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Exact solution of site and bond percolation on small-world networks
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We study percolation on small-world networks, which has been proposed as a simple model of the propa-
gation of disease. The occupation probabilities of sites and bonds correspond to the susceptibility of individuals
to the disease, and the transmissibility of the disease respectively. We give an exact solution of the model for
both site and bond percolation, including the position of the percolation transition at which epidemic behavior
sets in, the values of the critical exponents governing this transition, the mean and variance of the distribution
of cluster sizegdisease outbreakbelow the transition, and the size of the giant comporiepidemi¢ above
the transition.

PACS numbgs): 87.23.Ge, 84.35:i, 05.70.Jk, 64.60.Ak

. INTRODUCTION typical person-to-person distance @&(logL) than it can
through one in which the distance @(L). Epidemiology
In the late 1960s, Milgram performed a number of experi-recognizes two basic parameters governing the effects of a
ments that led him to conclude that, despite there being sedisease: thsusceptibility—the probability that an individual
eral billion human beings in the world, any two of them exposed to a disease will contract it—and tiv@ns-
could be connected by only a short chain of intermediatenissibility—the probability that infection results from a con-
acquaintances of typical length about $ik]. This result, tact between an infected individual and a healthy but suscep-
known as the “small-world effect,” has been confirmed by tible one. Newman and Wat{§] studied a model of disease
subsequent studies and is now widely believed to be correcin a small world which incorporates these variables. In this
although opinions differ about whether six is an accuratenodel a randomly chosen fractignof the sites or bonds in
estimate of the typical chain lengf@]. the small-world model are “occupied” to represent the ef-
The small-world effect can be easily understood in termdects of finite susceptibility and transmissibility, and a dis-
of random graphg3] for which typical vertex-vertex dis- ease outbreak that starts with a single individual can spread
tances increase only as the logarithm of the total number obnly within a connected cluster of occupied sites or bonds.
vertices. However, random graphs are a poor representatiorhus the problem of disease spreading maps onto a site or
of the structure of real social networks, which show a “clus-bond percolation problen{The model is also similar to the
tering” effect in which there is an increased probability of so-called SIR models of the spread of infectious disease
two people being acquainted if they have another acquair]-13].) At some threshold valug. of the percolation prob-
tance in common. This clustering is absent in random graphsbility, the system undergoes a percolation transition which
Recently, Watts and Strogdt4] have proposed a new model corresponds to the onset of epidemic behavior for the disease
of social networks that possesses both short vertex-verter question. Newman and Watts gave an approximate solu-
distances and a high degree of clustering. In this model, sitetson for the position of this transition.
are arranged on a one-dimensional lattice of &izend each In this paper, we give an exact solution for both site and
site is connected to its nearest neighbors up to some fixeldond percolation on small-world networks using a generating
rangek. Then additional links—"shortcuts”—are added be- function method. Our method gives not only the exact posi-
tween randomly selected pairs of sites with probabifitper  tion of the percolation threshold, but also the value of the
link on the underlying lattice, giving an average @kL critical exponents governing behavior close to the transition,
shortcuts in total. The short-range connections produce thiéne complete distribution of the sizes of disease outbreaks for
clustering effect while the long-range ones give average disany value ofp, and closed-form expressions for the mean
tances that increase logarithmically with system size, eveand variance of the distribution. A calculation of the value of
for quite small values o). p. only, using a transfer-matrix method, has appeared previ-
This model, commonly referred to as the “small-world ously in Ref.[14].
model,” has attracted a great deal of attention from the phys- The basic idea behind our solution is to find the distribu-
ics community. A number of authors have looked at the distion of “local clusters”—clusters of occupied sites or bonds
tribution of path lengths in the model, including scaling on the underlying lattice—and then calculate how the short-
forms [5—-7] and mean-field and exact resu[®,9], while  cuts join these local clusters together to form larger ones. We
others have looked at a variety of dynamical systems offiocus on the quantity?(n), which is the probability that a
small-world network$4,10,11. A review of recent develop- randomly chosen site belongs to a connected clustan of
ments can be found in Rdf12]. sites. This is also the probability that a disease outbreak start-
One of the most important consequences of the smalling with a randomly chosen individual will affeatpeople. It
world effect is in the propagation of disease. Clearly a dis-is not the same as the distribution of cluster sizes for the
ease can spread much faster through a network in which thgercolation problem, since the probability of an outbreak

1063-651X/2000/6(5)/70596)/$15.00 PRE 62 7059 ©2000 The American Physical Society



7060 CRISTOPHER MOORE AND M. E. J. NEWMAN PRE 62

Using this expression Eq2) becomes
Q = I:‘ + + + + - © n 26kL
H(z)= Z Po(n)z"| 1+ (H(2)- 1)

FIG. 1. Graphical representation of a cluster of connected sites.
The entire clustefcircle) is equal to a single local clustésquare, _ Po(n)[zékq}[H(z)—l]]n, (5)
with any numberm=0 of connected clusters attached to it by a n=0
single shortcut.

8

for L large. The remaining sum ovarcan now be performed
starting in a cluster of size increases with cluster size in conveniently by defining
proportion ton, all other things being equal. The cluster size (1-q)?
distribution is therefore proportional t®(n)/n. This distri- —q
bution can be calculated easily from the results given in this HO(Z):HZO Po(n)z"=1-p+ pz(l_qz)z’ ©)
paper, although we will not do so.

The outline of this paper is as follows. In Sec. Il we where we have made use of H8). Hy(z) is the generating
derive a complete solution for site percolation on the smallfunction for the local clusters. Now we notice tha{z) in
world network. In Sec. Il we do the same for bond percola-Eq. (5) is of the same form asHy(z), but with z
tion for k=1 andk= 2, indicating how solutions for highér —>Ze2k‘/’[H(Z) 1 Thus
can be obtained. In Sec. IV we discuss simultaneous site and
bond percolation. In Sec. V we give our conclusions. H(z)=Hq(ze?¢H@ 1y 7)

o0

Il SITE PERCOLATION A similar equation has been derived for SIR models by Ball
et al.[15].

We start by examining the site percolation problem, H(z) can be calculated directly by iteration of this equa-
which is the simpler case. We consider first the situatiortion starting withH(z)=1 to give the complete distribution
below the percolation threshold. Sin€n) is difficult to  of sizes of epidemics in the model. It takassteps of the
evaluate directly, we turn to a generating function methodteration to calculatd®(n) exactly. The first few steps give
for its calculation. We define

P(0)=1-p, 8
H(z)= 2, P(m?2" (1) P(1)=p(1—q)%e 2P, ©)
(12 )27 a—4ke
For p<p., as we show below, the distribution of clusters P(2)=p(1-a) 2g+2k¢p(1l—q)“Je " P. (10

fallsbo{)f_ﬁxpc}r:ennarl:y \tN'ﬂ: cluster stl_ze. J}h's mphes_tha;t tlhe It is straightforward to verify that these are correct. We could
probabiiity 0 V\fols ortcuts connecting the same pair of CluS~ 5 jterate Eq(7) numerically and then estimat(n) us-
ters varies ad ~* and so can be neglected in the limit of

largeL. In this limit, therefore, any connected cluster of sites 0.025

consists of a local cluster witm=0 shortcuts leading from R L '101
it to m other clusters. Thud(z) satisfies the Dyson- i 8 3
equation-like iterative condition illustrated graphically in 0.020 é 107 = —
Fig. 1: every cluster of connected sites consists of a single__ i @10 b
local cluster joined by shortcuts to some numbeof other § s [ g 0L R
clusters. Thus we can writd(z) self-consistently as > 0915 | 5 L
%0010: T AT R B I
m S 0. 00 02 04 06
H(Z)_ E PO(n 2 P(m|n [H(Z)] (2) g , PR ) susceptibility p
In this equationPy(n) is the probability of a randomly cho- 0005 &
sen site belonging to a local cluster of sizewhich is S
0.000 =
b 1-p for n=0 3 0 10 20 30 40 50
o) = npg" Y(1-q)? for n=1, & size of outbreak 7

with g=1—(1— p)k P(m|n) is the probability of there be- FIG. 2. The distribution of outbreak sizes in simulations of the

site percolation model with. =107, k=5, ¢=0.01, andp=0.25,

0.30, 0.35, andp=p.=0.40101 (circles, squares, and up- and
down-pointed triangles, respectivelyhe solid lines are the same
distributions calculated using Eq¥) and(11). Inset: The average

ing exactlym shortcuts emerging from a local cluster of size
n. Since there are @kL ends of shortcuts in the network,
P(m|n) is given by the binomial

2 bk m 2¢kL—m size of disease outbreaks as a functionpafor (left to right) ¢
P(m|n) = ¢ n 0 (4) =101,10"2,10 2,10 4. The points are numerical results far
m L L =10’, k=5 and the solid lines are the exact result, Ep).




PRE 62 EXACT SOLUTION OF SITE AND BOND PERCOLATION. .. 7061

ing, for instance, forward differences zt 0. Unfortunately, In Fig. 2 we show the distribution of outbreak sizes cal-
like many calculations involving numerical derivatives, this culated from Eq(11) for a variety of values op below the
method suffers from severe machine-precision problemgercolation threshold. On the same plot we also show the
which limit us to small values af, on the order oh=20. A  distribution of outbreaks measured in computer simulations
much better technique is to evaluat¢z) around a contour of the model on systems df=10" sites. As the figure

in the complex plane and calculate the derivatives using thehows, the agreement between the two is excellent.

Cauchy integral formula We can also calculate any moment of the distribution
P(n) in closed form using Eq(7). For example, the mean
n outbreak size is given by the first derivative
1 d"H 1 [H(2) break size is given by the first derivative téf
P(n)=— =—.§f—dz. (11)
Az, 2mi ] (=D pita)
_ , _ _ _ 1-2k¢pHH(1) 1-d—2kép(1+q)’
A suitable choice of contour in the present case is the unit (12)

circle |z| = 1. Using this method we have been able to calcu-
late the first thousand derivatives id{ z) without difficulty.  and the variance is given by

p[1+39—30g*~ a3~ p(1—q)(1+0q)>+2kep*(1+q)?]
[1-q—2k¢p(1+q)]° '

(n?)—(n)2=H"(1)+H'(1)-[H"(1)]*= (13

In the inset of Fig. 2 we show E@12) for various values of a * 1

¢ along with numerical results from simulations of the H(z)= >, P(n)z2"+C>, nTexp< n|logz— —D

model, and the two are again in good agreement. n=0 n=a n*

The mean outbreak size diverges at the percolation thresh- +e(a) (18)

old p=p.. This threshold marks the onset of epidemic be- ’

havior in the mode[6] and occurs at the zero of the denomi- whereC is a constant and(a)—0 asa— . The first term

nator of Eq.(12): in this expression is a finite polynomial and therefore has no
singularities on the finite plane; the singularity resides in the

, 1 second term. However, no singularity can be produced as
Ho(1)= ﬂ (14) long as the exponent in this second term is negative, and
hence the singularity appears when*l# logz. Thus we can
giving palculaten* from the positionz* of this singularity accord-
ing to
k
b 176 _ (1-pc) , 15 10 ¢ vy
2kpc(1+0qc) 2kpc[2_(1_pc)k] [ ]
< 0.8 —
in agreement with Ref14]. The value ofp. calculated from : ] 1
this expression is shown in the left panel of Fig. 3 for threeg .
different values ok. g 06 .
The denominator of Eq12) is analytic atp=p. and has S
a nonzero first derivative with respectppso that to leading E 04
order the divergence ifn) varies as p.—p) ! as we ap- % L
proach percolation. Defining a critical exponenin the con- g
ventional fashion(n)~ (p.—p) Y7, we then have 02
o=1. (16 0.0 Ll ool v il v vl v v
10" 10° 107 10" 10° 107 10" 10°
Nearp. we expectP(n) to behave as
shortcut density ¢

N~ Ta—n/n*
P(n)~n""e as n—e. (17 FIG. 3. Numerical results for the percolation threshold as a

function of shortcut density for systems of sizé = 10° (points.
Both the typical outbreak size* and the exponent are  [eft panel: site percolation witk=1 (circles, 2 (square} and 5
governed by the singularity dfi(z) closest to the origin as (triangles. Right panel: bond percolation with=1 (circles and 2
follows [16]. Equation(17) implies thatH(z) can be written  (squares The solid lines are the analytic expressions for the same
in the form quantities, Eqs(15), (34), and(35).
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1
n* = .
log z*

(19

Although we do not have a closed-form expressionHdz),
it is simple to derive one for its functional inverse 1(w).
PuttingH (z) —w andz—H ~1(w) in Eq.(7) and rearranging
we find
H™Y(w)=Hg Y(w)e?kei-w), (20)
The singularity inH(z) corresponds to the poimt* at which
the derivative of H %(w) is zero, which gives
2k¢pz*Ho(z*) =1, makingz* = el areal root of the cubic
equation
(1-92)°—2k¢pz(1—q)*(1+q2)=0. (21
To calculate the value of the exponemntwe note that as
we approach the percolation threshold from belotv di-
verges by definition, and henc& — 1. The singularity in

H(z) at this point is necessarily a finite singularity since

H(1)=X=,P(n)=1. Puttingp=p, andw=1— € in Eq. (20)
givesH 1(1—¢€)=1+0(€?), since terms of orde¢ cancel
out at the transition point because of HG4). This then
implies that

H(z)~(1-2z) ¢

as z—1, (22

with

N

(23

a=

The exponentr can also be calculated from E@.8) thus:

. H"(z)
a=Ilim|1+(z—1)——
z-1 H'(z)
2 r]271'Zr‘|71
. . 1 z—1 n=a
= lim Ilim E+ —_—
a—o z—1 2 nl_TZI"I—l
L n=a
1 1-z r(3—7,—alogz)
=lim lim|—+ . (29
amw 2112 Zlogz'(2—17,—alogz)

where we replace the sums with integrals wteeis large,
andI'(v,u) is the incompletd” function. Taking the limits
in the order specified and rearranging forwe then get

3
T=a+l=<

5 (29

for the outbreak size exponent. A power-law fit to the simu-

lation data for P(n) shown in Fig. 2 givesr=1.501
+0.001, in good agreement with this result.

Turning now to the case gi>p., we can use the same
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FIG. 4. The average size of an epiderfigant componentas a
function of the susceptibilityp in the site percolation model fd¢
=5 and¢=10"* (circles, 102 (squarey 10 2 (upward-pointing
triangles, and 10 (downward pointing trianglés The points are
results from computer simulations on systemd.ef10f sites and
the solid lines are the exact solution.

with cluster size. To account for the giant component, we
redefineP(n) to be the probability that a randomly chosen
site belongs to a cluster of sizewhich is not part of the
giant component. This means that the probabiligés) now
sum not to 1 as they did fgr<<p., but to the probability that
a random site is not a member of the giant component. Thus,
if we define the generating functidd(z) according to Eg.
(1) again, the volume of the giant component s-1
—H(1).

Figure 1 and the corresponding E@) apply to our new
H(z) just as before. Setting=1 gives

x=1—Hqy(e ), (26)
This equation has two solutions, one wihk 0 for all p and
one for whichx is in general nonzero. Below the percolation
transition the latter is unphysical with<0, and at the tran-
sition the two coincide ak=0. A bifurcation takes place
when the derivative of the right-hand side is 1, giving the
same result fop, as Eq.(15). In Fig. 4 we show the values
of x as a function op calculated from numerical solution of
Eqg. (26) along with simulation results for the size of the
largest cluster in systems bf= 10° sites. Once again the two
are in good agreement.

Although the nontrivial root of Eq(26) appears not to
have a closed-form solution, we can calculate it in the vicin-
ity of p; by linearizing about the bifurcation. [i=p.+ p
then to leading order the nontrivial solution is

2 aHg,(l)\
X=
1+2kgHl(1) P |

op. (27

P=Pc

Defining a critical exponenB above the percolation transi-
tion in the conventional fashion,

techniques to study the sizes of epidemics in the model.

Above p. there is a giant componertepidemi¢ of con-

nected vertices of siz&(L), along with a large number of

X~(p—pe)~, (28)

smaller clusters whose distribution falls off exponentially we see thapg=1, since Eq(27) is linear in 8p.
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The valueso=1, =2, and 8=1 of the critical expo- Po(n)=np" }(1-p)?, (29)
nents put the small-world percolation problem in the same
universality class as percolation on a Bethe lattjdd],

which seems reasonable since the effective dimension of t wherep is now the bond occupation probabilitgNote that

: > Mension oT igis is not the same as the probability of a shortcut existing

small-world model in the limit of large system size is infinite between two nodes. Rather, it is the probability that a given

[6], just as it is for the Bethe lattice. . bond—whether a local one or a shortcut—will transmit the
We close our analysis of the site percolation problem bydisease in questionThis expression is the same as &)

noting that Eq.(7) is similar in structure to the equation . . .

. ) for the site percolation case except tigf{0) is now zero
H(z)=z€"®@ for the generating function of the set of rooted, = .
labeled trees. This leads us to conjecture that it may be pos?—nd Po(n=1) contains one less factor @i Ho(2) for k

sible to find a closed-form expression for the coefficients ole IS
the generating functiotd(z) using the Lagrange inversion 5
1_
formula[18]. Hy(2)-2 (1-p) ' (30
(1-p2)?

IIl. BOND PERCOLATION

Turning to bond percolation, we can apply the same for+or k>1, calculatingPy(n) is considerably more complex,
malism as above with only two modifications. First, theand in fact it is not clear whether a closed-form solution
probability Py(n) that a site belongs to a local cluster of size exists. However, it is possible to write down the form of
n is different for bond percolation and consequently so isHq(z) directly using the method given in Refl4]. For k
Ho(z) [EqQ. (6)]. For the casd&=1 =2, for instance,

z(1-p)*(1—2pz+p3(1—2)z+p?2?)

Ho(2)= .
o2 1—-4pz+p>(2—32)22— p®(1—-2)2*+ p*Z%(1+ 32) + p?z(4+ 32) — p3z(1+ 52+ 7%)

(31)

The second modification to the method is that in order tocolation model fork=1 and k=2, along with numerical
connect two local clusters a shortcut now must not only beesults for the same quantities. The agreement between the
preseniwhich happens with probability) but must also be exact solution and the simulation results is good.
occupied(which happens with probability). This means

that every former occurrence @f is replaced with¢p. The

rest of the analysis follows through as before and we find |v. SIMULTANEOUS SITE AND BOND PERCOLATION

that below the percolation transitidt(z) satisfies the recur- .
rence relation We can also apply our method to the case of simultaneous

site and bond percolation, by replaciig(n) with the ap-
H(z)=Hg(ze*¢PIH@ 1) (32 propriate distribution of local cluster sizes and making the
replacement¢— ¢pyong @S above. The developments are
with Hg as above. Thus, for example, the mean outbreak sizeimple for the casé&=1 but the combinatorics become te-
is now dious for largerk and so we leave these calculations to the
interestedand ambitiousreader.

Ho(1)
<n>=H’(l)=m. (33
PHo V. CONCLUSION
and the percolation transition occurs ak¢bHo(1)=1, To conclude, we have studied the site and bond percola-
which gives tion problems in the Watts-Strogatz small-world model as a
1— simple model of the spread of disease. Using a generating
b= e (34) function method we have calculated exactly the position of
2p(1+pe) the percolation transition at which epidemics first appear, the
values of the critical exponents describing this transition, and
for k=1 and the sizes of disease outbreaks both above and below the tran-
3 2 sition. We have confirmed our results with extensive com-
_ (1=pe)*(1—Pc+PC) (35  buter simulations of disease spread in small-world networks.
4p.(1+3pZ—3p3—2pi+5p>—2pd) Finally, we would like to point out that the method de-

scribed here can in principle be extended to small-world net-
for k=2. As in the site percolation case, the critical expo-works built on underlying lattices of higher dimensiq2s5].
nents arer=1, 7=3, andg=1. In the right panel of Fig. 3 Only the generating function for the local clustefsg(z)
we show curves op. as a function of¢ for the bond per- needs to be recalculated, although this is no trivial task; such
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