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We analyze the average performance of a general class of learning algorithms for the nondeterministic
polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a
rule implemented by a teacher network of similar architecture. A variational approach is used in trying to
identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our
search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning
algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis
shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry
breaking(RSB) is studied. The variational method does not determine a unique potential but it allows con-
struction of a class with a unique minimum within each first order valley. Members of this class improve on the
performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even
fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find
a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may
be locally stable we discuss the possibility that it fails to be the correct saddle point globally.

PACS numbds): 87.10+e, 84.35:+i, 89.70+c, 05.50:+q

[. INTRODUCTION sures the number of exampl&sin units of the number of
inputs N. This shows the power of statistical mechanics
One topic of interest in the study of neural networks withmethods, since the transition cannot be detected by, e.g.,
the tools of statistical mechani¢SM) is that the process of Vapnik-Chervonenkis analysis, which aims at a general type
information extraction from data can be modeled by a dy-of result, such as those independent of the distribution of
namical process of minimization of an energy function in theexamples, and can therefore miss important features that ap-
presence of noise. The use of techniques borrowed from tHear only for particular but important cases. For a specific
study of equilibrium disordered systerfid, such as, for ex- comment on this, sefs] o _
ample, replica methods, Thouless, Anderson, and Palmer A relevant question, complementary in spirit to examina-

equations, cavity analysis, and Monte Carlo simulations, allon of_the thermal equilibrium properties, delves into _the
well as dynamical analysis techniques, has permitted a co lynamical aspects of actually determining the set of weights

siderable understanding of typical properties of the thermo-hat minimize the t_rammg error. T_he studies of I_—|or|1j9]
dynamic limit(TL) of such systems as attractor and feedfor-have. showr) t_he}t times expon_entlal h are requwed for_

y d ; ) learning. This is in agreement with the expectation that, since
ward neural networks. In this paper we are interested in th

o . is is a computationally hard problem, it should have spin-
equilibrium pro_pertleS of Fhe student-teacher prob[@*-né_l] glass properties. Polynomial time algorithms, such as simu-
of rule extraction by abinary Boolean perceptronThis

) X lated annealing of the error-counting energy, with a linear
means that the weights as well as the output are restricted {facrease of the temperature schedule, fail to reach global

be +1. We look at the generalization ability for the case of gg|ytions.
a realizable rule represented by a teacher of the same archi- pifferent approximations have been devised in order to
tecture as the student and in particular we concentrate on th/ercome the problems associated with glassy dynamics.
determination of thermodynamic limit bounds and how toBased on the fact that learning the equivalent real-weights
get them by the construction of an appropriate potential. problem is not as slow, other studies have dealt with continu-
The binary perceptron has been attacked from manwus approximations to the binary problem. Several groups
fronts. Studies of the computational complexity by Pitt andlooked into clipping strategigd 0—13 and other transforma-
Valiant have shown that it belongs to the N#bndetermin-  tions of the continuous perceptron, in particular one that op-
istic polynomial time complete clas$5]. From a SM point  timally incorporates the information that the teacher weight
of view it has been studied before by Gardner and Derridavector points in the direction of a vertex of the unit
[6] and Gyagyi [7]. Their aim was to study the learning N-dimensional hypercubjgl4]. Penney and Sherringtga5]
curve (generalization errgras a function of the number of have looked into how to reduce the effective dimension of
examples where the training energy was chosen in the sinthe problem by clipping a partial set of real couplings and
plest way, i.e., error counting. For independent examplegosterior learning of the remaining binary weights. Copelli
drawn from a uniform distribution, the main characteristic ofet al. [16—18 have looked at a related problem in the unsu-
this system in the TL is the first order transition to perfectpervised learning scenario. They employed their methods for
generalization air.=1.25, where as usuat=P/N mea- the teacher-student case also. By extending an argument of
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Watkin for the analogous problem with continuous weights,RSB-1 free energy. This requires the determination of the
they looked into the generalization properties of the center oéffective potential, which is explicitly calculated in the Ap-
mass of the version space. Its performance should saturagendix. Section IV discusses results and presents conclu-
the Bayes limit, but it is not itself a vertex on the hypercube.sions.

They also considered the Bayesian best bin&f) vector

by clipping the real component Bayes vector for both super- Il. OFF-LINE VARIATIONAL METHOD

vised and unsupervised learning.

On-line learning—a possibly efficient strategy to over-
come slow dynamics since it makes no attempt to The statistical mechanics approach to determining the
thermalize—has been shown to be ineffective if working ingeneralization ability of a network learning from examples a
the binary coupling space directly19]. Nevertheless, rule that itself is implemented by another network has been
progress has been made in the direction of on-line learningstudied in several cases; for reviews, $€e-4]. Call the
Solla and Winthef20] have shown how to incorporate, in N-dimensional binary weight vectors of the teacher and stu-
the on-line Bayesian spirit suggested by Opft], infor-  dent networksB andJ, respectively.
mation about the binary nature of the couplings. Their Off-line learning describes the infinite time limit of a
method leads to fast learning times but is not able to conlearning algorithm that proceeds by minimization, in the
dense on the exact solution in finite times. presence of thermal noise, of an energy function

In this work we extend the work of Kinouchi and Caticha EP_lV(J ,0,) that depends on quenched data repre-
[22] for the off-line variational determination of a training sented by theP input-output example pairsS(,,c,). The
energy. We look into the extension of the variational ap-free energy for the replicated system presented Witbx-
proach to the determination of training potentials, amples, independently chosen from a uniform distribution, is
optimal—in the generalization sense—for the binary percepgiven by
tron. A difference from the approach of Copedli al. [16—

A. General results

18] is that our cons_trL_lction methoo!s never leave the binary —ﬁf=extrqab,aab‘Raﬁa[Go{qab,&ab,Ra,ﬁa}
space. Although this in the end might turn out not to be a
good strategy, it is theoretically interesting to see how far —aG{ap,Ra}], 1)

one can go on such a discrete problem without leaving the
allowed space. In the case of random examplE3],presents  where
a variational calculation for potentials that, using the maxi-

mum stability perceptron as a teacher, aims at determining
the continuous vector that on clipping determines the largest = I|m 2 Qanlab— 2 R.R,
number of weights of the maximum stability binary percep- n—oM
tron. N

The extension of the variational program to the binary +£ E |nf H dyx(3%)
case is not at all straightforward due to the failure of the N =1 !

replica symmetryRS) ansatz. We studied first a replica sym-

metric variational calculation. The transition to perfect learn-

ing occurs at a much smaller valueaf (=0.5). This would X exr{ Ea:

have been great news if not for the fact that a simple infor-

mation theoretical bound for perfect generalizationas

=1 [23]. Each example cannot carry more than just one bnG _ I|m—Inf Dt f d)‘ d)‘

of information and at leadtl examples are needed to deter- n_on 2

mine theN independent bits encoded in the weight vector.

The stability analysis showed the surprising failure of the RS EPSRY.

ansatz from the very start at=0. The next step we report X ex B (Ra.t2)

here is to perform a variational calculation at the level of a

one-step replica symmetry breaki(lgSB-1). The variational . - 1 ~on

method does not determine a unique potential, but only fixes X exp( : ; Na(ha=Rata) — 2 ;) (Gab—RaRo)Nakp

expected values of the modulation function. We study a re-

stricted set of solutions, which form a one-parameter family. ©)

Our choice is based on physical similarities of this family to

potentials already studied. This is interesting in itself as it The interpretation oR andq at the extreme justifies the

indicates the possibility that potentials other than the type wé&hoice of method to study this problem. This is so sifte

study may be relevant. The phase diagrams are studied ari(J-B/N), where the average is both thermal and over the

discussed. The learning curves associated with this familglisorder, is directly related to the generalization eegrin

show a trade-off between better generalization and earlighe case of equivalent replicas. For the uniform distribution,

transitions to the perfect generalization phase. eg=arccosR)/m. The usual order parametersy,p
This paper is organized as follows. In Sec. Il A we present=(Ja-Jp/N) describe the typical overlap between two stu-

the general replica calculation results. In Secs. IIB and Il 0dents learning from the same data. The weight measure

the variational procedures under RS and RSB-1, respe(dX(Jf‘) defines the particular problem. In this ca:is(s(.]f‘) is

tively, are presented. Section Il discusses the analysis of thihe counting measure ovéf= +1.
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Two related questions are discussed in this paper: What is e 7712
the largest value that the overl&can reach for fixedr? C= ——= (7)
That is, what are the upper bounds for the generalization myV1-R

ability? Note that this is different in spirit from a Bayesian ) )
approach since here we ask for best performances within tHé @ function ofR but not oft. From Eq.(6) we can determine
constraints of a given architecture. This immediately leads tdh€ potentiaV, sinceFgs=—xdV/d\,. Thus
the second question: What energy functiwshould be cho- 1
sen in order to achieve those bounds? The same questions — _ 2
have been answered satisfactorily for this machine with real Vo= ZXFRS(t)' ®
weights; the first by Opper and Hausg24] and the second
by Kinouchi and Catich&22]. In trying to answer them we Where &(t)=—[y2m(1-R%)C/Rx]InH(-R¥y1-R?) is
have to go beyond the permutation replica symmetry thaproportional to the on-line optimal energy function. It re-
holds in that case, which we now analyze. sembles the equivalent off-line potential for the real-weights
perceptron. However, the post-training stability may not be
all positive, i.e.,A, can be negative. This means that this
) ) _ _ algorithm would be called inconsistent since after training
It is reasonable to begin by assuming that the solution tghere still may be memorization errors. The learning curves
the extremization problem is replica symmetry. The zerosee Fig. 2 beloyare obtained by solving the saddle point
temperature limit can be taken by noticing that an optimalequations numerically. By comparing the free energy of the
potential will most likely have a unique minimum and there- phase with incomplete learnif@<1 with that forR=1, a
fore it is natural to take thg— 1 limit [25]. A sensible limit  first order phase transition ai,=0.53 is found. As men-
can be obtained by requiring thet 8(1—q), y=q/82% and  tioned earlier, this is unacceptable and the cause of this un-

wEF/B remain finite agd— . The free energy is then the Physical result is the replica symmetric ansatz. A stability

B. Replica symmetric analysis

extreme of analysis[28] confirms this suspicion and we now turn to a
one-step replica symmetry breaking ansatz
1 12 2
= —1-= _ a2
frs 2xy+{R [1=2H(n) e A C. RSB-1 variational method

_ (Ag—1)2 We proceed in the by now standard way. Let q,, be an

+2aJ DtH| —— (V()\o)+ 0—) Xl block matrix and call the block indicesu,v
V1-R? 2X =1,2,...)=n/m. For replicas within the same block, the

) . overlaps are taken to have the same overlap vajuavhile
wherezn=w/\y,Dt=exp(-t42)dt/y2, H(x)=/3Dt,and  replicas belonging to different blocks have overtap The

No(t) is defined as the minimum &f(\) + (A —t)?/2x: replicas are assumed to be equivalent and Byssp, for all
replicas. We do not use the same letReto make explicit
—x( &V()\)) =N\o—t. (4) that it will have a different value from the previous section.
2NN The conjugated parametdrsith caretg are assumed to have
the same structure.
The saddle point equations lead to The entropic and energetic contributions to the free en-
ergy are

2
R=1—2H(7),x=\/—e 77,
wy Go=

1. L ~ 1
=5[M0Go+(1—M)a10;—01]—pp+ Ej Dzln

—m)ﬂo—tﬂ X J Dzy[2 costiVGoZo+ V41—~ Gozs+p)I™  (9)

e 7= Waf DtH

ne— n2/2:a,f Le_tzlz(l_Rz))\ i (5) Gf: — Efoc Dtlmetz InJ‘oc Dto f d—)\
2m(1-R?) ° mJ--"Jo - v2m(1=a,)

Following [22], we obtain the result that, in order to maxi- (A—1)2 "
mizeR, the learning potential should be chosen such that the xexg —B| V(M) + 2%, , (10
RS modulation functiorFg{t)=\,—t is given by

e—(Rt)ZIZ(l— R?) where

Frqt)=C , (6)
el H(—Rt/yJ1-R?) t=\do—p°t1+ pta+ Va1 — Aot .

which can be seen to be very similar to the optimal modula- We are interested in the zero temperature case. A sensible
tion function for on-line learning in the real-weights percep-limit can be found by requiring that within a valley the op-
tron, a most interesting result from a cavity perspectivetimal potential has a unique minimum and that different val-
[26,27). It is easy to see that leys’ minima have the same overlap. To achieve this we
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make the ansatZ—o,m—0,;—1, andq, and R—,
such thatx,=Bm, x;=B(1-0;),0,=m?q,, and R=mp
remain finite.

To take the limit[29,30 we start with the entropic part

1

° m

_ (1_qo)éo

5 —pﬁ+f Dz,In 2 costi\VQ,z,+ R)

11

and the energy part

G :—Efw Dtlmetzlnfw Dt, e~ AMV(to)+ (Ao~ 0%/20]
r m)_. 0 C o
12

where the\ integral is done by a saddle method anglis
such that

(A1)

1

INVIIN+

=0 forA=A,. (13

It follows that

(1_qO)QO
2

— o0 0 —o0

X @ %l V(ho) + (o= 1)%/2x)]

—pl3{+f Dz,In 2 costivQ,z,+ R)

—Xof=—

(14
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Introducing an effective modulation function
F(u)=(\o— ), (20)

the saddle point equations can be written as

A X, —u?/2r
=2q— .
R axl Du (1= F(u),
. Xo |2 ul_,
QO_ZQ(X_l) f DuH _\/_F)F (U)

We can now determine thE(u) that maximizes, for a
fixed «a, the overlapp. This is somewhat harder than in the
real-weights case, where the solution to the variational prob-
lem is obtained very easily, just by inspection plus knowl-
edge of the equivalent solution for the on-line problem. Nev-
ertheless, the solution is very similar. So we look at the
variations of Eq.(15) with respect toF(u) subject to the
constraint(16). Let £ be a Lagrange multiplie(see also
[31]). F(u) can be determined by maximizing

b= ¢1(Qo[qo 1p1F]vﬁ[q0 vva])

— £ ¢2(Qoldo.p.F1.R[0o.0.F]), (21)
which yields
8Qo  (9¢1ldR—EdylIR) 5_ﬁe=k5_ﬁz )
SF (01 10Qy— Edpy10Q,) OF  OF’

The order parameters of the incomplete generalization . o . N .
phase are obtained by solving the saddle point equations: 2"d by using the explicit form oR and Q, and the defini-

of P 2 AR
—A:O:pZJ' DZotanH\/Q—oZo+R)E¢1(QO!R)1
JR
(19
;;zoiqo:f Dzotanr?(\/Q_ozovL R)=¢,(Q,.R),
0 (16)
pr i X —u?/2r
%=OzR:2ax—lf Dum«)\o_t»toa
17

ﬁf—o‘—zx"ZJDH Y12, (18
R :>Q0— aX—l u \/_F<°t>to’()

o
where y=p/\/q,, '=(1—y?)/?, and

f Dt,e %oV * o024l (.. )

(19)
f Dt e %[V + (o= %2¢1]

The orthogonal transformatioriy(,t,) — (u,v) defined byu

=(Vao—p?t1+pto)[\do,  v=(—pti+do—p?t2)/ T,
andt= /g, u+1—q,t, was used to simplify Eq(18).

tions (15) and (16):

JDuH

This does not determingé(u) uniquely. A possible solution
is

e u/2r

_i>,: _xk DU———
JT (u)_XOZ u\/zw(l—«ﬁ)'
(23

K e u2/2r

V2m(1—9?) H(—u/\T)

(24)

1x4q
F(U)E<)\0—t>toz E X_
o

Any odd function ofu could be added to the Gaussian in the
numerator, but we choose to look at this form since as it
stands it is proportional to the optimal modulation function
that appears in off-line and on-line optimization of the real-
weights perceptron and we see no physical motivation for
other terms. This choic€4) leads to the saddle point equa-

tions
R= \Eamom, (25
T
Qo=2ax*V1=71o(7), (26)
where  k=3k/I\2m(1—»7),  Io(y)=/Dvg(— ),y

= p/\/qg, andg(x)=e **%/H(x). We can still choose, and
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FIG. 1. The value ofa as a function of hyperparametkrat ' ' ks
which the low generalization phase performance is optiftratk
line). For each fixedk, we show also the value ai;, the spinodal
point (short-long dash where the low generalization phase ceases
to exist, and ofa,, the first order transition poinflong dash,
above which the perfect generalization phase has the lowest fre
energy.

0.25

eG
we do so in order to pick the largest possipldor fixed a.
(Fig. 1 showsa as a function ok, ,,, the value ofk that
leads to the smallest generalization eprdtote that this lib-
erty is due to the fact that the value @f is not constrained;
only its form is constrained by E@l16). The learning curves
of the low generalization phase can be determined numeri-
cally [see Figs. @) and 2b)]. In Fig. 3 the overlap, is 015 e T i T
shown as a function af for the best choice of the potential, (b) a
i.e., usingk,,,. The determination of the thermodynamic _ o _
phase, that is, the location of the first order transition, needs FIG. 2. (a) Learning curves. Generalization errors as functions

analysis of the free energy in both high and low generaliza2f @ for different algorithms. The Bayefcontinuous ling and

. . ._ .. Gibbs (top short dashed curyalgorithm learning curves are in-
tion phases. While th? free energy of the. low generalIZatlor<]:Iuded for comparison. Note that the Bayes algorithm is obtained
phase can be determined without explicit knowledge of th ; . . )

. : o . . by a student outside the binary space. BB is the best binary vector
potential, that of the high generalization phase will require,

detailed k led f th ial In th . 18] obtained as the result of clipping the center of mass of the
etalle ”OWe ge of the potential. In the next section w ersion spacéBayes. The learning curveédots obtained under the
show how this can be done.

hypothesis of replica symmetry has a transition to perfect learning
at the impossible value a#=0.53. The algorithm obtained with
k=2 gives the Gibbs result. F&e=3 andk=6 the curves show a
trade-off between earlier performance and later transition. For vari-
) ) ablek,,,(a) (Fig. 1) the best performance for potential based learn-
To complete the analysis of the learning curve we musing is obtained. Seé) for details. For smalk the unphysical RS,
look into the behavior of the free energy. This is not straightthe RSB-1 withk,,,, and the BB curves are numerically indistin-
forward since the form of the potential has not yet beerguishable(b) Details of the learning curves. The black continuous
determined, but only the expected valéé/J\. It is quite  line is obtained fok,, (@) (Fig. 1); it is the envelope, within the
interesting, as we now show, that the precise form of thdow generalization phase, of the family of algorithms obtained for
potential is not needed to determine the free energy or thk=2.
learning curve in this phase; just knowledge of the effective

modulation function suffices, and even this is the same fobrovided the order parameters are understood as the solution

02 -

Ill. THE FREE ENERGY AND THE POTENTIAL

A. The low generalization phase

any solution of Eq(23). _ of the saddle point equations. Integrating by parts, using the
The energy contribution to the free energy can be writteryafinitions of\, andF(u)
as
—xof1:2af DuH _— Inj Dt, —x.f ZZQE\/— i duF(u) ’ DyH -y
\/f ol1 X1 Yo . . y \/F )
Ao—t)?
xex%—x()(V()\o)wLu”, o _ _ _
2Xq substituting Eq(24) for F(u), and integrating by parts again,



7004

— o0=1.25

- o=1.28
---- 0=1.32
——- 0=1.37

FIG. 3. g, andp as a function ofa. Note thatq, is different
from 1 as soon agk#0 but is so close that the learning curves
under the RS and RSB-1 methodee Fig. 2a)] are not very dif-

ferent for smalla.

—Xof1=2ak\2mq,I" J, DuH

ﬁ)"‘“ %)
(27)

is obtained.

B. The high generalization phase

BOTELHO, MATTOS, AND CATICHA

- t (1_qo)
C(x,t)—fDK@ K+ Jr—qjcog( I'qo )
(32)
S(X,t):fDK K+ th_q)sin(XK (lr—ch)o)).
(32
Finally we obtain
- 2] L il
o m °
X[Cz(x,t)+52(x,t)]b/2005(btan_lif:,":;)’
(33

which can be used for numerical evaluations. It is easy to
verify that the solution is real. At this point notice the struc-
ture of the potential that emerges from the calculation. If
do=1, then we are back to the replica symmetric calculation;
the x integral decouples and we are left with x,&(t)
=bInH(-t/\T), which is very similar to the optimal poten-
tials that have been found for the real-weights perceptron,
both on line and off line, and for the binary perceptron with-
out RSB. However RSB introduces a new noiselike element.
One of the most striking features of this solution is that,
like other variationally determined potentials, it depends on
the values of the order parameters. This has been discussed

We now look at the value of the free energy in the ex-g|sewherd32] and can be interpreted as the inclusion of the
treme of the allowed interval for the order parameters. Thggrect annealing along the learning process, generalizing the
determination of the potential cannot be postponed since thgnnealing of the learning rate that has been studied in on-line

free energy depends on it explicitly.

learning algorithms(e.g., [33,34,26). These order param-

~ Equation(23), which results from the variational prescrip- eters have the role of hyperparameters and will have the
tion, can be transformed into an integral equation for th&ajue determined by the solution of the saddle point equa-

effective potentialS(t)=V(\o) + (A o—1)2/2X;:
b
G
( VT )

f Dt e %o — , 28)

wheret= \/q,u+y1—q,t, and

k2
b=/ ﬁ (29
472

tions. The fact that these values may differ from those that
are determined by the thermodynamics is of fundamental
importance. The learning process thus proceeds in the fol-
lowing way. Determine self-consistently the potentiainc-
tional form and hyperparametegithat will lead to maximum
performance in the low generalization phase in such a man-
ner that the respective values of the order parameters are
equal to the hyperparameters. Then minimize the potential
by some dynamical process, letting the temperature go to
zero. We do not worry here about thermalization times, as
these might diverge for a NP problem. The final result may
land on the perfect generalization phase and therefore the

An expression for the potential, obtained in the Appendix, isorder parameters will not have the same values as the hyper-

H

_ t —ix I(l_qo)
Tdo I'q

o

i

(30

Et)y=— Xiolnf Dx

where the effect of the one-step RSB is seen to be the intro-
duction of a noiselike term in the stability which depends

parameters. We denote the hyperparameters by starred quan-
tities. Then we look at the limig,,q;—1,8—0%,m—0 of

Eqg. (14) with £*(t) calculated at the starre@addle point
equation values, which gives

f=2af:Dt€*(t). (34)

on the existence of the other valleys. lIts influence goes to

zero asg,—1.

C. Learning curves

Despite its appearance, this expression is real, as can be Equations(15), (16), (25), and(26) are used to build the

seen by defining

low generalization learning curves. From the comparison of
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to binary vectors is saturated only for small but then even
the simple Hebb algorithm has optimal generalization in this
regime.

Within the low generalization phase the variational
method is able to identify a class of potentials that lead to
better performance than the Gibbs algorithm. There is a
trade-off within the class, as can be seen in Figs) and
2(b), between earlier transition to perfect generalization and
oa L ] better performance. A potential that leads to better generali-
' zation will have a delayed transition.

The potentials of this class do not work by imposing a
0z | zero memaorization error, not even by minimization of the
total error count. They tend to minimize the average overlap
with the teacher, and since this is typically near the border

0.0 ‘ ‘ . (just by the geometry of th&l-dimensional spagethe ap-

00 05 . 1.0 15 proach to the teacher weight vector can be made through
vectors outside the version space. The version space col-

FIG. 4. The effective potentidl(t) as a function of the stability |apses to only one element at typically~1.25, but the
t showing the annealing for different values @f variational class, not considering the version space, will not
detect this until later.

The replica symmetric variational study incorrectly pre-
icts a transition at<1. A stability analysis indicates that
the replica symmetric ansatz is not adequate foraaHO.
This is a little surprising, and the origin of the instability can

0.8
—
----q,

0.6 -

p.a, (RSB1)

the free energies, Eq&27) and (34), the phase transition is
located. These equations have to be complemented with
choice ofk. We can just look at the numerical valuekothat
leads to the smallest generalization error for fixedwhich

we calledk, (@) (Fig. 1). We look also at the results ob- be traced back to the requirement thatso implies q— 1

tained for fixedk. A Bayesian statistician will not be sur- e : :
. ; .~ for a#0. This is in contrast with the case of real weights
prised that the Bayes bounds are not beaten. Neither is ttw “ g

| h lizati ) d h t of here, even in the presence of multiplicative noise, learning
(low phasg¢ generalization error improved, nor the onset o with the variational potential is replica symmetric. The effect

the high generalization phase anticipated. These equatioly e can break phase space into disconnected regions,
just lead in general to smaller errors than the Gibbs algo\'/vhich are essentially ignored by the robust learning of the

rithdm.hHoneve_r forbsmatl)l_a the '?SC‘: th(gt_RISBl'ékvaf(a)]’ optimal potential, which disregards outliers. A method that
and the Bayesian best binary of Copetial. [18] are very insists on minimizing the memorization error will certainly

close. At this point this agreement is only numerical, but it isI ad in such conditions to a replica symmetry breaking situ-

possible that these algorithms have the exact same optimg ion. The one-step broken replica symmetry leads to appar-

(Ba%/esiam pl)erforma?ce in the "”?ib‘djo* which is similar o4y consistent physical behavior. The stability analysis will
to the results of18] for unsupervised learning. be presented elsewhef@8]. A preliminary picture that
Figure 4 shows the potentifEq. 33 for different values o argas from such analysis is that, while one-step RSB is

of b.‘ Al b:.1 the_z potential wrns into the error-counting po- enough to give locally stable results and suggests a reason-
tential, which gives the Gibbs performance. Then replicap e physical picture it may fail to be globally correct. We
symmetry is restored. Below the valiie=1, the potential  hiny that the RSB-1 calculation describes qualitatively the
cannot be determined. main features of this difficult problem, but a full continuous
RSB schemg28] will be necessary to understand the ther-
IV. DISCUSSION AND CONCLUSIONS modynamic equilibrium bounds obtainable from the minimi-

The learning curves shown in Fig. 2 show that the poten-Zation of a potential. Even this V\.'i" not tel the_ complet.e
tials obtained variationally fail to reach the Bayes bound StO"Y: h_oweyer, Since 1Ssues dealing with gffectlve learning
This is in contrast to the continuous weight perceptront'mes will still remain. This \{vork, toget'he.rwllth the results of
where the Bayes limit is obtained by a network with the 16—18,13, suggests that in the optimization of computa-
same architecture as the teacher. As shown by Cogedll,  tionally hard discrete problems it might be a better strategy
[18] the Bayes algorithm is equivalent to a network with a'© first leave the space of configurations, in this case the
weight vector given by the center of mass of the version€rtices of the hypercube, th.ef‘ optimize in the hypersphgre,
space, which is not itself a binary vector. It follows that no and finally go b"."Ck to the original Space, instead of striving
method constrained to the hypercube will reach the Bayel® "€SPect the discreteness constraints at every step.
limit. A similar failure to reach the Bayes limit was also
reported by Wintheret al. [35] for multilayer networks,
where again the Bayes algorithm cannot be matched within
the space of students with the same architecture as the The authors thank M. Copelli and O. Kinouchi for impor-
teacher. tant discussions and suggestions and also the participants of

The variational method probes potentials from within athe Workshop on Statistical Mechanics, Max Planck Insti-
restricted class and it is therefore natural not to expect to fintute, Dresderi1999 for discussions on this subject. E.B. and
Bayesian performances if the Bayes algorithm does not beN.C. were partially sponsored by the Conselho Nacional de
long to it. The performance of Bayesian inference restricted>esenvolvimento Cierfico e Tecnologico (CNPg and
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APPENDIX b
Equation(23) leads to an integral equation for the poten- [ f H ( \/—dr idvif(r)g(v; ))
tial:

b xexp{ >

=A(u), (A]

L)1

- S ]

T

. The u andy; integrals are now automatic. Going back to the
where t= \/q—oU2+ V1=0qeto, b=kyago/4y®, and Dt, equation for the potential
=(dt,/\2m)e %% To obtain the effective potential, note
that the integral on the left side is a convolution, so it seems @dk (1 G- ikt2
natural to perform a Fourier transformation. The fact that f (2m)" b2 €
A(u) is not square integrable is bypassed by defining a new
problem:

f Dtoexd —X.&(t) 1= H

xf_m(ilj[l driff(ri)g(ri))6< Jaok+ >, &—%)

b
u
Dtoexd —X,E:(t)]=|H (—— =A u) (A2
f ¢ ¢ JT ¢ we now integrate ovek:
Here
f (H V2mdrif, r)g(r))
u o u —e\i=1
e _ﬁ>:f—oc‘°y‘®§ Wﬁ)

where Xe r{l(l_qO)(E r i e 2 rit

XA 5 Ta, i xp—|\/F_q0.

The linearization of thexr; is done by a standard trick. Use
the fact that g(r) is a Gaussian and thatf(r)
(1/2w)f®§(y)e_'yrdy then

Oy y+ ! Ely+ u |’
— | =exg — —

AR i

if y>—u/\T and 0 otherwise. Oncé(t) is found, we will

take the regularizing parametéto zero. After Fourier trans- dx

forming, dividing by the Gaussian on the left, and Fourierg :f e X2
transforming back, we get ¢ V2

= — o b
Eg—EXd Xogf(t)] X( J dy @g(y)j dre_rZ/ze_x[\/'(l_—qOVF—qO]re_iKr> ’
N2 —o

:\/q—ojs_k e(lfqo)kZ/zJ' eiv/q—ok”Ag(u)du efikt.
4 whereK=t/{I'q,+Yy. Integrating overr,
(A3)
To be able to perform the above integrals we use a simpleg — ﬂe—xz/z fﬂ@ (y)exp%<(1_q°) x2— K2
replica trick, which consists in consideritigas an integer, N 2\ TI'ge

2

b
. (1_qo)
+2ixK y/ T )}

andb can be again taken to be real. Changing the integration
(A4)  variable toK and takingé to zero,

ﬂexp— 1( 1- (1 9) b)xz}
V2m 2 I'qo

b
X fDK@) K+ ' )exmixK\/w
NIH I'q

[0}
Extending the definition of thél function to complex argu-
The Fourier transform oA.(u) is ments, the potential can be written formally as E2().

b b
* u
:iﬂl fu/\rDyieXF{ —f(y+ Jr

b

-

u
i+ —=].
AN

Introduce the Fourier transforms E—
0=

®g(Yi_X):J fe(ri)e"%i=dr, e V"

= f gvpe idu, .
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