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Improvement of the Davydov theory of bioenergy transport in protein molecular systems
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The Hamiltonian and the wave function in the Davydov theory have simultaneously been improved and
extended, based on some physical and biological grounds and on results from other models. The equations of
motion for the improved Davydov model with a quasicoherent two-quanta state and a new interaction term in
the Hamiltonian describe bioenergy transport along the molecular chains in protein molecules by a soliton
mechanism. Some elementary properties of the soliton, including the nonlinear coupling energy and greatly
increased binding energy of the soliton, are also given. The results obtained suggest that the model could be a
candidate for a bioenergy transport mechanism in protein molecules.

PACS numbgs): 87.17.Aa, 03.65-w, 05.40—a, 71.38+i

I. INTRODUCTION: THE PHYSICAL AND BIOLOGICAL Davydov soliton is sufficiently stable in the region of bio-

BACKGROUND TO THE PROBLEM logical temperature to provide a viable explanation for
bioenergy transport. Many numerical simulatiofiz—11]

Many biological processes are associated with bioenergiiave been based essentially on classical equations of motion

transport through protein molecules, where energy is reand are subject to the criticism that they are likely to yield

leased by the hydrolysis of adenosine triphospH&€P).  unreliable estimates for the stability of the soliton since the

This is an important problem in biology. Understanding thedynamics of the soliton is not being determined by the
mechanism of bioenergy transport in biomacromoleculaischradinger equatioi3]. The simulations based on the,)
systems has been a long-standing problem that remains @fste [2] (i.e., D) =3 1@n(t) BI|0) ey exXp{ — (i/5)S [ Bu(t)Pr

great interest today. As an alternative to electronic mecha- DU OY. whereB'(B.) is the creatior{annihilatio
nisms[1], one can assume that the energy is stored as vibra- o OUn ]} O, n(Bn) i n

tional energy in theC=0 stretching modgamide-) of a o_pera.uor .Of an a_mide-l quantum excitati(:eb(pitorj in_ the .
polypeptide chain. Following Davydov’s idd2], one can s!te n,. U is th.e dlsplgcement operator of lattice oscillator in
take into account the coupling between the amide-I vibraS!t€ M Pa IS its conjugate momentum operatdf)ex and
tional quantum(exciton and the acoustic phondmolecular |Q>ph are the ground states of the exciton and phonon, respec-
displacementsin the lattice. Through the coupling, nonlin- tiVely; and en(t), Ba(t), andmy(t) are undetermined func-
ear interaction appears in the motion of the vibrationalions) generally agree that the stability of the soliton de-
quanta, which could lead to a self-trapped state of the vibracreases with increasing temperatures and that the soliton is
tional quantum. The latter plus the deformational lattice to-not sufficiently stable in the region of biological temperature.
gether can travel over macroscopic distances along the m&ince the dynamical equations used in the simulations are
lecular chains, retaining the wave shape, energy, momenturOt equivalent to the Schdinger equation, the stability of
and other properties of the quasiparticle. In this way, the¢he soliton obtained by these numerical simulations is un-
bioenergy can be transported as a localized “wave packet@vailable or unreliable. The simulation§] based on the
or soliton. This is just the Davydov model for the bioenergy|D1) ~ state (i.e., |D1)=3 ¢n(t)B(t)exp(Sfangt)a]
transport, which was first proposed by Davydov in the 1970s- a;(t)agl}0), where|0)= |0)8X|O>ph,a;(aq) is the creation
[2]. (annihilation) operator of the lattice phonon, aiag4(t) and
Davydov's idea yields a compelling picture for the a:q(t) are some undetermined functignsith the thermal
mechanism of bioenergy transport in protein molecules antreatment of Davydoy8], where the equations of motion are
consequently has been the subject of a large number aferived from a thermally averaged Hamiltonian, yield the
works [3—23]. Problems related to the Davydov model, in- surprising result that the stability of the soliton can be en-
cluding the foundation and the accuracy of the theory, théhanced with increasing temperature. Evidently, this conclu-
quantum and classical properties, and the thermal stabilitgion is not reliable because the Davydov procedure in which
and lifetimes of the Davydov soliton, have been extensivelyone constructs an equation of motion for an average dynami-
studied by many scientis§s3—23]. However, considerable cal state from an average Hamiltonian, corresponding to the
controversy has arisen in recent years over whether thelamiltonian averaged over a thermal distribution of pho-
nons, is inconsistent with standard concepts of quantum-
statistical mechanics in which a density matrix must be used
*Email address: pangxf@mail.sc.cninfo.net to describe the system. Therefore, there exists no exact fully
"Mailing address. quantum-mechanical treatment for the numerical simulation
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of the Davydov soliton. However, for the thermal equilib- whereB,, (B is the annihilation(creation operator for an
rium properties of the Davydov soliton, there is a quantumamide-1 vibrational quantuntexciton, u; is the displace-
Monte Carlo simulatiori13]. In the simulation, correlations ment of the lattice molecule®; is its conjugate momenta,
characteristic of solitonlike quasiparticles occur only at lowand|0),is the ground state of the exciton. He calculated the
temperatures, abot< 10K, for widely accepted parameter average probability distribution of the exciton per site, the
values. This is consistent at a qualitative level with the resulaverage displacement difference per site, and the thermody-
of Cottinghamet al. [14]. The latter is a straightforward namics average of the variable= BIBl—Bng, as a mea-
quantum-mechanical perturbation calculation. The lifetimesyre of localization of the exciton, versus quantity
of the Davydovlszollto[llgbtamed by using th|§ me'Fhod is too:‘]wlxi and InB(B=1/kgT) in the so-called two-quantum
small(about 10 “~10 ~se0 to be useful in biological pro- state Eq.(1), wherey, is a nonlinear coupling parameter
cesses. This shows clearly that the Davydov solution is not g|ated to the interaction of the exciton-phonon in the Davy-
true wave function of the systems. A thorough study in termgyoy model. Their energies and stability are compared with
of parameter values, different types of disorder, differéntnat of the one-quantum state. From the results of above-
thermalization schemes, different wave functions, and differyhermal averages, he drew the conclusion that the wave func-
ent associated dynamics leads to a very complicated pictuiigyn with a two-quantum state can lead to more stable soliton
for the Davydov mode[10-12. These results do not com- gojytions than the wave function with a one-quantum state,
pletely rule out the Davydov theory, however they do notang that the usual Langevin dynamics, whereby the thermal
eliminate the possibility of another wave function and a Mor§fetime of the Davydov soliton is estimated, must be viewed
sophisticated Hamiltonian of the system having a solitonyg underestimating the soliton lifetime.
with longer lifetimes and good thermal stability. However, by checking carefully Eq41) [10], we can find
_Indeed, the question of the lifetime of the soliton in pro- yhat the Cruzeiro-Hansson wave function does not represent
tein molecules is twofold. In Langevin dynamics, the prob-gyacily the two-quantum state. To find out how many quanta

lem consists of uncontrolled effects arising from the semiyne state Eq(1), indeed contains, we have to compute the
classical approximation. In quantum treatments, the problem

> BB,
n

has been the lack of an exact wave function for the soliton?XpeCtTatlon. va!ue of the exciton number op?ratqr,
The exact wave function of the fully quantum Davydov :E“B”B“’ in this state, Eq(1), and sum over the sites, i.e.,
model has not been known up to now. Different wave func-"€ €XCiton numbersl are

tions have been used to describe the states of the fully

guantum-mechanical systerf5]. Although some of these N= < ® ¢>

wave functions lead to exact quantum states and exact quan-

tum dynamics in thel=0 state, they also share a problem

with the original Davydov wave function, namely that the :_2 ehil ex<0|BiBmBEBnBjTBIT|O>ex

degree of approximation included whég 0 is not known. ijlmn

Therefore, it is necessary to reform Davydov's wave func-

tion. Scientists had thought that the soliton with a multiquan- =3 (¢} ¢jn+ @5 @jn) + 2 (@Ren+ ehen) =4,

tum state (=2), for example, the coherent state of Brown nj nl

etal. [4], the quantum state of Keretal. [12] and )
Schweitzeret al. [14], the two-quantum state of Cruzeiro-

Hanssor10] and Faoner[21], and so on, would be thermally where we use the relations

stable in the region of biological temperature and could pro-

vide a realistic mechanism for bioenergy transport in protein

1 2_
molecules. However, the assumption of the standard coher- [Bn,Bj1=dnj, % |l enl*=1, ©)
ent state is unsuitable or impossible for biological protein
molecules because there are innumerable particles in this t _ t _ + i
state and one could not retain conservation of the number 0FX<O|B”|O>EX e40[B1B1|0)ex= e 0|BBmBi|O)ex ?4)

particles of the system. The assumption of a multiquantum

state ©>2) along with a coherent state i§ also i”CO”SiStemrherefore, the state E€l), as it is put forward if10], deals,
with the fact that the energy released in ATP hydrolysis, contradiction to the author's statements, with four excitons
(about 0.43 ey can excite only two quanta of amide-1 vibra- (quanta instead of two excitons. Obviously, it is not possible
tion. On the other hand, the numerical result of the two-g create the four excitons by the energy released in the ATP
quantum model by Foer [21] reveals remarkable differ- pyqrolysis(about 0.43 ey, Thus the author’s wave function
ences from one-quantum dynamics, i.e., the soliton with §s stjl| not relevant for protein molecules, and his discussion
two-quantum state is more stable than that with a onezng conclusion are all unreliable and implausible in that pa-
quantum state. per[10].

Cruzeiro-Hanssorf10] had thought that Hoer's two- We think that the physical significance of the wave func-
quantum state in the semiclassical case was not exact. Theigsp, Eq. (1), is also unclear, or at least is very difficult to

fore, he constructed a so-called exactly two-quantum state Qfngerstand. As far as the physical meaning of Eq. is
the semiclassical Davydov system as follgi8]: concerned, it represents only a combinational state of single-
particle excitation with two quanta created at siteandm;

N
lo(t)) = (P .HBIBTO).., . 1 enm({us},{P4},t) is the probability amplitude of particles
e(t) n,;zl eomf{uih {Pi},D BB/ O)ex @ occurring at the sites and m simultaneously. In generah
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#mandoe,n# ¢,¢m in accordance with the author’s idea. In ecules are both a kind of soft condensed matter and bio-self-
such a case it is very difficult to imagine the form of the organization with active functions, for instance self-
soliton formed by the mechanism of self-trapping of the twoassembling and self-renovating. The physical concepts of
qguanta under the action of the nonlinear exciton-phonon ineoherence, order, collective effects, and mutual correlation
teraction, especially when the difference betwaeandmis  are very important in bio-self-organization, including the
very large. Hansson has also not explained the physical argrotein molecules when compared with generally molecular
biological reasons and the meaning for the proposed triadystemg?25,26]. Therefore, it is worth studying how we can
state. Therefore, we think that the Cruzeiro-Hansson reprephysically describe these properties. We note that Davydov
sentation is still not an exact wave function suitable for pro-operation is not strictly correct. Therefore, we think that a
tein molecules. Thus, the wave function of the systems ibasic reason for the failure of the Davydov model is just that
still an open problem today. it ignores completely the above important properties of the
On the basis of the work of Cruzeiro-Hanssonyries,  protein molecules.
and others, we improve and extend the Davydov model by Let us consider the Davydov model with the present
changing simultaneously the Hamiltonian and the wave funcviewpoint. First, as far as the Davydov wave functions, both
tion of the systems. We add new coupling interaction be{D,) and|D,), are concerned, they are not true solutions of
tween the acoustic phonons and the amide-I vibrationathe protein molecules. On the one hand, there is obviously
modes in the original Davydov Hamiltonian, and we replaceasymmetry in the Davydov wave function since the phononic
the one-quantum exciton state in Davydov’s wave functiorpart is a coherent state while the excitonic part is only an
by a quasicoherent two-quantum state. Thus, the equation efcitation state of a single particle. It is not reasonable that
motion and the properties of the soliton occurring in the newthe same nonlinear interaction generated by the coupling be-
model are completely different from that in the Davydov tween the excitons and phonons produces different states for
model. | believe that this model might resolve the contro-the phonon and exciton. Thus, Davydov’'s wave function
versy regarding the thermal stability and lifetime of the soli-should be modified23], i.e., the excitonic part in it should
ton excited in protein molecules. In this paper, we derive thelso be coherent or quasicoherent to represent the coherent
equation of motion of the improved model and give somefeature of collective excitation in protein molecules. How-
elementary properties of the new soliton that predict that thever, the standard cohergdf] and largen excitation states
new model could be a candidate for a bioenergy transpoiftl2] are not appropriate for the protein molecules due to the
mechanism in protein molecules. The organization of thigeasons mentioned above. Similarly,rfer's and Cruzeiro-
paper is as follows. In Sec. Il, the new model, including theHansson’s two-quantum states do not fulfill the above re-
extended Hamiltonian and the wave function, is presentedquest. In view of the above discussion, we propose the fol-
The equations of motion and the new soliton solution in thislowing wave function of the protein molecular systems:
model are given in Sec. lll. In Sec. IV, we discuss the prop-
erties and thermal stability of the new soliton, and we predict [P (1) =[e(1))|B(1))
the possibility of the soliton being a suitable candidate for 1
the mechanism of bioenergy transport in protein molecules =_
on the basis of results obtained in this paper. A

2
1+ 2 <pn<t>B;+% 2 %(t)BE) }l%

i
Xexp — - tHP,— tu 0)yh,
Il. CONSTRUCTION OF THE IMPROVED DAVYDOV p{ h zn: LBn(O)Pn= (1) ”]]| Jen

MODEL AND THE EXTENDED HAMILTONIAN 5
AND WAVE FUNCTION OF THE SYSTEMS ®)

The results obtained by many scientists over the year#hereB/ andB, are boson creation and annihilation opera-
show that the Davydov model, whether it be the wave funciors for the exciton, andO)., and |O),, are the ground
tion or the Hamiltonian, is indeed too simple, i.e., it does notstates of the exciton and phonon, respectively, and P,
denote elementary properties of the collective excitations ocare the displacement and momentum operators of the lattice
curring in protein molecules, and many improvements to itoscillator at site n, respectively. The ¢n(t), Bn(t)
have been unsuccessful, as mentioned above. What is the(®(t)|u,|®(t)) and m,(t)=(P(t)|P,|P(t)) are three
source of this problem? It is well known that the Davydov sets of unknown functions, andis a normalization constant.
theory on bioenergy transport was introduced into proteilVe assume hereafter that=1 for convenience of calcula-
molecules from an exciton-soliton model in generally one-tion, except when explicitly mentioned.
dimensional molecular chaiffg4]. Although the molecular A second problem arises for the Davydov Hamiltonian
structure of the alpha-helix protein is analogous to some mok23]. The Davydov Hamiltonian takes into account the reso-
lecular crystals, for example acetanilit®CN) (in fact, both ~ nant or dipole-dipole interaction of the neighboring amide-I
are polypeptides; the alpha -helix protein molecule is thevibrational quanta in neighboring peptide groups with an
structure of three peptide channels, ACN is the structure oglectrical moment of about 3.5 D, but why do we not con-
two peptide channels. If comparing the structure of alphasider the changes of relative displacement of the neighboring
helix protein with ACN, we find that hydrogen-bonded pep- peptide groups arising from this interaction? Therefore, it is
tide channels with the atomic structure along the longitudinateasonable to add the new interaction terg(un.
direction are the same except for the side gjpuplot of —un)(B;HBnﬂL BLBnH) to Davydov’'s Hamiltonian to rep-
properties and functions of the protein molecules are comresent correlations of the collective excitations and collective
pletely different from that of the latter. The protein mol- motions in the protein molecules, as mentioned above
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[22,23. Although the dipole-dipole interaction is small as terms of the expansion of a standard coherent state, which
compared with the energy of the amide-I vibrational quan-mathematically is justified in the case of small(t) [i.e.,

tum, the change of relative displacement of neighboring pep}e,(t)|<1], which can be viewed as an effective truncation
tide groups resulting from this interaction cannot be ignorecf a standard coherent state. Therefore, we|gdll)) a qua-

due to the sensitive dependence of dipole-dipole interactiosicoherent state. However, it is not an eigenstate of the num-
on the distance between amino acids in the protein molyer operatorN=3,B/B,, since

ecules, which is a kind of soft condensed matter and bio-self-
organization. Thus, we replace Davydov’'s Hamiltonian by .
Nl(t))=2> BlBq/e(t)
H:Hex+th+Hint "

2
= [00B{BJ(B]Br. 1+ BB}, 1) |2 08| T eneicvel) |0
p2 - _ t
+§n: ﬁ—i_%w(un_unfl)z 2|‘P(t)> 2+; ‘Pn(t)Bn)|o>ex- (8)

Therefore, thel¢(t)) represents indeed a superposition of

+ 2 [x1(Unt1=Np_1)BIBr+ x2(Uns 1= Up) multiquantum states. Concretely speaking, it is a coherent
n superposition of the excitonic state with two quanta and the
round state of the exciton. However, in this state the num-

X(Bj: 1B+ BlBns1)], © 9

bers of quanta are determinate instead of innumerable. To

wheree o= wo=1665 i L is the energy of the excitofthe find out how many excitons this state contains, we have to

C=0 streching mode The present nonlinear coupling con- COMPUte the expectation value of the number operitan
stants arey; and y,. They represent the modulations of the th|s' state and. sum over the sites. The average number of
on-site energy and resondpr dipole-dipol@ interaction en-  €Xcitons for this state is

ergy of the excitons caused by the molecular displacements,

respectivelyM is the mass of an amino acid molcule amd N=(¢(t)|N[e(t))

is the elasticity constant of the protein molecular chairis.

the dipole-dipole interaction energy between neighboring = (e(1)[B!B,|e(1))
n

sites. The physical meanings of the other quantities in(&q.
are the same as those in the above explanations.

The Hamiltonian and wave function shown in EdS) :[2 lon(t)|?+
and (6) are different from Davydov's. We add a new inter- n
action term,3 x2(Un.1—Un) (B!, 1B,+BIB, 1), into the
original Davydov Hamiltonian. Thus the Hamiltonian now =(Z lon(t)|?
has better symmetry and can also represent the features of .
mutual correlations of the collective excitations and of col- . . o
lective motions in the protein molecules. We should pointWhere we utilize Eq(4) and the following relations:
out here that the different coupling between the relevant
modes was also considered by Takesial. [22,27,2§ and > len®?=1, X |em(t)]?=1, [By, Bl1=8nm.
Pang[23] in the Hamiltonian of the vibron-soliton model for n m
one-dimensional oscillator-lattice and protein systems, re- (10)
spectively, but the wave functions of the system they use
are different from Eq(5).

2 |¢n(t>lz)(§ |som(t>|2)]

1+§ |¢m<t>|2):z, 9

q‘herefore, the new wave function is completely different
Obviously, the present wave function of the exciton in Eq_from Davydov’s. The latter is an excitation state of a single

(5) is not an excitation state of a single particle, but rather a{aartlcle with one guantum and an eigenstate of the number

. erator, but the former is not. The new state is a quasico-
coherent state, or more accurately, a quasicoherent state. . . .
. erent state. It contains only two excitons, which come from
see this, we can represent the(t)) by

the second and third terms in E(p), in which each term
2 contributes only an exciton, but it is not an excitation state of
> (Pn(t)BE) }|0>ex two single particles. Hence, as far as the form and meanings
of the new wave function are concerned, they are either two-
1 guanta states proposed byrfer[21] and Cruzeiro-Hansson
~ exp{ > go(t)Bﬁ] |0) ex [10] or a standard coherent state proposed by Brewal.
n [4,2] and Kerret al's [12] and Schweitzeet al’s [14] mul-
tiquanta states. Therefore, the wave function, &g.is new
:% exﬁ’ > [en(H)Bl— go’;(t)Bn]] |0) ex. (7)  for the protein molecular systems. It not only exhibits coher-
n ent features of collective excitations of the excitons and pho-
nons caused by the nonlinear interaction generated by the
The last representation in E(Y) is a standard coherent state. exciton-phonon interaction, which, thus, also makes the
More precisely, the new wave function retains only threewave function of the states of the system symmetrical, but it

1 1
(D)= 5|1+ 2 en(DBLF 5
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also agrees with the fact that the energy released in the ATP 9

hydrolysis(about 0.43 ey may only create two amide-I vi- 17 = (D ()| Un| D (D) =(D (1) [[un H]| (D)),
brational quanta which, thus, can also make the numbers of

excitons maintain conservation in the Hamiltonian, E).

Meanwhile, the new wave function has another advantage, . 4d

i.e., the equation of motion of the soliton can also be ob- 17— (D[P D (1)) =(D()[[Py, H][D (1)),
tained from the Heisenberg equations of the creation and

annihilation operators in quantum mechanics by using Egs.

(5) and(6), but the wave function of the states of the systemwe can obtain the equation of motion for tjg(t) as
in other models, including the one-quantum sf{&fand the

two-quanta stat¢10—12 could not. Therefore, the above - )
Hamitonian and wave function, Eg&) and(6), are reason- M Bn(1) =W[ Bn+1() = 2Bn(1) + Bn-1() ]+ 2x1[ | @n+ 1(D)]

(14)

able and appropriate to the protein molecules. —|@n_1(D]2]+ 2x2{ @ (D[ @ns1() — @n_1(D)]
IIl. THE EQUATIONS OF MOTION AND THE SOLITON +en(D @pr1(t) —@h_1(D)]}. (15
SOLUTION

We now derive the equations of motion from the im- From Eq.(15) we see that the presence of two quanta for
proved Davydov model. First of all, we give the interpreta-the oscillators increases the dnvmg force on the phonon field
tion of B,(t) andm,(t) in Eq. (5). We know that the phonon by that factor when compared with the Davydov theory.
part of the new wave function in Eq5) depending on the W& now derive the equation of motion for the(t). A
displacement and momentum operators is a coherent state BRSIC assumption in the derivation is thé(t)) in Eq. (5) is
the normal model creation and annihilation operators. A cod Solution of the time-dependent Sctinger equation
herent state for the mode with wave vectpis [2,12,23,2% (12,23

Ia(t)>:e><p<% [ag(t)al—af(hag]|[0)pn.  (12) ih%|<b(t))=H|<I)(t)). (16)

Utilizing the standard transformations The left-hand side of Eq16) has[12,23

1/2
Un=2> |5c—| €9"o(a’ +a,),
7 [2NMao, a° — _ ( . R
ap Al PO=iA] 2 enBy
_ thq 12 iqnro o T
i3 [o] eali-aa, -3 baen(8181 100180

we can gef12,23 |a(t))=|B(t)), where|B(t)) is in Eq. . )
(5), and wg=2(W/M)¥sin(g/2), ro is the distance be- +|<p(t)>|; {Ba()Py— mp(t)uy
tween neighboring amino acid molecules, anlc(aa) is the

ihilati ti t f the ph ith .

eCtora ohapefon operator of the phonon wif wave +%[ﬁnam(t)—Bn<t)wn<t>]}|ﬁ<t)>]-

(a(t)|agla(t))=aq(t) (17)
/ /

:(%)lzﬁq(t)ﬂ(—l )lzwq(t), Now left-multiplying the both sides of Eq(16) by

2h 2Mfiwq (®(t)|, we can yield the left-hand side of E(L6) to be

)= iE iAo (t 13 J
Bq( )_ \/N = € Bn( )a ( ) Iﬁ<q)(t)|ﬁ|q)(t)>

)= JLN S e o), =ih 2 eh (D] 2 erhen(h)+1

+%§ [B(t)ﬂn(t)—#(t)ﬁn(t)]; len(t)]2

(18)

(P(O)]un| (1)) = Bn(1),  (P(1)[Pn|D(1))=my(1).

Utilizing again the above results and the formulas of the
expectation values of the Heisenberg equations of operators,
u, andP,, in the statd®(t)), Similarly, for the right-hand side of E¢16) we have 12,23
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(@ (1) (H eyt Hpnt Hind |2 (1)) where

— 2_ *

X +

1+% |(Pm(t)|2

En: {x1l Bn+a(t) => %Trﬁ(t)Jr%W[Bn(t)—ﬂn_l(t)]z

= Br1(D 1 @n(V) |2+ xal Brs1(t) = Ba(D)]

1+2 |(Pm(t)|2) +% §hwq (20)

X @* ([ ens1() —@n—1(D]}

+§W(t); len(t)]?, (199 and utilizing Eqs(4) and(8)—(10) and the relations

; [/smH(t)—zﬂm(t)+ﬂmfl<t>wm<t>=—; [Bms1(t) = Bu(D 12,

(PO]2 (BiBasatBrB )| (D)= 2 [@7 (Densa(D)+epa(Den(V)]

143 om0l

<<I><t>|§ <un+1—uM)(BxBn)ch(t»:g {[Bns2(t) = Bn_1(D)]]@n(D)|?

1+% |§Dm(t)|2)a

<<b<t>|§ <un+1—un><828n+1+BnBL1>|<b<t>>=§ {[Bns 1) = B[ @E (D @ni1(D)+ @ (D en(H]}

X

1+§ lsom<t>|2). (21)

From Egs.(16)—(19) we can obtain

J
i% i en(t)=eg@n(t) = I @n+1(t) + @n—1() ]+ xa[ Bn+ (1)

= Bn-1(D]en(t) + x2l Bnr1(t) = Bn(t)]
><[(PnJrl(t) + ‘Pnfl(t)]

+3

wm—%% [Bun(t) ()

—#m(t)ﬁm(t)])%(t)- (22)
In the continuum approximation we get from Ed45)
and (22

FPo(X,t)

J
i = e(X,1)=R(t) p(x,t) = Ir3 2
_Gp|(P(X1t)|2(P(X1t) (23)

and

aBxt) _aBxt) — Alxitx2) | 02
i wa=sr, enl

(24)

|
where [=x—Vt, R(t)=go—2J+ 3{W(t)

=330l Brn() (1) = () Brm() ]}, @nd S=V/Vq. The
soliton solution of Eq(293) is thus

p(X,t)=

p| 2
7) sechi(up/ro)(X—Xo— V)]

[ &V t
Xexp i m(x—xo)—EU% (25
with
2(x1+x2)? 8(x1+x2)°
KPP W(1—s9H3" P w(i-%9) - (26)

Although forms of the above equation of motion and the
corresponding solution, Eq$23)—(26), are quite similar to
that of the Davydov soliton, the properties of our soliton
have very large differences from the latter because the pa-
rameter values in the equation of motion and the solution,
Egs. (23 and(25), includingR(t), Gp, and up, have ob-
vious distinctions from that in the Davydov model. A
straightforward result of our model is to increase the nonlin-
ear interaction energy Gp (Gp=2Gp[l+2(x2/x1)
+(x2/x1)?]) and the amplitude of the new soliton, and de-
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crease its width due to an increase pb(up=2up[1  the enhancement of thermal stability for the new soliton rela-
+2(x2/x1) + (x2/x1)?]) when compared with the Davydov tive to the latter due tov,<x;. The increase of the binding
soliton, where MDZXf/W(l— $9)J and GD=4X§/W(1 energy results in significant changes of properties of the new
—S?) are the corresponding values in the Davydov modelSoliton, which are discussed as follows. - N

Thus the localized feature of the new soliton is enhanced, !N comparing various correlations to this model, it is help-
therefore its stability against the quantum fluctuation andul to consider them as a function of a composite coupling
thermal perturbations increased considerably as compardframeter like that of Younet al.[29] and Scotf3] that can
with the Davydov soliton. be written as

IV. THE PROPERTIES OF THE NEW SOLITON Amap=(x1+ x2)*/2Whwp (32
AND REMARKS

wherewp=(w/M)*? is the band edge for acoustic phonons
(Debye frequency If 47ap>1, the coupling is said to be
strong, and if 4rap<<1, it is said to be weak. Using widely

The soliton energy in the improved model becomes

L[ Ie(x0)|? accepted values for the physical ters for the alpha-
_ _ 2 2 pted values for the physical parameters for the alpha
E=(@MlHI2M0)= o wa[Jro( X ) TRle(x.)] helix protein molecul¢2—-23,
1 (~» IB(x,t)\? — — 22 _ _
—Gyle(x,t)[* dx+—f %[M( A )) J=1.55x10"%* J, w=(13-19.5 N/m,
rO o &t
— — 25
o[ IB(X,1) 2 . , M=(1.17-1.92X 10 ?°kg,
o oX dx= EO+ 2 M SOl\/ . (27) (33)

x1=62X10 12N, x,=(10-18x10 12 N,
The rest energy of the new soliton is

ro=4.5x10 °m,
8(x1tx2)"

AR E2+W, (28)

EBo=2(20=2J)~ we can estimate that the coupled constant lies in the region

of 47ap=0.11-0.273, but #ap=0.036—0.045 for the
Davydov model, which is a weakly coupled modd].
Therefore, the new model is not said to be a weakly coupled
theory as compared with the Davydov model. Using again
the notation of Venzel and Fisch¢80], Nagy [31], and

8(x1+ x2)4(95?+2—-35Y Wagner and KongetdB2], it is convenient to define another
M o= 2Mey+ 3W2I(1- V2 - @9 composite parametéB]

whereW=[2(x;,+ x»)*1/3w?J is the energy of deformation
of the lattice. The effective mass of the new soliton is

We utilize Egs.(4) and(8)—(10) in the above calculations. y=J12hwp . (34)

In such a case, the binding energy of the new soliton is
In terms of the two composite parametersré and v,

the soliton binding energy for the new model can be written
_—8(x1tx2)?* g energy

- by
Egp 3902 (30)
TheEgp is larger than that of the Davydov soliton. The latter Esp/I=8(4map/¥)*I3, Mgo=2mg[1+32(4map)?/3].
is Egp=— x3/3Iw?. They have the following relation: (39
) 3 4 From the above parameter values, we can obtgin
E.o—=8Ean 144/ X2 16/ X2| 14 E) L[ X2 } =0.08. Utilizing these values, thEgp/J versus 4ra rela-
5P 5P X1 X1 X1 X1 tions in Eq. (35 are plotted in Fig. 1. Howevertgp/J

(3)  =(4map/y)?3 for the Davydov modelhere M/ =me1
+2(4map)?/3], Amap=x2I2wh wp); then theEgp/J ver-
We can estimate that the binding energy of the new soliton iSus 4rap relation is also plotted in Fig. 1. From this figure
about several decades larger than that of the Davydov solive see that the difference of the soliton binding energies
ton. This is a very interesting result. It is helpful to enhancebetween two models becomes larger with increasing.4
thermal stability of the new soliton. Obviously, the increase Also, we see clearly from Eq§24)—(28) and(31) that the
of the binding energy of the new soliton comes from itSlocalized feature of our soliton is enhanced due to increases
two-quanta nature and the added interacti@fy,(Uny1 of the nonlinear interaction and of the binding energy of the
—u,) (B, By+ B, Bphs1), in the Hamiltonian of the sys- new soliton resulting from the increases of exciton-phonon
tems, Eq(6). However, we see from E@31) that the former interaction in the improved model. Thus, the stability of the
plays the main role in the increase of the binding energy andoliton against quantum and thermal fluctuations is also en-
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2 i >
~t‘¢°&
¢ Eg/J FIG. 1. The binding energy
‘ (Eg) of the solitons in our model
- 02 and the Davydov model in units of
"y : dipole-dipole interaction energy
ﬂwmodﬁ‘ (J) vs the coupled constant g,
ooz | e relations.
0.002 -
0.001 0.01 0.1
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hanced considerably. As a matter of fact, the nonlinear interperature 300 K. This conclusion is consistent at a qualitative
action energy forming this soliton in the new modelGs level with the results of Wangt al. [13] and Cottingham
=8(x1+ x2)%/(1—S?)w=3.8x10 21J, and it is larger than et al. [14].

the linear dispersion energy=1.55x 10" 22], i.e., the non- However, we do not take into account the influence of the
linear interaction in this model is so large that it can actually“disorder” in the protein molecules on the stability of the
cancel or suppress the linear dispersion effect in the equatiomew soliton in the above studies. In practice, the influence
of motion, thus the soliton is stable in such a case accordingctually exist§11,23 because the proteins, strictly speaking,
to the soliton theory2,33]. On the other hand, the nonlinear are not a particularly periodic system, and Caggral’s ex-
interaction energy in the Davydov model is onl@p periments[34] appear to indicate that even relatively small
=4x%/(1-SH)w=1.18<10"?'J, and it is about three to amounts of disorder in amorphous film of acetanild€N),

four times smaller thaiGp . Therefore, the stability of the & proteinlike crystali.e., the molecular structure of acetanil-
Davydov soliton is weaker as compared with the new soliide crystal is quite analogic with alpha-helix protgimre

ton. Moreover, the binding energy of the new soliton in theenOngh to _d_estroy the spec_tral s_ignature _Of a “soliton.”
improved model isEgp=(4.16—4.3) 10" 21J in Eq. (31), Therefore, it is necessary to investigate the influences of the

which is somewhat larger than the thermal perturbation en(_j|sorder effects on the stability of the new soliton in the

- ) . protein. However, this problem is very complicated, and the
ergy, ke I=4.13<10 =J, at 300 Kfmd anut fouﬂg'l”‘es influences depend also on the concretely molecular structure
larger thgn the Debye energks® _,h“’D_ 1.2x107J . and the environment conditions of the protein. Therefore, we
(here wp is the Debye frequengy This shows that transi- o discuss briefly this problem by numerical calculation

tions of the new soliton to a delocalized state can be SUPanalogous to Fmer's method 11] on the basis of Eq15)
pressed by the large energy difference between the initigdng (22). Detailed studies on this problem will be discussed
(solitonic) state and finaldelocalized state, which is very in other papers.

difficult to compensate for with the energy of the absorbed \ye should point out here that an average massviof
phonon. Thus, the new soliton is robust against quantum and 114m,=(1.17-1.91) 10" °kg was used for each amino
thermal fluctuations, therefore it has a large lifetime andyciq residue in a given site in the above simulation and cal-
good thermal stability in the region of biological tempera- cylation. However, a real protein molecule is an aperiodic
ture. In practice, according to Schweitzgral's studies(i.e.,  polymer where 20 different amino acid residues occur with
the lifetime of the soliton increases agp and To  molecular weights between @ (glycine) and 204n, (tryp-
=hVoup/Kgm increase at a given temperatbf@4] and the  tophang. This corresponds to a variation between 0467
above obtained results, we could roughly draw an inferencgnd 1.801. However, in the improved model only small

that the lifetime (_)f the new soliton will increase Cons'derablyelongations perpendicular to the protein molecular backbone
as compared with that of the Davydov soliton due to the,..r and therefore the influence of the disorder determined

increases ofup and Ty because the latter are about threey, he different masses of the amino acid residues should be
times larger than that of the Davydov model. On the Othe'inuch smaller than suaaested by the interval given (ﬁ67
hand, the binding energy of the Davydov solitdfsp 99 y 9 '

=X1‘/3W2J=0.188>< 10721J and it is about 23 times smaller <M,=<1.80M). To show the stability of the new soliton

than that of the new soliton, about 22 times smaller tharfgainst the disorder in the sequence of masses in a first series
KgT, and about 6 times smaller thatg®, respectively. of calculations, we have only mcreased_the mass at site 95.
Therefore, the Davydov soliton is easily destructed by theAll other masses have been kept equaMo Very surpris-
thermal perturbation energy and quantum transition effectsngly, up to quite large masses of IMOno obvious pertur-
Thus we can naturally obtain that the Davydov soliton has dations and decays appear in the motion of the new soliton.
very small lifetime, and it is unstable at the biological tem- Meanwhile, the motion of the new soliton does not change
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much; a quite small fraction of the sound energy is trapped atlso included, {1+ x,) can only be varied up tec20% and
the impurity and the major fraction is scattered back, andv up to =32% w. Finally, if all four parameters are ran-
these fractions do not increase up Mgs= 950M. From domly varied, the maximal possible disorder thit would still
these results one can conclude that an impurity at one sit@ccur in the new soliton motion i$20%w, +3%J, +15%
which may also be some other molecule bound to the proteifiy; + ), and 0.6M<M<1.80M.
at this site(like reactive centers such as, e.g., heme grpups In the case of diagonal disordére, caused by different
does not disturb the soliton at all, unless it does not influencamino acid side groups and corresponding local geometric
the coupling constantsyg + x») significantly. distortions due to the imported impurities, we found that for
On the other hand, we have also studied the influence of &n isolated impurity in the middle of the chain, which causes
random series of masses for the whole chain on the solitorihe change of the energy to esy,=€4,, the soliton can
In this study, we introduced here a small parametewhich ~ pass the impurity only ife<0.6 meV. In other cases it is

can denote the mass at each point on the molecular chaifgflected or dispersed. In the case of a random sequence only
ie., My=a,M, where thea, were determined using a for e<1.05meV, the soliton can pass the chain. For higher

random-number generator with equal probability within aV&!ues ofe, the excitation disperses. _ _
prescribed interval. The aperiodicity due to the smaller inter- HOwever, the actual degree of disorder in protein mol-
vals for ey, for example 0.6% a <100, does not signifi- ecules has been unknown up to now. It is known that protein

cantly affect the stability of the new soliton. However, in the Molecules are a bio-self-organization with high order and
case of the large intervals such as Gs67,< 260, the vibra- coherent features. The order and coherent features of the

tional energy is dispersed. The interval over which the newPOt€in are elementary properties of the protein. These prop-
soliton moves unperturbed (087, <100) is evidently erties are also necessary conditions for the protein to perform

larger than the variation of masses of the natural amino acid&S Piological functions. Any large disorder appearing in the
(0.67< @, <1.80) biological protein means the degeneration of its structure and

However, the effective perturbation of the changes oiIhe disappearanpe of its biological functions. The§e Phenom'
mass on the new soliton that we study here is much small na of the protein are not part of the problems discussed in

than the mass interval suggested. This is due to the fact th is paper. Ther_efore, it is not ree}listic fo discuss the influ-
the amino acide residues in the protein do not move as freBCes of large Q|_sorder of all phys_lcal parameters of the_pro-
particles but are covalently bound in the direction of the'€in on the _stab|||ty of the new soliton. Itis filSO not possd_;le
main chain, which is perpendicular to the direction of their 0" large disorder to occur normally in biological protein
movement. Thus one can suppose that the effective influen olecules such as the case of the small amounts of disorder
of the mass change in the side groups of the amino aci structure in amorphous films of acetanilide discovered in
residues on the soliton should be much smaller than the a&areriet al’s experiments 34]. Therefore, for protein mol-

tual numbers of the masses suggested. Therefore, we Cgﬁules it is practical to study the influences of disorder on

conclude that the aperiodicity or disorder of natural protein€fféctive mass and small disorders of other parameters

molecules should not significantly affect the new soliton for-caused by small changes of geometry of the main chain due

mation and stability. In the case of the mass variation of' the side groups on the stability of the new SQ|I'[OI’I. How-
. . . — — ever, the results obtained above show that the influences of
natural amino acid residues (OM&M,<1.80M), virtu-

I h in th liton d ics is found. Thus. th such disorders on stability of the new soliton are too small to
ally no change in the so t'.on ynj‘r.n"iﬁ IS boun ) I l‘:st edestroy the soliton. Thus, we can conclude that the new soli-
average mass approximation used in the above calculation {3, yith large binding energy is stable in protein molecules.

certainly justified. | :
. . t cannot be destroyed by general or small disorders of the
We have also studied the influence of the change of forc%hysical parameters in biological protein molecules.

constantw arising from the disorder of structure on the sta- In other words. the new soliton could be thermal stable
bility of the new soliton by using numerical calculation. Up o oise in the improved model increasing the coupling

to a random variation of:25%w, we find no change inthe - gyongth of the exciton-phonon interaction and the binding

?ynamics ?f the nevr\]/ soC:!to_n.. FhOIjSOﬁ w, the SOlitgn Yﬁ' hEneray of the soliton can suppress influences of the quantum
ocity is only somewnhat diminished when compared with the, ., “theymal perturbations in the biological protein mol-

case ofw. Finally,.for ?:45%‘”' the soliton disperses slowly gcjies. Thus the new soliton is robust and its lifetime could
and the propagation is irregular. In the normal case of force s, pe |arger. Therefore, the improved model could be a
constantw<30%w, virtually no change in the soliton sta- ||y candidate for bioenergy transport in the protein mol-
bility can be obtained. If in additiow is aperiodic, the soli-  gcyjes. The resulting picture is very compelling in living
ton is §tab|e up to+x15% w, while at 25%W, a slowly systems since the new soliton with two quasicoherent quanta,
dispersive phenomenon of the new soliton occurs. which has highly localized features, is a quasiclassical entity

However, the soliton is more sensitive to the variations inwhich can travel over a macroscopic distance along the mo-
J caused by the disorder of structure when compared with thg,« jjar chains retaining wave shape, energy, and momen-
other parameters, i.e., for variation thalone or together ' ' '

ﬂith the natural mass change, the soliton is stable up to 7%
J.

If (x1+x2) alone is aperiodic, which is caused by the
disorder of structure, together with the natural mass varia- The author would like to acknowledge the National Natu-
tion, the (y;1+ x2) can be varied up ta=25% (y;1+ x») with-  ral Science Foundation of China for financial suppg@tant
out destruction of the soliton. However, if disordervinis ~ No. 19974034
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