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Cellular automata model for citrus variegated chlorosis
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A cellular automata model is proposed to analyze the progress of citrus variegated chlorosis epidemics in
Sa Paulo orange plantations. In this model epidemiological and environmental features, such as motility of
sharpshooter vectors that performwyeflights, level of plant hydric and nutritional stress, and seasonal
climatic effects, are included. The observed epidemic data were quantitatively reproduced by the proposed
model on varying the parameters controlling vector motility, plant stress, and initial population of diseased
plants.

PACS numbdis): 87.10+e, 87.19.Xx, 87.23.Cc

I. INTRODUCTION II. EXPERIMENTAL DATA ON CVC EPIDEMICS

A. CVC progress in time

Citrus variegated chlorosi€VC) is an economically rel- The CVC epidemic was observed by visual assessments
evant disease affecting citryg]. In the S@ Paulo region  of typical symptoms occurring on leaves or fruits, in 11
(Brazil), one of the important citrus growing areas of the groves of Pea, Hamlin, and Natal sweet oranges cultivated
world, responsible for about 30% of the world production,in two farms of the northern ared8ebedouro and Colina
CVC reduces the size and number of fruits by more tharcountie$ of Sao Paulo state, Brazil. In such areas, severely
35%[2]. CVC is considered to be potentially the most dev-attacked by CVC, are planted the more susceptible cultivars
astating citrus disease and represents the main threat to thaving the supposedly most propitious age for disease devel-
Brazilian citrus industry, with annual revenues of the orderopment. The field data were collected over a 20-month pe-
of 1.2 to 1.4 billions of dollars. The losses associated withriod, from September 1994 through March 1996. The CVC
the disease are estimated at about 100 million dollars yearljicidence was mapped bimonthly and the data for each area
[1]. and each evaluation were transformed to a proportion of

CVC is caused by a xylem-limited bacteriuXyllela fas- ~ Symptomatic plants for temporal characterization of the dis-
tidiosa [3], transmitted by xylem feeding, suctorial sharp- €ase spread. ,
shooter leafhopperéHemiptera: Cicadellidae[4,5]. In Sa The CVC progress curves are shown, for four different
Paulo, the specieBilobopterus costalimaappears to be the 9roves; in Fig. 1. All of them are double sigmoid, which is a

most efficient vector for CVC transmissif8]. At present, a plear indicatio_n that CVC is a polycyclic _disea_se chara_lcter-
sweet orange cultivar resistant ¥ fastidiosais unknown ized by the existence of two phases: one in which the disease

and control practices for CV@bactericidal agents, system- spread is fast, contrasted with another in which the epidemic

atic pruning of infected branches, chemical control of Vec_development 's almost stopped. For each grove the observed

tors, and/or rouging of severely affected plardse expen- 1 — .
sive, ineffective, or environmentally damaging.

Recent studies on various aspects of the epidemiology of
CVC ([1], and references thergihave provided fundamen-
tal information which can be used to develop a cellular au-
tomata (CA) model of the pathosystem. CA or other epi-
demic models could become relevant tools for addressing
numerous practical and experimental questions: forecast-
ing the progress and final intensity of CVC, planning and
evaluation of strategies for disease control, and determina-
tion of the relevant mechanisms involved in the disease
spreading.

In this paper, we propose a simple CA model to simulate
CVC progress in which some epidemiological and environ-
mental features, such as vector motility, plant stress, and
seasonal modulations, are included. The simulation results F|G. 1. Observed CVC progress curves in four groves SJO1,
are compared with CVC progress curves in time and spatiaJ67, SJ71, and SJ75. The curves represent generalized five-
infection patterns observed in thed&Raulo region. parameter logistic fittings to the observed data.
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TABLE |. Coefficients of determinatio®”* and estimated val- ~ cluster size distribution functiong(t) is the fraction of these
ues of the five parameters describing the generalized logistic funce|usters consisting o$ infected plants at time, and was
tions used to fit the observed data of CVC progress in four of the’directly obtained by counting the number and size of dis-

studied groves. eased clusters present in the spatial patterns of the CVC epi-
demic, like those shown in Fig. 2, at each observation time.
Parameter 5 Figure 3 shows the distributiong(t) for one of the ob-
Grove P1 P2 Ps P4 Ps R served orangeries. It suggests thgtt) follows a power-law

sSJO1 0.223 —6.000 1.647 —0.158 0.005 0.989 distribution, that ishs(t)~s™ ¢, over at least one decade of
SJ67 0.908 —-6.414 1.665 —0.153 0.005 0.996 the argumensat any given time of CVC progress. A power-
SJ7l 1.000 —4.854 1307 -0.126 0.004 0.989 Jaw distribution indicates the absence of a characteristic scale
SJ75 0526 —6.638 1396 —0.120 0.004 0.993 for the size of diseased plant aggregates. The exponents de-
scribing the power-law decay oi (t) have values between
1.4 and 1.8 for all the orangeries studied. These values are
characteristic of ¥/ noise[23], as 1f” spectra withy in the
interval [0,2] are commonly called. Therefore, the CVC in-
fection dynamics has a ftlike signal, which, from the
N(t)= P1 ) (1) physical point of view, is a sign of a cooperative phenom-
1+exd — (po+ pat+ pat?+pst®) ] enon occurring in a spatially extended nonequilibrium sys-
tem.
Table | gives the corresponding parameters and the coef-
ficients of determinationR?) have been listed. In addition to C. Self-affine profiles in CVC evolution patterns
the R? coefficient, the residual sums of squares for error and . . .
. i Self-affine profile48,9] can be generated from the spatial
the consistency of the predicted values for the upper . : . )
: / ) . patterns of diseased plants using various methods. The sim-
asymptotic fraction of diseased planfs; & 1) were take into . ) . ) )
L lest of them is a 1:1 mapping between a given spatial con-
account to select the logistic among Gompertz and monoma- . . R
. : ; - Tiguration at timet, such as those shown in Fig. 2, and a
lecular generalized models with four or five parameters. It is,
important to note that sigmoid curves can be generated b
different modeldfitting equations Indeed, the temporal in-
crease of citrus tristeza virus, whose vectors are aphid sp
cies, follows a nonlinear Gompertz modéI.

data sets are fitted by five-parameter logistic cuiégef the
form

walk process”[10,11]. In this method each binary symbol
Xi(t) describing the plant statpo;(t)=0: normal; o;(t)
=1: diseaseflis identified with a stefgto the right or to the
feft) of a one-dimensional walk.

Specifically, to a unique spatial pattern

S _ {1(t),0,(t), ... ,on(t)} of N plants at fixed time corre-
B. Infected cluster size distribution functions sponds a profile given by the sequence of walker displace-
On any one of the orangeries containing about ttees ~ mentsh; afteri unit steps{h;(t),hy(t), . .. hy(t)}, defined

there is no unique inoculum source. Each single infected®S

plant or small initial group of infected plants grows by in- i

oculating its adjacent neighbors, and aggregates with other h<(t)=2 () @)

affected trees, forming large clusters. As a result, the mean : =1 Pitt)

cluster size of infected trees increases in time and, in order to

describe the disease spread, it is necessary to investigate tiwbere pj=1 if o;=1 (step to the right or pj=—1 if o

dynamic aspects of the distribution of infected plant aggre=0 (step to the left Profiles generated at two distinct ob-

gates generated by the CVC progress. servation times in a given orangery using this walk process
A cluster of diseased plants has been defined as any set afe shown in Fig. 4.

interconnected infected trees that are spatially isolated from After obtaining the profiles by the walk process, we can

any other group of diseased plants in the orangery. Then, thiavestigate the nature of their correlations through analysis

e
o

Y
.:-":.J FIG. 2. Temporal sequence of CVC incidence
};5:31 maps in the grove SJ71 with 3960 rReorange
o & PR eI trees. Six representative evaluatiofld/94, 01/
ﬁ'." LN ' f;c. ':.'{ftgé 95, 05/95, 09/95, 11/95, and 01)9&re shown.
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FIG. 3. Observed cluster size distribution functinyt) of clus- FIG. 5. Typical log-log plot oM/(e€) versuse used to calculate
ters containings diseased plants for the grove SJ71 at the observathe roughness or Hurst exponent characterizing a rough profile, in
tion timet=6 months. The straight line represents the best fit to thethis case the CVC spatial patterns in grove SJ75 at two distinct
data; its S|0pe gives the exponendescribing the power-law decay Obsel’vation times. The Hurst eXponent Corl’esponds to the S|0pe Of

of ng(t).

of the profile roughned®]. The statistical measu#, which

the straight line fitting the linear part of the curve.

responds to a random wallki>1/2 implies that the profile

characterizes the roughness of the walk profile, is defined bpresents persistent correlations, and profiles With1/2 are

the rms fluctuation in the displacement,

1< _
wmn=ykggmm—mm% (3
where
1 X
h(H)=5 2 hi(t) (4)

is the mean displacement of the walk.
For self-affine profiles the roughne®¥(N) will be de-
scribed by a power-law scaling,

W(N)~N", 5

with the exponent restricted to the intervdl0,1] and re-
lated to the fractal dimension of the prof{lg]. H=1/2 cor-
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anticorrelated.

As one can see in Fig. 4, the profiles generated from the
CVC epidemic patterns usually have drift. This is the reason
that we use the method of roughness around the rms straight
line [12] to evaluate the Hurst exponeHt In this method
the roughnes®V(N,€) on the scales is given by

1 N
W(N, €)= 2, wi(e) ©)

and the local roughnesg;(¢) is defined as

l I+e
w;i(€)= \/26+1 j;e {hj—[ai(e)x;+bi(e)]}*. (7)

a;(e) andb;(e) are the linear fitting coefficients to the dis-
placement data in the intervil —€,i + €] centered on the
sitei. Again, self-affine profiles satisfy the scaling law

W(e)~ €. 8)

The method described here was used to characterize the
spatio-temporal patterns generated by elementary one-
dimensional deterministic cellular automafg].

A typical log-log plot of W(e€) versuse used to calculate
the Hurst exponent is shown in Fig. 5. This exponent char-
acterizes the spatial patterns generated by a CVC epidemic.
For all the analyzed orangeries the profiles are self-affine
with Hurst exponents markedly different from 1/2, which
means that long-range correlations present in the spatial dis-
ease patterns. Also, the roughness exponent increases from
an initial value around 1/2, indicating a random infection

FIG. 4. Self-affine profiles generated by the walk processPattern at the beginning, toward its maximum value 1, which
method at two distinct observation times in the grove SJ75, concorresponds to a totally infected orangery. Thus our results

taining 2880 P orange plants. The rescaled profile tat14

show that a CVC epidemic gives rise to aggregated patterns

months was obtained by subtracting the corresponding linear fittingn which the inoculum level tends to be high in scattered
of the data. The inset is an enlargement of the central region of theequences of neighboring plants, i.e., infected plants tend to

profile att=14.

be close to other diseased trees and the same holds for nor-
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mal plants. Therefore, it appears that the pathogen occurs ii
small clusters which progressively expand by a contagion
process mediated by vectors that predominantly spread fron
plant to plant.

Ill. A CELLULAR AUTOMATA MODEL FOR CVC

Stochastic CA models have been used before in plant pa
thology to simulate diseases spreading through spore dis
persal[16], the infection dynamics dR. Solani17], and the

infection of cereal roots by the take-all fungi8,19, but FIG. 6. Schematic representation of CVC spreading from a dis-
traditionally the mathematical modeling of plant disease iseased plantcentral gray squajeised in our CA model. The central
based on systems of differential equati¢hs]. infected site acts as an inoculum sourcerigft) =3 other distinct

CAs are totally discrete dynamical systenidiscrete sites whose distancesare chosen from a symmetric wedistribu-
space, discrete time, and discrete number of Statdsich  tion. These “target” sites are reached through the vector flies rep-
provide simple models for a great number of problems inresented by the arrows, (t) changes seasonally with time.
science[14,15. With each site(denotedi) is associated a
variable o, which can be inK different states o sented by a binary variablg ; . 7; ;=0 means a low fraction
=0,1,... K—1. The dynamics is defined, at each time step,of inoculative sharpshooter leafhoppers in the insect popula-
by rules depending on the values at previous timegogf  tion and7; ;=1 a high inoculative fraction.
associated with a given number gfarbitrary sites(called In all simulations, random initial conditions have been
inputs. Usually one considers regular lattices and the inputaised in which any plant of the lattice is diseased with prob-
refer to the sites in the local neighborhood only. The localability p;,:, and stressed with probabilifys(0). Since CVC
rules of a CA may be probabilistic or deterministic and thecauses severe stress in a diseased pldnan infected tree
sites are simultaneously updated. (o{P=1) immediately becomes stressea({'=1) in our

In order to design the CA model for CVC spreading, we model.
take into account the following basic features of the CVC Al the sites are simultaneously updated using the follow-
pathosystem characterized in the previous section. The baing local rules.
terium X. fastidiosais transmitted by sharpshooter vectors of (i) For an infected site the corresponding state at the next
rather limited motility in the groves. This hypothesis is con-time step iso{})=1, ¢(3)=1 (diseased and stressed tee
sistent with the results obtained for the roughness or Hursgndr; ;=1 (high fraction of inoculative vectoysin addition,

exponents describing the CVC infection patterns. In diseasefls shown in Fig. 6, each infected site acts as an inoculum
plants, the bacterium is systemic; nutritional imbalance andource for n,(t) distinct plants at distancer,, k
general weakness are commonly observed. Thus, the infectedq 2 . n,, chosen at random according to a symmetric
sites continuously act as inoculum sources to other healthyevy d|str|but|on

plants. Since there has been no measured effect of wind di-

rection or machine based cultural practices on CVC spread- 1 (4o

ing [1], the vector flies were assumed to be completely ran- p(r)= —f dtexgit(u—r)—|t|3]. 9)

dom in our model. Also, in healthy stressed trees the 27 ) e

observed sharpshooter population is small, since these in-

sects are preferably attracted by plants with new vegetativ&hus, the lengths of each of tmg(t) vector flights are not
growth. Finally, as shown by the CVC progress curves, seaconstant but rather are chosen from a probability distribution
sonal effects play a central role in disease spreading. In factyith a power-law tail. Each one of these selected neighbors
the fastest CVC spreading progress is observed fromwill assume, at the next time step, the stafg)=1, 0%
September/Octobeflowering through March(end of sum- =1, and 7, ;=1, if it is a normal and nonstressed plant.
men, a period associated with high temperatures, regulaDtherwise, the selected neighbor will stay in the same state
rains, and vegetative growth. The seasonal modulations aggs previously. Thus, in our CA model a healthy stressed tree
included in the CA model through variation in the motility of is not infected by CVC, since the main vectdB. costali-
sharpshooter vectors as well as in the fraction of normamaiandAcrogoniaspp) are preferentially observed in plants
plants under hydric and nutritional stress. The functionakxhibiting young buds and leaves. In contrast, a healthy and
form assumed to model such seasonal variations in oufionstressed plant becomes diseased if it is reached by inocu-
model is a sine wave function. lative vectors coming from at least one infected site.

In our CA model the orangery is represented by square (i) For a normal(stressed or nonstresgeglant not a
lattices of linear size- with null fixed boundary conditions target of a given diseased plant, the corresponding state at
(isolated grove, i.e., all the state variables are zero outsidge next time step ,9 =0 (norma) and; ;=0 (low frac-
the latticg. The state of each plant is descrlbed by two binarytion of inoculative vector)s Yet the value of(,(Z)_o or1is

variableso{y ando(?), wherei,j=1,2,... L. o{9=0rep-  chosen at random with probability,=1— pnst(t)

resents a healthynormab plant and 0(1)_ 1 a diseased (iii) In order to simulate the seasonal effects on both plant
plant, Whereasr(z)—l represents a plant under hydric or stress and vector motility, the number of inoculative vector
nutritional stress andr(z)—o a nonstressed plant. Finally, flights n,(t) and the probability associated with a non-
the fraction of moculatlve vectors at each site is also represtressed plan,s(t) are periodic functions of time given by
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(2@t study[20] shows that efficient transmission ¥f fastidiosa
n,(t)=no+INT| ng sin T*‘fﬁ) : (100 by vectors occurs only after its population overcomes a
threshold in plant hosts. In addition, the transmission rate
1+ sin( 27t/ T+ increases as the bacte'rlal popu'latlon in a plant increases.
Prst(1) =Pmint (1= 2Pmin) X N2 ¢) . (11 These features are not included in our CA model due to the
2 lack of information about the system of. fastidiosain
where INT means the integer part is the time averaged citrus.
number of inoculative vector flightgui, is the minimum
probability of finding a nonstressed plant, ahd the period IV. RESULTS
of one year.¢ is a common phase angle to describe possible
time shifts between the simulated and field data. Now we shall report on the simulation results for our CA

Finally, we shall discuss some simplifications of our CA model. In all simulations a linear size=200, a seasonal
model for CVC progress. The use of a symmetric periodicperiod T=12 months(one yea), and a phase anglé=
function to model the seasonal effects should be thought of-60° (a shift of two months between the observed and
as a rough approximation to the much more complex clisimulation initial time$ were used. The remaining five CA
matic variations observed in nature. Another simplification isparameters, namelyg, Pint, Pmin, 4, @anda, were varied in
that once infected a given plant immediately acts as an inerder to compare the simulated and observed CVC progress
oculum source, in contrast to the classical notion of a disconeurves. The results for four groves are shown in Fig. 7. As
tinuous infectious period. It is known that the spread of dis-one can see, the CA progress curves show qualitatively the
ease involves the interplay of two dynamical processes: theame functional behavior as the measured curves. A surpris-
mechanisms of transmission and the evolution of the pathangly quantitative agreement between the CA and the ob-
gen within hosts. The basic questions of how the bacteriserved CVC progress curves was even obtained. The CA
spread within the xylem system and what is the mechanisrparameter values are listed in Table Il. Therefore our simu-
of pathogenesis in CVC are unanswered. In particular, itation results suggest that the \ye distribution of vector
seems that the CVC symptoms in plants depend on the raféghts is universal, withu=4 anda=0.68. The same holds
and extent of colonization by the bacteria. Also, a recentrue forng, the time averaged number of sharpshooter vector
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TABLE Il. CA parameters used to simulate CVC progress simulations of many large samples of artificial CVC patho-

curves corresponding to the observed data for four groves. systems in various epidemiological contexts, the numerical
values for the exponents andH can be determined with a

Parameter reliable statistical precision difficult to attain in actual field

Grove M a No Pint Pmin observations.

sJo1 4 0.68 5 0.0002 0.001 It is important to emphasize that a simple random walk

SJ67 4 0.68 5 0.04 0 distribution for the inoculative vector flights constrained to a

SJ71 4 0.68 5 0.06 0.35 local neighborhood of radiugt) around each diseased plant

SJ75 4 0.68 5 0.009 0 also generates progress curves in good agreement with the

field data. However, the resulting CVC incidence maps are
clearly different from those observed. Random flights of in-
flies starting from each infected plant, which assumed @culative vectors produce spots of diseased plants artificially
value 5 for all four simulated groves. isolated in space, which grow to merge with other infected
At this point, it is interesting to note that our CA model clusters. In contrast, a’\g distribution permits rare long-
even predicts triple, quadruple, or greater sigmoid progresgange vector flights, which appears to be an essential feature
curves depending on the time elapsed up to a total infectioih explaining the scale invariance observed in CVC spread.
of the grove. This simulation prediction can easily be testedndeed, conventional random walks used to model foraging
simply by observing the CVC progress in the field for abehavior in biologyf24] predict a Poisson instead of a scale-
period greater than 20 months as was done in the preseimvariant power-law distribution. Thus, our results suggest
work. Moreover, such triple or quadruple sigmoid curves carthat the inoculative sharpshooter leafhoppersl(cm in
be mathematically modeled by using generalized logisticsize) perform long flights of random foraging, searching for
monomolecular, or Gompertz functions only if the diseasenonstressed plants with new vegetative growth unpredictably
progress curves are subdivided into three or four parts thatispersed over several square kilometers. A possible expla-
are analyzed separately. However, this approach is inadation is that, for insects operating in swarms or flocks com-
equate to describe the entire disease dynamics and to detgyised of N walkers, Lay flight search patterngor which
mine several parameters of epidemiological importanceNt sites are visited aftarsteps are much more efficient than
[21,22. Brownian walk foraging patterrigor which onlytin(N/Int)
Figure 8 shows a simulated temporal sequence of CVGjistinct sites are visitgd25]. It is interesting that Ley flight
incidence maps qualitatively similar to the observed spatiakearch strategies are also observed in albatr¢@&ds
patterns of CVQsee Fig. 2 From such incidence maps, one
can determine the dynamic infected cluster size distribution
function ng(t) and the roughness exponetitcharacterizing
the self-affinity of CVC infection profiles. Figures 9 and 10 In this study a spatio-temporal analysis of CVC spread
show, respectively, the cluster size distribution functionwas carried out. The shape of the observed CVC progress
ng(t) and typical log-log plots o¥V(e) versuse correspond- curves was double sigmoid, best fitted by a five-parameter
ing to the simulated infection maps for the grove SJ71 ageneralized logistic function. This means that CVC is a poly-
various observation times. Both the power-law decay of theyclic disease in which a phase of rapid progress alternates
infected cluster size distribution function and the roughnessvith another of almost no change. In addition, both the
exponents characterizing the spatial disease patterns indicgtewer-law decay of the infected cluster size distribution
the presence of long-range correlations in CVC developfunctions and the roughness exponents characterizing the
ment. Roughness exponents greater than 1/2 mean that in thpatial disease patterns indicate the presence of long-range
neighborhood of a diseased plant the probability of findingcorrelations in CVC development.
another infected tree increases. A significant aggregation of In order to understand the basic mechanisms by which the
diseased plants suggests that the pathogen predominantbatures discussed above emerge, a CA model was proposed.
spreads from plant to plant. Since our CA model permits fastt takes into account the motility of sharpshooter vectors, the

V. CONCLUSIONS

FIG. 8. A simulated sequence
of CVC incidence maps in the
grove SJ71. Each black square
corresponds to one symptomatic
plant.
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FIG. 9. Simulated cluster size distribution functing(t) for the tion times. The straight line represents the best fit to the data; its

grove SJ71 at various observation times. The straight line representiOP€ gives the roughness exponentlescribing the profile. The

the best fit to the data; its slope gives the exporedescribing the data c_orrespond to an average over 20 different realizations of CA
power-law decay oh(t). The data correspond to an average overevolution.

100 different realizations of CA evolution.

tors as well as plant stress, described by the probalmlity

are the most fundamental parameters determining the aspects
of CVC spreading. These factors are also affected by sea-
I§8na| variations.

level of plant hydric and nutritional stress, and seasonal cli
matic effects. By varying the CA parameters controlling
these factors, a good agreement between the simulation al
all the observed data was achieved, suggesting that the actual
relevant mechanisms of CVC spreading were really captured
and evidenced by the evolution rules of the proposed CA
model. Therefore, our model suggests that the average num- This work was partially supported by FAPEMIG and
bern,(t) of Lévy flights performed by the sharpshooter vec- CNPq, Brazilian agencies.
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