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Exact solution of site and bond percolation on small-world networks
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We study percolation on small-world networks, which has been proposed as a simple model of the propa-
gation of disease. The occupation probabilities of sites and bonds correspond to the susceptibility of individuals
to the disease, and the transmissibility of the disease respectively. We give an exact solution of the model for
both site and bond percolation, including the position of the percolation transition at which epidemic behavior
sets in, the values of the critical exponents governing this transition, the mean and variance of the distribution
of cluster sizes~disease outbreaks! below the transition, and the size of the giant component~epidemic! above
the transition.

PACS number~s!: 87.23.Ge, 84.35.1i, 05.70.Jk, 64.60.Ak
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I. INTRODUCTION

In the late 1960s, Milgram performed a number of expe
ments that led him to conclude that, despite there being
eral billion human beings in the world, any two of the
could be connected by only a short chain of intermedi
acquaintances of typical length about six@1#. This result,
known as the ‘‘small-world effect,’’ has been confirmed b
subsequent studies and is now widely believed to be corr
although opinions differ about whether six is an accur
estimate of the typical chain length@2#.

The small-world effect can be easily understood in ter
of random graphs@3# for which typical vertex-vertex dis-
tances increase only as the logarithm of the total numbe
vertices. However, random graphs are a poor representa
of the structure of real social networks, which show a ‘‘clu
tering’’ effect in which there is an increased probability
two people being acquainted if they have another acqu
tance in common. This clustering is absent in random gra
Recently, Watts and Strogatz@4# have proposed a new mod
of social networks that possesses both short vertex-ve
distances and a high degree of clustering. In this model, s
are arranged on a one-dimensional lattice of sizeL, and each
site is connected to its nearest neighbors up to some fi
rangek. Then additional links—‘‘shortcuts’’—are added be
tween randomly selected pairs of sites with probabilityf per
link on the underlying lattice, giving an average offkL
shortcuts in total. The short-range connections produce
clustering effect while the long-range ones give average
tances that increase logarithmically with system size, e
for quite small values off.

This model, commonly referred to as the ‘‘small-wor
model,’’ has attracted a great deal of attention from the ph
ics community. A number of authors have looked at the d
tribution of path lengths in the model, including scalin
forms @5–7# and mean-field and exact results@8,9#, while
others have looked at a variety of dynamical systems
small-world networks@4,10,11#. A review of recent develop-
ments can be found in Ref.@12#.

One of the most important consequences of the sm
world effect is in the propagation of disease. Clearly a d
ease can spread much faster through a network in which
PRE 621063-651X/2000/62~5!/7059~6!/$15.00
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typical person-to-person distance isO(logL) than it can
through one in which the distance isO(L). Epidemiology
recognizes two basic parameters governing the effects
disease: thesusceptibility—the probability that an individua
exposed to a disease will contract it—and thetrans-
missibility—the probability that infection results from a con
tact between an infected individual and a healthy but susc
tible one. Newman and Watts@6# studied a model of diseas
in a small world which incorporates these variables. In t
model a randomly chosen fractionp of the sites or bonds in
the small-world model are ‘‘occupied’’ to represent the e
fects of finite susceptibility and transmissibility, and a d
ease outbreak that starts with a single individual can spr
only within a connected cluster of occupied sites or bon
Thus the problem of disease spreading maps onto a sit
bond percolation problem.~The model is also similar to the
so-called SIR models of the spread of infectious dise
@13#.! At some threshold valuepc of the percolation prob-
ability, the system undergoes a percolation transition wh
corresponds to the onset of epidemic behavior for the dise
in question. Newman and Watts gave an approximate s
tion for the position of this transition.

In this paper, we give an exact solution for both site a
bond percolation on small-world networks using a generat
function method. Our method gives not only the exact po
tion of the percolation threshold, but also the value of t
critical exponents governing behavior close to the transiti
the complete distribution of the sizes of disease outbreaks
any value ofp, and closed-form expressions for the me
and variance of the distribution. A calculation of the value
pc only, using a transfer-matrix method, has appeared pr
ously in Ref.@14#.

The basic idea behind our solution is to find the distrib
tion of ‘‘local clusters’’—clusters of occupied sites or bond
on the underlying lattice—and then calculate how the sh
cuts join these local clusters together to form larger ones.
focus on the quantityP(n), which is the probability that a
randomly chosen site belongs to a connected cluster on
sites. This is also the probability that a disease outbreak s
ing with a randomly chosen individual will affectn people. It
is not the same as the distribution of cluster sizes for
percolation problem, since the probability of an outbre
7059 ©2000 The American Physical Society
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starting in a cluster of sizen increases with cluster size i
proportion ton, all other things being equal. The cluster si
distribution is therefore proportional toP(n)/n. This distri-
bution can be calculated easily from the results given in
paper, although we will not do so.

The outline of this paper is as follows. In Sec. II w
derive a complete solution for site percolation on the sm
world network. In Sec. III we do the same for bond perco
tion for k51 andk52, indicating how solutions for higherk
can be obtained. In Sec. IV we discuss simultaneous site
bond percolation. In Sec. V we give our conclusions.

II. SITE PERCOLATION

We start by examining the site percolation proble
which is the simpler case. We consider first the situat
below the percolation threshold. SinceP(n) is difficult to
evaluate directly, we turn to a generating function meth
for its calculation. We define

H~z!5 (
n50

`

P~n!zn. ~1!

For p,pc , as we show below, the distribution of cluste
falls off exponentially with cluster size. This implies that th
probability of two shortcuts connecting the same pair of cl
ters varies asL21 and so can be neglected in the limit
largeL. In this limit, therefore, any connected cluster of sit
consists of a local cluster withm>0 shortcuts leading from
it to m other clusters. ThusH(z) satisfies the Dyson
equation-like iterative condition illustrated graphically
Fig. 1: every cluster of connected sites consists of a sin
local cluster joined by shortcuts to some numberm of other
clusters. Thus we can writeH(z) self-consistently as

H~z!5 (
n50

`

P0~n!zn (
m50

`

P~mun!@H~z!#m. ~2!

In this equationP0(n) is the probability of a randomly cho
sen site belonging to a local cluster of sizen, which is

P0~n!5H 12p for n50

npqn21~12q!2 for n>1,
~3!

with q512(12p)k. P(mun) is the probability of there be
ing exactlym shortcuts emerging from a local cluster of si
n. Since there are 2fkL ends of shortcuts in the network
P(mun) is given by the binomial

P~mun!5S 2fkL

m D Fn

LGmF12
n

LG2fkL2m

. ~4!

FIG. 1. Graphical representation of a cluster of connected s
The entire cluster~circle! is equal to a single local cluster~square!,
with any numberm>0 of connected clusters attached to it by
single shortcut.
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Using this expression Eq.~2! becomes

H~z!5 (
n50

`

P0~n!znF11~H~z!21!
n

LG2fkL

5 (
n50

`

P0~n!@ze2kf[H(z)21]#n, ~5!

for L large. The remaining sum overn can now be performed
conveniently by defining

H0~z!5 (
n50

`

P0~n!zn512p1pz
~12q!2

~12qz!2
, ~6!

where we have made use of Eq.~3!. H0(z) is the generating
function for the local clusters. Now we notice thatH(z) in
Eq. ~5! is of the same form asH0(z), but with z
→ze2kf[H(z)21]. Thus

H~z!5H0~ze2kf[H(z)21]!. ~7!

A similar equation has been derived for SIR models by B
et al. @15#.

H(z) can be calculated directly by iteration of this equ
tion starting withH(z)51 to give the complete distribution
of sizes of epidemics in the model. It takesn steps of the
iteration to calculateP(n) exactly. The first few steps give

P~0!512p, ~8!

P~1!5p~12q!2e22kfp, ~9!

P~2!5p~12q!2@2q12kfp~12q!2#e24kfp. ~10!

It is straightforward to verify that these are correct. We cou
also iterate Eq.~7! numerically and then estimateP(n) us-

FIG. 2. The distribution of outbreak sizes in simulations of t
site percolation model withL5107, k55, f50.01, andp50.25,
0.30, 0.35, andp5pc50.401 01 ~circles, squares, and up- an
down-pointed triangles, respectively!. The solid lines are the sam
distributions calculated using Eqs.~7! and ~11!. Inset: The average
size of disease outbreaks as a function ofp for ~left to right! f
51021,1022,1023,1024. The points are numerical results forL
5107, k55 and the solid lines are the exact result, Eq.~12!.
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ing, for instance, forward differences atz50. Unfortunately,
like many calculations involving numerical derivatives, th
method suffers from severe machine-precision proble
which limit us to small values ofn, on the order ofn&20. A
much better technique is to evaluateH(z) around a contour
in the complex plane and calculate the derivatives using
Cauchy integral formula

P~n!5
1

n!

dnH

dzn U
z50

5
1

2p i R H~z!

zn11
dz. ~11!

A suitable choice of contour in the present case is the
circle uzu51. Using this method we have been able to cal
late the first thousand derivatives ofH(z) without difficulty.
e

es
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i-

e

s

e
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In Fig. 2 we show the distribution of outbreak sizes c
culated from Eq.~11! for a variety of values ofp below the
percolation threshold. On the same plot we also show
distribution of outbreaks measured in computer simulatio
of the model on systems ofL5107 sites. As the figure
shows, the agreement between the two is excellent.

We can also calculate any moment of the distributi
P(n) in closed form using Eq.~7!. For example, the mean
outbreak size is given by the first derivative ofH:

^n&5H8~1!5
H08~1!

122kfH08~1!
5

p~11q!

12q22kfp~11q!
,

~12!

and the variance is given by
^n2&2^n&25H9~1!1H8~1!2@H8~1!#25
p@113q23q22q32p~12q!~11q!212kfp2~11q!3#

@12q22kfp~11q!#3
. ~13!
no
the

as
and

a

me
In the inset of Fig. 2 we show Eq.~12! for various values of
f along with numerical results from simulations of th
model, and the two are again in good agreement.

The mean outbreak size diverges at the percolation thr
old p5pc . This threshold marks the onset of epidemic b
havior in the model@6# and occurs at the zero of the denom
nator of Eq.~12!:

H08~1!5
1

2kf
, ~14!

giving

f5
12qc

2kpc~11qc!
5

~12pc!
k

2kpc@22~12pc!
k#

, ~15!

in agreement with Ref.@14#. The value ofpc calculated from
this expression is shown in the left panel of Fig. 3 for thr
different values ofk.

The denominator of Eq.~12! is analytic atp5pc and has
a nonzero first derivative with respect top, so that to leading
order the divergence in̂n& varies as (pc2p)21 as we ap-
proach percolation. Defining a critical exponents in the con-
ventional fashion̂ n&;(pc2p)21/s, we then have

s51. ~16!

Nearpc we expectP(n) to behave as

P~n!;n2te2n/n* as n→`. ~17!

Both the typical outbreak sizen* and the exponentt are
governed by the singularity ofH(z) closest to the origin as
follows @16#. Equation~17! implies thatH(z) can be written
in the form
h-
-

e

H~z!5 (
n50

a

P~n!zn1C(
n5a

`

n2t expS nF logz2
1

n*
G D

1e~a!, ~18!

whereC is a constant ande(a)→0 asa→`. The first term
in this expression is a finite polynomial and therefore has
singularities on the finite plane; the singularity resides in
second term. However, no singularity can be produced
long as the exponent in this second term is negative,
hence the singularity appears when 1/n* 5 logz. Thus we can
calculaten* from the positionz* of this singularity accord-
ing to

FIG. 3. Numerical results for the percolation threshold as
function of shortcut densityf for systems of sizeL5106 ~points!.
Left panel: site percolation withk51 ~circles!, 2 ~squares!, and 5
~triangles!. Right panel: bond percolation withk51 ~circles! and 2
~squares!. The solid lines are the analytic expressions for the sa
quantities, Eqs.~15!, ~34!, and~35!.
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n* 5
1

logz*
. ~19!

Although we do not have a closed-form expression forH(z),
it is simple to derive one for its functional inverseH21(w).
PuttingH(z)→w andz→H21(w) in Eq. ~7! and rearranging
we find

H21~w!5H0
21~w!e2kf(12w). ~20!

The singularity inH(z) corresponds to the pointw* at which
the derivative of H21(w) is zero, which gives
2kfz* H08(z* )51, makingz* 5e1/n* a real root of the cubic
equation

~12qz!322kfpz~12q!2~11qz!50. ~21!

To calculate the value of the exponentt, we note that as
we approach the percolation threshold from belown* di-
verges by definition, and hencez* →1. The singularity in
H(z) at this point is necessarily a finite singularity sin
H(1)5(nP(n)51. Puttingp5pc andw512e in Eq. ~20!
givesH21(12e)511O(e2), since terms of ordere cancel
out at the transition point because of Eq.~14!. This then
implies that

H~z!;~12z!2a as z→1, ~22!

with

a5 1
2 . ~23!

The exponenta can also be calculated from Eq.~18! thus:

a5 lim
z→1

F11~z21!
H9~z!

H8~z!
G

5 lim
a→`

lim
z→1F 1

z
1

z21

z

(
n5a

`

n22tzn21

(
n5a

`

n12tzn21G
5 lim

a→`

lim
z→1

F1

z
1

12z

z logz

G~32t,2a logz!

G~22t,2a logz!G , ~24!

where we replace the sums with integrals whena is large,
andG(n,m) is the incompleteG function. Taking the limits
in the order specified and rearranging fort, we then get

t5a115
3

2
~25!

for the outbreak size exponent. A power-law fit to the sim
lation data for P(n) shown in Fig. 2 givest51.501
60.001, in good agreement with this result.

Turning now to the case ofp.pc , we can use the sam
techniques to study the sizes of epidemics in the mo
Above pc there is a giant component~epidemic! of con-
nected vertices of sizeO(L), along with a large number o
smaller clusters whose distribution falls off exponentia
-

l.

with cluster size. To account for the giant component,
redefineP(n) to be the probability that a randomly chose
site belongs to a cluster of sizen which is not part of the
giant component. This means that the probabilitiesP(n) now
sum not to 1 as they did forp,pc , but to the probability that
a random site is not a member of the giant component. Th
if we define the generating functionH(z) according to Eq.
~1! again, the volume of the giant component isx51
2H(1).

Figure 1 and the corresponding Eq.~7! apply to our new
H(z) just as before. Settingz51 gives

x512H0~e22kfx!. ~26!

This equation has two solutions, one withx50 for all p and
one for whichx is in general nonzero. Below the percolatio
transition the latter is unphysical withx,0, and at the tran-
sition the two coincide atx50. A bifurcation takes place
when the derivative of the right-hand side is 1, giving t
same result forpc as Eq.~15!. In Fig. 4 we show the values
of x as a function ofp calculated from numerical solution o
Eq. ~26! along with simulation results for the size of th
largest cluster in systems ofL5106 sites. Once again the two
are in good agreement.

Although the nontrivial root of Eq.~26! appears not to
have a closed-form solution, we can calculate it in the vic
ity of pc by linearizing about the bifurcation. Ifp5pc1dp
then to leading order the nontrivial solution is

x5
2

112kfH09~1!

]H08~1!

]p
U

p5pc

dp. ~27!

Defining a critical exponentb above the percolation trans
tion in the conventional fashion,

x;~p2pc!
b, ~28!

we see thatb51, since Eq.~27! is linear indp.

FIG. 4. The average size of an epidemic~giant component! as a
function of the susceptibilityp in the site percolation model fork
55 andf51024 ~circles!, 1023 ~squares!, 1022 ~upward-pointing
triangles!, and 1021 ~downward pointing triangles!. The points are
results from computer simulations on systems ofL5106 sites and
the solid lines are the exact solution.
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The valuess51, t5 3
2 , and b51 of the critical expo-

nents put the small-world percolation problem in the sa
universality class as percolation on a Bethe lattice@17#,
which seems reasonable since the effective dimension o
small-world model in the limit of large system size is infini
@6#, just as it is for the Bethe lattice.

We close our analysis of the site percolation problem
noting that Eq.~7! is similar in structure to the equatio
H(z)5zeH(z) for the generating function of the set of roote
labeled trees. This leads us to conjecture that it may be
sible to find a closed-form expression for the coefficients
the generating functionH(z) using the Lagrange inversio
formula @18#.

III. BOND PERCOLATION

Turning to bond percolation, we can apply the same f
malism as above with only two modifications. First, t
probabilityP0(n) that a site belongs to a local cluster of si
n is different for bond percolation and consequently so
H0(z) @Eq. ~6!#. For the casek51
t
b

n
-

si

o

e

he

y

s-
f

-

s

P0~n!5npn21~12p!2, ~29!

wherep is now the bond occupation probability.~Note that
this is not the same as the probability of a shortcut exist
between two nodes. Rather, it is the probability that a giv
bond—whether a local one or a shortcut—will transmit t
disease in question.! This expression is the same as Eq.~3!
for the site percolation case except thatP0(0) is now zero
and P0(n>1) contains one less factor ofp. H0(z) for k
51 is

H0~z!5z
~12p!2

~12pz!2
. ~30!

For k.1, calculatingP0(n) is considerably more complex
and in fact it is not clear whether a closed-form soluti
exists. However, it is possible to write down the form
H0(z) directly using the method given in Ref.@14#. For k
52, for instance,
H0~z!5
z~12p!4~122pz1p3~12z!z1p2z2!

124pz1p5~223z!z22p6~12z!z21p4z2~113z!1p2z~413z!2p3z~115z1z2!
. ~31!
the
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The second modification to the method is that in order
connect two local clusters a shortcut now must not only
present~which happens with probabilityf) but must also be
occupied~which happens with probabilityp). This means
that every former occurrence off is replaced withfp. The
rest of the analysis follows through as before and we fi
that below the percolation transitionH(z) satisfies the recur
rence relation

H~z!5H0~ze2kfp[H(z)21]!, ~32!

with H0 as above. Thus, for example, the mean outbreak
is now

^n&5H8~1!5
H08~1!

122kfpH08~1!
, ~33!

and the percolation transition occurs at 2kfpH08(1)51,
which gives

f5
12pc

2pc~11pc!
~34!

for k51 and

f5
~12pc!

3~12pc1pc
2!

4pc~113pc
223pc

322pc
415pc

522pc
6!

~35!

for k52. As in the site percolation case, the critical exp
nents ares51, t5 3

2 , andb51. In the right panel of Fig. 3
we show curves ofpc as a function off for the bond per-
o
e

d

ze

-

colation model fork51 and k52, along with numerical
results for the same quantities. The agreement between
exact solution and the simulation results is good.

IV. SIMULTANEOUS SITE AND BOND PERCOLATION

We can also apply our method to the case of simultane
site and bond percolation, by replacingP0(n) with the ap-
propriate distribution of local cluster sizes and making t
replacementf→fpbond as above. The developments a
simple for the casek51 but the combinatorics become te
dious for largerk and so we leave these calculations to t
interested~and ambitious! reader.

V. CONCLUSION

To conclude, we have studied the site and bond perc
tion problems in the Watts-Strogatz small-world model a
simple model of the spread of disease. Using a genera
function method we have calculated exactly the position
the percolation transition at which epidemics first appear,
values of the critical exponents describing this transition, a
the sizes of disease outbreaks both above and below the
sition. We have confirmed our results with extensive co
puter simulations of disease spread in small-world netwo

Finally, we would like to point out that the method de
scribed here can in principle be extended to small-world n
works built on underlying lattices of higher dimensions@2,6#.
Only the generating function for the local clustersH0(z)
needs to be recalculated, although this is no trivial task; s
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a calculation for a square lattice withk51 would be equiva-
lent to a solution of the normal site percolation problem
such a lattice, something which has not yet been achie
Even without a knowledge ofH0(z), however, it is possible
to deduce some results. For example, we believe that
critical exponents will take the valuess51, t5 3

2 , b51,
just as in the one-dimensional case, for the same reason
would be possible to test this conjecture numerically.
-
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et
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