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Renormalization group analysis of a quivering string model of posture control
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Scaling concepts and renormalization group methods are applied to a simple linear model of human posture
control consisting of a trembling or quivering string subject to damping and restoring forces. The string is
driven by uncorrelated white Gaussian noise, intended to model the corrections of the physiological control
system. We find that adding a weak quadratic nonlinearity to the posture control model opens up a rich and
complicated phase spa¢@presenting the dynamicwith various nontrivial fixed points and basins of attrac-
tion. The transition from diffusive to saturated regimes of the linear model is understood as a crossover
phenomenon, and the robustness of the linear model with respect to weak nonlinearities is confirmed. Corre-
lations in posture fluctuations are obtained in both time and space domains. There is an attractive fixed point
identified with falling. The scaling of the correlations in the front-back displacement, which can be measured
in the laboratory, is predicted for both large-separatfiaiong the stringand long-time regimes of posture
control.

PACS numbgs): 87.10+e, 05.10.Cc, 05.10.Gg, 05.70.Jk

[. INTRODUCTION (anteroposterigrsway recorded for human subjects in an sta-
tionary upright stancgl8,19. Despite the fact that the actual

A wide variety of systems subject to noise, randomhuman postural control system must undoubtedly be highly
forces, and interactions can be studied in depth by means éPmplex, the stochastic model introduced by Chow and Col-
nonequilibrium statistical mechanics. This holds truelins [17] is described by a linear, and hence, exactly solvable
whether the system in question is fundamentally of a chemistochastic differential equation in one spatial dimengion
cal, biological, or physical nature. When the phenomena unthe following, temporal derivatives are denoted by an over-
der study admits mathematical modeling by means of stodot, and the primes stand for spatial derivatiyes
chastic partial differential equations, many powerful N "
techniques can be used to analyze the effects that noise, fluc- BY+y—vy'+ay=n(x), (1)

tuations, and random disturbances have on the dynamics §8,.re y(x,t) denotes the time-dependent front-back dis-

one changes both the spatial and temporal resolution scaleg, e ment measured with respect to the vertical located at
at which the system is observed. The possibility to be able t

> ) . . =0 (here we take th& axis to denote the vertical axis, as
use such techniques becomes especially pressing given thgh pe reserved for the dynamical exponent which we intro-

many typical real systems of interest are characterized b&uce and calculate belowThis is of course immediately

havi_ng many degreefs. of freedom i'nteracting r‘On"ne"’?rlyrecognized as a one-dimensional wave equation subject to
leading to the competition between different length and timeyi tion (), a linear restoring or pinning forcex), and a

scales, with all scales evolving in the presence of noise ang, .astic or random foroy). The onset-of-damping time
subject to uncontrollable external effects and contingenciessCale is set by, the pinning t-ime scale is set by * and v
One of these important techniques is provided by the renor;, ’

lizati itabl tended 1o d ical : is an effective string tension parametémhis continuum
malization group, suitably extended to dynamical Sys em%quation describes the motion of a quivering damped string
and systems out of equilibriufii,2]. Some recent results of

S : >~ .with a linear restoring force. A discrete version of this model
renormalization group analyses of the kind presented in th'ﬁ/ould involve a chain of coupled random walkers, or mono-

paper were obtained for diverse phenomena ranging frorpners and in this qui :

. i , guise can be denoted as a pinned polymer
stirred ﬂuédsl[g] aﬂnd tur?ulencé4,5] to .surﬁce grgvvth phe- [17]). The stochastic noise is taken to be Gaussian with zero
nomena[6-10, flame front propagatiofl1], and cosmo- mean. For subsequent calculational purposes, it is convenient

logical Iarg.e-scale Strupture formatiph2-1§. : o characterize the noise spectrum directly in Fourier space
Fluctuations and noise are known to be present in phy5|(k )

ological systems as well. Recently, a simple continuum
model of human posture control was propof&d| that cap- (n(k,»))=0,
tures the gross or coarse-grained features underlying the 2
physical mechanisms, and adjusts well to laboratory mea- (y(k,w)n(k’,0"))=T(k,w)(2m)?6(k+k" )0+ '),
surements of time-varying displacements of the front-to-back
where the angular brackets denote averaging with respect to
the noise, and the noise spectrum functlofk, w) may in
*Electronic address: alonso@laeff.esa.es general contain both short and long range correlations in
"Electronic address: hochberg@Ilaeff.esa.es space and/or time. We consider white noise here, so the spec-
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tral function is proportional to a constant noise amplitude: s=28y+y—s?~2py”+ s?ay + ¥ Xey?=s1AZ" DXy
I'=2A In Ref. [17], noise exhibiting short-time temporal (4)
correlations but uncorrelate@dr white) for long-time scales

was used in computing the correlation and response funawvhere we have used the noise two-point correlation function
tions directly from the Fourier transform of the wave equa-[Eq. (2)] to determine the scaling of the noise source. Under
tion[Eq. (1)], where the former were fit to laboratory posture this transformation, the individual parameters appearing in
data allowing a phenomenological determinationgfind  Eg. (3) therefore scale as

a1, an effective noise amplitude, and a parameter charac-

terizing the short-time noise correlations. B—s “B,
In Ref. [17] it was claimed that nonlinearities are not
necessary to explain the posture data of healthy standing in- v—s¥ 2,
dividuals, though it was also recognized that this may not be
the case for subjects with balance disordersr even for a—Sa, (5)
normal individuals subject to a sufficiently large perturbing
“kick” ). These effects clearly lie outside the scope of the e—s?tXe,
linear model[Eq. (1)], as do posture displacements outside
the sway envelope or cone of stabilif0,21], and there is Az 2x"1 4.

clear motivation for extending that model to include weak

nonlinear terms. The minimal nonlinear term one can includeat a fixed pointof this scaling, the model parameters and the
in Eq. (1) is of the form~y?, which also serves to break the field y no longer change under a rescaling for certain specific
y——y symmetry in Eq.(1). Including this quadratic term values of the exponentsand y. The model parameters ap-
makes good sense from the physiological point of view,proach their fixed-point valug— 8*, v— v*, etc., and this
since real anteroposterior motion is intrinsically asymmetriciact gives rise to a corresponding fixed-point equation of
[17]. Physically, this amounts to having a “pinning force” motion, which is Eq(3) written in terms of the fixed-point
that varies with the amplitude of the horizontal displacemenparameters. Thus each fixed point corresponds to a distinct
y. We will see, moreover, that such a term is needed in Orde(ﬂynamics governing the |Ong time and |arge distanse (
to account for falling. In this paper we analyze the impor-_, ) pehavior of the model. The dynamical phase space is
tance and impact of weak nonlinearities and to check thenhys divided or “partioned” into various domains or basins
robustness of the linear model by means of a dynamicabt attraction(or repulsion, each domain associated with a
renormalization grougRG) analysis. We therefore consider gjven fixed point. We can use this fixed point information to

a nonlinear stochastic wave equation given by predict the asymptotic scaling of the displacement correla-
_ tion function in both the temporal and spatial domains. This
BY+Y—vy"+ay+ey’=n(xt), (3)  will be one of the main objectives of this paper.

Independently of the RG, and in preparation for the re-
wheree=0 is the strength of the quadratic nonlinearity, andsults to be obtained, it is useful to derive the general scaling
we take the noise spectrum to be white., uncorrelatedat ~ form of the correlation function of transverse displacements.
large scales: that i$,(k, ) = 2.4, where the noise amplitude Under a global scale transformation, the displacement field
is denoted byA, which also serves as a loop-counting pa-transforms according to
ramete22] [an expansion of the solutions of E) in loop
diagrams is a convenient and powerful way to organize the y(sxst) =sYy'(x,t), (6)
calculation.

We are interested in the correlations in the solupof ~ Which merely states that under a space and time rescaling,
Eq. (3) in the so-called hydrodynamic limit corresponding to the displacement field can, and generally does, transform
large spatial separatiorfalong the vertical axjsand long-  into a distinct(hence the primefunctional formy’, apart
time intervals:x—x'|—o and|t—t’|—c. This will tellus ~ from picking up an overall factor. Thus a change of scale
how the posture fluctuations are correlated along the lengt#ill generally change the function itselfinlessone is in the
of the body at any given instant, and how they are correlategcaling or power law regime. When the system is known to
in time at any given point on the body. In terms of Fourier b€ in a scaling regime, then in fagt=y’ and from Eq.(6),
variables(momentumk and frequencyw), this limit is taken the autocorrelation function therefore scales as
by letting (k,w)— 0. The scaling information and universal-

ity class of this nonlinear wave equation is contained in two (Y(x,0)y(0,0))=s"?Xy(sxs1)y(0,0),
critical exponents: the dynamic exponenand the “rough- t
ness” exponenjy. These exponents are first obtained via a :XZX\P(?), (7

simple scale transformation of the stochastic equation of mo-
tion, and forms part of the full RG transformatiga course . ) 3
graining or thinning out of the degrees of freedom, followedWnere (without loss of generalifywe have choses~x"*,
by a rescaling [1]. A change of space and time scales andW¥ is a(dynamig scaling function, which itself exhibits a

_.sx, t—s% is accompanied by a corresponding change ofOWer law behavior for asymptotic limits of its argument:

scale in the displacement field variable->s*y. Under this
scaling the stochastic equation of motion E8). transforms W(u)=
according to

1

A for u—0

Bu®¥Z  for u—o,

®
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for constant®A andB. The dynamic exponertdescribes the sented in a three-dimensional dimensionless parameter
scaling of relaxation times with length andis the “rough-  space, and we solve for all the one-loop fixed points in terms
ness” exponent of the string or polymer. Thus a knowledgeof this reduced set. In this way we find a total of two trivial
of these two exponents is all that is required to determine théxed lines and four nontrivial fixed points. Linearization of
explicit scaling of the correlation function within each dy- the RG about each fixed poifur line) reveals thenature of
namic phase of the model. For the linear modal., e=0)  the fixed point, in the dynamical systems sefwbether the
these exponents can be exactly determined with little effortfixed pointis a source, a sink, a limit cycle, a spiral, a saddle
and there are just two solutiorifor white noisg. For one, Point, etc) and yields linear stability information which we
the wave equation for nonvanishing pinning foree40) is ~ quote in terms of the eigenvalues and eigenvectors of the
made scale invariant with the choices 0 andy=— 1. This  linearized RG. The two lines of fixed points correspond to
exponent solution can be read directly from E8), taking the diffusive and_bounded phases of the strictly linear model,
into account the fact that the noise amplitude is constant an@nd are present in the nonlinear model for all valuea ahd
hence, nonvanishing on all scaled* 0). This immediately B- _Of the four nontrivial flx_ed points, one is a stable spiral
yields the exponent identitg=2y+1. For a finite fixed which represents the “falling” phase. The.other three are
value of the pinning force, the only possibility is to take saddle points which seem to have r_ather little influence on
—0, since a positive>0 yields an asymptotically divergent the long-range and long-time dynamics, however.

a, while z< 0 would instead yield an asymptotically vanish- Substi';ution of the fixed points. pack into the original set
ing value. We see thag* =g is finite and the diffusion of RG's yields the values of the critical exponentsnd y for
constant vanishesy* =0. In this phase, then, there is no each fixed point, and hence determines the exact asymptotic

diffusion. This exponent pair corresponds to the experimenSCaling properties of the correlatiofisq. (7)] in the basin of
tally observed scaling regime denoted as “bounded” Orattrac'uon(or repulsion of each fixed point, which is pre-

“saturated,” and holds for the very latest times when thesented in Sec. IV. The numerical analysis of the fixed points

pinning force has had time to correct for posture excursiond then repeated using an alternative set of three dimension-
ess parameters suitable for investigating the smaliimit

from the vertical and aligns the body in an upright stanc . e . .
[17]. In the earlier “diffusive” scaling regime, the pinning (corresponding to the diffusive regimerhe use of this sec-

force did not have sufficient time to act and is negligible, i.e.,0"d Set of parameters in conjunction with the first is neces-
a~0, and there is another exact exponent solution given b§ary in order to completely cover the entire model parameter
z=2 andy=1, indicating that in this parameter regime, the Space.

model belongs to the same universality class as the one- The detaileq structure of t_he nonlinear RG flow is re-
dimensional Edwards-Wilkinson modg25]. At this fixed vealed by plotting the fixed points and mapping the numeri-

point, we have a finite diffusion* = » and 8* =0. In this cally computedand normalizegvector field of the nonlin-
phase, there is no wave propagation, since the second deriva2" RG flowtln tthe ne|gthbofrr:ﬁods of ?1” }he po;n;[r? mdSec. V.
tive in time is absent. Note that these simple scaling solu- any important aspects ot theé morphology of the dynamic
tions have been obtained from applying naive scaling arguphase space are qu_alltatwe!y revealed, and allow copclus_lons
ments to thelinear equation. However, as soon as the ©© .be dfa.W” regafd'f‘g t_he |mpa_ct of the vyeak nonlinearity.
nonlinearity  is turned on, and no matter how weak, OtherTh|s provides reveah'ng mformatlo.n regarding the shape and
nontrivial exponent solutions arise for which the nonIinearityStrUCture of the basins of attraction, and complements the

can becomeelevant The naive scaling arguments are insuf- gnalyzl/? analysis. Summary and conclusions are drawn in
ficient for obtaining the scaling exponents in the fully non- ec. V1. - . . .

linear model. The RG allows one to calculatand y in the A number of explicit analytic caleulanonal details needed
combined presence of fluctuations and nonlinearities, and t r the derivation of the RG equations are relegated to the

calculate the exact asymptotic scaling of the correlation func: ppendixes. The co_mplete calculatlons_leadlng to the one-
tion [Eq. (7)] in all the basins of attraction. loop response_functlon are presented in Append|x A, and
The rest of this paper is organized as follows. In Sec IIsimilar calculations for the noise spectral function and vertex

we make use of a dynamic functional formalism for the per-fénormalizations are given in Appendixes B and C, respec-

turbative calculation of solutions to Eq3) based on the tively.
Martin-Siggia-Rose Lagrangian. The bare correlation func-
tion, response function, noise spectral function, and bare in-
teraction vertex function are identified; their corresponding
Feynman diagrams are also introduced and calculated, and In this section we make use of a functional integral rep-
these provide the basic elements of a systematic and comesentation of non-equilibrium stochastic dynamics. This
trolled loop expansion for the one-particle-irreducible dia-leads to the efficient identification and extraction of the cal-
grams which we then use for extracting the one-loop RCculational elementsand Feynman rulesieeded for the per-
equations in the low-energy regime. turbative calculation of the solutions of any stochastic partial
In Sec. lll we exhibit a set of nonlinear differential RG differential equation. It is well known how to map stochastic
equations for the dimensionful parameters appearing in Egprdinary or partial differential equations with additive noise
(3). For white noise these involve five equations: one assointo equivalent generating functiona&4,23. Essentially,
ciated with each independent parameter appearing in thghere are two formally distinct but physically equivalent
equation of motion. We then identify a convenient set ofroutes one may follow, an option one has at least in the case
three dimensionless couplings in terms of which these R®f Gaussian noise. In the Martin-Siggia-R¢MSR) formal-
equations can be expressed. The RG flow is therefore représm[26—28 one introduces a fictitious conjugate figtll it

II. DYNAMIC FUNCTIONAL FORMALISM
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§) with its own source term. The equation of motion, in this point for a perturbative expansion which we will use to cal-
case given by Eq(3), is imposed as a constraint on the culate the RGE equations associated with the nonlinear sto-
dynamic functional, and is realized linearly. In the minimal chastic wave equatiofiEqg. (3)]. From standard Gaussian in-
formalism, no conjugate field is introduced, leading to a nontegrations[24,23, we have thatup to an overall irrelevant
linear realization of the constraif23,22. For Gaussian constant prefactor

noise in the minimal formalism, the constraint appears qua-

dratically in the argument of the functional, while for non-

Gaussian noise it inherits whatever nonlinearities are present  Zo[J,J]= exp( j j

in the noise probability distribution function its¢22]. Here 2
we develop a ca!culation following the MSR ap_proach, since { L I(k,w)T(—k, — )I(—k,— )
this leads to a simpler structure for the associated Feynman

diagrams, and our immediate aim is to obtain a perturbation

w2+[vk2—Bw2+ a]2

expansion which can be set up, organized, and calculated in R

terms of a few elementary diagrams or graphs. +i J(k"")‘](_k*_w)] (11)
The MSR dynamic generating functional corresponding to io—Bo’+1vk*+a

Eq. (3) is given by (taking a translationally invariant noise

spectrum From Eqg.(9), it is clear that all noise averages of arbitrary

products of physical fields and conjugate fields at distinct
points and times are obtained from the appropriate functional

N 1
Z[‘]’J]:J [dy][dy]ex;{ B Ef dxdty'y derivatives of Ing) with respect to the source terrdsindJ,
taking the sources to zero at the end of the calculation. We
may thus obtain the “bare” or zeroth order autocorrelation
and response functions directly in Fourier spgbe zero(0)
subscript denotes the zero-coupling linait 0] as

+i f dxdtY{BY+y—vy"+ ay+ ey?}

+ | dxd J+ATJ), 9
f xdilyJ+§J) © (Y(P1,01)Y(P2,02))o

wherey denotes the conjugate field, addndJ are arbitrary (2m)* 8Z[3,3] ‘
sources foty andy, respectively. The noise has been in- = N

tegrated out exactly, and appears in this functional only Zo[J,J] 5J(p1,w1)5J(p2,w2)‘J:3:0

through its two-point or correlation functidi There is also

in principle a certain Jacobian determinant factor in passing = (27)28(p1+ Po) S( @1+ w5) I'(p1,01)

from Eq. (3) to Eq. (9), but it can be shown on general P17 P2)olwsT @ w2+ [vp2— Bwl+ al?
grounds to be a constant, and hence irrelevant for computing

normalized correlation functionésee, e.g., Refd.23,22). =(2m)28(p1+ P2) 8 w1+ w,)C(Py,w1), (12
The noise spectrunh’ as written here is understood to be

given in terms ofx andt. All the dynamic and fluctuation for the autocorrelation function, and

information contained in Eq(3) is also contained iz,

which is an alternative representation of the dynamics. In (y(p1,01)¥(P2,w2))0
preparation for the RG transformation, which is most
straightforwardly implemented in the Fourier domain, we (2m)* 6ZZO[J,3]
cast this functional in terms of momentum and frequency = - N
variables from the outset. Zo[3,3] 83(p1, 1) 63(P2,@2) | 5_3_,

To this end, we introduce Fourier transforms for the
physical and conjugate fields and the noise spectrum, i.e., (27") 5(p1+p2)5(w1+w2)

Bw1+ Vp1+a
yon= f f 2 Y@ a0 E<2w>25<p1+p2>5<w1+w2>m<pl,wl>,

(13
where, in a mild abuse of notation, we distinguish the func-

tions from their Fourier transforms only through their argu-for the response function. The final equations in each case
ments; this, however, avoids a clutter of notation later ondefine the correspondingeduced autocorrelation and re-
Note that we implicitly cut off the momentum integration at sponse functiol€ andA, respectively. The function factors

the scaleA =2m/a, wherea plays the role of a minimum reflect the fact that momentum and enefgyfrequency are
distance of spatial resolution or lattice spacing. The cutoficonserved as they “flow” through the correlation and re-
symbol on the integral>) means one is to integrate over all sponse functions. It will be noted that the reduced response
momenta in a “shell” such that\/s<|k|<A wheres>1 and correlation functions are related vi€E=A*T'A
[see Eq.(A6)]. The cutoff defines the spatial scale above=TI'|A|?, and this relation will be used to obtain the noise
which it makes sense to use continuum equations for modebmplitude renormalization from knowledge of the correlation
ing. The quadratic or Gaussian part of the functiotia., function. They also automatically satisfy the fluctuation-
e=0) can be exactly computed, and serves as the startindissipation theoremC(p,w)=(I'/w)Im A(p,—w). The re-
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A ° Wl = Al S w\;{I+
MGG+ W\ﬁ(:{}

c FIG. 3. The one-loop corrected vertex function.

W< (or effective action which is the generator of the one-

particle irreduciblg1Pl) diagrams[Note that we remove the

factor of i appearing in the bare vertgt5) and response
FIG. 1. (A): The bare response functiofB) The bare correla- functions(13) by redefining the conjugate fiefd—iy in the

tion function.(C) The bare vertex function. functional integrall The Feynman diagram for the bare re-

sponse functior is shown in Fig. 1A), which reflects the

maining element from which the complete perturbative ex-fact that the response function is constructed from the mixed

pansion of the dynamic functional is developed is providedoroduct of the conjugate fieldwiggly line segmenttimes

by the vertex function, which necessarily involves the trilin- the physical fieldstraight line segmentThe arrow indicates

ear interaction term. The complete dynamic functidiied.  the direction in which momenturk and frequencyw flow

(9)] can be written as through this diagram(from the conjugate to the physical

field), and is the convention we adopt here. It is important to

. - ()T A keep this in mind sinc\(k,w) #A(—k,—w), as can be
Z[J,J]zexp( S| = )ZO[J,J]=§0 ni Zo[J,J], seen by inspection of E@13). The bare correlation function
' (14) is shown in Fig. 1B). As this is an even function in both

momentum and frequency, we need not indicate a flow di-

where the exponential of the following interaction operator'€ction for this function. Finally, the bare trilinear vertex is

acts on the Gaussian pad) of the generating functional, Shown in Fig. 1C). This involves one conjugate field and
two physical fields. The bare interaction is represented by a

s & 3 dkdo. small open circle. The arrows indicate the flow direction for
S|—,— =ief [H J 2'} (27)28(Ky+ Kyt Ks) the two physical fields and is just a convention; the crucial
6 83 i=1 (2m) point is that momentum and frequency are conserved at each
vertex, as per Eq16). These are used to build up the 1PI
X 8(w1+ wp+ w3)(27)° diagrams, which are those diagrams that cannot be broken
3 down into disconnected subdiagrams by cutting an internal
« 9 . (15 line (see examples belgwThe class of 1PI diagrams are of
53(k1,w1) 83(Ky, ,) 8I(Ks, w3) fundamental importance in any perturbative scheme based on

diagrams since all other diagrams can be unambiguously

and merely reflects the fact that the nonlinear interactiofuilt up from these primitive “building blocks.” In Figs.
term for the MSR functional is aubicinteraction involving ~2—4 we depict the 1P| one-loop diagrams contributing to the
one conjugate field and two factors of the physical field:NOiSe spectrum, response function and vertex function. These
~iefy?. The & functions are a consequence of the energydlagrams are built up from _the elementary vertex and re-
and momentum conservation at the vertex, and the strengfPonse and correlation functions. Note that the bare correla-
of the vertex is given by the parameterwhich in fact de-  tion function is itself acompositefunction built up from the
fines the reduced vertex. We complete the specification ofi0is€ spectrum and response functions andois1Pl. This

the elements encountered in a perturbative expansidrbyf ~ fact is also reflected mathematically in the fact that the bare
specifying the vertex function, which we read off simply by correlation, noise, and response functions obey a fluctuation-

inspection of Eq(15): dissipation theorem. The complete mathematical transcrip-
tion of the diagrams is carried out in the Appendixes.
e(ky Ky Kz 01, 0,,w3) Finally, we note that each loop diagram is multiplied by
an overall symmetry factor. This factor receives a contribu-
=(2m)28(ky+ Kyt Kg) (w1 + wpt wg)ie. tion from the factorial coming from expanding out the expo-

(16) nential prefactor in Eq(14) to a given order in the coupling.
For example, a graph withbare interaction vertices yields a
Each of these calculational elemei@sA, ', ande, can  factor of 1h!. The other contribution comes from simply
be represented by a simple diagram as depicted in Fig. 1, arebunting the number of distinct ways in which the given
then used to systematically construct a perturbation exparéiagram can be built out of elementary Feynman graphs
sion of the dynamic functional, and its Legendre transform{Figs. 1A)-1(C)], keeping the topological structure fixed
[29]. Multiplying these two numbers together yields the final

e = ’\/\,-)_—I_SR/\A’)_DW o - o +5 {vDOw}

FIG. 2. The one-loop corrected response function. FIG. 4. The one-loop corrected noise spectral function.
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net symmetry factor. For the response, noise, and vertex one- dyp 29 8hf
loop diagrams, these turn out to Bg=4, Sy=2, andS, ar- v z=2+ 4f(1+h)—1 2- 4f(1+h)—1
=4, respectively.

f2 5f 1
l1l. DYNAMIC RENORMALIZATION GROUP EQUATIONS ol (1+h) * 4(1+h)2 4(1+h)3
AND THEIR FIXED POINTS
3f2 f 1
By means of a diagrammatic expansion, we calculate the +4h 2(1+h)2_ (1+h)3 + a1+h)? )

one-loop corrections to the response functibnthe noise
spectral functionl’, and the nonlinear vertex, and from  \here the threelimensionlesparametersg, h, andf are de-
these we obtain the associated one-loop corrections to thghed by

model parametera, B, v, A, ande in the large-distance and

long-time limits. The complete one-loop expressions are de- AN vA?
rived and calculated explicitly in Appendixes A, B, and C for g= nd h= o’ f=ap. (18)

the response function, noise spectral function, and interaction

vertex, respectively. With these in hand, the next task is tdrhis reduction from five dimensionful to three dimensionless
carry out the renormalization group transformation, leadingparameters is a concrete realization of a more general result
to the differential flow equations, whose steps we brieflyfrom dimensional analysis known as Buckingharfisheo-
review herg[1]. rem [30], which states that if one has dimensionful vari-

(1) We first perform an infinitesimal Kadanoff or ables in a theory involvingn fundamental unitsuch as
“block” transformation: that is, we integrate over a thin mo- |ength, time, mass, efcthen there exism—n independent
mentum shell\/e'<|k|<A, wherel =1+ 8, 0<5<1. This  dimensionless groups or combinations of the original
means we integrate ovesmall-scalg fluctuations character- quantities. In our casen=>5 andn=2, since all the param-
ized by having their momentum in the rangg (/¢  eters appearing in the stochastic equati8n can be ex-
+fﬁ/el)(dk/277)- Physically, this step serves to thin out the pressed in terms of two fundamental units: namely length

degrees of freedorftoarse graining and reduces the spatial 2nd time. Thus we expect to be able to write the five RG

resolution of the system. Note that in one space dimensiorfduations exclusively in terms of-52=3 independent di-
the “momentum shell” reduces to two disjoint intervals. For Mensionless groups or combinations of the original dimen-
d=2 and higher, it is a thin spherical shell in momentumS|onful parameters. The fact that a cutoff is introduced from

space. the RG transformation presents no problem siptg=L"1
(2) After performing this step, the resulting equationshas units of inverse length. The number of fundamental units

have a new, lower momentum cutoff afe'. This means we '€Mains the same. Below we introduce a second, indepen-

have changed the lattice constant of the system, this, to réj-ekm g“?uhp ﬁf t?ree dimeljlfion]!fgss paramekt]ers W.hiCh when
store it to its original size, we rescale the momenta by put!@k€n with this first set, will suffice teoverthe entire pa-

ting k—ke™'. This is identical to the scaling carried out "@Meter space. _ . o
earlier with s=e'. The parameters are rescaléalit here The dimensionless coupling controlling the nonlinearity is

differentially) as in Eq.(5), but with additional corrections g, and a nonzero value of this coup[lng IS What fjrlveszthe RG

coming from the momentum-shell integrations carried out infIOW away from t.he free, or Gaussian, limit. .Smgece A,

step(1). to h_ave_z a nontr.lwal flow smultaneously requires both a non-
vanishing nonlinearitye# 0 and fluctuations. A>0. Indeed,

by settingg=0 in Eq. (17), we immediately recover the

naive scaling laws given by Ed5), expressed here in dif-

ferential form, withs=e'. Thus we see that the model pa-

da ( 29 rameters depend on scale in a complicated way when non-
o

Applying these steps to the one-loop expressiohs),
(B5), and (C4), we obtain the following set of differential
renormalization group flow equations,

linearities @#0) are present. In terms of these
dimensionless variables, the RG flow is given by the follow-

s g f 1 ing set of three differential equations:
ar Pl | T e ) d9_ (.0
a—g—+(1+—h)3[ +f(1+h)+6h]],
dA—A 2 1+—4g
ar AT AT T af () -1 dh g , ,
—=h| =2+ ———[3+3h+2h“+f(—1+2h+3h%)]]|,
X{(1+h)+4(1+h)2_ A(1+h)3 ) 17 (19
df 9 2 2 2
——=¢€| ztx+ 5 f+
dl (1+h)“ | (1+h) 4f(1+h)—-1
These are obtained by differentiating E@8) and using Eqg.
x| 4f2(1+h)+3f— (17). Note that the dependence on the two exponents has
(1+h)]| )’ dropped out. We solve for the complete set of real fixed
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TABLE I. Fixed points in terms of, f, andh.

Fixed Position Critical exponents
Point (g*,h*,f*) (z,x) IR eigenvalues IR eigenvectors Class
L1 (0,0f) 0,-1/2) (-2,-1,0 vt,1=(1,0,0) Stable line
v2,=(0,1,0) attractor
P2 (=0.37-2.15~-1.79 (—0.56,-0.41 (—6.79-0.670.21)  vp,=(—0.17-0.99,0.03) Stable spiral

v3,=(0.57+0.11,0.72,-0.24-0.28)
v3,=(0.57-0.11,0.72- 0.24+0.24)

P3 (0.07,0-0.29 (0.14-0.41) (—1.78,1-0.10 v53=(0.06,1.00;-0.04) Saddle point
v35=(1.00,0.00,0.00)
v35=(0.00,0.00,1.00)

P4 (0.08,0-1.7) (0.15-0.45 (—1.65,1.,0.11 v},=(0.08,1.00;-0.04) Saddle point
v3,=(1.00,0.00,0.00)
v,=(-0.01,0.00,1.00)

P5 (2.86-2.96,-0.07) (1.48,0.03 (—8.24,1.50-1.28  vis=(0.21,0.98,0.01) Saddle point
v3=(0.97-0.23,0.01)
v3:=(0.79,0.45;-0.41)

points whose coordinates arg*(,h*,f*). These are labeled, obtain additional information regarding the stability of the
collected, and presented in Table | along with their associfixed point and can classify the infrared stability properties
ated critical exponents, infrared eigenvalues, and eigenveof the point. This information is helpful for visualizing the
tors, and the nature of the fixed point. There is actually arRG flow and interpreting the flow graphs in Sec. V. At each
entire line of attractive fixed points, denoted by, located fixed point we substitutgy=g* + 89, h=h*+6h, f=f*

at (0, 0, f), wheref is any real number. A fit of the linear + sf, into Egs. (19) retain all terms up to order
model to the data yield$* =0.05. As we will seelL1 is  O(sg,sh,sf), and compute the eigenvectors and eigenval-
associated with the final saturated phase for whith=0.  yes of this linear system. This information completely char-
This implies thath* =0. In the linear modey=g* =0, SO acterizes the RG flow in the linearized neighborhood of each
the posture data picks out a distinguished point on the lingiyeq point. The eigenvalues and eigenvectors are listed in

L1, and we see the final phase of posture control is coNzqiymns four and five of Table I. The unit direction vectors
trolled by an infrared attractive fixed point at (d9). The in this coupling space have componergs=(1,0,0), h
guadratic term gives rise to three saddle pol& P4, and piing sp P NS

P5, and one stable spir@2; their coordinates are listed in =(0,1,0), andf=(0,0,1). Note that the line.1 has only

the second column of Table I. When we substitute theséVo RG flow eigenvectors associated with it. From knowl-
fixed points into the original set of RG equatiofi’), we  €dge of the eigenvalues, we immediately predict the nature
obtain the corresponding pair of critical exponents: of the fixed point, and this is given in the last column of
=z(g*,h*,f*), x=x(g*,h*,f*) associated with each Table I.

fixed point(or fixed ling), Of the four nontrivial fixed points, three of them
(P2,P3,P4) are well within the limits of perturbation theory,
2g* as they all correspond to small values of the dimensionless
z= (1+h%)2 coupling|g*|<1. By contrast, the coupling for the5 fixed

(20 ﬁ?iTt tﬁrns out to be ra]Eher I?rgg:* =b2.8® 1ﬁ and it is
ikely this point is an artifact of perturbation theory. In any
x= (1—g*[3+f*(1+h*)+2h*]+h*[3+3h* +h*?]) event, as can be seen from inspection of the graphs in Sec. V,
2(1+h*)3 ' P5 is “far” away from the remaining fixed points, and has
very little or no impact on the RG flow in the small coupling
which we obtain from using the pair of equations férand  region, which is the region safely explored by perturbation
a in Egs. (17) to solve forz and y. Any pair of equations theory. BothP3 andP4 are near the point (0,0;) belong-
depending orz and y taken from Eqs(17) can be used to ing to L1, but a study of the flow in the neighborhood of
solve for these exponents, provided that neither equation i(0,0f*) shows these to be unimportant, and substantiates the
the pairtrivially evaluates to zero at the fixed point whose claim made in Ref{17] that nonlinear effects are not needed
exponents one wishes to compyteus, for example, if3* to explain posture data dfealthyindividuals. Nevertheless,
=0; then we cannot use the equatidf/dl=0 to solve for  nonlinearities are needed to account for falling, and the
z, and so forth. Taking this obvious restriction into account, stable spiralP2 is an attractor for “falling,” as we now
we have checked that the exponents calculated taking ahow. ForP2 the fixed couplingy* = — 0.37 isnegative But
possible pairs of the RG equations agree. This serves as @i <0=a* <0, sincee’>0 and.A>0, and a change in sign
important consistency check of the entire calculation. Theof « signals the transition from stability of the upright verti-
exponents are listed in the third column of Table I. By lin- cal stancey=0 to instability or falling:y>0. This can be
earizing the RG equationd9) around each fixed point, we seen quite clearly by examining the properties of the effec-
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0.4 study the flow corresponding ta—0 (corresponding to a
0.3 vanishing linear restoring forgewe introduce the set of di-
U[Y) ’ mensionless variables
0.2
0.1 Goghi=— e hoh e, i
' I I A
0 (22)
ot [q] In terms of these new variables, the original set of RG flow
-0.2 equationg17) takes the following forms:
-2 -1 0 1 2 da - 2G
Y ar N E T RH@aER?)
g G F N H
0’ ar P T @z lE T 2R )
0.1
° dA—A( PV PR L 23
w . \/ ar ~AF A Rl a0
o W mar—C 1+ gion-n?
0.3 [b] a M F et TRy TG 1)
-0.4
. de 4G
-2 -1 1 2 — =
0 AT eZ+X+—g(1+H) .

. ) . By settingG=0, we once again recover the naive scaling
FIG. 5. Effective mechanical potential(y) for (&) a>0 and  |aws given by Eq(5). In terms of this group of three dimen-
(b) @<<0. U(y) has units of energy, anglhas units of length. sionless couplings, the RG equation flow is characterized by

tive mechanical potentidl (y) associated with our equation. d_G -G
This potential is obtained by integrating thedependent dl
force terms appearing in E¢B) and yields

5

[4F(—2-H+H?)+6H(2+H)]

.G
H(1+H)*

dH G 5 )
—|=2H+—(1+H)4[—2—3H—3H +F(—3—2H+H?)],
U(y)=z ay*+ 3 ey, (21) (24)
dF GH 2G FG
since F(y)=—U’(y) is the deterministic(non-random EZF " 2F(1+H)* H(1+H)Z H(1+H)?)

force acting on the string. A plot df versusy is shown for
a>0 and fora<0 in Fig. 5, wherdJ(y) is plotted along the These result from differentiating E(R2) and using Eq(23).
vertical andy along the horizontal axes, respectively. Once again, the dependence on the two exporearsd y
For a>0, the origin aty=0 is locally stable to small drop out of the equations for the dimensionless variables. We
perturbations(to fall, one would have to be pushed back- solve for the complete set of real fixed points, which we
wards sufficiently hard so as to overcome the potential bardenote collectively by G* ,H* ,F*) and are displayed in the
rier aty=—1. However, whenx<0, the vertical stance be- second column of Table Il. We note that we reproduce two
comes an unstable configuration, and a fall in either directiorof the fixed points obtained with the original variables,
results(a clear mechanical example of symmetry breaking namely,P2 andP5. Although their coordinates as expressed
This falling phenomena is beyond the scope of the lineawith the variables(G,H,F) are distinct from those in the
model sincea is always positive in the linear model. The (g,hf) system, their exponents, eigenvalues, and eigenvec-
flow graphs in Sec. V reveal th&2 lies in a domain or tors are identical in both systems. Once again, we see that
phase which is separated from the domain or phase of uf?2 is an attractor for falling: in these variableS*
right stance. Thus, healthy individuals are characterized by-0=v* >0 so thatH* <0=a* <O.
having their initial conditions of posture control the basin of We also discover a repulsive fixed line 11 located at
attraction ofL 1. (0,0F)=(0,0f). This fixed line was “missed” by the first
The above group of dimensionless couplings forms a usegroup of parameters. The posture data in the diffusive phase
ful set whenw is small, and the limit as tends to zero selects a point on this line, namel§y,0,0.03.
(corresponding to vanishing viscosity or diffusjocan be We substitute these fixed points into the original set of
safely studied. The limit of smaJB can also be treated with RG equation$23) to obtain the corresponding pair of critical
this set. Whena is small, however, corresponding to the exponents:z=z(G* ,H* ,F*), x=x(G*,H*,F*) at each
diffusive regime, a different set of couplings is required. Tofixed point:
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TABLE II. Fixed points in terms ofG, F, andH.

Fixed Position Critical exponents
point (G* ,H* F*) (z,x) IR eigenvalues IR eigenvectors Class
11 (0,0F) (2,112 (5,2,0 VE,=(1,0,0) Unstable line
VZ,=(0,1,0)
P2 (0.04-0.46-1.79 (—0.56,-0.41 (—6.79-0.67-0.21)  V},=(0.16-0.98-0.13) Stable spiral

VZ,=(0.05-0.04,0.25-0.30,0.92)
V3,=(0.05+0.02,0.25+0.30,0.92)

P5  (—0.11-0.34-0.07 (1.48,0.03 (—8.24,1.50,1.28  Vps=(—0.72-0.69,0.09) Saddle point
V2.=(—0.39,0.88,0.26)
V3.=(0.19,0.12,0.97)

2G* 2G* (1+3H*) off the quadratic interaction terme—0. In this limit, we
SHRIEN2 X AR aaRn (25 recover the linear model of Chow and Collif&q. (1)], and
we reproduce the corresponding scaling behasiaof the
These follow from taking the equations ferand «. Taking  correlation function. In this limitand for uncorrelated noise
other pairs of RG equations yields expressions for the expahere are then only the two trivial fixed poir(ectually, fixed
nents that evaluate to the same numerical values at the fixdithes) 11 andL1 (see Table), corresponding to the small
points. In analogy with the first set of RG equations, weand smallv limits, respectively. Reading off the critical ex-
calculate the eigenvalues and eigenvectors associated Wigbnents from Table | and using E@7), we confirm that in
the linearization of Eqs(24) about each fixed poinfixed  the neighborhood of1 the correlation function scales as
line), and determine the nature of each point from the eigenc () =B 2 [In Ref.[17] the temporal correlations are pa-

z

values. This information is organized in Table II. rametrized a€(7)~ 72", so this corresponds in our notation
to H=1/4, since evidently, B=1/2] This exponent B
IV. CORRELATION FUNCTION: SCALING PROPERTIES =1/2 falls well within the experimental range of 0.52

As discussed in Sec. |, the RG fixed-point analysis can b +|?'12’ ‘_NE_'Chh'S exact_ly eqwlvalent tg ggggpohr)er’r]ﬁf 1/;"
used for predicting the asymptotic, large-distance, and Iong-a Ing Wc'jt.mt (faexperlruenta.rﬁrl;geh ' d dI whic |sthe
time limits of the two-point correlation function of transverse On€ cited in Ref{17]. In the neighborhood df1, we see that

displacements from the vertical upright position z=0, indicating the relaxation time is independent of length
' scale and is indicative of a saturated regime. Care must be

C(X1— %o, 11— to) =([Y(X1,t1) —y(X2,1)]?), (26)  taken in calculating the correlation function, since the result-
ing exponent in Eq(27) is formally divergent. If we write
which measures the fluctuations in the difference of transthe correlation functiori26) in terms of the auto-correlation
verse displacements at two different points along the bodyunction C(7)=2[S(0)—S(7)], and use the scaling of the
and/or at two different times. Because the model is translatatter as derived in Eq(7), we see thaB(7)~lim, o7 #
tionally invariant, this function depends only on the differ- =0, so thatC(r)—2S(0)~ r°=const. This reproduces the
encesx; — X, andt; —t, in space and in time. In the scaling scaling obtained by Chow and Collins by other means. Un-
regime, which holds when the system is in the vicinity of onefortunately, the error in the null exponent for the saturated
of its fixed points, it is easy to derive the exact scaling beregime is unknown. These two power laws correspond to the
havior of Eq.(26) which emerges in the large-distance andtwo scaling regions termed “diffusive” and “saturated,” re-
long-time limits. Putx=x;—x, and 7=t;—t,. Consider spectively. Note, moreover, thal is repulsive, and there-
correlations in a time domain measured at the same point ofare unstable to the slightest perturbatidiictuation, while
the body, so that=0. Then fromy(x,7) =s™Xy(sx,s’7) we L1 is stable and attractive. These lines lie within a common
have that two-dimensional RG flow domaifin the h—f plane, and the
2y , 2vlz _ B2 transition from o_Iiffusive_ to saturated behavior is understood
C(0,r)=s “C(0s°7)~7¥“C(0,)=B @7 from the RG point of view as a crossover phenomenon; see
Fig. 6. This plot shows1 to be at a finite distance imabove
L1. The RG flow as determined from the linear model starts
from a point onl1, and drops vertically until it ends up on
L1. The locus of all possible flows “starting” from points on
C(x,0)=5"2XC(sx,0)~Xx**C(1,0) = Ax?X, (2g) 11 forms a “curtain” which is depicted in this figure. We
superpose the complicated RG flow due to the nonlinear in-
which follows from choosing such thatsx=1; Ais a con- teraction for sake of comparison. Actually, whifg =G*
stant. These results are consistent with and imply the scaling O is consistent with zero coupling=0, andf* =F* holds
limits of the scaling functionV appearing above in E47).  simultaneously, there is in fact an inver@nd singular re-
Using Tables I and I, it is a simple matter to calculate thelation betweerh andH, namely,H=1/h. SinceL1 hash*
scaling of the correlation function about each fixed point.=0, the other lind 1, when plotted in terms of these coordi-
First, we consider the limiting case represented by “turning” nates(g,h,f), is actually infinitely far away fromL1. We

with B a constant, which follows from choosirggsuch that
s’t=1. Next, for correlations in the spatial domain, we set
7=0 and obtain
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FIG. 6. Renormalization group flow betweéh andL1 in the
h—f plane. FIG. 7. The fixed lineL1, experimental pointPcc, and

P2—P5. The plotted eigenvectors are taken from Table I.

interpret this as an artifact of the model, which, remember, ishe nontrivial fixed pointsP2, P3, P4, andP5 is due en-

based on aifinitely long string. Thus, for an infinitely long  tirely to the presence of the nonlinear teray? in the equa-
body, the transition to the saturated or bounded phase woulgbn of motion. The scaling behavior in thepatial fluctua-
never take placethe crossover time would be infiniteBut  tions encoded irC(x) was not discussed in ReffL7], but

this makes perfect physical sense since in fact saturation istpese can be computed just as easily as the temporal fluctua-
finite-size effect. This connection between a finite systemijons and are listed in the third column of Table Il for com-
size and saturation is also drawn for phenomena in surfacgieteness. These together with the behavio€6f) for the
growth phenomen@l0]. Real bodies are of course finite in nontrivial fixed points constitute predictions of tkeonlin-

Size, and these two fixed lines would be Separated by a flnlt@ab model within all the phasesl We draw particu|ar atten-
distance inh. tion to the scaling of the correlation function in the vicinity

This crossover time scale is given by *, and afitto the  of the stable spiraP2, which as we demonstrated in Sec. | is
data yieldsa~*~10 sed[17]. Restoring the nonlinear term gan attractor for falling.

e>0 gives rise to an additional nontrivial structure in RG

parameter space. In total we have the two trivial fixed lines V. RENORMALIZATION GROUP FLOW

(11,L1) plus the four nontrivial fixed pointsP2, P3, P4,

and P5. The scaling behavior of the correlation function in  The two-dimensional RG flow for the strictly linear model

both the time and space domains is listed below in Table 111(Fig. 6) is rather featureless and uniform, and lends itself to
The scaling ofC(7) associated with the trivial fixed lines €asy interpretation. Although we have depicted it in the two-

11 andL1 reproduces that obtained previously in R@&f7], ~ dimensional coupling planie—f, as already pointed out, the

where the(bare correlation function was calculated directly Phenomenology of posture control picks out a single point on

in the linear model. The behavior @f(7) in the vicinity of ~ €ach of the fixed line$1 andL1, (0,0F*) and (0,0f*),
respectively, and the RG flow is actually a one-dimensional

line. In marked contrast, the RG flow for the nonlinear model
fills out the full three-dimensional coupling spatgh,f).
The relative locations df 1, P2, P3, P4, andP5 are shown

TABLE Ill. Scaling behavior of the correlation function about
each fixed point.

Fixed Point C(r) =BV C(x) = AxeY ?nll':ig. 7, where we have suppressed Fhe flow for better vis-
ibility. The largest point on the heavy lifel represents the

11 72 xt experimentally determined poiRcc=(0,0,0.05), and one
L1 7 x1 can appreciate the close proximity of the two saddle points
P2 5 x 08 P3 and P4 in the neighborhood of this point. The stable
P3 750 x 08 spiral P2 is further away and the other saddle poRt is
P4 760 x 09 furthest removed fronb 1. The actual numerical coordinates
P5 70.04 x01 of all these objects are listed in Table I. We have found that

the RG flow is best represented in terms of thermalized
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Pcc

FIG. 8. The RG flow in the vicinity ofcC and P4.

instantaneous direction field, obtained from directly plotting
the differential equation&l9) as functions ofg,h,f). In nor-
malizing, we lose information about the instantaneous FIG. 9. The RG flow in the vicinity o£CC and the stable spiral
“speed” of the flow, but retain a sense of flow direction and P2.

flow morphology. The instantaneous magnitudes of the flow

vectors changes abruptly and dramatically, and, without noreratic nonlinearity. There are at least two good reasons for
malization, makes the graphs extremely difficult to plot. Wedoing this. First, in real anteroposterior movement, the front-
plot each fixed point with its local system of numerically to-back sway is not symmetric with respect to the vertical

determined eigenvectors. The lengths and directions of eacfpright position. An obvious way to account for this fact is
eigenvector system is taken from Table |I. The remaining

graphs represent a selection of direction flow fields calcu-
lated in the vicinity of the fixed points, for various ranges of

the couplingg, where the complicated nature of the RG flow

can be best appreciated.

The structure of the RG flow is shown in Fig. 8, which
gives a “close-up” view of the flow in the vicinity of the
experimental point and the saddle pofd. Gross features
can be appreciated, such as the circulation coming from the
region of positivef and a sudden change of the flow in the
region of negativé, which we interpret as signaling the pres-
ence of a phase boundary or domain. In the closer vicinity of
the fixed points the flow is attracted to the po®€. Since
P4 is a saddle point, the flow does not end up there, but is
“deflected” when it passes by.

In Fig. 9, we show the structure of the RG flow in the
vicinity of CC and the stable spird2.

In Fig. 10, we view the same flow field as before, but
drawing the points?3 andP4 in their respective positions.
Figure 11. gives the same view, but with an extended range
of the couplingg, while in Fig. 12 the range ig is extended
even further and only the poinB;: and P3 are drawn in
place(also see Fig. 13

Pcc

P3

VI. SUMMARY AND DISCUSSION

We have extended Chow and Collin’s linear pinned- FIG. 10. The RG flow in the neighborhood 6C, P3, P4, and
polymer model of posture control by including a weak qua-P2.
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Pcc
h P3
g P2
FIG. 11. The RG flow in the neighborhood GC, P3, P4, and
pP2. FIG. 13. All points and the flow field are included.

:i%Antg?d#]gzoansyaﬂgq?rﬁ?;ﬁ;;ntge rtr?:r?hlant tggnpglgrgzzggu{asfnalized vector flow field. Knowledge of the RG fixed points
second order 6r quadratic in the displacement figl@ec- is sufficient for determining the exact power-law behavior of
ond, effects such as stepping or falling are beyond the scoptge correlation.function. of posture.displa.cgment in both tem-
of the linear model, and these can be approximately modele@oral and spatial domains. In the linear limit of the model we
by means of nonlir;ear terms in the equation of mofiat] recover the diffusive and saturated phases of posture control,
The analysis of nonlinear equations is a complicated ente@"d compute the scaling of the correlation function within
prise, but the techniques afforded by the renormalizatioff@Ch Phase. The transition from the diffusive phase to the
group permit one to obtain a wealth of information regardingsaturated phase, and the associated change in the scaling ex-
the dynamical phases of the system for both Iarge-distanc@onem are, crossover phenomena. However the crossover

and long-time limits. We have undertaken a detailed rgime is finite only for finite-size systems, as we have argued.

analysis of the fully nonlinear model, and summarized our! N€Se results agree with the linear analysis of Chow and

results in terms of RG fixed points, stability analysis, andC0!lins [17]. The quadratic nonlinearity gives rise to four

exponents. We have also numerically computed the funwontriv_ial fi>_<e_d p_oints. T_here are two saddle points near the
attractive trivial fixed point. While they do alter the RG flow

nonlinear RG flow, and represented this in terms of a nor* g o . . )
in the neighborhood of the trivial attractive fixed point, they
have no bearing on either of the two linear phagkfusive
and saturatedof the model. The linear model fits the posture
data rather well, and the detailed analysis undertaken here
substantiates the claim made in REif7] that weak nonlin-
earities are not needed to explain the posture data of healthy
individuals.

The other two nontrivial fixed points consist of an addi-
tional saddle point and a stable spiral. The saddle point cor-
responds to a large value of the dimensionless coupling con-
stant, and is probably an artifact of perturbation theory.
Much more interesting is the spiral, which is purely attrac-
tive and, as we have shown, is associated with a falling
phase. Its domain of attraction appears to be separated from
the diffusive and saturated domains. It is important to note
that the quadratic nonlinearity is the minimum term that can
be added to the equation of motion that servebreakthe
anteroposterior symmetry. This symmetry breaking has lead
to a falling phase, and thus this one term simultaneously
fulfils two distinct requirements. In Ref31], falling was
modeled with a nonlinear potential, but the nonlinearity em-
ployed there does not break tlie> —y symmetry.

Mention should be made of the short-time inertial effects
FIG. 12. The RG flow in the neighborhood 6IC and P3. which are not covered in the present analysis, and which are
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important for an understanding of posture control. These APPENDIX A: RESPONSE FUNCTION: ONE-LOOP
seem to imply the existence of short-time correlations in the CORRECTION
noise [17], and it is therefore no surprise that the purely

white uncorrelated noise used here is unable to reproducbei)-rhe explicit analytic expression for the one-loop correc-

n (hereafter denoted by primeto the response function
3) follows immediately from transcribing the diagram-
atic representation of the corrected response functen
ig. 2) into its corresponding mathematical elements

this early scaling regime. Nevertheless, the analysis carrie
out here can be straightforwardly extended to handle bot

white and colored noise, and some comments to this effe

are provided in Appendix D. Although our analysis has cen-
tered on the application to posture control, variants of sto-
chastic differential equations of the type considered here
have applications to a host of other problems where nonlin-

A'(p,0)=A(p,0)+4€*A(p,0) X1 (p,0) X A(p,w)

ear waves propagate in a noisy and/or random med8&2h =A(p,0)[1+4€*A(p,w)l(p,w)]
and the general details of the RG analysis carried out here
should be useful for addressing these other applications. =A""Y(p,w)
ACKNOWLEDGMENTS IAfl(p,w)—4€2| r(p,w)+0(64), (A1)
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discussions during the early stages of this work, and for supwhere the loop integral,(p,w) is built up from the bare
plying us with independent numerical integrations of the dif-response function, the bare vertex, and the bare noise spec-
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INTA, FSE (Fondo Social Europgp FEDER, CSIC(Con-  dence on the vertex, or bare couplirg out of the loop
sejo Superior de Investigaciones Superipr€AM (Comu-  integra). From inspection of the loop diagram and making
nidad Aut;moma de Madrifiand OCYT(Oficina de Ciencia use of the Feynman rules, this integral has a structure given
y Tecnologa de la Presidencia del Gobiejno by

27 |

>dq (= dQ
Lpor= [ oo | S Am-a.e-0c@0)

_rﬂ - 90 I'a.) (A2)
) 27 )27 (Q%+[vgP+ a— Q%) [i[o—Q]-Blo— QP+ v(p—q)°+a]l’
|
valid for an arbitrary Gaussian noise spectral function 1 1
I'(q,Q). Flaip, o)== { _ -
The internal momentum and frequency flowing around (217 8) [21(21703) (01~ Q)

the loop are denoted by and (2, respectively. The net mo- 1 ]

ing i ia- + , A4
mentum and frequency flowing into and out of the loop dia OF (Q,— 03)(Qy—00) (A4)

gram arep and w; note that conservation of momentum and

frequency is maintained independently at each vertex. We | i ) )

take a white noise spectruh{q,))=2.A4, and first compute and is expressed in te”“? of the fo.llowmg poles in the com-
the frequency integral exactly using the residue thed(tbe plex frequency plane which arise in the frequency integra-
contour may be closed in either the upper or lower half-1o":

plane. For the one-loop corrected inverse response function

[from the last line in Eq(Al)], this yields 91:ﬁ(i B a)— 1),

(io— B w’+v'p?+a’)

1
. 4€°A (>dq_ szﬁ(i—\/4ﬁ(1’q2+a)—l),
=(|w—,8w2+vp2+a)+71 5. Fa@p.w), (A5)
1
@3) Q=5 (i + VAFL (-0 al- D+ o,

where the integrand functioR, which depends on both in- 1
ternal and external momenta as well as on the external fre- T i — —
quency, is given by 94_2,8( i—Va4p[v(p—q)*+al- D+ o
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We work with theinverseresponse function since this is a A (A dg
simple polynomial irp andw. To renormalizeA ~ 1, we must a'= a+4’87 fA/sE F(q,0,0),
expand out the momentum integral in E@3) in lowest
powers in bof[h the external frequency and momentum , A (A dg 1 9°F(q,0,0
(w,p), match like powers on both sides of expressiag), B'=B— Ff P TR (A7)
and then take the hydrodynamic limits—0 andp—0 at s '
the end of the calculation. It is important to note that contri- 2 2
butions to these asymptotic long-distance and long-time ex- v p2= ,,p2+4€_“24( 2JA ﬂ i w
pansions come not only from Taylor-expanding the integrand B as2m 2V 9p

F itself but also from thelomain of integrationmplicit in

the integral. We must integrate the loop momentum within a
fixed “shell,” and the net momenta circulating within the
loop depends on both external and internal momentum vari-

ables, and this fact must be taken into account. Thus, thﬁitig?%;laémg(gﬁ '?:'z?ﬁi? s\/?trrlmv?ﬂgeioﬁr;ufgg tgﬁa&ef"
resultant domain of momentum-shell integration is given b 9 9 P P 9

the intersectionof the two intervalsA/s<|g|<A and A/s (AS)] yields the following independent equations for the

<|p—g|=<A. Up to second order ip, the last inequality can (one-loop renormalized parameters, namely,
be written asA/s+p(|ql/g)<|q|<A+p(|al/q), since the , A dg 1

O(p?) terms vanish identically. In taking the intersection of a'=a—2eA A2 (qu—Jra)z,
this with the first inequality, we have four cases to consider °
depending on the sign gb(p>0,p<0) and the sign of A
|gl//q=*. The resultant integration domain, valid for all ,8’=,8—62Af >
four cases, can be written as the difference MseT

f dq 9F(q,0,0)
E(p's)z'ﬂ' ¢9p '

dq B? 1 1
(Vq2+ a)? + 2 (vq2+ )’

(A8)
'=p+2e2A * g !
~dq (A dq dq vorTee A ) ws2m [4B(vaPt a)— 1]
[ 2= -] 2 (16)
21 Jps27 Jx(ps)2T 2 81%q? B
8 B A4B(vq*+a)-1 (_(vq2+a)

where the domain  X(p,s)=[A/s,Als+p]U[A 532 B
+p,AJU[A—p,AJU[A/s,Als—p]. Note of course that + 4(vg’+ a)? 4(vgP+ a)®
2(0,8)=2(p,1)= ¢ is just the empty set. )

To proceed with the calculation, in accord with E43), + 4122 3B _ B " 1 )
we need to expand out the functiéhup to and including 2(vg°+a)? (v*+a)®  A(vgi+a)’
guadratic powers in both external frequency and momentum +OG(p.s)

(1,0,p,p% 0wp,0?), and consistently combine these with the

powers ofp coming from the integration oveX (p,s). In These one-loop equations are exact. We have not both-
practice, this delicate operation need only be carried out fopred to explicitly write out the contribution to the viscosity
the renormalization of the diffusion constant This is be-  renormalization coming from the domalixp,s), since it is
cause the parameterdoes not multiply any positive power easy to show that this will vanish identically when we pass to
of either frequency or momentum, so we can take the hydrothe differential form of the renormalization group equations,
dynamic limit at the outset in computing its one-loop correc-j.e., in the limit of a thin shell. That is, for any functidnwe

tion. Next the paramete8 multiplies w?, so we must expand have

the integrand- to this same order to obtain the correctjgh

but we can set the external momentprto zero at the outset: d

the domainX(p,s) does not depend on external frequency ds lew,s)f(U)dUZO' (A9)

and makes no contribution to the renormalization @f
Terms linear in external frequen¢y) appearing in the loop  Applying the renormalization group procedure as described
integral do not yield any new information, since we can al-in Sec. |1l (a Kadanoff transformation or coarse-graining fol-

ways redefine the time to absorb such corrections when thepwed by a rescalingto these equations yields the corre-
arise (thus we maintain the unit coefficient 1 in front of the sponding differential RG equations {&7).

termiw in A"). Finally, for the viscosity renormalization, we
can set the external frequency to zero at the outset, but must  AppENDIX B:  NOISE SPECTRAL FUNCTION:

expand the integrand together with the integration domain up ONE-LOOP CORRECTION
to and including second order in the external momengpm
The constant contribution serves to renormalizeas we From the diagrammatic one-loop expansion for the corre-

have already remarked. Taking these points into considetfation function we obtain the one-loop 1Pl diagram repre-
ation, we arrive at the following one-loop expressionsdgr  senting the noise spectral function corrected to one-loop, as
B shown in the diagram in Fig. 4. This translates into the fol-
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lowing mathematical equatiaf@fter factoring out the depen- +A(—q,— Q)A(k;— g, 0,— Q)C(k;— 0,0, — Q) }.
dence on the bare vertex or couplirigr a general Gaussian (C2)
noise spectral function:

(B1) However, since the couplingis constant, in anticipation of
the hydrodynamic limit we can immediately set all external
which, for the case of white noise considered here, reduces f§omenta and frequencies to zero in computing the one-loop
- ) correction toe. Taking this limit, and taking a white noise
2A'=2A+2€"(p,w). (B2) spectral function, we have that the vertex loop integral at
zero external momentum and frequency is given by

I'(p,@)=T(p,w)+2€l,(p,),

The loop integrall,, depends in general on external fre-
guency and momentum, whose structure is given by

1,(0,0;0,0
>dq [~ dQ
Wpo)= | 52| S oc@wcp-a.0-o), _[reaf- 24
(B3) 27 ) 2 [Q%+ (vg°— BO°+ a)?]
but since the noise spectrum is constant, we can take the 1
hydrodynamic limit right away and evaluate the somewhat X (iQ— A%+ vq%+ a)?

simpler integral

1
A dq * dQ 4./42 + — 2 2 - 2 2
= —| = - BO%+vg’+a)(—iQ— A%+ vg®+
1,(0,0) L/SZW 3 O O BT (10— A% ve2+ a)(—1Q— BOZ+ vqP+ a)

(B4) 1 )
T 0 g0Z v )2

(C3
Once again, the frequency integration can be evaluated easily

by the method of residues. Doing so, we obtain the one-loop
correction to the white noise amplitude The integral over the internal frequency may be performed
exactly, once again by the method of residues. This yields

A'=A+4 ZAZJA dq—2—1
TR Jas2w 4BvgP )1 A dq 1 B
2 ’— 3 '
oA 3 B 1 € -etBed A/szw(4(vq2+a>3 4(vq7+ a)?
(v@°+a) 4 (vg°+a)® A(vgP+a)d)
(BS) 1 { B, 3B
2 _ 2 2 2
Applying the renormalization group procedure to this equa- @a(ra"+ )= [(va"+a)  4(va"+a)
tion yields the corresponding RG equation for the noise am- 1
plitude given in Eq(17). T a? ) (C4

APPENDIX C: VERTEX FUNCTION: ONE-LOOP . . .
CORRECTION Applying the renormalization group procedure to this equa-

tion yields the differential RG equation for the coupling
The diagrammatic expansion for the one-loop correctiorlisted in Eq.(17).

to the vertex function, or coupling constant, is depicted as
shown in Fig. 3. For general vertex functions, momentum
and frequency(i.e., energy conservation implies that a tri-
linear vertex can depend on at most two independent external APPENDIX D: CORRELATED NOISE
momenta and two independent external frequencies. Which Tne effect of both temporal and/or spatial correlations in
two momenta and which two frequencies one chooses is iMhe Gaussian noise spectrum can be also be taken into ac-
material. Translating the vertex diagrams into correspondingount in this model. Here, we briefly indicate what steps
mathematical elements for the one-loop vertex correctioRyoyid have to be taken or modified in the renormalization
yields the equation. group program to include such correlations. In E2). the

,_ 3 i spectral function with both uncorrelatéd/hite) and corre-

€' =etaetl,(k,01kz, ). CD lated (colored components is written

The structure of the one-loop integral is given as follows:

. k2 —p
(ke wiiko, 02) r(k,w):2A+2Ap,g(P>

w2\ 0
?) ) (D1)
>dq (= dQ 0
- [ 2] Src@ma@-k 0oy
27 ) 2m . .
where we consider long-range correlations of the power-law

XA(Q—Ky,Q—w)+A(—q,—Q) type. These are parametrized in terms of two expongnts

and 6 for spatially and temporally correlated noise, respec-

XC(q—kz, Q2 = w) A(q—Ky,Q — wy) tively. The naive scaling properti¢gq. (5)] of the stochastic
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equation are extended to include the scaling of the correlatetthe two noise exponengsand 6, as will the fixed points and

part of the noise, which reads the critical exponentsz=z(p,#), and y=x(p,0). There
will be an additional RG equation for the amplitude of the
A, gL 2T 20T g (D2)  colored component of the noise yielding a total of six equa-

tions. By Buckingham'dI theorem[30], we know that these
The perturbative expansion for the response, noise andan be cast in terms of four equations in four dimensionless
vertex goes through as before, except now, flet0, the variables. In effect, the correlations in the noise “open up” a
one-loop frequency integrations ov@rmust be recalculated new direction in parameter space, and yield a correspond-
and, in general, branch cuts and poles must be dealt with iingly more complicated fixed point and RG flow structure
the complex plane. The RG equations will now depend on than that of the uncorrelated noise case treated here.
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