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Renormalization group analysis of a quivering string model of posture control
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Scaling concepts and renormalization group methods are applied to a simple linear model of human posture
control consisting of a trembling or quivering string subject to damping and restoring forces. The string is
driven by uncorrelated white Gaussian noise, intended to model the corrections of the physiological control
system. We find that adding a weak quadratic nonlinearity to the posture control model opens up a rich and
complicated phase space~representing the dynamics! with various nontrivial fixed points and basins of attrac-
tion. The transition from diffusive to saturated regimes of the linear model is understood as a crossover
phenomenon, and the robustness of the linear model with respect to weak nonlinearities is confirmed. Corre-
lations in posture fluctuations are obtained in both time and space domains. There is an attractive fixed point
identified with falling. The scaling of the correlations in the front-back displacement, which can be measured
in the laboratory, is predicted for both large-separation~along the string! and long-time regimes of posture
control.

PACS number~s!: 87.10.1e, 05.10.Cc, 05.10.Gg, 05.70.Jk
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I. INTRODUCTION

A wide variety of systems subject to noise, rando
forces, and interactions can be studied in depth by mean
nonequilibrium statistical mechanics. This holds tr
whether the system in question is fundamentally of a che
cal, biological, or physical nature. When the phenomena
der study admits mathematical modeling by means of
chastic partial differential equations, many power
techniques can be used to analyze the effects that noise,
tuations, and random disturbances have on the dynamic
one changes both the spatial and temporal resolution sc
at which the system is observed. The possibility to be abl
use such techniques becomes especially pressing given
many typical real systems of interest are characterized
having many degrees of freedom interacting nonlinea
leading to the competition between different length and ti
scales, with all scales evolving in the presence of noise
subject to uncontrollable external effects and contingenc
One of these important techniques is provided by the ren
malization group, suitably extended to dynamical syste
and systems out of equilibrium@1,2#. Some recent results o
renormalization group analyses of the kind presented in
paper were obtained for diverse phenomena ranging f
stirred fluids@3# and turbulence@4,5# to surface growth phe
nomena@6–10#, flame front propagation@11#, and cosmo-
logical large-scale structure formation@12–16#.

Fluctuations and noise are known to be present in ph
ological systems as well. Recently, a simple continu
model of human posture control was proposed@17# that cap-
tures the gross or coarse-grained features underlying
physical mechanisms, and adjusts well to laboratory m
surements of time-varying displacements of the front-to-b
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~anteroposterior! sway recorded for human subjects in an s
tionary upright stance@18,19#. Despite the fact that the actua
human postural control system must undoubtedly be hig
complex, the stochastic model introduced by Chow and C
lins @17# is described by a linear, and hence, exactly solva
stochastic differential equation in one spatial dimension~in
the following, temporal derivatives are denoted by an ov
dot, and the primes stand for spatial derivatives!,

b ÿ1 ẏ2ny91ay5h~x,t !, ~1!

where y(x,t) denotes the time-dependent front-back d
placement measured with respect to the vertical locate
y50 ~here we take thex axis to denote the vertical axis, asz
will be reserved for the dynamical exponent which we intr
duce and calculate below!. This is of course immediately
recognized as a one-dimensional wave equation subjec
friction ( ẏ), a linear restoring or pinning force (ay), and a
stochastic or random force~h!. The onset-of-damping time
scale is set byb, the pinning time scale is set bya21 andn
is an effective string tension parameter.~This continuum
equation describes the motion of a quivering damped st
with a linear restoring force. A discrete version of this mod
would involve a chain of coupled random walkers, or mon
mers, and in this guise can be denoted as a pinned poly
@17#!. The stochastic noise is taken to be Gaussian with z
mean. For subsequent calculational purposes, it is conven
to characterize the noise spectrum directly in Fourier sp
~k,v!,

^h~k,v!&50,
~2!

^h~k,v!h~k8,v8!&5G~k,v!~2p!2d~k1k8!d~v1v8!,

where the angular brackets denote averaging with respe
the noise, and the noise spectrum functionG(k,v) may in
general contain both short and long range correlations
space and/or time. We consider white noise here, so the s
7008 ©2000 The American Physical Society
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tral function is proportional to a constant noise amplitud
G52A In Ref. @17#, noise exhibiting short-time tempora
correlations but uncorrelated~or white! for long-time scales
was used in computing the correlation and response fu
tions directly from the Fourier transform of the wave equ
tion @Eq. ~1!#, where the former were fit to laboratory postu
data allowing a phenomenological determination ofb and
a21, an effective noise amplitude, and a parameter cha
terizing the short-time noise correlations.

In Ref. @17# it was claimed that nonlinearities are n
necessary to explain the posture data of healthy standing
dividuals, though it was also recognized that this may not
the case for subjects with balance disorders~nor even for
normal individuals subject to a sufficiently large perturbi
‘‘kick’’ !. These effects clearly lie outside the scope of
linear model@Eq. ~1!#, as do posture displacements outsi
the sway envelope or cone of stability@20,21#, and there is
clear motivation for extending that model to include we
nonlinear terms. The minimal nonlinear term one can inclu
in Eq. ~1! is of the form;y2, which also serves to break th
y→2y symmetry in Eq.~1!. Including this quadratic term
makes good sense from the physiological point of vie
since real anteroposterior motion is intrinsically asymme
@17#. Physically, this amounts to having a ‘‘pinning force
that varies with the amplitude of the horizontal displacem
y. We will see, moreover, that such a term is needed in or
to account for falling. In this paper we analyze the impo
tance and impact of weak nonlinearities and to check
robustness of the linear model by means of a dynam
renormalization group~RG! analysis. We therefore conside
a nonlinear stochastic wave equation given by

b ÿ1 ẏ2ny91ay1ey25h~x,t !, ~3!

wheree>0 is the strength of the quadratic nonlinearity, a
we take the noise spectrum to be white~i.e., uncorrelated! at
large scales: that is,G(k,v)52A, where the noise amplitud
is denoted byA, which also serves as a loop-counting p
rameter@22# @an expansion of the solutions of Eq.~3! in loop
diagrams is a convenient and powerful way to organize
calculation#.

We are interested in the correlations in the solution~s! of
Eq. ~3! in the so-called hydrodynamic limit corresponding
large spatial separations~along the vertical axis! and long-
time intervals:ux2x8u→` and ut2t8u→`. This will tell us
how the posture fluctuations are correlated along the len
of the body at any given instant, and how they are correla
in time at any given point on the body. In terms of Four
variables~momentumk and frequencyv!, this limit is taken
by letting (k,v)→0. The scaling information and universa
ity class of this nonlinear wave equation is contained in t
critical exponents: the dynamic exponentz and the ‘‘rough-
ness’’ exponentx. These exponents are first obtained via
simple scale transformation of the stochastic equation of
tion, and forms part of the full RG transformation~a course
graining or thinning out of the degrees of freedom, follow
by a rescaling! @1#. A change of space and time scalesx
→sx, t→szt is accompanied by a corresponding change
scale in the displacement field variabley→sxy. Under this
scaling the stochastic equation of motion Eq.~3! transforms
according to
:
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s2zb ÿ1 ẏ2sz22ny91szay1sz1xey25s~1/2!~z21!2xh,
~4!

where we have used the noise two-point correlation funct
@Eq. ~2!# to determine the scaling of the noise source. Un
this transformation, the individual parameters appearing
Eq. ~3! therefore scale as

b→s2zb,

n→sz22n,

a→sza, ~5!

e→sz1xe,

A→sz22x21A.

At a fixed pointof this scaling, the model parameters and t
field y no longer change under a rescaling for certain spec
values of the exponentsz andx. The model parameters ap
proach their fixed-point valuesb→b* , n→n* , etc., and this
fact gives rise to a corresponding fixed-point equation
motion, which is Eq.~3! written in terms of the fixed-point
parameters. Thus each fixed point corresponds to a dis
dynamics governing the long time and large distances
→`) behavior of the model. The dynamical phase spac
thus divided or ‘‘partioned’’ into various domains or basin
of attraction~or repulsion!, each domain associated with
given fixed point. We can use this fixed point information
predict the asymptotic scaling of the displacement corre
tion function in both the temporal and spatial domains. T
will be one of the main objectives of this paper.

Independently of the RG, and in preparation for the
sults to be obtained, it is useful to derive the general sca
form of the correlation function of transverse displacemen
Under a global scale transformation, the displacement fi
transforms according to

y~sx,szt !5sxy8~x,t !, ~6!

which merely states that under a space and time resca
the displacement field can, and generally does, transf
into a distinct~hence the prime! functional form y8, apart
from picking up an overall factor. Thus a change of sc
will generally change the function itself,unlessone is in the
scaling or power law regime. When the system is known
be in a scaling regime, then in facty5y8 and from Eq.~6!,
the autocorrelation function therefore scales as

^y~x,t !y~0,0!&5s22x^y~sx,szt !y~0,0!&,

5x2xCS t

xzD , ~7!

where~without loss of generality! we have chosens;x21,
andC is a~dynamic! scaling function, which itself exhibits a
power law behavior for asymptotic limits of its argument:

C~u!5H A for u→0

Bu2x/z for u→` ,
~8!
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for constantsA andB. The dynamic exponentz describes the
scaling of relaxation times with length andx is the ‘‘rough-
ness’’ exponent of the string or polymer. Thus a knowled
of these two exponents is all that is required to determine
explicit scaling of the correlation function within each d
namic phase of the model. For the linear model~i.e., e50!
these exponents can be exactly determined with little eff
and there are just two solutions~for white noise!. For one,
the wave equation for nonvanishing pinning force (aÞ0) is
made scale invariant with the choicesz50 andx52 1

2. This
exponent solution can be read directly from Eq.~5!, taking
into account the fact that the noise amplitude is constant
hence, nonvanishing on all scales (A.0). This immediately
yields the exponent identityz52x11. For a finite fixed
value of the pinning force, the only possibility is to takez
50, since a positivez.0 yields an asymptotically divergen
a, while z,0 would instead yield an asymptotically vanis
ing value. We see thatb* 5b is finite and the diffusion
constant vanishes,n* 50. In this phase, then, there is n
diffusion. This exponent pair corresponds to the experim
tally observed scaling regime denoted as ‘‘bounded’’
‘‘saturated,’’ and holds for the very latest times when t
pinning force has had time to correct for posture excursi
from the vertical and aligns the body in an upright stan
@17#. In the earlier ‘‘diffusive’’ scaling regime, the pinning
force did not have sufficient time to act and is negligible, i.
a'0, and there is another exact exponent solution given
z52 andx5 1

2, indicating that in this parameter regime, th
model belongs to the same universality class as the o
dimensional Edwards-Wilkinson model@25#. At this fixed
point, we have a finite diffusionn* 5n and b* 50. In this
phase, there is no wave propagation, since the second de
tive in time is absent. Note that these simple scaling so
tions have been obtained from applying naive scaling ar
ments to thelinear equation. However, as soon as t
nonlinearitye is turned on, and no matter how weak, oth
nontrivial exponent solutions arise for which the nonlinear
can becomerelevant. The naive scaling arguments are insu
ficient for obtaining the scaling exponents in the fully no
linear model. The RG allows one to calculatez andx in the
combined presence of fluctuations and nonlinearities, an
calculate the exact asymptotic scaling of the correlation fu
tion @Eq. ~7!# in all the basins of attraction.

The rest of this paper is organized as follows. In Sec
we make use of a dynamic functional formalism for the p
turbative calculation of solutions to Eq.~3! based on the
Martin-Siggia-Rose Lagrangian. The bare correlation fu
tion, response function, noise spectral function, and bare
teraction vertex function are identified; their correspond
Feynman diagrams are also introduced and calculated,
these provide the basic elements of a systematic and
trolled loop expansion for the one-particle-irreducible d
grams which we then use for extracting the one-loop
equations in the low-energy regime.

In Sec. III we exhibit a set of nonlinear differential R
equations for the dimensionful parameters appearing in
~3!. For white noise these involve five equations: one as
ciated with each independent parameter appearing in
equation of motion. We then identify a convenient set
three dimensionless couplings in terms of which these
equations can be expressed. The RG flow is therefore re
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sented in a three-dimensional dimensionless param
space, and we solve for all the one-loop fixed points in ter
of this reduced set. In this way we find a total of two trivi
fixed lines and four nontrivial fixed points. Linearization o
the RG about each fixed point~or line! reveals thenatureof
the fixed point, in the dynamical systems sense~whether the
fixed point is a source, a sink, a limit cycle, a spiral, a sad
point, etc.! and yields linear stability information which w
quote in terms of the eigenvalues and eigenvectors of
linearized RG. The two lines of fixed points correspond
the diffusive and bounded phases of the strictly linear mod
and are present in the nonlinear model for all values ofa and
b. Of the four nontrivial fixed points, one is a stable spir
which represents the ‘‘falling’’ phase. The other three a
saddle points which seem to have rather little influence
the long-range and long-time dynamics, however.

Substitution of the fixed points back into the original s
of RG’s yields the values of the critical exponentsz andx for
each fixed point, and hence determines the exact asymp
scaling properties of the correlations@Eq. ~7!# in the basin of
attraction~or repulsion! of each fixed point, which is pre
sented in Sec. IV. The numerical analysis of the fixed poi
is then repeated using an alternative set of three dimens
less parameters suitable for investigating the smalla limit
~corresponding to the diffusive regime!. The use of this sec-
ond set of parameters in conjunction with the first is nec
sary in order to completely cover the entire model parame
space.

The detailed structure of the nonlinear RG flow is r
vealed by plotting the fixed points and mapping the nume
cally computed~and normalized! vector field of the nonlin-
ear RG flow in the neighborhoods of all the points in Sec.
Many important aspects of the morphology of the dynam
phase space are qualitatively revealed, and allow conclus
to be drawn regarding the impact of the weak nonlinear
This provides revealing information regarding the shape
structure of the basins of attraction, and complements
analytic analysis. Summary and conclusions are drawn
Sec. VI.

A number of explicit analytic calculational details need
for the derivation of the RG equations are relegated to
Appendixes. The complete calculations leading to the o
loop response function are presented in Appendix A, a
similar calculations for the noise spectral function and ver
renormalizations are given in Appendixes B and C, resp
tively.

II. DYNAMIC FUNCTIONAL FORMALISM

In this section we make use of a functional integral re
resentation of non-equilibrium stochastic dynamics. T
leads to the efficient identification and extraction of the c
culational elements~and Feynman rules! needed for the per-
turbative calculation of the solutions of any stochastic par
differential equation. It is well known how to map stochas
ordinary or partial differential equations with additive noi
into equivalent generating functionals@24,23#. Essentially,
there are two formally distinct but physically equivale
routes one may follow, an option one has at least in the c
of Gaussian noise. In the Martin-Siggia-Rose~MSR! formal-
ism @26–28# one introduces a fictitious conjugate field~call it



is
e
a
on

ua
n-
se

c
m
tio
d

t
e

nl

in
l
ti

e

I
s
e
c

he
.,

nc
u
on
at

to
ll

ve
de

ti

al-
sto-
-

ry
nct
nal

We
on

ase
-

e-
nse

se
on
n-

PRE 62 7011RENORMALIZATION GROUP ANALYSIS OF A . . .
ŷ! with its own source term. The equation of motion, in th
case given by Eq.~3!, is imposed as a constraint on th
dynamic functional, and is realized linearly. In the minim
formalism, no conjugate field is introduced, leading to a n
linear realization of the constraint@23,22#. For Gaussian
noise in the minimal formalism, the constraint appears q
dratically in the argument of the functional, while for no
Gaussian noise it inherits whatever nonlinearities are pre
in the noise probability distribution function itself@22#. Here
we develop a calculation following the MSR approach, sin
this leads to a simpler structure for the associated Feyn
diagrams, and our immediate aim is to obtain a perturba
expansion which can be set up, organized, and calculate
terms of a few elementary diagrams or graphs.

The MSR dynamic generating functional corresponding
Eq. ~3! is given by ~taking a translationally invariant nois
spectrum!

Z@J,Ĵ#5E @dy#@dŷ#expS 2
1

2 E dxdt ŷG ŷ

1 i E dxdt ŷ$b ÿ1 ẏ2ny91ay1ey2%

1E dxdt~yJ1 ŷĴ! D , ~9!

whereŷ denotes the conjugate field, andJ andĴ are arbitrary
sources fory and ŷ, respectively. The noiseh has been in-
tegrated out exactly, and appears in this functional o
through its two-point or correlation functionG. There is also
in principle a certain Jacobian determinant factor in pass
from Eq. ~3! to Eq. ~9!, but it can be shown on genera
grounds to be a constant, and hence irrelevant for compu
normalized correlation functions~see, e.g., Refs.@23,22#!.
The noise spectrumG as written here is understood to b
given in terms ofx and t. All the dynamic and fluctuation
information contained in Eq.~3! is also contained inZ,
which is an alternative representation of the dynamics.
preparation for the RG transformation, which is mo
straightforwardly implemented in the Fourier domain, w
cast this functional in terms of momentum and frequen
variables from the outset.

To this end, we introduce Fourier transforms for t
physical and conjugate fields and the noise spectrum, i.e

y~x,t !5E. dk

2p E
2`

` dv

2p
y~k,v!ei ~kx2vt !, ~10!

where, in a mild abuse of notation, we distinguish the fu
tions from their Fourier transforms only through their arg
ments; this, however, avoids a clutter of notation later
Note that we implicitly cut off the momentum integration
the scaleL52p/a, wherea plays the role of a minimum
distance of spatial resolution or lattice spacing. The cu
symbol on the integral~.! means one is to integrate over a
momenta in a ‘‘shell’’ such thatL/s,uku,L wheres.1
@see Eq.~A6!#. The cutoff defines the spatial scale abo
which it makes sense to use continuum equations for mo
ing. The quadratic or Gaussian part of the functional~i.e.,
e50! can be exactly computed, and serves as the star
l
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point for a perturbative expansion which we will use to c
culate the RGE equations associated with the nonlinear
chastic wave equation@Eq. ~3!#. From standard Gaussian in
tegrations@24,23#, we have that~up to an overall irrelevant
constant prefactor!

Z0@J,Ĵ#5expS E. dk

2p E
2`

` dv

2p

3H 1
2 J~k,v!G~2k,2v!J~2k,2v!

v21@nk22bv21a#2

1 i
Ĵ~k,v!J~2k,2v!

iv2bv21nk21a
J D . ~11!

From Eq.~9!, it is clear that all noise averages of arbitra
products of physical fields and conjugate fields at disti
points and times are obtained from the appropriate functio
derivatives of ln(Z) with respect to the source termsJ andĴ,
taking the sources to zero at the end of the calculation.
may thus obtain the ‘‘bare’’ or zeroth order autocorrelati
and response functions directly in Fourier space@the zero~0!
subscript denotes the zero-coupling limite50# as

^y~p1 ,v1!y~p2 ,v2!&0

5
~2p!4

Z0@J,Ĵ#

d2Z0@J,Ĵ#

dJ~p1 ,v1!dJ~p2 ,v2!
U

J5 Ĵ50

5~2p!2d~p11p2!d~v11v2!
G~p1 ,v1!

v1
21@np1

22bv1
21a#2

[~2p!2d~p11p2!d~v11v2!C~p1 ,v1!, ~12!

for the autocorrelation function, and

^y~p1 ,v1!ŷ~p2 ,v2!&0

5
~2p!4

Z0@J,Ĵ#

d2Z0@J,Ĵ#

dJ~p1 ,v1!d Ĵ~p2 ,v2!
U

J5 Ĵ50

5 i
~2p!2d~p11p2!d~v11v2!

iv12bv1
21np1

21a

[~2p!2d~p11p2!d~v11v2!iD~p1 ,v1!,

~13!

for the response function. The final equations in each c
define the correspondingreduced autocorrelation and re
sponse functionC andD, respectively. Thed function factors
reflect the fact that momentum and energy~or frequency! are
conserved as they ‘‘flow’’ through the correlation and r
sponse functions. It will be noted that the reduced respo
and correlation functions are related viaC5D* GD
5GuDu2, and this relation will be used to obtain the noi
amplitude renormalization from knowledge of the correlati
function. They also automatically satisfy the fluctuatio
dissipation theorem:C(p,v)5(G/v)Im D(p,2v). The re-
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maining element from which the complete perturbative
pansion of the dynamic functional is developed is provid
by the vertex function, which necessarily involves the trili
ear interaction term. The complete dynamic functional@Eq.
~9!# can be written as

Z@J,Ĵ#5expS SIF d

dJ
,

d

d Ĵ
G D Z0@J,Ĵ#5 (

n50

`
~SI !

n

n!
Z0@J,Ĵ#,

~14!

where the exponential of the following interaction opera
acts on the Gaussian part (Z0) of the generating functional,

SIF d

dJ
,

d

d Ĵ
G5 i eE H )

j 51

3
dkjdv j

~2p!2 J ~2p!2d~k11k21k3!

3d~v11v21v3!~2p!6

3
d3

d Ĵ~k1 ,v1!dJ~k2 ,v2!dJ~k3 ,v3!
, ~15!

and merely reflects the fact that the nonlinear interact
term for the MSR functional is acubic interaction involving
one conjugate field and two factors of the physical fie
; i e ŷy2. The d functions are a consequence of the ene
and momentum conservation at the vertex, and the stre
of the vertex is given by the parametere, which in fact de-
fines the reduced vertex. We complete the specification
the elements encountered in a perturbative expansion ofZ by
specifying the vertex function, which we read off simply b
inspection of Eq.~15!:

e~k1 ,k2 ,k3 ;v1 ,v2 ,v3!

5~2p!2d~k11k21k3!d~v11v21v3!i e.

~16!

Each of these calculational elementsC, D, G, ande, can
be represented by a simple diagram as depicted in Fig. 1,
then used to systematically construct a perturbation exp
sion of the dynamic functional, and its Legendre transfo

FIG. 1. ~A!: The bare response function.~B! The bare correla-
tion function.~C! The bare vertex function.

FIG. 2. The one-loop corrected response function.
-
d

r

n

:
y
th

of

nd
n-

~or effective action! which is the generator of the one
particle irreducible~1PI! diagrams.@Note that we remove the
factor of i appearing in the bare vertex~15! and response
functions~13! by redefining the conjugate fieldŷ→ i ŷ in the
functional integral.# The Feynman diagram for the bare r
sponse functionD is shown in Fig. 1~A!, which reflects the
fact that the response function is constructed from the mi
product of the conjugate field~wiggly line segment! times
the physical field~straight line segment!. The arrow indicates
the direction in which momentumk and frequencyv flow
through this diagram~from the conjugate to the physica
field!, and is the convention we adopt here. It is important
keep this in mind sinceD(k,v)ÞD(2k,2v), as can be
seen by inspection of Eq.~13!. The bare correlation function
is shown in Fig. 1~B!. As this is an even function in both
momentum and frequency, we need not indicate a flow
rection for this function. Finally, the bare trilinear vertex
shown in Fig. 1~C!. This involves one conjugate field an
two physical fields. The bare interaction is represented b
small open circle. The arrows indicate the flow direction f
the two physical fields and is just a convention; the cruc
point is that momentum and frequency are conserved at e
vertex, as per Eq.~16!. These are used to build up the 1P
diagrams, which are those diagrams that cannot be bro
down into disconnected subdiagrams by cutting an inter
line ~see examples below!. The class of 1PI diagrams are o
fundamental importance in any perturbative scheme base
diagrams since all other diagrams can be unambiguo
built up from these primitive ‘‘building blocks.’’ In Figs.
2–4 we depict the 1PI one-loop diagrams contributing to
noise spectrum, response function and vertex function. Th
diagrams are built up from the elementary vertex and
sponse and correlation functions. Note that the bare corr
tion function is itself acompositefunction built up from the
noise spectrum and response functions and isnot 1PI. This
fact is also reflected mathematically in the fact that the b
correlation, noise, and response functions obey a fluctuat
dissipation theorem. The complete mathematical transc
tion of the diagrams is carried out in the Appendixes.

Finally, we note that each loop diagram is multiplied b
an overall symmetry factor. This factor receives a contrib
tion from the factorial coming from expanding out the exp
nential prefactor in Eq.~14! to a given order in the coupling
For example, a graph withn bare interaction vertices yields
factor of 1/n!. The other contribution comes from simpl
counting the number of distinct ways in which the give
diagram can be built out of elementary Feynman gra
@Figs. 1~A!–1~C!#, keeping the topological structure fixe
@29#. Multiplying these two numbers together yields the fin

FIG. 3. The one-loop corrected vertex function.

FIG. 4. The one-loop corrected noise spectral function.
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net symmetry factor. For the response, noise, and vertex
loop diagrams, these turn out to beSR54, SN52, andSV
54, respectively.

III. DYNAMIC RENORMALIZATION GROUP EQUATIONS
AND THEIR FIXED POINTS

By means of a diagrammatic expansion, we calculate
one-loop corrections to the response functionD, the noise
spectral functionG, and the nonlinear vertexe, and from
these we obtain the associated one-loop corrections to
model parametersa, b, n, A, ande in the large-distance an
long-time limits. The complete one-loop expressions are
rived and calculated explicitly in Appendixes A, B, and C f
the response function, noise spectral function, and interac
vertex, respectively. With these in hand, the next task is
carry out the renormalization group transformation, lead
to the differential flow equations, whose steps we brie
review here@1#.

~1! We first perform an infinitesimal Kadanoff o
‘‘block’’ transformation: that is, we integrate over a thin mo
mentum shellL/el<uku<L, wherel 511d, 0,d!1. This
means we integrate over~small-scale! fluctuations character

ized by having their momentum in the range (*2L
2L/el

1*L/el
L )(dk/2p). Physically, this step serves to thin out th

degrees of freedom~coarse graining!, and reduces the spatia
resolution of the system. Note that in one space dimens
the ‘‘momentum shell’’ reduces to two disjoint intervals. F
d>2 and higher, it is a thin spherical shell in momentu
space.

~2! After performing this step, the resulting equatio
have a new, lower momentum cutoff ofL/el . This means we
have changed the lattice constant of the system, this, to
store it to its original size, we rescale the momenta by p
ting k→ke2 l . This is identical to the scaling carried ou
earlier with s5el . The parameters are rescaled~but here,
differentially! as in Eq.~5!, but with additional corrections
coming from the momentum-shell integrations carried ou
step~1!.

Applying these steps to the one-loop expressions~A8!,
~B5!, and ~C4!, we obtain the following set of differentia
renormalization group flow equations,

da

dl
5aS z2

2g

~11h!2D ,

db

dl
5bS 2z2

g

~11h!2 H f 1
1

2 f ~11h!2J D ,

dA
dl

5AS z22x211
4g

4 f ~11h!21

3H f 2

~11h!
1

3 f

4~11h!22
1

4~11h!3J D , ~17!

de

dl
5eS z1x1

2g

~11h!2 H 1

~11h!
2 f 1

1

4 f ~11h!21

3F4 f 2~11h!13 f 2
1

~11h!G J D ,
e-

e

he

e-

n
o
g
y

n,

e-
t-

n

dn

dl
5nXz221

2g

4 f ~11h!21 H F22
8h f

4 f ~11h!21G
3S 2

f 2

~11h!
1

5 f

4~11h!22
1

4~11h!3D
14hS 3 f 2

2~11h!22
f

~11h!3 1
1

4~11h!4D J C,
where the threedimensionlessparametersg, h, andf are de-
fined by

g5
e2AL

pa3 , h5
nL2

a
, f 5ab. ~18!

This reduction from five dimensionful to three dimensionle
parameters is a concrete realization of a more general re
from dimensional analysis known as Buckingham’sP theo-
rem @30#, which states that if one hasm dimensionful vari-
ables in a theory involvingn fundamental units~such as
length, time, mass, etc.! then there existm2n independent
dimensionless groups or combinations of them original
quantities. In our case,m55 andn52, since all the param-
eters appearing in the stochastic equation~3! can be ex-
pressed in terms of two fundamental units: namely len
and time. Thus we expect to be able to write the five R
equations exclusively in terms of 52253 independent di-
mensionless groups or combinations of the original dim
sionful parameters. The fact that a cutoff is introduced fro
the RG transformation presents no problem sinceuLu5L21

has units of inverse length. The number of fundamental u
remains the same. Below we introduce a second, indep
dent group of three dimensionless parameters which w
taken with this first set, will suffice tocover the entire pa-
rameter space.

The dimensionless coupling controlling the nonlinearity
g, and a nonzero value of this coupling is what drives the R
flow away from the free, or Gaussian, limit. Sinceg}e2A,
to have a nontrivial flow simultaneously requires both a no
vanishing nonlinearityeÞ0 and fluctuationsA.0. Indeed,
by setting g50 in Eq. ~17!, we immediately recover the
naive scaling laws given by Eq.~5!, expressed here in dif
ferential form, withs5el . Thus we see that the model pa
rameters depend on scale in a complicated way when n
linearities (gÞ0) are present. In terms of thes
dimensionless variables, the RG flow is given by the follo
ing set of three differential equations:

dg

dl
5gS 211

g

~11h!3 @151 f ~11h!16h# D ,

dh

dl
5hS 221

g

~11h!4 @313h12h21 f ~2112h13h2!# D ,

~19!

d f

dl
52

g

2~11h!4 @114 f ~11h!212 f 2~11h!2#.

These are obtained by differentiating Eq.~18! and using Eq.
~17!. Note that the dependence on the two exponents
dropped out. We solve for the complete set of real fix
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TABLE I. Fixed points in terms ofg, f, andh.

Fixed
Point

Position
(g* ,h* , f * )

Critical exponents
(z,x) IR eigenvalues IR eigenvectors Class

L1 ~0,0,f ! ~0,21/2! ~22,21,0! vL1
1 5(1,0,0) Stable line

vL1
2 5(0,1,0) attractor

P2 ~20.37,22.15,21.79! ~20.56,20.41! (26.79,20.6760.27i ) vP2
1 5(20.17,20.99,0.03) Stable spiral

vP2
2 5(0.5710.11i ,0.72,20.2420.28i )

vp2
3 5(0.5720.11i ,0.72,20.2410.28i )

P3 ~0.07,0,20.29! ~0.14,20.41! ~21.78,1,20.10! vP3
1 5(0.06,1.00,20.04) Saddle point

vP3
2 5(1.00,0.00,0.00)

vP3
3 5(0.00,0.00,1.00)

P4 ~0.08,0,21.71! ~0.15,20.45! ~21.65,1.,0.11! vP4
1 5(0.08,1.00,20.04) Saddle point

vP4
2 5(1.00,0.00,0.00)

vP4
3 5(20.01,0.00,1.00)

P5 ~2.86,22.96,20.07! ~1.48,0.03! ~28.24,1.50,21.28! vP5
1 5(0.21,0.98,0.01) Saddle point

vP5
2 5(0.97,20.23,0.01)

vP5
3 5(0.79,0.45,20.41)
,
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points whose coordinates are (g* ,h* , f * ). These are labeled
collected, and presented in Table I along with their asso
ated critical exponents, infrared eigenvalues, and eigen
tors, and the nature of the fixed point. There is actually
entire line of attractive fixed points, denoted byL1, located
at ~0, 0, f !, wheref is any real number. A fit of the linea
model to the data yieldsf * 50.05. As we will see,L1 is
associated with the final saturated phase for whichn* 50.
This implies thath* 50. In the linear modelg5g* 50, so
the posture data picks out a distinguished point on the
L1, and we see the final phase of posture control is c
trolled by an infrared attractive fixed point at (0,0,f * ). The
quadratic term gives rise to three saddle pointsP3, P4, and
P5, and one stable spiralP2; their coordinates are listed i
the second column of Table I. When we substitute th
fixed points into the original set of RG equations~17!, we
obtain the corresponding pair of critical exponents:z
5z(g* ,h* , f * ), x5x(g* ,h* , f * ) associated with each
fixed point ~or fixed line!,

z5
2g*

~11h* !2 ,

~20!

x5
„12g* @31 f * ~11h* !12h* #1h* @313h* 1h* 2#…

2~11h* !3 ,

which we obtain from using the pair of equations forA and
a in Eqs. ~17! to solve forz and x. Any pair of equations
depending onz and x taken from Eqs.~17! can be used to
solve for these exponents, provided that neither equatio
the pair trivially evaluates to zero at the fixed point who
exponents one wishes to compute~thus, for example, ifb*
50; then we cannot use the equationdb/dl50 to solve for
z, and so forth.!. Taking this obvious restriction into accoun
we have checked that the exponents calculated taking
possible pairs of the RG equations agree. This serves a
important consistency check of the entire calculation. T
exponents are listed in the third column of Table I. By li
earizing the RG equations~19! around each fixed point, we
i-
c-
n

e
n-

e

in

all
an
e

obtain additional information regarding the stability of th
fixed point and can classify the infrared stability propert
of the point. This information is helpful for visualizing th
RG flow and interpreting the flow graphs in Sec. V. At ea
fixed point we substituteg5g* 1dg, h5h* 1dh, f 5 f *
1d f , into Eqs. ~19! retain all terms up to orde
O(dg,dh,d f ), and compute the eigenvectors and eigenv
ues of this linear system. This information completely ch
acterizes the RG flow in the linearized neighborhood of e
fixed point. The eigenvalues and eigenvectors are listed
columns four and five of Table I. The unit direction vecto

in this coupling space have componentsĝ5(1,0,0), ĥ

5(0,1,0), andf̂ 5(0,0,1). Note that the lineL1 has only
two RG flow eigenvectors associated with it. From know
edge of the eigenvalues, we immediately predict the na
of the fixed point, and this is given in the last column
Table I.

Of the four nontrivial fixed points, three of them
(P2,P3,P4) are well within the limits of perturbation theory
as they all correspond to small values of the dimension
couplingug* u,1. By contrast, the coupling for theP5 fixed
point turns out to be rather large:g* 52.86.1, and it is
likely this point is an artifact of perturbation theory. In an
event, as can be seen from inspection of the graphs in Se
P5 is ‘‘far’’ away from the remaining fixed points, and ha
very little or no impact on the RG flow in the small couplin
region, which is the region safely explored by perturbati
theory. BothP3 andP4 are near the point (0,0,f * ) belong-
ing to L1, but a study of the flow in the neighborhood
(0,0,f * ) shows these to be unimportant, and substantiates
claim made in Ref.@17# that nonlinear effects are not neede
to explain posture data ofhealthyindividuals. Nevertheless
nonlinearities are needed to account for falling, and
stable spiralP2 is an attractor for ‘‘falling,’’ as we now
show. ForP2 the fixed couplingg* 520.37 isnegative. But
g* ,0⇒a* ,0, sincee2.0 andA.0, and a change in sign
of a signals the transition from stability of the upright vert
cal stancey50 to instability or falling:y.0. This can be
seen quite clearly by examining the properties of the eff
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tive mechanical potentialU(y) associated with our equation
This potential is obtained by integrating they-dependent
force terms appearing in Eq.~3! and yields

U~y!5 1
2 ay21 1

3 ey3, ~21!

since F(y)52U8(y) is the deterministic~non-random!
force acting on the string. A plot ofU versusy is shown for
a.0 and fora,0 in Fig. 5, whereU(y) is plotted along the
vertical andy along the horizontal axes, respectively.

For a.0, the origin aty50 is locally stable to smal
perturbations~to fall, one would have to be pushed bac
wards sufficiently hard so as to overcome the potential b
rier at y521. However, whena,0, the vertical stance be
comes an unstable configuration, and a fall in either direc
results~a clear mechanical example of symmetry breakin!.
This falling phenomena is beyond the scope of the lin
model sincea is always positive in the linear model. Th
flow graphs in Sec. V reveal thatP2 lies in a domain or
phase which is separated from the domain or phase of
right stance. Thus, healthy individuals are characterized
having their initial conditions of posture control the basin
attraction ofL1.

The above group of dimensionless couplings forms a u
ful set whenn is small, and the limit asn tends to zero
~corresponding to vanishing viscosity or diffusion! can be
safely studied. The limit of smallb can also be treated with
this set. Whena is small, however, corresponding to th
diffusive regime, a different set of couplings is required.

FIG. 5. Effective mechanical potentialU(y) for ~a! a.0 and
~b! a,0. U(y) has units of energy, andy has units of length.
r-

n

r

p-
y

f

e-

study the flow corresponding toa→0 ~corresponding to a
vanishing linear restoring force!, we introduce the set of di-
mensionless variables

G5g/h35
e2A

pn3L5 , H5h215
a

nL2 , F5 f 5ab.

~22!

In terms of these new variables, the original set of RG fl
equations~17! takes the following forms:

da

dl
5aS z2

2G

H~11H !2D ,

db

dl
5bS 2z2

G

~11H !2 H F

H
1

H

2F~11H !2J D ,

dA
dl

5AS z22x211
G

~11H !2 H F

H
1

1

~11H !J D , ~23!

dn

dl
5nS z221

G

~11H !4 H H211
F

H
~312H2H2!J D ,

de

dl
5eS z1x1

4G

~11H !3D .

By setting G50, we once again recover the naive scali
laws given by Eq.~5!. In terms of this group of three dimen
sionless couplings, the RG equation flow is characterized

dG

dl
5GS 51

G

H~11H !4 @4F~222H1H2!16H~21H !# D ,

dH

dl
52H1

G

~11H !4 @2223H23H21F~2322H1H2!#,

~24!

dF

dl
5FS 2

GH

2F~11H !42
2G

H~11H !22
FG

H~11H !2D .

These result from differentiating Eq.~22! and using Eq.~23!.
Once again, the dependence on the two exponentsz and x
drop out of the equations for the dimensionless variables.
solve for the complete set of real fixed points, which w
denote collectively by (G* ,H* ,F* ) and are displayed in the
second column of Table II. We note that we reproduce t
of the fixed points obtained with the original variable
namely,P2 andP5. Although their coordinates as express
with the variables~G,H,F! are distinct from those in the
~g,h,f ! system, their exponents, eigenvalues, and eigenv
tors are identical in both systems. Once again, we see
P2 is an attractor for falling: in these variablesG*
.0⇒n* .0 so thatH* ,0⇒a* ,0.

We also discover a repulsive fixed line 11 located
(0,0,F)5(0,0,f ). This fixed line was ‘‘missed’’ by the first
group of parameters. The posture data in the diffusive ph
selects a point on this line, namely,~0,0,0.05!.

We substitute these fixed points into the original set
RG equations~23! to obtain the corresponding pair of critica
exponents:z5z(G* ,H* ,F* ), x5x(G* ,H* ,F* ) at each
fixed point:
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TABLE II. Fixed points in terms ofG, F, andH.

Fixed
point

Position
(G* ,H* ,F* )

Critical exponents
(z,x) IR eigenvalues IR eigenvectors Class

11 ~0,0,F ! ~2,1/2! ~5,2,0! VL1
1 5(1,0,0) Unstable line

VL1
2 5(0,1,0)

P2 ~0.04,20.46,21.79! ~20.56,20.41! (26.79,20.6760.27i ) VP2
1 5(0.16,20.98,20.13) Stable spiral

VP2
2 5(0.0520.02i ,0.2520.30i ,0.92)

VP2
3 5(0.0510.02i ,0.2510.30i ,0.92)

P5 ~20.11,20.34,20.07! ~1.48,0.03! ~28.24,1.50,21.28! VP5
1 5(20.72,20.69,0.09) Saddle point

VP5
2 5(20.39,0.88,0.26)

VP5
3 5(0.19,0.12,0.97)
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2G*

H* ~11H* !2 , x52
2G* ~113H* !

H* ~11H* !3 . ~25!

These follow from taking the equations fore anda. Taking
other pairs of RG equations yields expressions for the ex
nents that evaluate to the same numerical values at the
points. In analogy with the first set of RG equations,
calculate the eigenvalues and eigenvectors associated
the linearization of Eqs.~24! about each fixed point~fixed
line!, and determine the nature of each point from the eig
values. This information is organized in Table II.

IV. CORRELATION FUNCTION: SCALING PROPERTIES

As discussed in Sec. I, the RG fixed-point analysis can
used for predicting the asymptotic, large-distance, and lo
time limits of the two-point correlation function of transver
displacements from the vertical upright position,

C~x12x2 ,t12t2!5^@y~x1 ,t1!2y~x2 ,t2!#2&, ~26!

which measures the fluctuations in the difference of tra
verse displacements at two different points along the b
and/or at two different times. Because the model is tran
tionally invariant, this function depends only on the diffe
encesx12x2 and t12t2 in space and in time. In the scalin
regime, which holds when the system is in the vicinity of o
of its fixed points, it is easy to derive the exact scaling b
havior of Eq.~26! which emerges in the large-distance a
long-time limits. Putx5x12x2 and t5t12t2 . Consider
correlations in a time domain measured at the same poin
the body, so thatx50. Then fromy(x,t)5s2xy(sx,szt) we
have that

C~0,t!5s22xC~0,szt!;t2x/zC~0,1!5Bt2x/z, ~27!

with B a constant, which follows from choosings such that
szt51. Next, for correlations in the spatial domain, we s
t50 and obtain

C~x,0!5s22xC~sx,0!;x2xC~1,0!5Ax2x, ~28!

which follows from choosings such thatsx51; A is a con-
stant. These results are consistent with and imply the sca
limits of the scaling functionC appearing above in Eq.~7!.

Using Tables I and II, it is a simple matter to calculate t
scaling of the correlation function about each fixed poi
First, we consider the limiting case represented by ‘‘turnin
o-
ed

ith

-

e
g-

-
y

a-

-

on

t

ng

.
’

off the quadratic interaction term:e→0. In this limit, we
recover the linear model of Chow and Collins@Eq. ~1!#, and
we reproduce the corresponding scaling behavior~s! of the
correlation function. In this limit~and for uncorrelated noise!
there are then only the two trivial fixed points~actually, fixed
lines! l1 andL1 ~see Table I!, corresponding to the smalla
and smalln limits, respectively. Reading off the critical ex
ponents from Table I and using Eq.~27!, we confirm that in
the neighborhood ofl1 the correlation function scales a
C(t)5Bt1/2. †In Ref. @17# the temporal correlations are pa
rametrized asC(t);t2H, so this corresponds in our notatio
to H51/4, since evidently, 2H51/2.‡ This exponent 2H
51/2 falls well within the experimental range of 0.5
60.12, which is exactly equivalent to the exponentH51/4
falling within the experimental range 0.2660.06 which is the
one cited in Ref.@17#. In the neighborhood ofL1, we see that
z50, indicating the relaxation time is independent of leng
scale and is indicative of a saturated regime. Care mus
taken in calculating the correlation function, since the res
ing exponent in Eq.~27! is formally divergent. If we write
the correlation function~26! in terms of the auto-correlation
function C(t)52@S(0)2S(t)#, and use the scaling of th
latter as derived in Eq.~7!, we see thatS(t); limz→0 t21/z

50, so thatC(t)→2S(0);t05const. This reproduces th
scaling obtained by Chow and Collins by other means. U
fortunately, the error in the null exponent for the satura
regime is unknown. These two power laws correspond to
two scaling regions termed ‘‘diffusive’’ and ‘‘saturated,’’ re
spectively. Note, moreover, thatl1 is repulsive, and there
fore unstable to the slightest perturbation~fluctuation!, while
L1 is stable and attractive. These lines lie within a comm
two-dimensional RG flow domain~in theh2f plane!, and the
transition from diffusive to saturated behavior is understo
from the RG point of view as a crossover phenomenon;
Fig. 6. This plot showsl1 to be at a finite distance inh above
L1. The RG flow as determined from the linear model sta
from a point onl1, and drops vertically until it ends up o
L1. The locus of all possible flows ‘‘starting’’ from points o
l1 forms a ‘‘curtain’’ which is depicted in this figure. We
superpose the complicated RG flow due to the nonlinear
teraction for sake of comparison. Actually, whileg* 5G*
50 is consistent with zero couplinge50, andf * 5F* holds
simultaneously, there is in fact an inverse~and singular! re-
lation betweenh andH, namely,H51/h. SinceL1 hash*
50, the other linel1, when plotted in terms of these coord
nates~g,h,f !, is actually infinitely far away fromL1. We
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interpret this as an artifact of the model, which, remember
based on aninfinitely long string. Thus, for an infinitely long
body, the transition to the saturated or bounded phase w
never take place~the crossover time would be infinite!. But
this makes perfect physical sense since in fact saturation
finite-size effect. This connection between a finite syst
size and saturation is also drawn for phenomena in sur
growth phenomena@10#. Real bodies are of course finite i
size, and these two fixed lines would be separated by a fi
distance inh.

This crossover time scale is given bya21, and a fit to the
data yieldsa21'10 sec@17#. Restoring the nonlinear term
e.0 gives rise to an additional nontrivial structure in R
parameter space. In total we have the two trivial fixed lin
( l1,L1) plus the four nontrivial fixed points:P2, P3, P4,
and P5. The scaling behavior of the correlation function
both the time and space domains is listed below in Table

The scaling ofC(t) associated with the trivial fixed line
l1 andL1 reproduces that obtained previously in Ref.@17#,
where the~bare! correlation function was calculated direct
in the linear model. The behavior ofC(t) in the vicinity of

FIG. 6. Renormalization group flow betweenl1 andL1 in the
h2 f plane.

TABLE III. Scaling behavior of the correlation function abou
each fixed point.

Fixed Point C(t)5Bt2x/z C(x)5Ax2x

11 t1/2 x1

L1 t0 x21

P2 t1.5 x20.8

P3 t25.9 x20.8

P4 t26.0 x20.9

P5 t0.04 x0.1
is

ld

a

ce

ite

s

I.

the nontrivial fixed pointsP2, P3, P4, andP5 is due en-
tirely to the presence of the nonlinear term;y2 in the equa-
tion of motion. The scaling behavior in thespatial fluctua-
tions encoded inC(x) was not discussed in Ref.@17#, but
these can be computed just as easily as the temporal fluc
tions and are listed in the third column of Table III for com
pleteness. These together with the behavior ofC(t) for the
nontrivial fixed points constitute predictions of the~nonlin-
ear! model within all the phases. We draw particular atte
tion to the scaling of the correlation function in the vicini
of the stable spiralP2, which as we demonstrated in Sec. I
an attractor for falling.

V. RENORMALIZATION GROUP FLOW

The two-dimensional RG flow for the strictly linear mod
~Fig. 6! is rather featureless and uniform, and lends itself
easy interpretation. Although we have depicted it in the tw
dimensional coupling planeh2 f , as already pointed out, th
phenomenology of posture control picks out a single point
each of the fixed linesl1 and L1, (0,0,F* ) and (0,0,f * ),
respectively, and the RG flow is actually a one-dimensio
line. In marked contrast, the RG flow for the nonlinear mod
fills out the full three-dimensional coupling space~g,h,f !.
The relative locations ofL1, P2, P3, P4, andP5 are shown
in Fig. 7, where we have suppressed the flow for better
ibility. The largest point on the heavy lineL1 represents the
experimentally determined pointPCC5(0,0,0.05), and one
can appreciate the close proximity of the two saddle po
P3 and P4 in the neighborhood of this point. The stab
spiral P2 is further away and the other saddle pointP5 is
furthest removed fromL1. The actual numerical coordinate
of all these objects are listed in Table I. We have found t
the RG flow is best represented in terms of the~normalized!

FIG. 7. The fixed line L1, experimental pointPCC , and
P2 –P5. The plotted eigenvectors are taken from Table I.
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instantaneous direction field, obtained from directly plotti
the differential equations~19! as functions of~g,h,f !. In nor-
malizing, we lose information about the instantaneo
‘‘speed’’ of the flow, but retain a sense of flow direction an
flow morphology. The instantaneous magnitudes of the fl
vectors changes abruptly and dramatically, and, without n
malization, makes the graphs extremely difficult to plot. W
plot each fixed point with its local system of numerica
determined eigenvectors. The lengths and directions of e
eigenvector system is taken from Table I. The remain
graphs represent a selection of direction flow fields cal
lated in the vicinity of the fixed points, for various ranges
the couplingg, where the complicated nature of the RG flo
can be best appreciated.

The structure of the RG flow is shown in Fig. 8, whic
gives a ‘‘close-up’’ view of the flow in the vicinity of the
experimental point and the saddle pointP4. Gross features
can be appreciated, such as the circulation coming from
region of positivef and a sudden change of the flow in th
region of negativef, which we interpret as signaling the pre
ence of a phase boundary or domain. In the closer vicinity
the fixed points the flow is attracted to the pointCC. Since
P4 is a saddle point, the flow does not end up there, bu
‘‘deflected’’ when it passes by.

In Fig. 9, we show the structure of the RG flow in th
vicinity of CC and the stable spiralP2.

In Fig. 10, we view the same flow field as before, b
drawing the pointsP3 andP4 in their respective positions
Figure 11. gives the same view, but with an extended ra
of the couplingg, while in Fig. 12 the range ing is extended
even further and only the pointsPCC and P3 are drawn in
place~also see Fig. 13!.

VI. SUMMARY AND DISCUSSION

We have extended Chow and Collin’s linear pinne
polymer model of posture control by including a weak qu

FIG. 8. The RG flow in the vicinity ofCC andP4.
s

w
r-

ch
g
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f

e
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is

t

e

-
-

dratic nonlinearity. There are at least two good reasons
doing this. First, in real anteroposterior movement, the fro
to-back sway is not symmetric with respect to the verti
upright position. An obvious way to account for this fact

FIG. 9. The RG flow in the vicinity ofCC and the stable spira
P2.

FIG. 10. The RG flow in the neighborhood ofCC, P3, P4, and
P2.
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to introduce a symmetry-breaking term in the polymer eq
tion of motion, and a minimal term that can be added
second order or quadratic in the displacement fieldy. Sec-
ond, effects such as stepping or falling are beyond the sc
of the linear model, and these can be approximately mod
by means of nonlinear terms in the equation of motion@31#.
The analysis of nonlinear equations is a complicated en
prise, but the techniques afforded by the renormalizat
group permit one to obtain a wealth of information regard
the dynamical phases of the system for both large-dista
and long-time limits. We have undertaken a detailed R
analysis of the fully nonlinear model, and summarized o
results in terms of RG fixed points, stability analysis, a
exponents. We have also numerically computed the fu
nonlinear RG flow, and represented this in terms of a n

FIG. 11. The RG flow in the neighborhood ofCC, P3, P4, and
P2.

FIG. 12. The RG flow in the neighborhood ofCC andP3.
-
s

pe
ed

r-
n

ce

r

y
r-

malized vector flow field. Knowledge of the RG fixed poin
is sufficient for determining the exact power-law behavior
the correlation function of posture displacement in both te
poral and spatial domains. In the linear limit of the model w
recover the diffusive and saturated phases of posture con
and compute the scaling of the correlation function with
each phase. The transition from the diffusive phase to
saturated phase, and the associated change in the scalin
ponent are, crossover phenomena. However the cross
time is finite only for finite-size systems, as we have argu
These results agree with the linear analysis of Chow
Collins @17#. The quadratic nonlinearity gives rise to fou
nontrivial fixed points. There are two saddle points near
attractive trivial fixed point. While they do alter the RG flo
in the neighborhood of the trivial attractive fixed point, the
have no bearing on either of the two linear phases~diffusive
and saturated! of the model. The linear model fits the postu
data rather well, and the detailed analysis undertaken h
substantiates the claim made in Ref.@17# that weak nonlin-
earities are not needed to explain the posture data of hea
individuals.

The other two nontrivial fixed points consist of an add
tional saddle point and a stable spiral. The saddle point c
responds to a large value of the dimensionless coupling c
stant, and is probably an artifact of perturbation theo
Much more interesting is the spiral, which is purely attra
tive and, as we have shown, is associated with a fall
phase. Its domain of attraction appears to be separated
the diffusive and saturated domains. It is important to n
that the quadratic nonlinearity is the minimum term that c
be added to the equation of motion that serves tobreak the
anteroposterior symmetry. This symmetry breaking has l
to a falling phase, and thus this one term simultaneou
fulfils two distinct requirements. In Ref.@31#, falling was
modeled with a nonlinear potential, but the nonlinearity e
ployed there does not break they→2y symmetry.

Mention should be made of the short-time inertial effe
which are not covered in the present analysis, and which

FIG. 13. All points and the flow field are included.
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important for an understanding of posture control. The
seem to imply the existence of short-time correlations in
noise @17#, and it is therefore no surprise that the pure
white uncorrelated noise used here is unable to reprod
this early scaling regime. Nevertheless, the analysis car
out here can be straightforwardly extended to handle b
white and colored noise, and some comments to this ef
are provided in Appendix D. Although our analysis has ce
tered on the application to posture control, variants of s
chastic differential equations of the type considered h
have applications to a host of other problems where non
ear waves propagate in a noisy and/or random medium@32#,
and the general details of the RG analysis carried out h
should be useful for addressing these other applications
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APPENDIX A: RESPONSE FUNCTION: ONE-LOOP
CORRECTION

The explicit analytic expression for the one-loop corre
tion ~hereafter denoted by primes! to the response function
~13! follows immediately from transcribing the diagram
matic representation of the corrected response function~see
Fig. 2! into its corresponding mathematical elements

D8~p,v!5D~p,v!14e2D~p,v!3I r~p,v!3D~p,v!

5D~p,v!@114e2D~p,v!I r~p,v!#

⇒D821~p,v!

5D21~p,v!24e2I r~p,v!1O~e4!, ~A1!

where the loop integralI r(p,v) is built up from the bare
response function, the bare vertex, and the bare noise s
trum ~for convenience, we have already factored the dep
dence on the vertex, or bare couplinge, out of the loop
integral!. From inspection of the loop diagram and makin
use of the Feynman rules, this integral has a structure g
by
I r~p,v!5E. dq

2p E
2`

` dV

2p
D~p2q,v2V!C~q,V!

5E. dq

2p E
2`

` dV

2p

G~q,V!

~V21@nq21a2bV2#2!@ i @v2V#2b@v2V#21n~p2q!21a#
, ~A2!
m-
ra-
valid for an arbitrary Gaussian noise spectral funct
G(q,V).

The internal momentum and frequency flowing arou
the loop are denoted byq andV, respectively. The net mo
mentum and frequency flowing into and out of the loop d
gram arep andv; note that conservation of momentum a
frequency is maintained independently at each vertex.
take a white noise spectrumG(q,V)52A, and first compute
the frequency integral exactly using the residue theorem~the
contour may be closed in either the upper or lower ha
plane!. For the one-loop corrected inverse response func
@from the last line in Eq.~A1!#, this yields

~ iv2b8v21n8p21a8!

5~ iv2bv21np21a!1
4e2A

b2 E. dq

2p
F~q;p,v!,

~A3!

where the integrand functionF, which depends on both in
ternal and external momenta as well as on the external
quency, is given by
-

e

-
n

e-

F~q;p,v!5
1

~V12V2! H 1

V1~V12V3!~V12V4!

1
1

V1* ~V22V3!~V22V4!J , ~A4!

and is expressed in terms of the following poles in the co
plex frequency plane which arise in the frequency integ
tion:

V15
1

2b
„i 1A4b~nq21a!21…,

V25
1

2b
„i 2A4b~nq21a!21…,

~A5!

V35
1

2b
„2 i 1A4b@n~p2q!21a#21…1v,

V45
1

2b
„2 i 2A4b@n~p2q!21a#21…1v.
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We work with theinverseresponse function since this is
simple polynomial inp andv. To renormalizeD21, we must
expand out the momentum integral in Eq.~A3! in lowest
powers in both the external frequency and moment
(v,p), match like powers on both sides of expression~A3!,
and then take the hydrodynamic limitsv→0 and p→0 at
the end of the calculation. It is important to note that con
butions to these asymptotic long-distance and long-time
pansions come not only from Taylor-expanding the integra
F itself but also from thedomain of integrationimplicit in
the integral. We must integrate the loop momentum withi
fixed ‘‘shell,’’ and the net momenta circulating within th
loop depends on both external and internal momentum v
ables, and this fact must be taken into account. Thus,
resultant domain of momentum-shell integration is given
the intersectionof the two intervalsL/s<uqu<L and L/s
<up2qu<L. Up to second order inp, the last inequality can
be written asL/s1p(uqu/q)<uqu<L1p(uqu/q), since the
O(p2) terms vanish identically. In taking the intersection
this with the first inequality, we have four cases to consi
depending on the sign ofp(p.0,p,0) and the sign of
uqu/q56. The resultant integration domain, valid for a
four cases, can be written as the difference

E. dq

2p
5E

L/s

L dq

2p
2E

S~p,s!

dq

2p
, ~A6!

where the domain S(p,s)5@L/s,L/s1p#ø@L
1p,L#ø@L2p,L#ø@L/s,L/s2p#. Note of course that
S(0,s)5S(p,1)5f is just the empty set.

To proceed with the calculation, in accord with Eq.~A3!,
we need to expand out the functionF up to and including
quadratic powers in both external frequency and momen
(1,v,p,p2,vp,v2), and consistently combine these with th
powers ofp coming from the integration overS(p,s). In
practice, this delicate operation need only be carried out
the renormalization of the diffusion constantn. This is be-
cause the parametera does not multiply any positive powe
of either frequency or momentum, so we can take the hyd
dynamic limit at the outset in computing its one-loop corre
tion. Next the parameterb multipliesv2, so we must expand
the integrandF to this same order to obtain the correctionb8,
but we can set the external momentump to zero at the outset
the domainS(p,s) does not depend on external frequen
and makes no contribution to the renormalization ofb.
Terms linear in external frequency~v! appearing in the loop
integral do not yield any new information, since we can
ways redefine the time to absorb such corrections when
arise~thus we maintain the unit coefficient 1 in front of th
term iv in D8!. Finally, for the viscosity renormalization, w
can set the external frequency to zero at the outset, but m
expand the integrand together with the integration domain
to and including second order in the external momentum~p!.
The constant contribution serves to renormalizea, as we
have already remarked. Taking these points into consi
ation, we arrive at the following one-loop expressions fora8,
b8,n8:
-
x-
d

a

ri-
e

y

r

m

r

o-
-

-
ey

st
p

r-

a85a14
e2A
b2 E

L/s

L dq

2p
F~q,0,0!,

b85b24
e2A
b2 E

L/s

L dq

2p

1

2!

]2F~q,0,0!

]v2 , ~A7!

n8p25np214
e2A
b2 S p2E

L/s

L dq

2p

1

2!

]2F~q,0,0!

]p2

2pE
S~p,s!

dq

2p

]F~q,0,0!

]p D .

Calculating the indicated derivatives ofF using the defi-
nition of Eq. ~A4! together with the complex poles@Eq.
~A5!# yields the following independent equations for th
~one-loop! renormalized parameters, namely,

a85a22e2AE
L/s

L dq

2p

1

~nq21a!2 ,

b85b2e2AE
L/s

L dq

2p S b2

~nq21a!2 1
1

2

1

~nq21a!4D ,

~A8!

n85n12e2AE
L/s

L dq

2p

1

@4b~nq21a!21#

3H F2n

b
2

8n2q2

4b~nq21a!21G S 2
b3

~nq21a!

1
5b2

4~nq21a!22
b

4~nq21a!3D
14n2q2S 3b2

2~nq21a!22
b

~nq21a!3 1
1

4~nq21a!4D J
1O„S~p,s!….

These one-loop equations are exact. We have not b
ered to explicitly write out the contribution to the viscosi
renormalization coming from the domainS(p,s), since it is
easy to show that this will vanish identically when we pass
the differential form of the renormalization group equation
i.e., in the limit of a thin shell. That is, for any functionf, we
have

d

dsU
s51

E
S~p,s!

f ~u!du50. ~A9!

Applying the renormalization group procedure as describ
in Sec. III ~a Kadanoff transformation or coarse-graining fo
lowed by a rescaling! to these equations yields the corr
sponding differential RG equations in~17!.

APPENDIX B: NOISE SPECTRAL FUNCTION:
ONE-LOOP CORRECTION

From the diagrammatic one-loop expansion for the cor
lation function we obtain the one-loop 1PI diagram rep
senting the noise spectral function corrected to one-loop
shown in the diagram in Fig. 4. This translates into the f
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lowing mathematical equation~after factoring out the depen
dence on the bare vertex or coupling! for a general Gaussia
noise spectral function:

G8~p,v!5G~p,v!12e2I n~p,v!, ~B1!

which, for the case of white noise considered here, reduce

2A852A12e2I n~p,v!. ~B2!

The loop integralI n depends in general on external fr
quency and momentum, whose structure is given by

I n~p,v!5E. dq

2p E
2`

` dV

2p
C~q,v!C~p2q,V2v!,

~B3!

but since the noise spectrum is constant, we can take
hydrodynamic limit right away and evaluate the somew
simpler integral

I n~0,0!5E
L/s

L dq

2p E
2`

` dV

2p

4A2

@V21~nq22bV21a!2#2 .

~B4!

Once again, the frequency integration can be evaluated e
by the method of residues. Doing so, we obtain the one-l
correction to the white noise amplitude

A85A14e2A2E
L/s

L dq

2p

1

4b~nq21a!21

3S b2

~nq21a!
1

3

4

b

~nq21a!22
1

4~nq21a!3D .

~B5!

Applying the renormalization group procedure to this eq
tion yields the corresponding RG equation for the noise a
plitude given in Eq.~17!.

APPENDIX C: VERTEX FUNCTION: ONE-LOOP
CORRECTION

The diagrammatic expansion for the one-loop correct
to the vertex function, or coupling constant, is depicted
shown in Fig. 3. For general vertex functions, moment
and frequency~i.e., energy! conservation implies that a tri
linear vertex can depend on at most two independent exte
momenta and two independent external frequencies. W
two momenta and which two frequencies one chooses is
material. Translating the vertex diagrams into correspond
mathematical elements for the one-loop vertex correc
yields the equation.

e85e14e3I v~k1 ,v1 ;k2 ,v2!. ~C1!

The structure of the one-loop integral is given as follows

I v~k1 ,v1 ;k2 ,v2!

5E. dq

2p E
2`

` dV

2p
$C~q,V!D~q2k2 ,V2v2!

3D~q2k1 ,V2v1!1D~2q,2V!

3C~q2k2 ,V2v2!D~q2k1 ,V2v1!
to

he
t

ily
p

-
-

n
s

al
ch

-
g
n

1D~2q,2V!D~k22q,v22V!C~k12q,v12V!%.
~C2!

However, since the couplinge is constant, in anticipation o
the hydrodynamic limit we can immediately set all extern
momenta and frequencies to zero in computing the one-l
correction toe. Taking this limit, and taking a white nois
spectral function, we have that the vertex loop integral
zero external momentum and frequency is given by

I v~0,0;0,0!

5E. dq

2p E
2`

` dV

2p

2A
@V21~nq22bV21a!2#

3S 1

~ iV2bV21nq21a!2

1
1

~ iV2bV21nq21a!~2 iV2bV21nq21a!

1
1

~2 iV2bV21nq21a!2D . ~C3!

The integral over the internal frequency may be perform
exactly, once again by the method of residues. This yield

e85e18e3AE
L/s

L dq

2p S 1

4~nq21a!32
b

4~nq21a!2

1
1

„4b~nq21a!21… H b2

~nq21a!
1

3b

4~nq21a!2

2
1

4~nq21a!3J D . ~C4!

Applying the renormalization group procedure to this equ
tion yields the differential RG equation for the couplin
listed in Eq.~17!.

APPENDIX D: CORRELATED NOISE

The effect of both temporal and/or spatial correlations
the Gaussian noise spectrum can be also be taken into
count in this model. Here, we briefly indicate what ste
would have to be taken or modified in the renormalizati
group program to include such correlations. In Eq.~2! the
spectral function with both uncorrelated~white! and corre-
lated ~colored! components is written

G~k,v!52A12Ar,uS k2

L2D 2rS v2

v0
2D 2u

, ~D1!

where we consider long-range correlations of the power-
type. These are parametrized in terms of two exponenr
and u for spatially and temporally correlated noise, respe
tively. The naive scaling properties@Eq. ~5!# of the stochastic
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equation are extended to include the scaling of the correl
part of the noise, which reads

Ar,u→s2r2122x1z~2u11!Ar,u . ~D2!

The perturbative expansion for the response, noise
vertex goes through as before, except now, foruÞ0, the
one-loop frequency integrations overV must be recalculated
and, in general, branch cuts and poles must be dealt wit
the complexV plane. The RG equations will now depend o
cs

-

. A

d

.

ed

nd

in

the two noise exponentsr andu, as will the fixed points and
the critical exponents:z5z(r,u), and x5x(r,u). There
will be an additional RG equation for the amplitude of th
colored component of the noise yielding a total of six equ
tions. By Buckingham’sP theorem@30#, we know that these
can be cast in terms of four equations in four dimensionl
variables. In effect, the correlations in the noise ‘‘open up’
new direction in parameter space, and yield a correspo
ingly more complicated fixed point and RG flow structu
than that of the uncorrelated noise case treated here.
s.

-

a

y

er.

i-

t

s

@1# S.-K. Ma, ModernTheory of Critical Phenomena~Addison-
Wesley, Reading, MA, 1976!.

@2# J. Cardy,Scaling and Renormalization in Statistical Physi
~Cambridge University Press, Cambridge, England, 1996!.

@3# D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A16,
732 ~1977!.

@4# V. Yakhot and S. A. Orszag, Phys. Rev. Lett.57, 1722~1986!.
@5# U. Frisch, Turbulence ~Cambridge University Press, Cam

bridge, England, 1995!.
@6# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,

889 ~1986!.
@7# E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys. Rev

39, 3053~1989!.
@8# T. Sun and M. Plischke, Phys. Rev. E49, 5046~1994!.
@9# E. Frey and U. C. Tauber, Phys. Rev. E50, 1024~1994!.

@10# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, Englan
1995!.

@11# R. Cuerno and K. B. Lauritsen, preprint cond-mat/9505076
@12# A. Berera and L.-Z. Fang, Phys. Rev. Lett.72, 458 ~1994!.
@13# D. Hochberg and J. Pe´rez-Mercader, Gen. Relativ. Gravit.28,

1427 ~1996!.
@14# T. Goldman, D. Hochberg, R. Laflamme, and J. Pe´rez-

Mercader, Phys. Lett. A222, 177 ~1996!.
@15# J. F. Barbero, A. Domı´nguez, T. Goldman, and J. Pe´rez-

Mercader, Europhys. Lett.38, 637 ~1997!.
@16# A. Domı́nguez, D. Hochberg, J. M. Martı´n-Garcı´a, J. Pe´rez-

Mercader, and L. S. Schulman, Astron. Astrophys.344, 27
,

~1999!.
@17# C. C. Chow and J. J. Collins, Phys. Rev. E52, 907 ~1995!.
@18# J. J. Collins and C. J. DeLuca, Phys. Rev. Lett.73, 764~1994!.
@19# M. Lauk, C. C. Chow, A. E. Pavlik and J. J. Collins, Phy

Rev. Lett.80, 413 ~1998!.
@20# G. McCollum and T. K. Leen, J. Motor Behav.21, 225~1985!.
@21# L. M. Nasher~unpublished!.
@22# D. Hochberg, C. Molina-Parı´s, J. Perez-Mercader, and M. Vis

ser, Phys. Rev. E60, 6343~1999!.
@23# J. Zinn-Justin,Quantum Field Theory and Critical Phenomen

~Oxford University Press, Oxford, 1996!.
@24# R. J. Rivers,Path Integral Methods in Quantum Field Theor

~Cambridge University Press, Cambridge, England, 1987!.
@25# S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, S

A 381, 17 ~1982!.
@26# P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A8,

423 ~1973!.
@27# C. De Dominicis and L. Peliti, Phys. Rev. B18, 353 ~1978!.
@28# H. K. Janssen, Z. Phys. B: Condens. Matter Quanta23, 377

~1976!; R. Bausch, H. K. Janssen, and H. Wagner,ibid. 24,
113 ~1976!.

@29# D. Amit, Field Theory, the Renormalization Group, and Crit
cal Phenomena~McGraw-Hill, New York, 1978!.

@30# E. Buckingham, Phys. Rev.4, 345 ~1914!.
@31# R. K. Koleva, A. Widom, D. Garelik, and M. Harris, e-prin

cond-mat/9907311.
@32# V. Konotop and L. Va´zquez, Nonlinear Random Wave

~World Scientific, Singapore, 1994!.


