of components X=Im,_. . [1-0,/(1-Q)J/(1-q,/Q) finite. In the limit of
have different variance from the others, which is pertinentc— xay, the properties of the MMH may be expressed in
for understanding the properties of the SVM. terms ofX, xmnay and the following order parameters:
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1 % _ R,+ VA,A*R, o
=_ 2y 9 = .
Q=R (Y © V(A+A,)(1+A%)
1 1 N The value ofR determines the generalization error through
= = > (wwF), (100  €g=(1/m)arccosR).
V(1-Q)(1-Q*) Ni=1 After solving the above equations f@, R, R,,, X, and
- «, it is straightforward to determings,, the fraction of
1 1 " training patterns that belong to the subset of [38,12,7:
0T R ik (M) (0 i

3 B pSV=2jK H(—tR/\1—R?)Dt. (22)
whereQ* =3N ., (w¥)?/N is the teacher's squared weight o
vector in theo subspaceQ is the corresponding typical

. In summary of this section, instead of considering a par-
value for the studenR, andR,, are proportional to the over- y gap

laps between the student and the teacher weights in émel

the o subspaces, respectively. The factors in the denomin
tors arise because the weights are not normalized in e i%l

subspace.

The saddle point equations corresponding to the extr

mum of the free energy for the MMH are

2% a1 — (1R XA’ 12
K a'l_( - 0')1+—A(r1 ( )
. /1+A§D X+A, 13

A2 A% TVAL(LFA,)

@ , 1-R2\ x+A,
27 Q(1-0%)l5= 1_X1—Rﬁ 174, (14
R Ay R 5

1-R2 A 1-RY
R, A

=X (16

R, A,AY

whereA ,=c?Q/(1—Q) andA* =02Q*/(1—Q*). The in-
tegrals in the left hand side of Eqd.2)—(14) are

[ —Jm Dt(t+x)2H R (17)
)T R
- 1 | V1I-R?exp{—x?/[2(1-R?]}
> 2w N
+%H _—;H (18)
“NVmR) )
I—Jth~t+~H R 19
3= - k(t+ k) \/ﬁ : (19
with Dt=dtexp(—t%/2)/\2m, H(x)=[3Dt, and
. Kmax (20)

J1-Q)(1+4,)’

al

ticular scaling of the fraction of high order features compo-
nents and their normalization witk, we analyzed the more
jeneral case where these quantities are kept as free param-
ers. We determined the saddle point equations that define
the typical properties of the corresponding SVM. This ap-
e[f)roach allows us to consider several learning scenarios, and
more interestingly, to study the crossover between the differ-

ent generalization regimes.

Ill. RESULTS

We describe first the experimental data, obtained with
quadratic SVMs, using both mappingB,,, and®,,, which
have normalizing factora=1 anda=1/\/N, respectively,
whereN is the input space dimension. Tik= aN random
input examples of each training set were selected with prob-
ability (1) and labeled by teachers of normalized weights
W* = (wj" ,wg) drawn at randomwj" are theN components
in the linear subspace and; are theN? components in the
quadratic subspace. Notice that, because of the symmetry of
the mappings, teachers having the same value of the symme-
trized weights in the quadratic subspaeé€;(;+wyg ;)/2, are
all equivalent. The teachers are characterized by the propor-
tion of (squaredl weight components in the quadratic sub-
space,Q* =wj -wy /w* -w*. In particular,Q* =0 and Q*
=1 correspond to a purely linear and a purely quadratic
teacher, respectively.

The experimental student weightg=(w; ,w,) were ob-
tained by solving numerically the dual problé¢&y14], using
the quadratic optimizer for pattern recognition progrdrs],
that we adapted to the case without threshold treated in this
paper. We determine@, and the overlap®, andR, in the
linear and the quadratic subspaces, respectively. For each
value of M, averages were performed over a large enough
number of different teachers and training sets to get the pre-
cision shown in the figures.

Experiments were carried out fbf=50. The correspond-
ing feature space dimension N(N+1)=2550. The re-
stricted feature space considered in our model is composed
of the N (linean input components, which define tlesub-
space of the feature space, and th& nonredundant qua-
dratic components of the subspace. For the sake of com-
parison with the theoretical results determined in the
thermodynamic limit, we characterize the actual SVM by its
(finite size inflation factorA=(N+1)/2, and the variance
a? of the components in the subspace, related to the nor-
malizing factora of the new features througi?=Na?/A. In
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RQr——m————— a function of with different speed is a signature of hierar-
1.0 ’ chical learning.
I:*l} o, The generalization erragy corresponding to the different
0811 g rules is plotted against on Fig. 5, for both mappings. At
06 o} ®m any fixeda, the performance obtained with the normalized
mapping is better the smaller the value @f. The non-
0.4 ] normalized mapping shows the opposite trend: its perfor-
T mance for a purely linear teacher is extremely bad, but it
0.2 improves for increasing values * and slightly overrides
Q*=0 that of the normalized mapping in the case of a purely qua-
0.0 =30 20 30 20 50 80 70 dratic teacher. These results reflect the competition on learn-
o ing the anisotropically distributed features. In the case of the

normalized mapping, ther components are compressed
FIG. 1. Order parameters of SVMs for purely linear teacher(02:0_039) with respect to tha components, which have
ruIes,Q* =0. Symbols are gxperimental regults for input space di-ynit variance. This is advantageous whenever the linear com-
mensionN =50, corresponding to the two kinds of quadratic map- ,,nents carry the most significant information, which is the
pings, ®,, with a=1/\N (closed symbols and®,, with normal- case forQ* <1. WhenQ* =1, the linear components only
izing factor a=1 (open symbols respectively. Error bars are i 04ce noise that hinders the learning process. As the
fsminfr winlﬂ;ze Sygqbzo_lsNTD/Z"nif] er gglutiog; of Eﬁ'_(ld@’ number of linear components is much smaller than the num-
tgrea;h( mapginga.m o =Nar/a with /=58, ancacorresponding o of quadratic ones, their pernicious effect should be more
conspicuous the smaller the valuefof Conversely, the non-
normalized mapping has?=1.96, meaning that the com-
our case, sinchl=50, A=25.5 andos?=1.9607847, thatis  pressed components are those of theubspace. Therefore,
02=1.960784 for the non-normalized mapping aed  this mapping is better when most of the information is con-

=0.039216, for the normalized one. tained in theo subspace, which is the case for teachers with
The values ofQ, the fraction of squared student weights large Q* and, in particular, witlQ* = 1.
in the o-subspace, and the teacher-student overigpand Finally, for the sake of completeness, the fraction of sup-

R, , normalized within the corresponding subspace, are regeort vectorspsy=Msy,/M, where Mgy is the number of
resented on Figs. 1-4 as a functionaeeE M/N, using full ~ training patterns with maximal stability, is represented on
and open symbols for the mappinds, and ®,,,,, respec- Fig. 6. This fraction is an upper bound to the generalization
tively. Notice that the abscissas correspond to the fraction g#Tor- Notice that these curves present qualitatively the same
training patterns pemput space dimension. Error bars are rénds as. Interestingly,psy is smaller for the normalized
smaller than the symbols’ size. The lines antfits, but the ~Mapping than for the n,on-nqrmallzed one for most of the
theoretical curves corresponding to the same classes &fl€S. Since the student's weights can be expressed as a lin-
teachers as the experimental results. The excellent agreemdit combination of SVEL], this result is of practical interest.

with the experimental data is striking. Thus, the high-order
correlations of the features, neglected in the theoretical mod- IV. DISCUSSION
els, are indeed negligible.

Figure 1 corresponds to a purely linear teachér* (
=0), i.e., to a quadratic SVM learning a rule linearly sepa-
rable in input space. As in this cage, =0, only R, andQ
are represented. In the case of a purely quadratic ffe,

In order to understand the results obtained in the previous
section, we first analyze the relative behavioRgfandR,;,
which can be deduced from E@.5). If A% <A, which is the
case for sufficiently smalRQ*, we get thatR,<R,. This
means that the quadratic components are more difficult to

=1, r(_apresented on Fig. R,=0. Notice tha_t ';he COMe-|aam than the linear ones. On the other hand, if the teacher
sponding overlaps, andR,, do not have a similar behav- lies mainly in the quadratic subspade;>A, and thenR
(. ! (o2

ior, as the latter increases much slower than the former, ir-
respective of the mapping. This happens because, as the

number of quadratic components scaleiNas a number of RO
examples of the order dA are needed to learn them. In- 10
deed,R, reaches a value close to 1 with~O(1) while R, 0.8
needsa~O(A) to reach similar values.
Figure 3 shows the results corresponding to the isotropic 065
teacher, havin@* = Qji,=A/(1+A). ForA=25.5 we have 04 v R
Q%,=0.962 A particular case of such a teacher has all its ' . Qq}q)"
weight components of equal absolute value, i.av})? 0.2
=1/N, and was studied in Ref$8] and[6]. Finally, the 0.0 Z gq} Ppn

results corresponding to a general rule, w@fi =0.5, are P S S S S
shown in Fig. 4. Notice that at fixed, R, decreases anfd, 0 10 20 30 40 50 60 70
increases withQ* at a rate that depends on the mapping. o

These quantities determine the student’s generalization error FIG. 2. Order parameters of SVMs for purely quadratic teacher
through the combinatiof21). The fact that they increase as rulesQ* =1. Definitions are the same as in Fig. 1.
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R ——FF—— eg' Y« R
1.0}
0.8 0.50
0.6 Y !
0.4H v Rq} o, 0.25 %
s Q ]
0.2 |f3 a R
0.0 v Rq}d’nn 0.00
TLQess Qe a | perceptron (A=0) ]
0 10 20 30 40 50 60 70 L 040l
a 0 10 20 30 40 50 60 70 ° ' 2 38 4
o

FIG. 3. Order parameters of SVMs for isotropic teacher rules ) )
Q%,=A/(1+A). Definitions are the same as in Fig. 1. FIG. 5. Learning curves of SVMs for different teacher ru@s.
Definitions are the same as in Fig. 1. The inset is an enlargement of
>R,. The crossover between these different behaviors oche smalla region.
curs atA*=A, for which Eqg.(15) givesR,=R,. For N

=50, which is the case in our simulations, this arises for \F 1

Qp =0.998 orQ:,=0.929, depending on whether we use the u= ;\/ﬁ‘/; (24)
normalized or the non-normalized mapping. In the particular 7

case of the isotropic teacher and the non-normalized map- "

ping Q*>Q¢, so thatR,>R,, as shown on Fig. 3. These R ~ \/z / As \/E (25)
considerations alone are not sufficient to understand the be- 7 7 N 14+A* VA’

havior of the generalization error, which depends on the 7

weighted sum oR, andR, [see Eq(21)]. Therefore R~ \/a, as for the simple perceptron MMH.2],

The behavior at smat is useful to understand the onset pyt with a prefactor that depends on the mapping and the
of hierarchical learning. A close inspection of E¢E2)—(15) teacher.
shows that in the limita—0, x=0? and Q=Aoc?/(A¢? In our model, we expect that hierarchical learning corre-
+1) to leading order inx. This results may be understood spond to a fast increase Bfat smalla, mainly dominated
with the following simple argument: if there is only one by the contribution oR,. As in the limit a—0,
training pattern, clearly it is a SV and the student’'s weight

vector is propprtional tp it. As a typical example Hdgom- Ry+R,\Jo*AA®
ponents of unit length in the subspace andA components = = =, (26)
of length o in the o subspace, we hav@=NA¢?/(NAo? Vito®AV1+AY

+N). With the normalized mapping, Iicr;rLoQ=1/2, mean-

ing that the student’s weights are of ordérin the u sub-
space, and of order 1 in the subspace. In the case of the
nonnormalized one IigLoQ=(2A— 1)/2A, which depends

we expect that hierarchical learning will be present-fiA

<1 andA}=<1. The first condition establishes a constraint

on the mapping, which is only satisfied by the normalized

one. The second condition, that ensures Rat R, holds,

on the inflation factor of the SVM. In this small limit, we  gives the range of teachers for which this hierarchical behav-

obtain ior takes place. Under these conditioRsgrows fast and the
) contribution of R, is negligible because it is weighted by
. 1+o°A 1 23 Jo*AA* . The effect of hierarchical learning is more impor-
" 1+ oA Ja! tant the smallerA* . The most dramatic effect arises for
I:{’Ql T T T T T T pSVJ I I I —I-—-I—Q*=Io | u
1.0 A 62=0.039 { ----Q*=96| 7 } @,
*_ A
0.8 1.00 a-
0.6 . R 0.75
. L
& 2_nn20J0 _._._
04ff O ‘0'0?.9{ Rq¥ Rq} Pq 0.50
R R R LR
02" .+ --=-R {4 R,
‘E«- 2ot 96{ ......... R, [o F{q} o 0.25
00 @=05 = “+aiea 000
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FIG. 4. Order parameters of SVMs for a general teacher rule FIG. 6. Fraction of learning patterns that belong to the subset of
Q* =0.5. Definitions are the same as in Fig. 1. support vectors.
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Q*=0, i.e., for a quadratic SVM learning a linearly sepa- € ' ' ' ' ' '
rable rule. On the other hand, é*A>1, which is the case 9
for the non-normalized mapping, boiy, andR,, contribute 0.4
to R with comparable weights. Notice that, if the normalized 0.3
mapping is used, the conditioa* <1 implies that Q* T N L
<Qi,=A/(1+A), whereQj, corresponds to the isotropic oob TR
teacher. A straightforward calculation shows that a fraction y
of 47.5% of teachers satisfies this constraint Kor 50. In 04| pa80:07=0.089 ]
fact, the distribution of teachers as a function@f has its 2

. * S N SPPETPED M~N
maximum atQ;,,. WhenN—oo, the distribution becomes 0.0 - - . . - -
8(Q* —Qi,), andQy, tends to the median, meaning that in 0 10 20 300( 40 50 60 70
this limit, only about 50% of the teachers give raise to hier-
archical learning when using the normalized mapping. FIG. 7. Generalization error of a SVM corresponding to differ-

In the limit «— e, all the generalization error curves con- ent thermodynamic limits. See the text for the definitionaoin
verge to the same asymptotic value as the simple perceptr@#ch regime.
MMH learning in the feature space, namely,
=0.500489(1 A)/ @, independently ofr andQ*. Thus,e;  tained in the factorsA* /A,, corresponding to themth
vanishes slower the larger the inflation factor M : :
Finally, it is worth to point out that fore=1, which subspace, that appear in the set of equations that generalize
. Eq. (15).
would correspond to a normalizing fac@e A/N, the pat-
tern distribution in feature space is isotropic. Irrespective of
Q*, the corresponding generalization error is exactly the V. CONCLUSION
same as that of a simple perceptron learning the MMH with
isotropically distributed examples in feature space.
Since the inflation factoA of the SVM feature space i
our approach is a free parameter, it does not diverge in th
thermodynamic limiN—cc . As a consequence, does not
present any stepwise behavior, but just a crossover betwee
fast decrease at smadl followed by a slower decrease re-
gime at largea. The results of Dietrichet al. [6] for the L
normalized mapping, that corresponds @?A=1 in our the ‘herm"dyf‘?m'c _I|m|E6,7]. .
model, can be deduced by taking appropriately the limits In fact, a finite size S\./M may be characterlzeo_l by two
before solving our saddle point equations. The regime Whergarameters& and 7 The |nf|a_1t|on factorA is t.he ratio be-
the number of training patternsl =N scales withN, is tween the quadratic and the linear features dimensions. Thus,

straightforward. It is obtained by taking the limit—0 and it is proportional to the input space dimensibin The vari-
Ao keeping&2A= 1 in our equations, with finite. The anceo of the quadratic features is related to the correspond-

regime where the number of training patteMs= «N scales ing normalizing factor. Usually, either~ 1/\N (normalized

with NA, the number of quadratic features, is obtained b);napping oro~1 (no.n-normalized .mappi.r)gln' previou's
L~ . . . . studies, not only the input space dimension diverges in the
keepinga=a/(1+A) finite whilst taking, here again, the

S ; N thermodynamic limitN—-cc, but alsoA and o are corre-
limit 0—0, A—o with 0?A=1. The corresponding curves y -

) ; . spondingly scaled.
are represented on Fig. 7 for the case of an isotropic teacher. In our model, neither the proportion of quadratic features

In order to make the comparisons with our results atfiite s o their variancer are necessarily related to the input
the regime wherex is finite is represented as a function of space dimensioh. They are considered as parameters char-
a=(1+A)a using the value ofA corresponding to our nu- acterizing the SVMs. Since we keep them constant when
merical simulations, namely = 25.5. In the same figure we taking the thermodynamic limit, we can study the learning
represented the generalization erreg=(1/7)arccosR) properties of actual SVMs with finite inflation ratios and
where R, given by Eq.(21), is obtained after solving the normalizing factors, as a function ef=M/N, whereM is
saddle point equations with parameter valués-0.039 and the number of training examples. Our theoretical results were
A=25.5. obtained neglecting the correlations among the quadratic fea-
These results, obtained for quadratic SVMs, are easilyures. The agreement between our computer experiments
generalizable to higher-order polynomial SVMs. The corre-with actual SVMs and the theoretical predictions is excellent.
sponding saddle point equations are cumbersome, and willhe effect of the correlations does not seem to be important,
not be given here. We expect a cascade of hierarchical gems there is almost no difference between the theoretical
eralization behavior, in which successively more and moreeurves and the numerical results.
compressed features are learned. This may be understood by We find that the generalization erref, depends on the
considering the set of saddle point equations that generalizgpe of rule to be inferred througQ*, the (normalized sum
Eq. (15). These equations relate the teacher-student overlapgs the teacher's squared weight components in the quadratic
in the successive subspaces. The sequence of different fesbspace. IQ* is small enough, the quadratic components
ture subspaces generalized by the SVM depends on the relaeed more patterns to be learned than the linear ones. How-
tive complexity of the teacher and the student. This is conever, only if the quadratic features are normalizeg,is

We introduced a model that clarifies some aspects of the
n generalization properties of polynomial support vector ma-
(éhines(SVMs) in high-dimensional feature spaces. To this
end, we focused on quadratic SVMs. The quadratic features,
rJﬁgﬂch are the pairwise products of input components, may
e scaled by anormalizing factor Depending on its value,
the generalization error presents very different behaviors in
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dominated by the high rate learning of the linear componentequal. For the others, both the normalized mapping and the
at smalle. Then, on increasing, there is a crossover to a nonnormalized one present similar performances. If the
regime where the decrease f becomes much slower. The weights of the teacher are selected at random on a hyper-
crossover between these two behaviors is smoother for largephere in feature space, the most probable teachers have pre-
values ofQ*, and this effect of hierarchical learning disap- cisely Q*=Q%,, and the fraction of teachers wit*

pears for large enougR*. On the other hand, if the features <Q}, represent of the order of 50% of the inferable rules.
are not normalized, the contributions of both the linear andrp, s from a practical point of view, without having any
the quadratic components & are of the same order, and ior knowledge about the rule underlying a set of examples,

there is no hierarchical leamning atall. =~ o the normalized mapping should be preferred.
In the case of the normalized mapping, if the limis

~N—o ando®~1/N—0 are taken together with the ther-
modynamic limit, the hierarchical learning effect gives raise
to the two different regimes, correspondingNb~N or M
~N?2, described previousls,6]. It is a pleasure to thank Arnaud Buhot for a careful read-
It is worth to point out that if the rule to be learned allows ing of the manuscript, and Alex Smola for providing us with
for hierarchical learning, the generalization error of the northe Quadratic Optimizer for Pattern Recognition program
malized mapping is much smaller than that of the nonnor{15]. The experimental results were obtained with the Cray-
malized one. In fact, the teachers corresponding to such ruléB3E computer of the CEAProject No. 532/1999 S.R-G.
are those witlQ* <Qy,,, whereQj;, corresponds to the iso- acknowledges economic support from the EU through Re-
tropic teacher, the one having all its weights componentsearch Contract No. ARG/B7-3011/94/27.
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