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Generalization properties of finite-size polynomial support vector machines

Sebastian Risau-Gusman and Mirta B. Gordon
DRFMC/SPSMS CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex 09, France

~Received 4 February 2000!

The learning properties of finite-size polynomial support vector machines are analyzed in the case of
realizable classification tasks. The normalization of the high-order features acts as a squeezing factor, intro-
ducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the
corresponding generalization error presents a crossover, more or less abrupt depending on the distribution’s
anisotropy and on the task to be learned, between a fast-decreasing and a slowly decreasing regime. This
behavior corresponds to the stepwise decrease found by Dietrichet al. @Phys. Rev. Lett.82, 2975~1999!# in the
thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

In the last decade, the typical properties of neural n
works that learn classification tasks from a set of examp
have been analyzed using the approach of statistical mec
ics. In the general setting, the value of a binary output neu
represents whether the input vector, describing a partic
pattern, belongs or not to the class to be recognized. Ma
script character recognition and medical diagnosis are
amples of such classification problems. The process of in
ring the rule underlying the input-output mapping given a
of examples is called learning. The aim is to predict correc
the class of novel data, i.e., to generalize.

In the simplest neural network, the perceptron, the inp
are directly connected to a single output neuron. The ou
state is given by the sign of the weighted sum of the inpu
Then, learning amounts to determine the weights of the c
nexions in order to obtain the correct outputs to the train
examples. Considering the weights as the components
vector, the network classifies the input vectors according
whether their projections onto the weight vector are posit
or negative. Thus, patterns of different classes are sepa
by the hyperplane orthogonal to the weight vector. Beyo
these linear separations, two different learning schemes h
been suggested. Either the input vectors are mapped by
ear hidden units to so called internal representations
must be linearly separable by the output neuron, or a m
powerful output unit is defined, able to perform more co
plicated functions than just the weighted sum of its input

The first solution is implemented using feedforward la
ered neural networks. The classification of the internal r
resentations, performed by the output neuron, correspond
general to a complicated separation surface in input sp
However, the relation between the number of hidden units
a network and the class of rules it can infer is still an op
problem. In practice, the number of hidden neurons is eit
guessed or determined through constructive heuristics.

A solution that uses a more complex output unit, the s
port vector machine~SVM! @1# has been recently propose
The input patterns are transformed into high-dimensio
feature vectors whose components may include the orig
input together with specific functions of its coordinates
lected a priori, with the aim that the learning set belinearly
PRE 621063-651X/2000/62~5!/7092~8!/$15.00
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separablein feature space. In that case the learning probl
is reduced to that of training a simple perceptron. For
ample, if the feature space includes all the pairwise produ
of the input vector components, the SVM may impleme
any classification rule corresponding to a quadratic sepa
ing surface in input space. Higher-order polynomial SVM
and other types of SVMs may be defined by introducing
corresponding features. A big advantage is that learnin
linearly separable rule is a convex optimization problem. T
difficulties of having many local minima, that hinder the pr
cess of training multilayered neural networks, are thus
cumvented. Once the adequate feature space is defined
SVM selects the particular hyperplane called maximal m
gin ~or maximal stability! hyperplane~MMH !, which lies at
the largest distance to its closest patterns in the training
These patterns are called support vectors~SVs!. The MMH
solution has interesting properties@2#. In particular, the frac-
tion of learning patterns that belong to the SVs provides
upper bound@1# to the generalization error, that is, to th
probability of incorrectly classifying a new input. It has bee
shown@3# that the perceptron weights are a linear combin
tion of the SVs, an interesting property in high dimension
feature spaces, as their number is bounded.

A perceptron can learn with very high probability any s
of examples, regardless of the underlying classification r
provided that their number does not exceed twice its in
space dimension@4#. However, this simple rote learning doe
not capture the rule underlying the classification. As it m
arise that the feature space dimension of the SVM is com
rable to, or even larger than, the number of available train
patterns, we would expect that SVMs have a poor gener
zation performance. Surprisingly, this seems not to be
case in the applications@5#.

Two theoretical papers@6,7# have recently addressed th
interesting question. They determined the typical proper
of a family of polynomial SVMs in the limit of large dimen
sional spaces, reaching completely different results in s
of the seemingly innocuous differences between the mod
Both papers consider polynomial SVMs in which th
input vectorsxPRN are mapped onto quadratic featur
F. More precisely, the normalized mapping Fn(x)
5(x,x1x/AN,x2x/AN, . . . ,xNx/AN) has been considered i
Ref. @6#. The nonnormalized mapping Fnn(x)
7092 ©2000 The American Physical Society
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5(x,x1x,x2x, . . . ,xkx) has been studied in Ref.@7# as a
function ofk, the number of quadratic features. Fork5N the
dimension of both feature spaces is the same, correspon
to a linear subspace of dimensionN, and a quadratic sub
space of dimensionN2. The mappings only differ in the
distributions of the quadratic components in feature spa
Due to the normalization, those ofFn are squeezed by
normalizing factora51/AN with respect to those ofFnn . In
the case of learning a linearly separable rule with the n
normalized mappingFnn , the generalization error at an
given learning set size increases dramatically with the nu
ber k of quadratic features included@7#. On the contrary, in
the case of mappingFn , the generalization error exhibits a
interesting stepwise decrease, also found within the Gi
learning paradigm in a quadratic feature space@8#. If the
number of training patterns scales withN, the dimension of
the linear subspace, it decreases up to an asymptotic lo
bound. If the number of examples scales proportionally
N2, it vanishes asymptotically. In particular, if the rule to b
inferred is linearly separable in the input space, learning
the feature space with the mappingFn is harmless, as the
decrease of the generalization error with the number of tr
ing patterns presents a slight slow down with respect to
of a simple perceptron learning in input space.

As this stepwise learning is exclusively related to the f
that the normalizing factor of the quadratic features vanis
in the thermodynamic limitN→`, in the present paper w
determine the influence of the normalizing factor on the ty
cal generalization performance of finite size SVMs. To t
end, we introduce two parameterss andD characterizing the
mapping of theN-dimensional input patterns onto the featu
space. The variances reflects the width of the high-orde
features distribution and is related to the normalizing fac
a. The inflation factorD accounts for the proportion of qua
dratic features with respect to the input space dimensionN.
Actual quadratic SVMs are characterized by different valu
of D ands, depending onN anda. Keepings andD fixed
in the thermodynamic limit allows us to determine the ty
cal properties of actual SVMs, which have finite compre
ing factors and inflation ratios.

In fact, the behavior of the SVMs is the same as that o
simple perceptron learning a training set with patterns dra
from a highly anisotropic probability distribution, such that
macroscopicfraction of components have a different va
ance from the others. Not surprisingly, we find that t
asymptotic behavior corresponding to both the small a
large training set size limits, is the same as the one of
perceptron’s MMH. Only the prefactors depend on the m
ping used by the SVM.

As expected, the stepwise learning obtained with the n
malized mapping in the thermodynamic limit becomes
crossover. Upon increasing the number of training patte
the generalization error first present an abrupt decrease,
corresponds to learning the weight components in the lin
subspace, followed by a slower decrease correspondin
the learning of the quadratic components. The steepnes
the crossover not only depends onD ands, but also on the
task to be learned. The agreement between our analytic
sults and numerical simulations is excellent.

The paper is organized as follows. In Sec. II we introdu
the model and the main steps of the statistical mecha
ing
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calculation. Numerical simulation results are compared
the corresponding theoretical predictions in Sec. III. The t
regimes of the generalization error and the asymptotic
haviors are discussed in Sec. IV. The conclusion is left
Sec. V.

II. MODEL

We consider the problem of learning a binary classific
tion task from examples with a SVM in polynomial featu
spaces. The learning set containsM patterns (xm,tm) (m
51, . . . ,M ) where xm is an input vector in the
N-dimensional input space, andtmP$21,1% is its class. We
assume that the componentsxi

m ( i 51, . . . ,N) are indepen-
dent identically distributed random variables drawn fro
Gaussian distributions having zero mean and unit varian

P~x!5)
i 51

N
1

A2p
expS 2

xi
2

2 D . ~1!

In the following we concentrate on quadratic feature spac
although our conclusions are more general, and may be
plied to higher-order polynomial SVMs, as discussed in S
IV. The mappings Fnn(x)5(x,x1x,x2x, . . . ,xNx) and
Fn(x)5(x,x1x/AN,x2x/AN, . . . ,xNx/AN) are particular in-
stances of mappings of the form F(x)
5(f1 ,f2 , . . . ,fN ,f11,f12, . . . ,fNN) wheref i5xi , and
f i j 5axixj , wherea is the normalizing factor of the qua
dratic components:a51 for mappingFnn anda51/AN for
Fn . The patterns probability distribution in feature space

P~F!5E )
i 51

N
dxi

A2p
expS 2

xi
2

2 D
3d~f i2xi !)

j 51

N

d~f i j 2axixj !. ~2!

Clearly, the components ofF are not independent random
variables. For example, a numberO(N3) of triplets of the
form f i j f jkfki have positive correlations. These contribu
to the third-order moments, which should vanish if the fe
tures were Gaussian. Moreover, the fourth order conne
correlations@9# do not vanish in the thermodynamic limi
Nevertheless, in the following we will neglect these a
higher order connected moments. This approximation, u
in Ref. @7# and implicit in Ref.@6#, is equivalent to assuming
that all the components in feature space are indepen
Gaussian variables. Then, the only difference between
mappingsFn and Fnn lies in the variance of the quadrati
components distribution. The results obtained using this s
plification are in excellent agreement with the numeric
tests described in the next section.

Since, due to the symmetry of the transformation, o
N(N11)/2 among theN2 quadratic features are differen
hereafter we restrict the feature space and only consider
nonredundant components, that we denotej5(ju ,js).
Its first N componentsju5(j1 , . . . ,jN), hereafter calledu
components, represent the input pattern of unit variance
ing in the linear subspace. The remaining componentjs

5(jN11 , . . . ,j Ñ) stand for the nonredundant quadratic fe
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7094 PRE 62SEBASTIAN RISAU-GUSMAN AND MIRTA B. GORDON
tures, of variances, hereafter calleds components.Ñ is the
dimension Ñ5N(11D) of the restricted feature spac
where the inflation ratioD is the relative number of nonre
dundant quadratic features per input space dimension.
quadratic mapping hasD5(N11)/2.

According to the preceding discussion, we assume
learning N-dimensional patterns selected with the isotro
distribution~1! with a quadratic SVM is equivalent to learn
ing the MMH with a simple perceptron in anÑ-dimensional
space where the patterns are drawn using the following
isotropic distribution:

P~j!5)
i 51

N
1

A2p
expS 2

j i
2

2 D )
j 5N11

Ñ
1

A2ps2
expS 2

j j
2

2s2D .

~3!

The second moment of theu features iŝ ju
2&5N and that of

the s features is^js
2&5NDs2. If s2D51, we get ^js

2&
5^ju

2&, which is the relation satisfied by the normalize
mapping considered in Ref.@6#. The non-normalized map
ping corresponds tos2D5N. In the following, instead of
selecting either of these possibilities a priori, we consideD
and s as independent parameters, that are kept cons
when taking the thermodynamic limit. In order to compa
the theoretical predictions to the results of actual SVMs w
finite input space dimension and finite inflation factorD, the
pertinent quantity iss2D, with

s2D51 for Fn , ~4!

s2D52D21 for Fnn . ~5!

Since the rules to be inferred are assumed to be lin
separations in feature space, we represent them by
weightsw* 5(w1* ,w2* , . . . ,wÑ

* ) of a teacher perceptron, s
that the class of the patterns ist5sgn(j•w* ). Without any
loss of generality we consider normalized teachersw* •w*
5Ñ. The training set in feature space is thenLM
5$(jm,tm)%m51,•••,M .

In the following we study the typical properties of poly
nomial SVMs learning realizable classification tasks, us
the tools of statistical mechanics. Ifw5(w1 , . . . ,wÑ) is the
student perceptron weight vector,gm5tmjm

•w/Aw•w is the
stability of patternm in feature space. The pertinent co
function is

E~w,k;LM !5 (
m51

M

Q~k2gm!. ~6!

k, the smallest allowed distance between the hyperplane
the training patterns, is called the margin. The MMH cor
sponds to the weights with vanishing cost~6! that maximize
k.

The typical properties of cost~6! in the case of isotropic
pattern distributions have been exhaustively studied@2,12#.
The case of a single anisotropy axis has also been inv
gated@10#. Here we study the case of the anisotropic dis
bution ~3!, where amacroscopicfraction of components
have different variance from the others, which is pertin
for understanding the properties of the SVM.
he
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Considering the cost~6! as an energy, the partition func
tion at temperature 1/b is written as

Z~k,b;LM !5E exp@2bE~w,k;LM !#p~w!dw. ~7!

Without any loss of generality, we assume that the a pr
distribution of the student weights is uniform over the hyp
sphere of radiusÑ1/2, i.e.,p(w)5d(w•w2Ñ), meaning that
the student weights are normalized in feature space. In
limit b→`, the corresponding free energyf (k,b;LM)5
2(1/bN)ln Z(k,b;LM) is dominated by the weights tha
minimize the cost~6!.

The typical properties of the MMH are obtained by loo
ing for the largest value ofk for which the quenched averag
of the free energy over the patterns distribution, in the z
temperature limitb→`, vanishes. This average is calculat
by the replica method, using the identity

f ~k,b!52
1

Nb
ln Z~k,b;LM !52

1

Nb
lim
n→0

ln Zn~k,b;LM !

n
,

~8!

where the overline represents the average overLM , com-
posed of patterns selected according to Eq.~3!.

We obtain the typical properties of the MMH correspon
ing to given values ofD ands by taking the thermodynamic
limit N→`, M→`, with a[M /N, D ands constant. No-
tice that the relation between the number of training e
amples and thefeature space dimension,ã[M /Ñ5a/(1
1D), is finite. Thus, not only are we able to study the d
pendence of the learning properties as a function of the tr
ing set size as usual, but also of the inflation factor t
characterizes the SVM, as well as of the variance of
quadratic components. As we only consider realizable ru
i.e., classification tasks that are linearly separable in fea
space, the energy~6! is a convex function of the weightsw,
and replica symmetry holds.

For any k,kmax, there are a macroscopic number
weights that minimize the cost function~6!. In particular, in
the case ofk50, the cost is the number of training error
and is minimized by any weight vector that classifies c
rectly the training set. The typical properties of such so
tion, called Gibbs learning, may be expressed in terms
several order parameters@11#. Among them, qu

ab

5( i 51
N ^wi

awi
b&/Ñ, qs

ab5( i 5N11
Ñ ^wi

awi
b&/Ñ, and Qa

5( i 5N11
N ^wi

awi
a&/Ñ, where aÞb are replica indices and

^•••& stands for the usual thermodynamic average@with
Boltzmann factor corresponding to the partition functi
~7!#. qu

ab and qs
ab represent the overlaps between differe

solutions in theu and thes subspaces, respectively.ÑQa is
the typical norm of thes components of replicaa. Because
of replica symmetry we haveQa5Qb5Q, qs

ab5qs and
qu

ab5qu for all a, b. Upon increasingk, the volume of the
solutions in weight space shrinks, and vanishes whenk is
maximized. Correspondingly,qu→12Q and qs→Q, with
x[ limk→kmax

@12qu /(12Q)#/(12qs /Q) finite. In the limit of

k→kmax, the properties of the MMH may be expressed
terms ofx, kmax and the following order parameters:
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Q5
1

Ñ
(

i 5N11

Ñ

^wi
2&, ~9!

Ru5
1

A~12Q!~12Q* !

1

Ñ
(
i 51

N

^wiwi* &, ~10!

Rs5
1

AQQ*

1

Ñ
(

i 5N11

Ñ

^wiwi* &, ~11!

whereQ* 5( i 5N11
Ñ (wi* )2/Ñ is the teacher’s squared weig

vector in thes subspace.Q is the corresponding typica
value for the student.Ru andRs are proportional to the over
laps between the student and the teacher weights in theu and
the s subspaces, respectively. The factors in the denom
tors arise because the weights are not normalized in e
subspace.

The saddle point equations corresponding to the ex
mum of the free energy for the MMH are

2
a

D
DsI 15~12Rs

2 !
~x1Ds!2

11Ds
, ~12!

2
a

D
I 25A11Ds*

Ds*
Rs

x1Ds

ADs~11Ds!
, ~13!

2
a

D
Q~12s2!I 35S 12x

12Rs
2

12Ru
2D x1Ds

11Ds
, ~14!

Rs
2

12Rs
2

5
Ds*

D

Ru
2

12Ru
2

, ~15!

Ru

Rs
5x

D

ADsDs*
, ~16!

whereDs[s2Q/(12Q) andDs* [s2Q* /(12Q* ). The in-
tegrals in the left hand side of Eqs.~12!–~14! are

I 15E
2k̃

`

Dt~ t1k̃ !2HS tR

A12R2D , ~17!

I 25
1

A2p
FA12R2 exp$2k̃2/@2~12R2!#%

A2p

1k̃HS 2k̃

A12R2D G , ~18!

I 35E
2k̃

`

Dtk̃~ t1k̃ !HS tR

A12R2D , ~19!

with Dt[dt exp(2t2/2)/A2p, H(x)5*x
`Dt, and

k̃5
kmax

A~12Q!~11Ds!
, ~20!
a-
ch

e-

R5
Ru1ADsDs* Rs

A~11Ds!~11Ds* !
. ~21!

The value ofR determines the generalization error throu
eg5(1/p)arccos(R).

After solving the above equations forQ, Ru , Rs , x, and
k̃, it is straightforward to determinerSV, the fraction of
training patterns that belong to the subset of SV@13,12,7#:

rSV52E
2`

k̃
H~2tR/A12R2!Dt. ~22!

In summary of this section, instead of considering a p
ticular scaling of the fraction of high order features comp
nents and their normalization withN, we analyzed the more
general case where these quantities are kept as free pa
eters. We determined the saddle point equations that de
the typical properties of the corresponding SVM. This a
proach allows us to consider several learning scenarios,
more interestingly, to study the crossover between the dif
ent generalization regimes.

III. RESULTS

We describe first the experimental data, obtained w
quadratic SVMs, using both mappings,Fnn andFn , which
have normalizing factorsa51 and a51/AN, respectively,
whereN is the input space dimension. TheM5aN random
input examples of each training set were selected with pr
ability ~1! and labeled by teachers of normalized weigh
w* [(wl* ,wq* ) drawn at random.wl* are theN components
in the linear subspace andwq* are theN2 components in the
quadratic subspace. Notice that, because of the symmet
the mappings, teachers having the same value of the sym
trized weights in the quadratic subspace (wq,i j* 1wq, j i* )/2, are
all equivalent. The teachers are characterized by the pro
tion of ~squared! weight components in the quadratic su
space,Q* 5wq* •wq* /w* •w* . In particular,Q* 50 and Q*
51 correspond to a purely linear and a purely quadra
teacher, respectively.

The experimental student weightsw[(wl ,wq) were ob-
tained by solving numerically the dual problem@5,14#, using
the quadratic optimizer for pattern recognition program@15#,
that we adapted to the case without threshold treated in
paper. We determinedQ, and the overlapsRl andRq in the
linear and the quadratic subspaces, respectively. For e
value of M, averages were performed over a large enou
number of different teachers and training sets to get the
cision shown in the figures.

Experiments were carried out forN550. The correspond-
ing feature space dimension isN(N11)52550. The re-
stricted feature space considered in our model is compo
of the N ~linear! input components, which define theu sub-
space of the feature space, and theND nonredundant qua
dratic components of thes subspace. For the sake of com
parison with the theoretical results determined in t
thermodynamic limit, we characterize the actual SVM by
~finite size! inflation factorD5(N11)/2, and the variance
s2 of the components in thes subspace, related to the no
malizing factora of the new features throughs25Na2/D. In
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our case, sinceN550, D525.5 ands251.960784a2, that is
s251.960784 for the non-normalized mapping ands2

50.039216, for the normalized one.
The values ofQ, the fraction of squared student weigh

in the s-subspace, and the teacher-student overlapsRu and
Rs , normalized within the corresponding subspace, are
resented on Figs. 1–4 as a function ofa[M /N, using full
and open symbols for the mappingsFn and Fnn , respec-
tively. Notice that the abscissas correspond to the fractio
training patterns perinput space dimension. Error bars a
smaller than the symbols’ size. The lines arenot fits, but the
theoretical curves corresponding to the same classe
teachers as the experimental results. The excellent agree
with the experimental data is striking. Thus, the high-ord
correlations of the features, neglected in the theoretical m
els, are indeed negligible.

Figure 1 corresponds to a purely linear teacher (Q*
50), i.e., to a quadratic SVM learning a rule linearly sep
rable in input space. As in this caseRs50, only Ru and Q
are represented. In the case of a purely quadratic rule,Q*
51, represented on Fig. 2,Ru50. Notice that the corre-
sponding overlaps,Ru andRs , do not have a similar behav
ior, as the latter increases much slower than the former
respective of the mapping. This happens because, as
number of quadratic components scales asND, a number of
examples of the order ofND are needed to learn them. In
deed,Ru reaches a value close to 1 witha;O(1) while Rs

needsa;O(D) to reach similar values.
Figure 3 shows the results corresponding to the isotro

teacher, havingQ* 5Qiso* [D/(11D). ForD525.5 we have
Qiso* 50.962 A particular case of such a teacher has all
weight components of equal absolute value, i.e., (wi* )2

51/Ñ, and was studied in Refs.@8# and @6#. Finally, the
results corresponding to a general rule, withQ* 50.5, are
shown in Fig. 4. Notice that at fixeda, Ru decreases andRs

increases withQ* at a rate that depends on the mappin
These quantities determine the student’s generalization e
through the combination~21!. The fact that they increase a

FIG. 1. Order parameters of SVMs for purely linear teach
rules,Q* 50. Symbols are experimental results for input space
mensionN550, corresponding to the two kinds of quadratic ma
pings,Fn with a51/AN ~closed symbols!, andFnn with normal-
izing factor a51 ~open symbols!, respectively. Error bars ar
smaller than the symbols. The lines are solutions of Eqs.~12!–~16!,
for D5(N11)/2 ands25Na2/D with N550, anda corresponding
to each mapping.
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a function ofa with different speed is a signature of hiera
chical learning.

The generalization erroreg corresponding to the differen
rules is plotted againsta on Fig. 5, for both mappings. A
any fixeda, the performance obtained with the normaliz
mapping is better the smaller the value ofQ* . The non-
normalized mapping shows the opposite trend: its per
mance for a purely linear teacher is extremely bad, bu
improves for increasing values ofQ* and slightly overrides
that of the normalized mapping in the case of a purely q
dratic teacher. These results reflect the competition on le
ing the anisotropically distributed features. In the case of
normalized mapping, thes components are compresse
(s250.039) with respect to theu components, which have
unit variance. This is advantageous whenever the linear c
ponents carry the most significant information, which is t
case forQ* !1. WhenQ* 51, the linear components onl
introduce noise that hinders the learning process. As
number of linear components is much smaller than the nu
ber of quadratic ones, their pernicious effect should be m
conspicuous the smaller the value ofD. Conversely, the non-
normalized mapping hass251.96, meaning that the com
pressed components are those of theu subspace. Therefore
this mapping is better when most of the information is co
tained in thes subspace, which is the case for teachers w
largeQ* and, in particular, withQ* 51.

Finally, for the sake of completeness, the fraction of su
port vectorsrSV[MSV/M , where MSV is the number of
training patterns with maximal stability, is represented
Fig. 6. This fraction is an upper bound to the generalizat
error. Notice that these curves present qualitatively the sa
trends aseg . Interestingly,rSV is smaller for the normalized
mapping than for the non-normalized one for most of t
rules. Since the student’s weights can be expressed as a
ear combination of SVs@1#, this result is of practical interest

IV. DISCUSSION

In order to understand the results obtained in the previ
section, we first analyze the relative behavior ofRu andRs ,
which can be deduced from Eq.~15!. If Ds* !D, which is the
case for sufficiently smallQ* , we get thatRs!Ru . This
means that the quadratic components are more difficul
learn than the linear ones. On the other hand, if the teac
lies mainly in the quadratic subspace,Ds* @D, and thenRs

r
i-
-

FIG. 2. Order parameters of SVMs for purely quadratic teac
rulesQ* 51. Definitions are the same as in Fig. 1.
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.Ru . The crossover between these different behaviors
curs atDs* 5D, for which Eq. ~15! gives Rs5Ru . For N
550, which is the case in our simulations, this arises
Qn* 50.998 orQnn* 50.929, depending on whether we use t
normalized or the non-normalized mapping. In the particu
case of the isotropic teacher and the non-normalized m
ping Q* .Qnn* so thatRs.Ru , as shown on Fig. 3. Thes
considerations alone are not sufficient to understand the
havior of the generalization error, which depends on
weighted sum ofRs andRu @see Eq.~21!#.

The behavior at smalla is useful to understand the ons
of hierarchical learning. A close inspection of Eqs.~12!–~15!
shows that in the limita→0, x5s2 and Q.Ds2/(Ds2

11) to leading order ina. This results may be understoo
with the following simple argument: if there is only on
training pattern, clearly it is a SV and the student’s weig
vector is proportional to it. As a typical example hasN com-
ponents of unit length in theu subspace andND components
of length s in the s subspace, we haveQ5NDs2/(NDs2

1N). With the normalized mapping, lim
a→0

Q51/2, mean-

ing that the student’s weights are of orderN in the u sub-
space, and of order 1 in thes subspace. In the case of th
nonnormalized one lim

a→0
Q5(2D21)/2D, which depends

on the inflation factor of the SVM. In this smalla limit, we
obtain

kmax.
11s2D

A11s4D

1

Aa
, ~23!

FIG. 3. Order parameters of SVMs for isotropic teacher ru
Qiso* 5D/(11D). Definitions are the same as in Fig. 1.

FIG. 4. Order parameters of SVMs for a general teacher
Q* 50.5. Definitions are the same as in Fig. 1.
c-

r

r
p-

e-
e

t

Ru.A2

p

1

A11Ds*
Aa, ~24!

Rs.A2

p
A Ds*

11Ds*
Aa

D
. ~25!

Therefore,R;Aa, as for the simple perceptron MMH@12#,
but with a prefactor that depends on the mapping and
teacher.

In our model, we expect that hierarchical learning cor
spond to a fast increase ofR at smalla, mainly dominated
by the contribution ofRu . As in the limit a→0,

R.
Ru1RsAs4DDs*

A11s4DA11Ds*
, ~26!

we expect that hierarchical learning will be present ifs4D
!1 andDs* &1. The first condition establishes a constra
on the mapping, which is only satisfied by the normaliz
one. The second condition, that ensures thatRs,Ru holds,
gives the range of teachers for which this hierarchical beh
ior takes place. Under these conditions,R grows fast and the
contribution of Rs is negligible because it is weighted b
As4DDs* . The effect of hierarchical learning is more impo
tant the smallerDs* . The most dramatic effect arises fo

s

le

FIG. 5. Learning curves of SVMs for different teacher rulesQ* .
Definitions are the same as in Fig. 1. The inset is an enlargeme
the smalla region.

FIG. 6. Fraction of learning patterns that belong to the subse
support vectors.
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Q* 50, i.e., for a quadratic SVM learning a linearly sep
rable rule. On the other hand, ifs4D@1, which is the case
for the non-normalized mapping, bothRu andRs contribute
to R with comparable weights. Notice that, if the normaliz
mapping is used, the conditionDs* &1 implies that Q*
,Qiso* [D/(11D), whereQiso* corresponds to the isotropi
teacher. A straightforward calculation shows that a fract
of 47.5% of teachers satisfies this constraint forN550. In
fact, the distribution of teachers as a function ofQ* has its
maximum atQiso* . When N→`, the distribution becomes
d(Q* 2Qiso* ), andQiso* tends to the median, meaning that
this limit, only about 50% of the teachers give raise to hi
archical learning when using the normalized mapping.

In the limit a→`, all the generalization error curves co
verge to the same asymptotic value as the simple percep
MMH learning in the feature space, namelyeg
50.500489(11D)/a, independently ofs andQ* . Thus,eg
vanishes slower the larger the inflation factorD.

Finally, it is worth to point out that fors51, which
would correspond to a normalizing factora5AD/N, the pat-
tern distribution in feature space is isotropic. Irrespective
Q* , the corresponding generalization error is exactly
same as that of a simple perceptron learning the MMH w
isotropically distributed examples in feature space.

Since the inflation factorD of the SVM feature space in
our approach is a free parameter, it does not diverge in
thermodynamic limitN→` . As a consequence,eg does not
present any stepwise behavior, but just a crossover betwe
fast decrease at smalla followed by a slower decrease re
gime at largea. The results of Dietrichet al. @6# for the
normalized mapping, that corresponds tos2D51 in our
model, can be deduced by taking appropriately the lim
before solving our saddle point equations. The regime wh
the number of training patternsM5aN scales withN, is
straightforward. It is obtained by taking the limits→0 and
D→` keepings2D51 in our equations, witha finite. The
regime where the number of training patternsM5aN scales
with ND, the number of quadratic features, is obtained
keeping ã[a/(11D) finite whilst taking, here again, th
limit s→0, D→` with s2D51. The corresponding curve
are represented on Fig. 7 for the case of an isotropic teac
In order to make the comparisons with our results at finiteD,
the regime whereã is finite is represented as a function
a5(11D)ã using the value ofD corresponding to our nu
merical simulations, namely,D525.5. In the same figure w
represented the generalization erroreg5(1/p)arccos(R)
where R, given by Eq.~21!, is obtained after solving the
saddle point equations with parameter valuess250.039 and
D525.5.

These results, obtained for quadratic SVMs, are ea
generalizable to higher-order polynomial SVMs. The cor
sponding saddle point equations are cumbersome, and
not be given here. We expect a cascade of hierarchical
eralization behavior, in which successively more and m
compressed features are learned. This may be understoo
considering the set of saddle point equations that genera
Eq. ~15!. These equations relate the teacher-student over
in the successive subspaces. The sequence of different
ture subspaces generalized by the SVM depends on the
tive complexity of the teacher and the student. This is c
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tained in the factorsDsm
* /Dm corresponding to themth

subspace, that appear in the set of equations that gener
Eq. ~15!.

V. CONCLUSION

We introduced a model that clarifies some aspects of
generalization properties of polynomial support vector m
chines~SVMs! in high-dimensional feature spaces. To th
end, we focused on quadratic SVMs. The quadratic featu
which are the pairwise products of input components, m
be scaled by anormalizing factor. Depending on its value
the generalization error presents very different behaviors
the thermodynamic limit@6,7#.

In fact, a finite size SVM may be characterized by tw
parametersD and s. The inflation factorD is the ratio be-
tween the quadratic and the linear features dimensions. T
it is proportional to the input space dimensionN. The vari-
ances of the quadratic features is related to the correspo
ing normalizing factor. Usually, eithers;1/AN ~normalized
mapping! or s;1 ~non-normalized mapping!. In previous
studies, not only the input space dimension diverges in
thermodynamic limitN→`, but alsoD and s are corre-
spondingly scaled.

In our model, neither the proportion of quadratic featur
D nor their variances are necessarily related to the inp
space dimensionN. They are considered as parameters ch
acterizing the SVMs. Since we keep them constant wh
taking the thermodynamic limit, we can study the learni
properties of actual SVMs with finite inflation ratios an
normalizing factors, as a function ofa[M /N, whereM is
the number of training examples. Our theoretical results w
obtained neglecting the correlations among the quadratic
tures. The agreement between our computer experim
with actual SVMs and the theoretical predictions is excelle
The effect of the correlations does not seem to be import
as there is almost no difference between the theoret
curves and the numerical results.

We find that the generalization erroreg depends on the
type of rule to be inferred throughQ* , the~normalized! sum
of the teacher’s squared weight components in the quad
subspace. IfQ* is small enough, the quadratic componen
need more patterns to be learned than the linear ones. H
ever, only if the quadratic features are normalized,eg is

FIG. 7. Generalization error of a SVM corresponding to diffe
ent thermodynamic limits. See the text for the definition ofa in
each regime.
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dominated by the high rate learning of the linear compone
at smalla. Then, on increasinga, there is a crossover to
regime where the decrease ofeg becomes much slower. Th
crossover between these two behaviors is smoother for la
values ofQ* , and this effect of hierarchical learning disa
pears for large enoughQ* . On the other hand, if the feature
are not normalized, the contributions of both the linear a
the quadratic components toeg are of the same order, an
there is no hierarchical learning at all.

In the case of the normalized mapping, if the limitsD
;N→` and s2;1/N→0 are taken together with the the
modynamic limit, the hierarchical learning effect gives ra
to the two different regimes, corresponding toM;N or M
;N2, described previously@8,6#.

It is worth to point out that if the rule to be learned allow
for hierarchical learning, the generalization error of the n
malized mapping is much smaller than that of the nonn
malized one. In fact, the teachers corresponding to such r
are those withQ* &Qiso* , whereQiso* corresponds to the iso
tropic teacher, the one having all its weights compone
y

3,

ta

tt

-

ts

er
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-
r-
es

ts

equal. For the others, both the normalized mapping and
nonnormalized one present similar performances. If
weights of the teacher are selected at random on a hy
sphere in feature space, the most probable teachers have
cisely Q* 5Qiso* , and the fraction of teachers withQ*
<Qiso* represent of the order of 50% of the inferable rule
Thus, from a practical point of view, without having an
prior knowledge about the rule underlying a set of examp
the normalized mapping should be preferred.
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